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Abstract: The absorption and scattering properties of water can cause various distortions in under-
water images, which limit the ability to investigate underwater resources. In this paper, we propose a
two-stage network called WaterFormer to address this issue using deep learning and an underwater
physical imaging model. The first stage of WaterFormer uses the Soft Reconstruction Network (SRN)
to reconstruct underwater images based on the Jaffe–McGramery model, while the second stage uses
the Hard Enhancement Network (HEN) to estimate the global residual between the original image
and the reconstructed result to further enhance the images. To capture long dependencies between
pixels, we designed the encoder and decoder of WaterFormer using the Transformer structure. Ad-
ditionally, we propose the Locally Intended Multiple Layer Perceptron (LIMP) to help the network
process local information more effectively, considering the significance of adjacent pixels in enhancing
distorted underwater images. We also proposed the Channel-Wise Self-Attention module (CSA) to
help the network learn more details of the distorted underwater images by considering the correlated
and different distortions in RGB channels. To overcome the drawbacks of physical underwater image
enhancement (UIE) methods, where extra errors are introduced when estimating multiple physical
parameters separately, we proposed the Joint Parameter Estimation method (JPE). In this method, we
integrated multiple parameters in the Jaffe–McGramery model into one joint parameter (JP) through
a special mathematical transform, which allowed for physical reconstruction based on the joint
parameter (JP). Our experimental results show that WaterFormer can effectively restore the color and
texture details of underwater images in various underwater scenes with stable performance.

Keywords: image enhancement; transformer; underwater imaging model

1. Introduction

Underwater images often exhibit distorted colors, blurred details, and low contrast
due to the complex underwater environments. These visual impairments are mainly caused
by absorption and scattering in water. Specifically, when the sunlight enters the water, red
light is absorbed first, resulting in underwater images appearing bluish and greenish. Ad-
ditionally, scattering, including forward scattering and background scattering, also affects
the visual quality of underwater images. Forward scattering makes underwater images
blurry, while background scattering make them hazy. To mitigate these adverse effects, it is
necessary to develop new methods for enhancing the visual quality of underwater images.

Existing underwater image enhancement methods can be mainly summarized into
three categories: non-physical methods, physical methods, and deep learning methods.
Non-physical methods aim to modify pixel value to improve the visual quality. They can
improve the contrast and color of underwater images, but the ignorance of the physical
imaging process limits the quality of enhancement, making the enhanced images abnormal
in some areas. Physical methods aim to establish a hypothetical physical imaging model
and then estimate the key parameters to perform inversion of the mathematical formula.

J. Mar. Sci. Eng. 2023, 11, 787. https://doi.org/10.3390/jmse11040787 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11040787
https://doi.org/10.3390/jmse11040787
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0009-0007-6887-8599
https://doi.org/10.3390/jmse11040787
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11040787?type=check_update&version=1


J. Mar. Sci. Eng. 2023, 11, 787 2 of 14

However, the performance of the physical method is restricted to the complicated under-
water environments in that hypothesis and prior knowledge do not always make sense in
complicated underwater environments and it is challenging to estimate the multiple param-
eters accurately. A famous UIE physical model is the Jaffe–McGramery model [1], which
divides the underwater optical imaging process into three components: direct transmission
component, forward scattering component, and background scattering component. In
Jaffe–McGramery model, the total energy ET captured by the camera is defined as follows:

ET = Ed + Eb + E f (1)

where Ed, E f , and Eb represent the direct transmission component, the forward scattering
component, and the background scattering component, respectively. Since the average
distance between the underwater scene and the camera is usually large, E f can usually be ig-
nored. So, only Ed and Eb are considered. After a series of mathematical transformation [1],
the Jaffe–McGramery model can be expressed as follows:

I(x, y) = J(x, y)e−cd(x,y) + B(x, y)(1− e−cd(x,y))
= J(x, y)t(x, y) + B(x, y)(1− t(x, y))

(2)

where I(x, y) denotes the distorted underwater image, J(x, y) denotes the clear image,
c denotes attenuation coefficient, t(x, y) denotes the transmission map, B(x, y) denotes the
background light, and (x, y) denotes the coordinates of the pixels in the images.

