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A TWO-STAGE PHYSICS-INFORMED NEURAL NETWORK METHOD BASED ON

CONSERVED QUANTITIES AND APPLICATIONS IN LOCALIZED WAVE SOLUTIONS

SHUNING LIN AND YONG CHEN∗

Abstract. With the advantages of fast calculating speed and high precision, the physics-informed neural network
method opens up a new approach for numerically solving nonlinear partial differential equations. Based on conserved
quantities, we devise a two-stage PINN method which is tailored to the nature of equations by introducing features of
physical systems into neural networks. Its remarkable advantage lies in that it can impose physical constraints from a
global perspective. In stage one, the original PINN is applied. In stage two, we additionally introduce the measurement
of conserved quantities into mean squared error loss to train neural networks. This two-stage PINN method is utilized
to simulate abundant localized wave solutions of integrable equations. We mainly study the Sawada-Kotera equation as
well as the coupled equations: the classical Boussinesq-Burgers equations and acquire the data-driven soliton molecule,
M-shape double-peak soliton, plateau soliton, interaction solution, etc. Numerical results illustrate that abundant
dynamic behaviors of these solutions can be well reproduced and the two-stage PINN method can remarkably improve
prediction accuracy and enhance the ability of generalization compared to the original PINN method.
Keywords: Two-stage PINN; Localized wave solutions; Soliton molecules; Conserved quantities.

1. Introduction

Relying on the advantages of fast calculating speed and high precision, deep neural networks have developed rapidly
and been applied widely in various fields, such as image recognition, speech recognition, natural language processing
and so on. The neural network method also plays an important role in the area of scientific computing, especially in
solving forward and inverse problems of nonlinear partial differential equations. As a major landmark, Raissi et al.
proposed the physics-informed neural network (PINN) method [1], which is one of the most powerful and revolutionary
data-driven approaches. It aims to train neural networks to solve supervised learning tasks while respecting laws of
physics described by nonlinear partial differential equations. On this basis, abundant significant physics-informed
neural network frameworks, e.g. NSFnets [2], VPINNs [3], fPINNs [4], B-PINNs [5] and hp-VPINNs [6], were devised
and targeted at different application situations. This PINN methodology and its variants also have demonstrated
extraordinary performance in approximating the unknown solutions [7–9], data-driven discovery of partial differential
equations [10, 11], the research of extracting physical information from flow visualizations [12] and beyond [13, 14].
In order to improve the performance of physics-informed neural networks, Jagtag et al. also proposed different ways
of locally adaptive activation functions with slope recovery term and these methods are capable of accelerating the
training process [15]. Also noteworthy, many scholars have obtained a number of research results [16–21]. Our group
mainly focused on integrable equations possessing remarkable properties, such as the KdV equation, mKdV equation,
nonlinear Schrödinger equation, derivative nonlinear Schrödinger equation (DNLS) and Chen-Lee-Liu equation [17–21].
By means of the PINN method, we reproduced abundant dynamic behaviors of data-driven solutions with regard to
mentioned equations, including the breathing solution [19], rogue wave solutions [19,20], rogue periodic wave [21] and
so on.

Currently, we are devoting to the research of integrable-deep learning algorithms, which aim to study integrable
systems via the deep learning algorithm and further improve the neural network method with the advantages of in-
tegrable systems. First of all, numerous exact solutions can be obtained since integrable systems have outstanding
properties. Therefore, it provides abundant samples for the PINN algorithm in reproducing dynamic behaviors of
solutions. Secondly, due to the good properties of integrable systems such as abundant symmetry, infinite conserva-
tion laws and the Lax pair, as well as the mature methods for studying integrable systems including the Darboux
transformation [22–26], the Bäcklund transformation [27–31], the Hirota bilinear method [32,33] and the inverse scat-
tering transformation [34–37], we can combine these properties and methods with the PINN method to obtain more
accurate numerical solutions. Finally, considering that integrable systems can describe physical phenomena such as
the localized wave and turbulence [38–40], we can observe more physical phenomena with the aid of PINN method,
which can not be obtained by classical methods.

The two-stage physics-informed neural network method based on conserved quantities is proposed here. The specific
way is that the original PINN is applied in stage one while in stage two we additionally introduce the measurement
of conserved quantities into mean squared error loss to train neural networks. There are three motivations for this
improved method. Above all, we intend to further improve integrable-deep learning algorithm and thus more features
of physical systems are introduced into neural networks, such as conserved quantities considered in this paper. In
the next place, our goal is to devise more targeted PINN method in solving nonlinear systems, especially integrable
systems, which is tailored to the nature of equations by digging out more underlying information of the given equations.
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Last but not least, we aim to impose constraints from a global perspective considering that the loss functions in the
original PINN method reflect the local constrains at certain points solely.

In this paper, we mainly consider nonlinear integrable equations: the Boussinesq-Burgers equations [38, 41], the
classical Boussinesq-Burgers equations [42–46] as well as the Sawada-Kotera equation [57, 58]. Here, our improved
PINN method is utilized to reproduce the dynamic behaviors of localized wave solutions for the above equations, such
as the interaction solution, soliton molecule, M-shape double-peak soliton, etc.

This paper is organized as follows. In Section. 2, we review the physics-informed neural network method for
completeness and put forward the two-stage PINN method based on conserved quantities. In Section. 3, our two-
stage PINN method based on conserved quantities is utilized to simulate abundant localized wave solutions including
the one-soliton solution for the Boussinesq-Burgers equations and interaction solution for the classical Boussinesq-
Burgers equations. Dynamic behaviors of soliton molecules for the Sawada-Kotera equation are also reproduced in
Section. 4. In above two sections, given that we just use the original PINN in stage one, the performance of the two
models can be evaluated in terms of the accuracy by comparing the results of the two stages. Then we present the
relative L2 errors of these two methods and calculate error reduction rates. Finally, the conclusion and expectation
are given in the last section.

2. Methodology

2.1. The PINN method.
The physics-informed neural network method is briefly reviewed in this section [1], which plays an important role in

solving forward and inverse partial differential equations. We take the following (1+1)-dimensional nonlinear equation
as an example to illustrate this method:

ut +N [u] = 0, x ∈ [x0, x1] , t ∈ [t0, t1] , (2.1)

where u = u(x, t) is the real-valued solution of this equation and N [·] is a nonlinear differential operator in space. The
governing equation f(x, t) is defined by the left-hand-side of the Eq. (2.1) above:

f := ut +N [u]. (2.2)

We aim to solve the initial-boundary value problem with the aid of physics-informed neural network technique.
Meanwhile, the PINN method is introduced from three aspects as follows.