Recently, researchers have applied deep learning methods in UIE tasks. Existing
deep learning methods are mostly CNN and GAN networks. Experiments and previous
research [2] have demonstrated that CNN-based models are poor in capturing global
information of underwater images due to the fixed receptive field of the convolution kernel,
while pixels in the whole image may be related when learning the degrading features. GAN-
based models tend to introduce artifacts into the enhanced images and to train a GAN-based
model is difficult and unstable [3,4]. Existing deep learning networks are mainly one-stage.
Additionally, they seldom pay more attention to the channel-wise degradation features.
We found only a one-stage network is insufficient to obtain the desired results. Moreover,
channel-wise information is highly significant in UIE tasks because the degradation in the
RGB channels is different and correlated, which is an important reference for UIE tasks.

To overcome the problems mentioned above, we propose WaterFormer, a two-stage
network based on deep learning and a physical imaging model, the Jaffe–McGramery
model. We did not design our model based on CNN or GAN but integrated Transformer
architecture into our model. Moreover, we introduced the joint parameter estimation
method (JPE) to avoid extra errors when estimating the multiple parameters in the Jaffe–
McGramery model separately. Furthermore, we combined SSIM loss and L2 loss to guide
our model to learn the detailed features of the underwater images.

The contributions of our paper can be concluded as follows:

1. We proposed a two-stage network, composed of a Soft Reconstruction Network (SRN)
and a Hard Enhancement Network (HEN). SRN performs reconstruction via the Jaffe–
McGramery model, in which the parameters are estimated through our proposed joint
parameter estimation method (JPE). HEN further enhances the images by estimating
the global residual.

2. We utilized the Transformer structure to leverage its potential for capturing long-
range dependencies. Moreover, to better leverage local information and channel-wise
information in underwater images, we propose two novel modules: Locally Intended
Multiple layer Perception (LIMP) and the Channel-Wise Self-Attention module (CSA).

3. We introduced a task-oriented loss function for our model, which combines the L2
loss and SSIM loss. By jointly optimizing the L2 and SSIM losses, our model can better
capture both the structural and texture details.
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2. Related Works
2.1. UIE Methods

There are three main categories of UIE methods [3]: non-physical methods, physical
methods, and deep learning methods.

Non-physical methods: Non-physical methods modify the pixel value of the under-
water images to achieve the enhancement. Hitam et al. [5] used contrast adjustment and
adaptive histogram equalization methods in RGB and HSV space to enhance the contrast
of underwater images. Ancuti et al. [6] applied white balance and global contrast adjust-
ments to enhance underwater images. Fu et al. [7] proposed a Retinex-based method.
Chen et al. [8] noted that better results can be achieved when utilizing multi-frame recon-
struction methods. E. Quevedo Gutiérrez et al. [9] proposed a fusion scheme based on a
multi-camera environment. Non-physical methods have the advantage of improving the
contrast and saturation of the distorted underwater images at a relatively low computa-
tional cost, but the underwater imaging process is influenced by physical factors such as
light conditions, temperature, and even the turbidity of the water. Non-physical methods
take no account of these physical factors. So, it performs poorly on real underwater images
with complex underwater conditions.

Physical methods: They perform enhancement with the following steps: (1) estab-
lishing a hypothetical physical model and assuming some conditions according to prior
experiences; (2) estimating parameters in the model via mathematical methods; (3) revers-
ing the degradation process according to the hypothetical physical model mathematically to
enhance performance. Chiang et al. [10] recovered underwater images by combining DCP
with a wavelength compensation algorithm. Drews Jr. et al. [11] proposed the underwater
dark channel prior algorithm UDCP, based on the introduction of red channel attenuation
in underwater images. Carlevaris Bianca et al. [12] considered the attenuation difference
prior, between RGB channels, to predict the transmission characteristics of the underwater
scene. Physical methods have limitations. Underwater conditions are complex and various,
so prior experiences and hypothesis cannot make sense everywhere. Furthermore, existing
physical methods estimate the multiple parameters of the physical model separately, thus
introducing extra errors.

Deep learning methods: Deep learning has been widely applied in UIE tasks in recent
years. By designing an end-to-end network and using data-driven methods, the model can
learn the characteristics of underwater images effectively. Li et al. [4] designed a benchmark
model Water-Net and proposed a dataset UIEB. Li et al. [13] proposed UWCNN, which is
based on CNN. Li et al. [14] proposed a GAN-based underwater image enhancement model
WaterGAN. Guo et al. [15] proposed DenseGAN which can utilize multi-scale information
in underwater images. Sun et al. [16] proposed UMGAN, in which the feedback mechanism
and a noise reduction network are designed to optimize the generator and address the
issue of noise and artifacts in GAN-produced images. Existing deep learning methods
rarely take physical factors into consideration and are mainly one-stage networks, so they
perform poorly in face of various underwater images due to lacking generalization ability.