(1) Structure establishment of PINN:
Considering that the depth of neural network depends on the number of weighted layers, we construct a neural

network of depth L consisting of one input layer, L− 1 hidden layers and one output layer. The lth (l = 0, 1, · · · , L)
layer has Nl neurons, which represents that it transmits Nl-dimensional output vector xl to the (l + 1)th layer as
the input data. The connection between layers is achieved by the following affine transformation A and activation
function σ(·):

xl = σ(Al(x
l−1)) = σ(wlxl−1 + bl), (2.3)

where wl ∈ R
Nl×Nl−1 and bl ∈ R

Nl denote the weight matrix and bias vector of the lth layer, respectively. Thus, the
relation between input x0 and output u(x0,Θ) is given by

u(x0,Θ) = (AL ◦ σ ◦ AL−1 ◦ · · · ◦ σ ◦ A1)(x
0), (2.4)

and here Θ =
{
wl,bl

}L
l=1

represents the trainable parameters of PINN.
Before training a NN model, we need to initialize the parameters. Usually, the bias term is initialized to zero. There

are many effective methods to initialize weight matrixes, such as Xavier initialization [47], He initialization [48], etc.
Given that the expression ability of the linear model is not enough, the activation function is used to add nonlinear
factors to neural networks. The most frequently used nonlinear activation functions include ReLU function, Sigmoid

function and tanh function. In this paper, we select tanh function as the activation function and initialize weights of
the neural network with the Xavier initialization.

(2) Parameter optimization of PINN:
The essence of the training neural networks or deep learning models is to update the weights and biases. Based on

the training data, our goal is to minimize the value of the loss function by optimizing the parameters of the neural
network.

Assume we can obtain the initial-boundary dataset {xi
u, t

i
u, u

i}Nu

i=1 and the set of collocation points of f(x, t),

denoted by {xi
f , t

i
f}

Nf

i=1. Then we construct the mean squared error function as the loss function to measure the
difference between the predicted values and the true values of each iteration. The given information is investigated to
merge into mean squared error, including the initial and boundary data as well as the governing equation:

MSE1 = MSEu +MSEf , (2.5)
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where

MSEu =
1

Nu

Nu∑

i=1

|û(xi
u, t

i
u)− ui|2, (2.6)

MSEf =
1

Nf

Nf∑

i=1

|f(xi
f , t

i
f )|2. (2.7)

Here, {û(xi
u, t

i
u)}Nu

i=1 denote the predicted results and the derivatives of the network u with respect to time t and space

x are derived by automatic differentiation [49] to obtain {f(xi
f , t

i
f )}

Nf

i=1. Based on MSE criteria, the parameters of
neural networks are optimized to approach the initial and boundary training data and satisfy the structure imposed
by (2.1). Several commonly used optimization methods of loss functions are: L-BFGS [50], SGD, Adam and we apply
L-BFGS method here. Hence, numerical solutions of the given domain and period can be obtained according to the
trained PINN.

(3) Capability Evaluation of PINN:
Actually, the PINN method only involves above two aspects. However, in this paper, we aim to evaluate the

performance of the PINN method in the circumstances of known solutions of Eq. (2.1).
We divide spatial region [x0, x1] and time region [t0, t1] into Nx and Nt discrete equidistance points, respectively.

Then the solution u is discretized into Nx × Nt data points in the given spatiotemporal domain. We randomly
select Nu points of initial-boundary data on the above grids (I ∪ B, I = [x0 + j x1−x0

Nx−1 , t0], (j = 0, 1, · · · , Nx − 1),B =

[x, t0 + k t1−t0
Nt−1 ], (x = x0 or x1, k = 0, 1, · · · , Nt − 1)) and obtain a random selection of Nf collocation points of f(x, t)

in [x0, x1]× [t0, t1], which is not required to appear on grids. Thus, the training data in this case is {xi
u, t

i
u, u

i}Nu

i=1 and

{xi
f , t

i
f}

Nf

i=1. Given that the size of training data is only a small percentage of total data on grids, we calculate the

relative L2 error (RE) of Nx ×Nt data points on grids to evaluate the generalization ability of the PINN model:

RE =

»∑Nx−1
j=0

∑Nt−1
k=0 |û(x0 + j x1−x0

Nx−1 , t0 + k t1−t0
Nt−1 )− uj,k|2

»∑Nx−1
j=0

∑Nt−1
k=0 |uj,k|2

, (2.8)

where û(x0 + j x1−x0

Nx−1 , t0 + k t1−t0
Nt−1 ) and uj,k represent the predictive value and true value, separately.

2.2. Introduction of conserved quantities.
In this part, the introduction of conserved quantities is presented in brief [51].
For a finite-dimensional system, let qi, pi(i = 1, 2, · · · , n) be the generalized coordinates and momentums of the

mechanical system. If Hamiltonian functions H = H(qi, pi) exist, which satisfy

dqi

dt
=

∂H

∂pi
,

dpi

dt
= − ∂I

∂qi
, (i = 1, 2, · · · , n) (2.9)

then (2.9) can be rewritten as

q̇i = {qi, H} , ṗi = {pi, H} ,
q̇i =

dqi
dt

, ṗi =
dpi

dt
,

(2.10)

after introducing Poisson brackets

{F,G} =
n∑

j=1

Å

∂F

∂qj

∂G

∂pj
− ∂F

∂pj

∂G

∂qj

ã

. (2.11)

Besides, qi and pi satisfy the following relations

{qi, qj} = {pi, pj} = 0, {qi, pj} = δij . (2.12)

Therefore, Eq. (2.9) is called the Hamilton system. If there is I = I(qi, pi), which holds

dI

dt
= 0, (2.13)

then I is called a conserved quantity of Eq. (2.9).
For infinite dimensional systems, we take the following (1+1)-dimensional nonlinear equation as an example

∆(x, t, u(x, t)) = 0, (2.14)

and then a conserved quantity mi can be defined similarly, which is time-independent and usually obtained by calcu-
lating the integral from −∞ to ∞ with respect to a corresponding conserved density Γi(x, t):

mi =

∫ ∞

−∞

Γidx, (i = 1, 2, · · · ). (2.15)

Then Eq. (2.14) have the corresponding conservation law

DtΓi +DxJi = 0, (i = 1, 2, · · · ) (2.16)
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which is satisfied for all solutions of (2.14). Here, Γi(x, t) is the conserved density and Ji(x, t) is the associated flux [52].
The above formulas reveal the relationship between conserved quantities and conservation laws.