2.2. Summary

Our proposed network aims at enhancing underwater images by combining physical
model and deep learning methods and properly accounting for characteristics of underwa-
ter images both space-wise and channel-wise.

3. Proposed Method

The proposed WaterFormer network comprises two stages, as illustrated in Figure 1.
The first stage, termed soft reconstruction-network (SRN), reconstructs the images through
the Jaffe–McGramery model, where the two key parameters, t(x, y) and B(x, y), are esti-
mated through the joint parameter estimation method (JPE), which can avoid extra errors
that can arise from the separate estimation. The outputs of SRN are subsequently fed
into the second stage, termed Hard Enhancement Network (HEN), where the images are
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further enhanced through the estimation of the global residual. During the whole process,
the Channel-Wise Self-Attention module (CSA) pays attention on channel-wise informa-
tion, and the WaterFormer Block embedded with the Locally Intended Multiple Layer
Perceptron (LIMP) learns the features of the distorted underwater images. Additionally,
we incorporate the structural similarity index (SSIM) loss into our loss function to ensure
the consistency of image structure and texture with the desired outputs.
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Figure 1. The overall structure of WaterFormer.

In the subsequent sections, we elaborate on SRN, HEN, CSA, WaterFormer Block with
LIMP, and the task-oriented loss function.

3.1. Network Architecture
3.1.1. Soft Reconstruction Network

SRN reconstructs underwater images based on the Jaffe–McGramery model and deep
learning. Given a distorted underwater image, SRN estimates the parameters in the Jaffe–
McGramery model via JPE, and then performs reconstruction. Given a picture of (512, 512,
and 3), the shape of data in each stage can be shown in Table 1.

Table 1. Data flow of SRN.

Id Layer Names Input Size Output Size

1 Conv (512, 512, 3) (512, 512, 24)
2 WaterFormer Block × L1 (512, 512, 24) (256, 256, 48)
3 WaterFormer Block × L2 (256, 256, 48) (128, 128, 96)
4 WaterFormer Block × L3 (128, 128, 96) (256, 256, 48)
5 WaterFormer Block × L4 (256, 256, 48) (512, 512, 24)
6 Conv (512, 512, 24) (512, 512, 3)
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At the end of SRN, we perform reconstruction via the proposed joint parameter esti-
mation method (JPE). In the Jaffe–McGramery model, an underwater image is determined
by two key parameters t(x, y) and B(x, y). Generally, existing estimation methods tend to
estimate t(x, y) and B(x, y) separately. However, the estimation of t(x, y) relies on a depth
map d(x, y) according to Equation (2) and the estimation of B(x, y) depends on certain
experiences and prior knowledge. Since experience and prior knowledge cannot make
sense everywhere, errors are introduced when estimating t(x, y) and B(x, y) separately. To
address this problem, we reformulated Equation (2) to integrate t(x, y) and B(x, y) into a
joint parameter, K(x, y). The reformulation can be shown as follows:

Specifically, Equation (2) can be expressed as:

J(x, y) = I(x,y)−B(x,y)
t(x,y) + B(x, y)

= 1
t(x,y) (I(x, y)− B(x, y)) + (B(x, y)− b) + b

=
1

t(x,y) (I(x,y)−B(x,y))+(B(x,y)−b)

I(x,y)−1 (I(x, y)− 1) + b

= K(x, y)(I(x, y)− 1) + b

= K(x, y)I(x, y)− K(x, y) + b

(3)

where K(x, y) can be expressed as:

K(x, y) =
1

t(x,y) (I(x, y)− B(x, y)) + (B(x, y)− b)

I(x, y)− 1
(4)

The process above can realize joint parameter estimation (JPE). SRN estimates joint
parameter K(x, y) via JPE and then perform reconstruction according to Equation (4). The
whole process of SRN can be depicted in Figure 2.
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According to Equation (5), the joint parameter is a combination of t(x, y) and B(x, y).
We randomly selected four images and calculated their corresponding joint parameter map
K. We visualize them in Figure 3.
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3.1.2. Hard Enhancement Network