Integrable systems have infinite conserved quantities, which is a pretty significant property. Generally speaking, it’s
not plain to derive conserved quantities. Sometimes, the first few conserved quantities in physical problems usually
correspond to the conservation of mass, momentum, or energy. Others may facilitate the research of the quantitative
and qualitative properties of solutions.

2.3. The two-stage PINN method based on conserved quantities.
The main purpose of this article is to put forward a more targeted PINN algorithm of nonlinear mathematical

physics. We try to introduce more features of integrable systems into neural networks to improve the precision and
reliability. This part epitomizes the main idea of the two-stage PINN method based on conserved quantities.

(1) Stage One:
In the first stage, we use the original PINN method which is mentioned in section 2.1. Under the principle of

minimizing the mean squared error loss, we can acquire the numerical solution û1(x, t) of the given domain and period
after parameter optimization.

(2) Stage Two:
On the basis of stage one, we make the following improvements. Based on conserved quantities, we aim to achieve

further optimization of the numerical solution û1(x, t) in the first stage.
Firstly, we should gain a conserved quantity m(t) of the corresponding equation, which evidently depends on the

choice of the solution u and is actually time-independent, i.e. dm(t)
dt

= 0. Based on the initial data of u(x, t), the
conserved quantity m(t0) can be calculated and taken as the criterion. We randomly select Nc different moments and

measure the corresponding conserved quantities {m(tim)}Nc

i=1. Our goal is to make {m(tim)}Nc

i=1 approach the theoretical
value m(t0) as close as possible.

According to the above analysis, the mean squared error loss of the original PINN is changed into:

MSE2 = MSEu +MSEf +MSEs +MSEm, (2.17)

where

MSEs =
1

Ns

Ns∑

i=1

|û(xi
s, t

i
s)− û1(x

i
s, t

i
s)|2, (2.18)

MSEm =
1

Nc

Nc∑

i=1

|m(tim)−m(t0)|2. (2.19)

Here, û(x, t) denotes the numerical solution obtained in stage two and MSEs measures the difference of numerical

results between two stages at {xi
s, t

i
s}Ns

i=1, which implies that further optimization is based on stage one and Ns points

{xi
s, t

i
s, û1(x

i
s, t

i
s), û(x

i
s, t

i
s)}Ns

i=1 are sampled randomly on the grids. Meanwhile, MSEm reflects the constraint of the
conserved quantity.

With regard to the calculation of conserved quantities, we adopt the method of numerical integral by using sum-
mation instead of integrals. Suppose M[u] is a conserved density (M[·] denotes a differential operator) and we divide
spatial region [x0, x1] into Nx discrete equidistance points with time region [t0, t1] into Nt discrete equidistance points,
then M[u] is discretized into Nx ×Nt data points and the formulas of m(t0) and m(tim) are derived:

m(t0) =

∫ x1

x0

M[u](x, t0)dx ≈
Nx∑

j=2

M[u](xj , t0)
x1 − x0

Nx − 1
, (2.20)

m(tim) =

∫ x1

x0

M[û](x, tim)dx ≈
Nx∑

j=2

M[û](xj , tim)
x1 − x0

Nx − 1
, (2.21)

where M[u](xj , t0) and M[û](xj , tim) represent the true value and predictive value, respectively.
In the original PINN method, the loss MSEu and MSEf reflect the local constraints at certain points solely,

which are selected stochastically. However, in stage two, the calculation of conserved quantities involves the integral
operation. It is widely known that at any given time, conserved quantities mirror the global property of the solution
u in [x0, x1]. Thus, our practice to introduce the measurement of this global property into the mean squared error
loss is meaningful and is a kind of method to impose constraints from a global perspective.

Similarly, if we consider k conserved quantities m = (m1,m2, · · · ,mk), MSEm is transformed into:

MSEm =
1

Nc

k∑

j=1

Nc∑

i=1

|mj(t
i
m)−mj(t0)|2. (2.22)

With regard to two methods above, we display the schematic diagrams of constraints in Fig. 1. Black crosses imply
that these selected points need to meet initial-boundary conditions and blue dots represent the random selection of
points should satisfy the structure imposed by the governing equation. They are both local constraints. The two-
stage PINN method based on conserved quantities differs from the original PINN method in that it takes conserved



A TWO-STAGE PINN METHOD BASED ON CONSERVED QUANTITIES AND APPLICATIONS IN LOCALIZED WAVE SOLUTIONS 5

a b

Figure 1. (Color online) Schematic diagrams of constraints: (a) Constraints of the original PINN
method; (b) Constraints of the two-stage PINN method based on conserved quantities.

Figure 2. (Color online) Schematic diagram of the two-stage physics-informed neural network
method based on conserved quantities.

quantities into consideration to impose constraints globally. We use the red lines to denote calculation of conserved
quantity at certain moments, which involves the integral operation and the method of numerical integral is adopted
by using summation instead of integrals.

Moreover, Fig. 2 shows a sketch of the two-stage PINN method based on conserved quantities, where maxit denotes
the maximum number of iterations.

This method is established on the assumption that heights of background waves in the region D (D = [x, t], x ∈
(−∞, x0]

⋃
[x1,+∞) , t ∈ [t0, t1]) are almost consistent. Therefore, we can integral from x0 to x1 with respect to a
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conserved density to represent conserved quantities instead of from −∞ to +∞. It is a reasonable assumption in the
sense that it can be easily satisfied by localized wave solutions, which are widely considered in the field of integrable
systems to describe various physical phenomena.

Actually, a natural idea is to take the following formula

MSE = MSEu +MSEf +MSEm, (2.23)

as the optimization objective of PINN directly rather than carrying out this two-stage method. However, the result
was a disappointment and even worse than the original PINN method. After the analysis, we are of the opinion
that the optimization is dominated by MSEm, and finally it converges to other local optimal point which causes
unsatisfactory results. Consequently, we propose the two-stage PINN method to improve it. This method not only
considers the global property measured by conserved quantities, but also further optimizes parameters of the original
PINN. The numerical results also show that it can avoid converging to other non-ideal local optimums.

All codes are based upon Python 3.7 and Tensorflow 1.15, and the presented numerical experiments are run on a
MacBook Pro computer with 2.3 GHz Intel Core i5 processor and 16-GB memory.

3. Data-driven one-soliton solution of the Boussinesq-Burgers equations and interaction solution

of the classical Boussinesq-Burgers equations

In this section, we will apply the two-stage PINN method to numerically solve integrable equations and then contrast
the simulation results of the two models: the PINN and two-stage PINN based on conserved quantities. Considering
that we just use the original PINN in stage one, the performance of the two models can be evaluated in terms of the
accuracy by comparing the results of the two stages.

The current research of coupled equations with the aid of neural networks is relatively less than that of the single
equation and thus we mainly consider the coupled equations here: the Boussinesq-Burgers equations [38, 41] and the
classical Boussinesq-Burgers equations [42–46].

3.1. One-soliton solution of the Boussinesq-Burgers equations. Here, we investigate the Boussinesq-Burgers
equations [38, 41] with the first kind of boundary condition (Dirichlet boundary condition)





ut + 2uux − 1
2vx = 0,

vt + 2(uv)x − 1
2uxxx = 0, x ∈ [x0, x1], t ∈ [t0, t1],

u(x, t0) = u0(x),

v(x, t0) = v0(x),

u(x0, t) = a1(t), u(x1, t) = a2(t),

v(x0, t) = a3(t), v(x1, t) = a4(t).

(3.1)

Wang et al. [53] studied the Lax pair, Bäcklund transformation and multi-soliton solutions for the Boussinesq-Burgers
equations. Many researchers also obtained a variety of soliton solutions and some exact interaction solutions of the
Boussinesq-Burgers equations, which describe the propagation of shallow water waves [55,56]. In Ref. [62], Rady et al.
have derived the multi-soliton solution of this equation. Firstly, they consider the following function transformation

v = λux + β, (3.2)

and set λ = −1, β = 0. In the light of the idea of homogeneous balance method [70] as well as the Bäcklund
transformation, the multi-soliton solution can be obtained

u =
1

2

∑n
i=1 ki exp

(
ki
(
x− 2

(
a+ ki

4

)
t
))

1 +
∑n

i=1 exp
(
ki
(
x− 2

(
a+ ki

4

)
t
)) + a,

v = −ux. (3.3)

In this case, the governing equations f1(x, t) and f2(x, t) are as follows

f1 := ut + 2uux −
1

2
vx,

f2 := vt + 2(uv)x − 1

2
uxxx. (3.4)

When n = 1, the corresponding initial-boundary conditions are given by
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u(−20, t) = − e20+
7t
2

2(1 + e20+
7t
2 )

+ 2, u(20, t) = − e−20+ 7t
2

2(1 + e−20+ 7t
2 )

+ 2,

v(−20, t) = − e20+
7t
2

2
Ä

1 + e20+
7t
2

ä +

Ä

e20+
7t
2

ä2

2
Ä

1 + e20+
7t
2

ä2 , v(20, t) = − e−20+ 7t
2

2
Ä

1 + e−20+ 7t
2

ä +

Ä

e−20+ 7t
2

ä2

2
Ä

1 + e−20+ 7t
2

ä2 ,

u0(x) = − e−x−7

2(1 + e−x−7)
+ 2, v0(x) = − e−x−7

2(1 + e−x−7)
+

(e−x−7)2

2(1 + e−x−7)2
, (3.5)

after choosing corresponding parameters as a = 2, k1 = −1, [x0, x1] = [−20, 20], [t0, t1] = [−2, 2]. To obtain the
training data, we divide the spatial region [x0, x1] = [−20, 20] and time region [t0, t1] = [−2, 2] into Nx = 1025 and
Nt = 201 discrete equidistance points, separately. Thus, the solutions u and v are both discretized into 1025 × 201
data points in the given spatiotemporal domain. We randomly select Nu = 100 points from the initial-boundary
dataset and proceed by sampling Nf = 10000 collocation points via the Latin hypercube sampling method [69]. A
8-layer feedforward neural network with 40 neurons per hidden layer is constructed to learn the one-soliton solution of
the Boussinesq-Burgers equations. In addition, we use the hyperbolic tangent (tanh) activation function and initialize
weights of the neural network with the Xavier initialization. The derivatives of the network u, v with respect to time
t and space x are derived by automatic differentiation.

We utilize the L-BFGS algorithm to optimize loss functions. Obviously, v is a conserved density of the Boussinesq-
Burgers equations and we select m defined by

m =

∫ x1

x0

vdx ≈
Nx∑

j=2

v(xj , t)
x1 − x0

Nx − 1
, (3.6)

as the conserved quantity adopted in two-stage PINN. The loss function of stage one is (2.5) and that of stage two is
(2.17) where we choose Ns = 10000, Nc = 20 and MSEm is given by

MSEm =
1

Nc

Nc∑

i=1

|m(tim)−m(t0)|2

≈ 1

Nc

Nc∑

i=1

∣∣∣∣
Nx∑

j=2

v̂(xj , tim)
x1 − x0

Nx − 1
−

Nx∑

j=2

v(xj , t0)
x1 − x0

Nx − 1

∣∣∣∣
2

, (3.7)

where v(xj , t0) and v̂(xj , tim) represent the true value and predictive value, respectively.
Ultimately, the data-driven one-soliton solution of the Boussinesq-Burgers equations is obtained by two-stage PINN

method based on conserved quantities.
Fig. 3 displays the density diagrams of the one-soliton solution, comparison between the predicted solutions and

exact solutions as well as the error density diagrams. In the bottom panel of Fig. 3 (a) and Fig. 3 (c), we show
the comparison between exact solutions and predicted solutions at different time points t = −1.5, 0, 1.5. Obviously,
both u and v propagate along the positive direction of the x-axis as time goes by. Through contrastive analysis,
one-soliton solution can be successfully simulated by two-stage PINN method with high accuracy. In Fig. 4, the
three-dimensional plots of predicted one-soliton solutions u(x, t) and v(x, t) are showed respectively, where v(x, t) is a
dark soliton solution.