The architecture of HEN is shown in Figure 4. HEN has a similar structure as SRN.
HEN estimates the global residual R(x, y) between J(x, y) and S(x, y). After obtaining the
global residual R(x, y), HEN performs enhancement via the following formula:

S(x, y) = J(x, y) + R(x, y) (5)
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3.1.3. WaterFormer Block

The architecture of the WaterFormer Block is shown in Figure 5b.
To cut down the computational cost of self-attention operation, we introduced shifted

window self-attention (SWSA), which was applied in SwinTransformer [17]. SWSA divides
an image into several patches and computes self-attention operation within each patch.
Then, the shifted window scheme is used to fuse the results of each patch. It can be proven
that SWSA can compute self-attention at a linear cost [17].
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Figure 5. Structure in WaterFormer block. (a) Structure of LIMP module, (b) structure of the
WaterFormer Block.

Previous research found that the MLP layer in Transformer has a limited ability to
learn the local context [18]. However, UIE images are characteristic of having similar
distortion features in adjacent areas, which means the lack of gathering local information
can cause the model to perform badly. Therefore, it is necessary to add local attention to
our model considering that adjacent pixels are an important reference for reconstructing a
distorted underwater image. We substituted the regular MLP in the Transformer structure
for our proposed LIMP and added LIMP as a parallel module to WaterFormer Block. As
shown in Figure 5, LIMP relies on three different sizes of convolution kernel (1× 1, 3× 3
and 5× 5) to capture local information.

3.1.4. Channel-Wise Self-Attention Module

As color attenuation in the RGB channel varies and is correlated [1], we designed a
Channel-Wise Self-Attention module (CSA) to replace the normal skip connection in the
regular U-shape architecture. CSA performs Channel-Wise Self-Attention operation, which
can pay attention to the more severely attenuated color channels, thereby compensating for
the distortion imbalance between RGB channels. The structure of CSA is shown in Figure 6.
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The inputs of CSA are the feature maps Fi ∈ RCi×
Hi
2i ×

Wi
2i with different scales in the

encoding stage. After we embedded the feature maps to tokens via a linear projection,
we obtain three token sequences Si ∈ Rd×Ci (i = 1, 2, 3), where d = HW. Similarly,
Q ∈ Rd×Ci (i = 1, 2, 3), K ∈ Rd×C, and V ∈ Rd×C can be obtained by

Q = S ·WQ
K = S ·WK
V = S ·WV

(6)

where WQ ∈ Rd×C, WK ∈ Rd×C, and WV ∈ Rd×C represent learnable parameter matrices.
S is generated by concatenating Si ∈ Rd×Ci (i = 1, 2, 3) channel-wisely. So, the output
O ∈ RC×d(i = 1, 2, 3) can be obtained by:

O = So f tMax(LN(
QTK√

C
))VT (7)

Then, we transform O to feature maps via a linear mapping operation and attach them
to outputs in each decoding each stage.

3.2. Loss Function

Loss function is an objective measurement between output J(x, y) and ground truth
R(x, y). To obtain results with more details, we designed a loss function based on L2 loss
and SSIM loss.

L2 loss function can be expressed as the following formula:

L2(J(x), J∗(x)) =
1
N

N

∑
i=1
||J(x)− J∗(x)||2 (8)

where N is the total number of images in the training set, and ||·|| stands for L2 norm.
SSIM [19,20] is used to measure the similarity between two images. SSIM considers

the following factors in a single picture: brightness, contrast, and structure contrast. The
SSIM value between J(x) and J∗(x) can be expressed as:

SSIM(J(x), J∗(x)) =
2µJ(x)µJ∗(x) + C1

µJ(x)
2µJ∗(x)

2 + C1
·

2δJ(x)δJ∗(x) + C1

δJ(x)
2δJ∗(x)

2 + C1
(9)

where C1 = (K1 + L)2, C2 = (K2 + L)2, K1 = 0.01, L = 1 and µ, δ represent the mean and
standard deviation of an image, respectively. δJ(x)δJ∗(x) is the covariance of a gray image.
Then, the SSIM loss can be expressed as follows:

LSSIM(J(x), J∗(x)) = 1− 1
N

N

∑
i=1

SSIM(J(x), J∗(x)) (10)

Therefore, the joint loss function used in this paper can be expressed as follows:

Ltotal = ω1 · L2(J(x), J∗(x)) + ω2 · LSSIM(J(x), J∗(x)) (11)

where ω1 = 0.7, ω2 = 0.3, respectively.