In stage one, the original PINN is applied. After 168 times iterations in about 41.7379 seconds, the relative L2

error of u is 8.965473e-04 and that of v is 4.750580e-02. In stage two, where the conserved quantity is considered,
the relative L2 error of u is 7.343612e-04 and that of v is 3.776971e-02 after 1382 times iterations in about 407.5796
seconds. To compare the performance of two methods, error reduction rate (ERR) can be obtained according to the
relative L2 error of PINN method (RE1) and that of two-stage PINN method based on conserved quantities (RE2):

ERR =
RE1 −RE2

RE1
. (3.8)

By calculation, the error reduction rate (ERR) of u is 18.09% and that of v is 20.49%, which are presented in Table. 1.
It turns out that our proposed two-stage PINN method based on conserved quantities can improve prediction accuracy
and gain better generalization.

3.2. Interaction solution of the classical Boussinesq-Burgers equations.
In this part, we consider the classical Boussinesq-Burgers (CBB) equations [42–46]

ut =
1

2
(β − 1)uxx + 2uux +

1

2
vx,

vt = β

Å

1− β

2

ã

uxxx +
1

2
(1 − β)vxx + 2(uv)x, (3.9)
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Figure 3. (Color online) One-soliton solution u(x, t) and v(x, t) of the Boussinesq-Burgers equations
by two-stage PINN based on conserved quantities: (a) The density diagrams and comparison between
the predicted solutions and exact solutions at the three temporal snapshots of u(x, t); (b) The error
density diagram of u(x, t); (c) The density diagrams and comparison between the predicted solutions
and exact solutions at the three temporal snapshots of v(x, t); (d) The error density diagram of v(x, t).
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Figure 4. (Color online) One-soliton solution u(x, t) and v(x, t) of the Boussinesq-Burgers equations
by two-stage PINN based on conserved quantities: (a) The three-dimensional plot of u(x, t); (b) The
three-dimensional plot of v(x, t).

Table 1. One-soliton solution of the Boussinesq-Burgers equations: relative L2 errors of PINN and
two-stage PINN based on conserved quantities as well as error reduction rates.

Solution
Method PINN Two-stage PINN Error reduction rate

u 8.965473e-04 7.343612e-04 18.09%
v 4.750580e-02 3.776971e-02 20.49%

where u = u(x, t) and v = v(x, t) are real-valued solutions and β is an arbitrary constant. Obviously, the classical
Boussinesq-Burgers equations are equivalent to the Boussinesq-Burgers equations under the condition (u, v, x, t, β) →
(−u,−v,−x,−t, 1). Moreover, Darboux transformations and soliton solutions of the classical Boussinesq-Burgers
equations have been given in Ref. [54]. Some scholars also have studied the finite-band solutions [46], rational solutions
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[71], conservation laws and dynamical behaviors [72]. Dong et al. [63] applied the consistent tanh expansion (CTE)
to study the interaction solution for this equation given by

u = u0 + u1 tanh(w),

v = v0 + v1 tanh(w) + v2 tanh(w)
2, (3.10)

where

u1 =
wx

2
, u0 =

2wt − wxx

4wx

,

v2 =
βw2

x

2
− w2

x, v1 = wxx − βwxx

2
,

v0 = − (β − 2)(2w4
x − wxwxxx + 2wxwxt + w2

xx − 2wxxwt)

4w2
x

, (3.11)

and the interaction between soliton and resonance has the following form

w = px+ qt+
1

2
ln

(
1 +

n∑

i=1

exp (pix+ qit)

)
, i = 1, 2, . . .

qi =
pi
(
2q + pip+ 2p2

)

2p
, i = 1, 2, . . . (3.12)

Here, we select the parameters as follows:

n = 1, p = 1, q = 1, β = 1, p1 = 2. (3.13)

We focus on the classical Boussinesq-Burgers (CBB) equations with the first kind of boundary condition (Dirichlet
boundary condition)





ut = 2uux +
1
2vx,

vt =
1
2uxxx + 2(uv)x, x ∈ [x0, x1], t ∈ [t0, t1],

u(x, t0) = u0(x),

v(x, t0) = v0(x),

u(x0, t) = a1(t), u(x1, t) = a2(t),

v(x0, t) = a3(t), v(x1, t) = a4(t).

(3.14)

After setting [x0, x1] = [−10, 15], [t0, t1] = [−3, 2], initial conditions of the interaction solution above are obtained as
follows

u0(x) =
(4e−36+4x + 4e−18+2x + 1)(tanh(x− 3 + ln(1+e−18+2x)

2 ) + 1)

4(e−18+2x)2 + 6e−18+2x + 2
,

v0(x) =
2e−18+2x sinh(x− 3 + ln(1+e−18+2x)

2 ) cosh(x− 3 + ln(1+e−18+2x)
2 ) + 2e−18+2x cosh2(x− 3 + ln(1+e−18+2x)

2 )

2(1 + e−18+2x)2 cosh2(x− 3 + ln(1+e−18+2x)
2 )

+
4e−36+4x + 4e−18+2x + 1

2(1 + e−18+2x)2 cosh2(x − 3 + ln(1+e−18+2x)
2 )

. (3.15)

as well as corresponding boundary conditions, which are no longer presented here due to space limitation.
We construct a 9-layer feedforward neural network with 40 neurons per hidden layer to learn the interaction solution

between a soliton and one resonant. With the help of MATLAB, spatial region [x0, x1] = [−10, 15] and time region
[t0, t1] = [−3, 2] are divided into Nx = 1025 and Nt = 201 discrete equidistance points, respectively. After adopting
the same generation and sampling method of training data in Section 3.1, we randomly select Nu = 100 points from
the initial-boundary dataset and Nf = 10000 collocation points.

Here, v is a conserved density of the classical Boussinesq-Burgers equations and the conserved quantity adopted in
two-stage PINN is defined just as (3.6). The loss function of stage one is (2.5) and that of stage two is (2.17) where we
choose Ns = 10000, Nc = 20 and the computing formula of MSEm is consistent with (3.7). In addition, the L-BFGS
algorithm to optimize loss functions is the same in Section 3.1, as well as the Xavier initialization and the hyperbolic
tangent (tanh) activation function.

The two-stage PINN method based on conserved quantities eventually succeed in numerical simulations of the
interaction solution between a soliton and one resonant.

In Fig. 5, the density diagrams of interaction solution, comparison between the predicted solutions and exact
solutions as well as the error density diagrams are plotted. Form the bottom panel of Fig. 5 (a) and Fig. 5 (c), it
implies there is little difference between exact solutions and predicted solutions. Meanwhile, it can be seen that two
peaks converge into one of higher amplitude according to the wave propagation pattern of v(x, t) and it propagates
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Figure 5. (Color online) Interaction solution u(x, t) and v(x, t) between soliton and resonance of
the classical Boussinesq-Burgers equations by two-stage PINN based on conserved quantities: (a) The
density diagrams and comparison between the predicted solutions and exact solutions at the three
temporal snapshots of u(x, t); (b) The error density diagram of u(x, t); (c) The density diagrams and
comparison between the predicted solutions and exact solutions at the three temporal snapshots of
v(x, t); (d) The error density diagram of v(x, t).
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Figure 6. (Color online) Interaction solution u(x, t) and v(x, t) between soliton and resonance of
the classical Boussinesq-Burgers equations by two-stage PINN based on conserved quantities: (a) The
three-dimensional plot of u(x, t); (b) The three-dimensional plot of v(x, t).

along the negative direction of the x-axis. Fig. 6 displays the predicted 3D plots of the interaction solution, which
show interaction behaviors between soliton and resonance.

In stage one, we use the original PINN method. After 784 times iterations in about 267.7466 seconds, the relative
L2 error of u is 3.536702e-04 and that of v is 3.304951e-03. In stage two, where the conserved quantity is considered,
the relative L2 error of u is 2.756669e-04 and that of v is 2.576679e-03 after 6411 times iterations in about 2421.5709
seconds. To compare the performance of two methods, the results of calculation shows that the error reduction rate
(ERR) of u is 22.06% and that of v is 22.04%, which are shown in Table. 2. Compared with the original PINN, we
also confirm that the precision and the generalization ability of neural networks can be improved by our two-stage
PINN method based on conserved quantities.
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Table 2. Interaction solution of the classical Boussinesq-Burgers equations: relative L2 errors of
PINN and two-stage PINN based on conserved quantities as well as error reduction rates.

Solution
Method PINN Two-stage PINN Error reduction rate

u 3.536702e-04 2.756669e-04 22.06%
v 3.304951e-03 2.576679e-03 22.04%

4. Data-driven soliton molecule and new types of solitons of the Sawada-Kotera equation

In recent years, soliton molecules, bound states of solitons, have been widely concerned. A pair of bright solitons,
bound together by a dark soliton were discovered in optical fibers through numerical simulations and experimental
verifications in 2005 [64]. Later, soliton molecules were obtained in dipolar Bose-Einstein condensates by the method
of numerical prediction [65]. Lou [66] used a new mechanism, namely the velocity resonant, to find soliton molecules in
three fifth order integrable systems (fifth order KdV, KK and SK equations). Ren et al. [67] studied soliton molecules
of the Korteweg-de Vries equation with higher-order corrections via the velocity resonance mechanism and they found
the collision between a soliton molecule and one soliton is elastic.

To our knowledge, there is poor study of the data-driven soliton molecules by physics-informed neural networks.
Consequently, in this part, abundant travelling wave structures are numerically simulated through the two-stage PINN
method based on conserved quantities, like the soliton molecule, kink-antikink molecule and so on.

For the following Sawada-Kotera (SK, also called Caudrey-Dodd-Gibbon-Sawada-Kotera (CDGSK)) equation

ut + uxxxxx + 15uuxxx + 45u2ux + 15uxuxx = 0, (4.1)

which was introduced in Ref. [57, 58], Ye et al. [59] obtained many new periodic travelling wave solutions via Jacobi
elliptic function linear superposition approach. Meanwhile, singular travelling wave solutions of this equation were
researched [60]. Lou [61] derived the inverse recursion operator by using the pseudopotential of SK.

In this part, we aim to reproduce dynamic behaviors of the soliton molecule and new types of solitons for Eq. (4.1).
Wang et al. [68] obtained the soliton molecule solutions via the travelling wave approach

u = −ak2 + 6ac
c+ cosh

î√
3ak

(
x− 9a2k4t− b

)ó

î

c cosh
î√

3ak (x− 9a2k4t− b)
ó

+ 1
ó2 , (4.2)

where a > 0, c, k and b are arbitrary constants. Here, we consider the Sawada-Kotera (SK) equation with the first
kind of boundary condition (Dirichlet boundary condition) as follows





ut + uxxxxx + 15uuxxx + 45u2ux + 15uxuxx = 0, x ∈ [x0, x1], t ∈ [t0, t1],

u(x, t0) = u0(x),

u(x0, t) = a1(t),

u(x1, t) = a2(t).

(4.3)

Obviously, the governing equation f(x, t) is given by

f := ut + uxxxxx + 15uuxxx + 45u2ux + 15uxuxx, (4.4)

and u is a conserved density considered in this section.
We mainly show the following soliton molecule and new types of solitons of the Sawada-Kotera equation:

4.1. The soliton molecule (SM) for 0 < c ≪ 1
2 .

After taking c = 1
4000 , k = a = 1, b = 0, [x0, x1] = [−15, 15], [t0, t1] = [−0.01, 0.01], we have:

u(−15, t) = −1 +
3
Ä

1
4000 + cosh(

√
3(−9t− 15))

ä

2000
(
cosh(

√
3(−9t−15))
4000 + 1

)2 ,

u(15, t) = −1 +
3
Ä

1
4000 + cosh(

√
3(−9t+ 15))

ä

2000
(
cosh(

√
3(−9t+15))
4000 + 1

)2 ,

u0(x) = −1 + 3
1

4000 + cosh(
√
3(0.09 + x))

2000( 1
4000 cosh(

√
3(0.09 + x)) + 1)2

. (4.5)

With the aid of MATLAB, we divide spatial region [x0, x1] = [−15, 15] into Nx = 513 discrete equidistance points
and time region [t0, t1] = [−0.01, 0.01] into Nt = 201 discrete equidistance points. Thus, the solution u in the given

spatiotemporal domain is discretized into 513× 201 data points. We randomly select Nu = 100 points {xi
u, t

i
u, u

i}Nu

i=1

from the initial-boundary dataset and proceed by sampling Nf = 2000 collocation points {xi
f , t

i
f}

Nf

i=1 via the Latin
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Figure 7. (Color online) Soliton molecule u(x, t) of the Sawada-Kotera equation by two-stage PINN
based on conserved quantities: (a) The density diagrams and comparison between the predicted
solutions and exact solutions at the three temporal snapshots of u(x, t); (b) The error density diagram
of u(x, t).

hypercube sampling method. A 9-layer feedforward neural network with 40 neurons per hidden layer is constructed
to learn the soliton molecule (SM) of the Sawada-Kotera equation. Besides, we use the hyperbolic tangent (tanh)
activation function and initialize weights of the neural network with the Xavier initialization. The derivatives of the
network u with respect to time t and space x are derived by automatic differentiation.