4. Experiment and Results Analysis
4.1. Experimental Environment Configuration and Datasets Preparation

The experiments are performed on Pycharm. The hardware environments are listed
as follows: Intel Xeon E5-2600 V3 processor (CPU), 32 G memory, NVIDIA GeForce GTX
1080 Ti (11 G) graphics processor (GPU), and the operating system is Ubuntu16.04. The
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environment is Python version 3.7.4, and CUDA version 10.1. In addition, the experimental
hyperparameter settings are shown in Table 2.

Table 2. Experimental hyper-parameter settings.

Hyperparameter Parameter Setting

The sample size was trained 256 × 256 × 3
learning rate 0.0001

Batch size 16
Optimizer/momentum Adam W/0.5

We used the UIEB dataset to verify the practical effect of WaterFormer on the UIE task.
The UIEB dataset was first proposed by Li et al. [4] with their benchmark UIE network,
WaterNet. The UIEB dataset contains 950 underwater images in multiple underwater
scenes and with various underwater features with degradation (hazy, fog, low-contrast,
and insufficient exposure). A total of 890 of them have corresponding high-quality reference
images, and the remaining 60 images have no reference. We randomly selected 800 images
in the UIEB dataset as the training set and the remaining 90 images as testing set.

4.2. Experimental Results and Analysis

We conducted an experiment on the UIEB dataset to compare the practical effect with
other algorithms, including five traditional algorithms and four deep learning methods
(CLAHE, Fusion [21], UWCNN [13], Water-Net [4], WaterGAN [14], CylcleGAN [22], etc.)
to evaluate the practical effectiveness of WaterFormer.

4.2.1. Qualitative Evaluation

We randomly selected a few images in the UIEB dataset and perform enhancement
via the different UIE methods mentioned above. Figure 7 shows the experiment results.
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As can be seen from Figure 7, traditional UIE methods can improve the color and
contrast to some extent, but they have limitations, especially in the greenish scene.
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As shown in Figure 8, UWCNN can compensate for the red channel to some extent, but
its ability to correct other channels is poor. Water-Net enhances underwater images through
gating and fusion schemes, but it introduces noise and artifacts. WaterGAN and DenseGAN,
which are GAN-based models, tend to overcompensate for the red channel and introduce
artifacts. Compared with CNN-based model and GAN-based model, WaterFormer can
restore underwater images with good visual quality and rich details.
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4.2.2. Quantification Evaluation

In order to quantitatively analyze the performance of the algorithm on the under-
water image enhancement, PSNR [20] and UCIQE [23] are selected as the quantitative
measurements.

Given two images, f and g, the size of M × N, the PSNR value between f and g is
defined as follows:

PSNR( f , g) = 10 log10(
2552

MSE( f , g)
) (12)

where MSE can be expressed as:

MSE( f , g) =
1

MN

N

∑
i=1

M

∑
j=1

( fij − gij)
2 (13)

UCIQE, a linear combination of color concentration, contrast, and saturation, evaluates
the quality of a single degraded underwater image. The larger the value, the better the
visual quality of the underwater image. According to [23], UCIQE can be expressed
as follows:

UCIQE = c1 · σc + c2 · conl + c3 · µs (14)

where σ is the standard deviation of the image, and it can represent the average of saturation.
The results of the quantitative experiment are shown in Table 3. The time cost of each

model is also recorded. A total of 300 underwater images of different styles are randomly
selected for quantitative analysis. Among all the methods, WaterFormer showed the best
PSNR, SSIM, and UCIQE scores by 23.82%, 0.91, and 0.632, respectively with acceptable
time cost.
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Table 3. Quantitative comparison of the enhanced performance on the UIEB datasets.

Method PSNR SSIM UCIQE Time Cost (s)

CLAHE 16.67 0.66 0.567 0.0139
IBLA 16.88 0.63 0.611 28.12

Fusion 16.75 0.73 0.654 0.152
UWCNN 16.22 0.80 0.464 1.21
WaterNet 18.14 0.77 0.570 1.03
UWGAN 19.05 0.74 0.502 1.58

WaterGAN 16.85 0.62 0.603 1.67
CycleGAN 15.75 0.51 0.511 1.96

Ours 23.82 0.91 0.632 1.57

4.3. Ablation Experiments

To demonstrate the effectiveness of each component in WaterFormer, we conducted
ablation experiments.

4.3.1. Two-Stage Structure

The results of the experiments are shown in Figure 9 and Table 4. We remove SRN
and HEN separately and compare the results with that of the two-stage network. HEN
significantly improves the color and contrast of the underwater images, but extra noise
and artifacts are introduced due to the ignorance of physical imaging process. When the
images are processed by these two networks together, color and contrast are significantly
improved with little noise and are more in line with humans’ visual sense.
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Table 4. Results of the ablation experiments on the two-stage network.

SRN HEN PSNR UCIQE
√

- 18.89 0.596
-

√
21.96 0.611√ √
23.82 0.623

4.3.2. Channel-Wise Self-Attention Module

To verify the effect of CSA, we replaced CSA with a simple skip connection. Experi-
ment results show that PSNR and UCIQE decrease without CSA. Results of the ablation
experiments on CSA are shown in Table 5.

Table 5. Results of the ablation experiments on CSA.

CSA Simple Skip Connection PSNR UCIQE

-
√

22.91 0.601√
- 23.82 0.623

4.3.3. SSIM Loss

We added SSIM loss to the total function to guide our model to learn the proper
texture and structure of the desired images. To demonstrate the effectiveness of the SSIM
component, we removed SSIM loss in the total loss function and compared their results.
Experiment results in Table 6 show that PSNR and UCIQE decrease without SSIM loss.

Table 6. Verification of SSIM loss component.

SSIM Loss L2 Loss PSNR UCIQE

-
√

21.31 0.612√ √
23.82 0.623

4.3.4. SWSA

To lower the computational cost of self-attention, WaterFormer is designed based
on shifted windows self-attention (SWSA), where self-attention operations are performed
within each window and the information of each window is fused through a shifting
scheme. Through SWSA, we can perform self-attention operation in a linear computational
cost. To be specific, given an image size of h × w, the computational complexity of a
standard multi-head self-attention operation (MSA) and a SWSA operation can be shown
as follows:

Complexity(MSA) = 4hwC2 + 2(hw)2C
Complexity(SWSA) = 4hwC2 + 2M2hwC

(15)

The complexity of MSA is quadratic to the size of an underwater image while the
computational cost is linear to hw when SWSA is applied. To further verify the efficiency
of the SWSA in WaterFormer, we replaced SWSA with standard multi-head self-attention
module (MSA) and compared their computational time cost. The experimental results are
shown in Table 7.

Table 7. Computational cost of different UIE methods.

MSA SWSA Time Cost (s)
√

- 6.25
-

√
1.57
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5. Application

WaterFormer has a wide range of applications, one of which is underwater detection.
When applied in the underwater robot, underwater detection becomes easier and more
convenient. We applied WaterFormer to the Trash_ICRA19 dataset. Trash_ICRA19 was
proposed by Fulton et al. [24], and it contains plastic (marine waste and all plastic materials),
remote submersible (remote, remote submersible, and sensor), and biological (all natural
biological materials, including fish, plants, and biological debris) debris. The enhancement
results on the Trash_ICRA19 dataset are shown in Figure 10.
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6. Conclusions

WaterFormer is a two-stage network that utilizes deep learning and an underwater
physical imaging model to enhance underwater images. Soft Reconstruction Network
(SRN) reconstructs the underwater images based on the Jaffe–McGramery model. The joint
parameter estimation method (JPE) is also proposed to reduce extra error when estimating
multiple parameters in the Jaffe–McGramery model. Hard Enhancement Network (HEN)
further enhances the images by estimating the global residual between the original image
and the reconstructed results. The encoder and decoder of WaterFormer are based on the
Transformer structure, which is designed to capture long dependencies between pixels.
Additionally, the Locally Intended Multiple Layer Perceptron (LIMP) and Channel-Wise
Self-Attention module (CSA) are proposed to effectively process local and channel-wise
information, respectively. A task-oriented loss function with SSIM loss also adds to the
enhancement effects. Experimental results demonstrate that WaterFormer performs well in
restoring color and texture details in various underwater scenes.
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