The loss function of stage one is (2.5) and that of stage two is (2.17) where we choose Ns = 2000, Nc = 20 and
MSEm is given by

MSEm =
1

Nc

Nc∑

i=1

|m(tim)−m(t0)|2

≈ 1

Nc

Nc∑

i=1

∣∣∣∣
Nx∑

j=2

û(xj , tim)
x1 − x0

Nx − 1
−

Nx∑

j=2

u(xj , t0)
x1 − x0

Nx − 1

∣∣∣∣
2

. (4.6)

where u(xj , t0) and û(xj , tim) represent the true value and predictive value, respectively. Then the L-BFGS algorithm
is utilized to optimize loss functions above.

The numerical solution can be obtained through our two-stage PINN method. When the original PINN method is
applied in stage one, it achieves the relative L2 error of 4.841810e-03 after 10736 times iterations in about 5551.9234
seconds. In stage two, the conserved quantity (m =

∫ x1

x0
udx ≈ ∑Nx

j=2 u(x
j , t)x1−x0

Nx−1 ) is considered. After 7107 times

iterations in about 3987.8433 seconds, the relative L2 error of u is 4.336727e-03.
Fig. 7 exhibits the density diagrams of soliton molecule u(x, t) and comparison between the predicted solutions and

exact solutions at different time points t = −0.01, 0, 0.01. It is obvious that dynamic behavior of this solution can be
well simulated with high precision from contrast in the (a) of Fig. 7.

4.2. The M-shape double-peak soliton for c < 1
2 .

Here we take c = 1
4 , k = a = 1, b = 0, [x0, x1] = [−8, 8], [t0, t1] = [−0.01, 0.01], then the initial-boundary conditions

are obtained

u(−8, t) = −1 +
3
Ä

1
4 + cosh(

√
3(−9t− 8))

ä

2
(

cosh(
√
3(−9t−8))
4 + 1

)2 ,

u(8, t) = −1 +
3
Ä

1
4 + cosh(

√
3(−9t+ 8))

ä

2
(

cosh(
√
3(−9t+8))
4 + 1

)2 ,

u0(x) = −1 + 3
1
4 + cosh(

√
3(0.09 + x))

2(14 cosh(
√
3(0.09 + x)) + 1)2

. (4.7)

Then, we construct a 7-layer feedforward neural network with 40 neurons per hidden layer to simulate the M-shape
double-peak soliton of the Sawada-Kotera equation. The initial-boundary data is obtained via the same generation
and sampling method in Section 4.1 and here we choose Nx = 513, Nt = 201 as well. Moreover, the selected values
of Nu, Nf , Ns, Nc and the neural network setting, such as loss functions, the optimization algorithm, the activation
function and so on, are the same as the previous section.

By means of the two-stage PINN method based on conserved quantities, we finally acquire the data-driven M-shape
double-peak soliton solution.
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Figure 8. (Color online) M-shape double-peak soliton u(x, t) of the Sawada-Kotera equation: (a)
The density diagrams and comparison between the predicted solutions and exact solutions at the
three temporal snapshots of u(x, t) by two-stage PINN based on conserved quantities; (b) The error
density diagram of u(x, t) by original PINN; (c) The error density diagram of u(x, t) by two-stage
PINN based on conserved quantities.

In stage one, the PINN model achieves the relative L2 error of 1.557140e-03 after 5294 times iterations in about
1927.8552 seconds. In stage two, where we introduce the conserved quantity into the neural network, after 4565 times
iterations in about 1796.5973 seconds, the relative L2 error of u is 8.148663e-04.

In Fig. 8, we present the density diagrams of M-shape double-peak soliton u(x, t) and comparison between the
predicted solutions and exact solutions. Besides, in the (b) and (c) of Fig. 8, error density diagrams generated by
the original PINN and two-stage PINN based on conserved quantities are plotted separately, which fully verified the
advantage of high precision of our improvement.

4.3. The kink-antikink molecule (KAKM) or plateau soliton for c = 1
2 .

The initial-boundary conditions are given by

u(−6, t) = −1 +
3
Ä

1
2 + cosh(

√
3(−9t− 6))

ä

(
cosh(

√
3(−9t−6))
2 + 1

)2 ,

u(6, t) = −1 +
3
Ä

1
2 + cosh(

√
3(−9t+ 6))

ä

(
cosh(

√
3(−9t+6))
2 + 1

)2 ,

u0(x) = −1 + 3
1
2 + cosh(

√
3(0.09 + x))

( cosh(
√
3(0.09+x))
2 + 1)2

, (4.8)

after choosing corresponding parameters as c = 1
2 , k = a = 1, b = 0, [x0, x1] = [−6, 6], [t0, t1] = [−0.01, 0.01].

Similarly, we divide spatial region [x0, x1] = [−6, 6] into Nx = 513 discrete equidistance points and time region
[t0, t1] = [−0.01, 0.01] into Nt = 201 discrete equidistance points. Thus, the solution u is discretized into 513 × 201
data points in the given spatiotemporal domain. The initial-boundary dataset sampled randomly is served as input to
the neural network for training. In the process of establishing the two-stage physics-informed neural network, we also
adopt the fully-connected structure with the Xavier initialization and hyperbolic tangent activation function. The loss
functions of two stages are optimized in the same way as described above. The only difference is the number of hidden
layers. We construct a 8-layer feedforward neural network with 40 neurons per hidden layer here.

After 5381 times iterations in about 2310.8078 seconds, the relative L2 error of u is 1.766738e-03 in stage one.
The numerical results show that after 2972 times iterations, our two-stage PINN model based on conserved quantities
achieves the relative L2 error of 3.678135e-04 in about 1315.2801 seconds in stage two.

Fig. 9 exhibits the density diagrams of the plateau soliton u(x, t) and comparison between the predicted solutions
and exact solutions at different time points t = −0.01, 0, 0.01. Similarly, error density diagrams generated by the
original PINN and two-stage PINN based on conserved quantities are plotted respectively in the (b) and (c) of Fig. 9.
Most notably, the relative L2 of u(x, t) by two-stage PINN based on conserved quantities nearly reach to 5e-4, about
one order of magnitude lower than that by the original PINN. This result accentuates that the improved method can
enhance the performance in terms of accuracy.
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Figure 9. (Color online) Plateau soliton u(x, t) of the Sawada-Kotera equation: (a) The density
diagrams and comparison between the predicted solutions and exact solutions at the three temporal
snapshots of u(x, t) by two-stage PINN based on conserved quantities; (b) The error density diagram
of u(x, t) by original PINN; (c) The error density diagram of u(x, t) by two-stage PINN based on
conserved quantities.
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Figure 10. (Color online) Single-peak soliton u(x, t) of the Sawada-Kotera equation: (a) The density
diagrams and comparison between the predicted solutions and exact solutions at the three temporal
snapshots of u(x, t) by two-stage PINN based on conserved quantities; (b) The error density diagram
of u(x, t) by original PINN; (c) The error density diagram of u(x, t) by two-stage PINN based on
conserved quantities.

4.4. The single-peak soliton for c > 1
2 . We choose c = 1, k = a = 1, b = 0, [x0, x1] = [−6, 6], [t0, t1] = [−0.01, 0.01],

which yields

u(−6, t) = −1 +
6 + 6 cosh(

√
3(−9t− 6))

(cosh(
√
3(−9t− 6)) + 1)2

,

u(6, t) = −1 +
6 + 6 cosh(

√
3(−9t+ 6))

(cosh(
√
3(−9t+ 6)) + 1)2

,

u0(x) = −1 + 6
1 + cosh(

√
3(0.09 + x))

(cosh(
√
3(0.09 + x)) + 1)2

. (4.9)

After exploiting the same data discretization and sampling method, spatial region [x0, x1] = [−6, 6] and time region
[t0, t1] = [−0.01, 0.01] are divided into Nx = 513 and Nt = 201 discrete equidistance points, respectively. Based on the
training data sub-sampled by the the Latin hypercube sampling method, a 8-layer feedforward neural network with
40 neurons per hidden layer is established to derive numerical solutions in the form of single-peak soliton after setting
up parameters as Nu = 100, Nf = 2000. Likewise, we employ the Xavier initialization and hyperbolic tangent (tanh)
activation function as well as the L-BFGS algorithm to optimize loss functions where Ns = 2000, Nc = 20.

With the advantage of the proposed two-stage PINN method, we finally reproduce the single-peak soliton solution.
In stage one, we construct the original PINN model. After 1583 times iterations in about 813.6134 seconds, the

relative L2 error of u is 1.772205e-02. In stage two, where the conserved quantity is considered, the relative L2 error
of u is 9.931406e-03 after 1034 times iterations in about 611.5201 seconds.

In Fig. 10, the density diagrams of single-peak soliton u(x, t) and comparison between the predicted solutions and
exact solutions are displayed. Through comparing error density diagrams of two methods showed in the (b) and (c)
of Fig. 10, it demonstrates that our two-stage PINN method based on conserved quantities is also more accurate for
simulating single-peak soliton.

In Fig. 11, the three-dimensional plots of four structures are plotted respectively: soliton molecule, M-shape double-
peak soliton, plateau soliton and single-peak soliton. It illustrates that the two-stage PINN method can effectively
reproduce different dynamic behaviors.
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Figure 11. (Color online) The three-dimensional plots of background induced soliton and soliton
molecules u(x, t) by two-stage PINN based on conserved quantities: (a) Soliton molecule; (b) M-shape
double-peak soliton; (c) Plateau soliton; (d) Single-peak soliton.

Similarly, according to the relative L2 error of the PINN method (RE1) and that of the two-stage PINN method
based on conserved quantities (RE2), the error reduction rate (ERR) can be obtained. In addition, Table. 3 shows
the relative L2 errors of above solutions as well as the constrast of two methods in terms of error reduction rates.

Table 3. Soliton molecule and new types of solitons of the Sawada-Kotera equation: relative L2

errors of PINN and two-stage PINN based on conserved quantities as well as error reduction rates.

Solution
Method PINN Two-stage PINN Error reduction rate

Soliton molecule 4.841810e-03 4.336727e-03 10.43%
M-shape soliton 1.557140e-03 8.148663e-04 47.67%
Plateau soliton 1.766738e-03 3.678135e-04 79.18%
Single-peak soliton 1.772205e-02 9.931406e-03 43.96%

From Table. 3, it can be seen that the proposed two-stage PINN method based on conserved quantities remarkably
improves the original PINN method according to error reduction rates. Especially for the plateau soliton, its error
reduction rate (79.18%) is extraordinarily significant in the numerical experiments. Consequently, our improvement
is shown to effectively enhance the prediction accuracy.

5. Conclusion

In this paper, we aim to devise a more targeted PINN algorithm tailored to the nature of equations by introducing
conserved quantities of nonlinear systems into neural networks, which implies that the underlying information of the
given equations is dug out to improve the precision and reliability. Moreover, the original PINN method considers the
local constraints at certain points solely, which evokes the question of whether we can impose constraints from a global
perspective. For these purposes, we propose the two-stage PINN method based on conserved quantities. In stage one,
the original PINN is applied. In stage two, we additionally introduce the measurement of conserved quantities into
mean squared error loss to train neural networks to achieve further optimization of the numerical solution in the first
stage. This methodology provides a promising new direction to devise deep learning algorithms with the advantages
of integrable systems.

At the same time, we richly exemplify the use of this improved PINNmethod by simulating the one-soliton solution of
the Boussinesq-Burgers equations as well as the interaction solution between a soliton and one resonant of the classical
Boussinesq-Burgers equations. Besides, considering that there is poor study of the data-driven soliton molecules by
physics-informed neural networks, we reproduce the dynamical behaviors of the soliton molecule, M-shape double-peak
soliton, plateau soliton and single-peak soliton for the Sawada-Kotera (SK) equation.

For the sake of comparing the performances of two methods: the original PINN and two-stage PINN based on
the conserved quantities, we calculate error reduction rates according to their own relative L2 errors. Remarkably,
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results indicate that two-stage PINN method based on conserved quantities can obviously improve prediction accuracy
and enhance the ability of generalization, which implies that our improvement is meaningful in simulating solutions
of nonlinear partial differential equations. Meanwhile, this is the first time that features of integrable systems are
introduced to PINN method. Thus, our practice can solve partial differential equations much more pertinently and
promote the development of this field.

However, our proposed method increases the training cost for improving the accuracy. In the future, we will devote
to devise a new physics-informed neural network algorithm which can improve prediction accuracy and generalization
ability without sacrificing efficiency.
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