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Abstract  

 

A two-stage stochastic programming with recourse model for the problem of 

determining optimal planting plans for a vegetable crop is presented in this paper. 

Uncertainty caused by factors such as weather on yields is a major influence on many 

systems arising in horticulture. Traditional linear programming models are generally 

unsatisfactory in dealing with the uncertainty and produce solutions that are 

considered to involve an unacceptable level of risk. The first stage of the model relates 

to finding  a planting plan which is common to all scenarios and the second stage is 

concerned with deriving a harvesting schedule for each scenario. Solutions are 

obtained for a range of risk aversion factors that not only result in greater expected 

profit compared to the corresponding deterministic model but also are more robust. 

 

Keywords: linear programming; stochastic programming; agriculture; planning.  
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Introduction 

Linear and integer programming models have, for many years, been successfully 

developed in many application sectors. This success has been achieved despite the fact 

that very few decision problems are completely free from uncertainty. Deterministic 

models with constant parameter values substituted for uncertain coefficients do not 

fully model a real life system but nevertheless may well provide useful answers and 

insights into the decision areas being investigated. However, there are important areas 

for which the approach is unsatisfactory. Financial applications in general and 

portfolio selection in particular are obvious examples and have received widespread 

coverage among researchers1,2,3. 

In the presence of uncertainty, many realisations of a given system are generally 

possible.  In such cases, a question arises over the specification of the objective 

function when a deterministic optimisation model is used to represent a stochastic 

system.  One may wish to optimise the expected value of the objective function.  

However, the resulting solution may be unstable in the sense that it might perform 

poorly under some realisations whilst performing well under others. In these cases, it 

may be desirable to sacrifice on optimality in order to obtain a robust solution4 that, 

although sub-optimal in terms of expected value, has lower risk. 

  

This paper concerns the treatment of uncertainty in optimisation models of 

agricultural systems. The biological nature of crop production, weather and 

environmental conditions and changing demand can all have considerable impact on 
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profitability for farmers and growers, as growth patterns, yields, demands and prices 

are all influenced. 

 

Many techniques have been developed for dealing with uncertainty in mathematical 

programming models. Stochastic Programming with Recourse5 is a general purpose 

technique that can deal with uncertainty in any of the model parameters. Mean-

Variance models6,7 and the Focus-Loss model8 deal with objective function coefficient 

uncertainty. The Chance Constrained Programming approach of Charnes and Cooper9 

can be adopted for right-hand-side uncertainty. A range of agricultural applications 

using these respective techniques include Livestock Decisions,10 Soil Conservation,11 

Crop Production8 and Irrigation Systems12. 

 

In this paper, the problem of determining planting plans for a vegetable crop is 

considered.  

 

Background 

A Brussels sprouts grower typically has a number of contracts with customers to 

supply an agreed quantity of Brussels sprouts in a given size band in each week of the 

harvesting season. There are many varieties of Brussels sprouts with attributes such as 

marketable yield, size, maturity patterns, shape, colour, smoothness and resistance to 

diseases. Each customer will hold a view as to their own preferred characteristics. For 

example, for the freezer market, a smaller Brussels sprout is required compared to that 

for the fresh market. 
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The planting season extends from April to June, with a harvesting period from 

September up to the following March, as illustrated in Figure 1. All decisions with 

regard to land use and the planting of different varieties of Brussels sprouts have to be 

determined during the planting season with little indication of the actual yields for the 

forthcoming year in terms of quantities and timings of development. 

Planting Season Harvesting Season

 April                    June     September                   March
 

Figure 1:  Planting and Harvesting Seasons 

 

An example of a yield profile for a particular crop is shown in Figure 2. It shows how 

one variety planted at a particular time and at a particular spacing is expected to grow 

over a season. The graph shows the yield in tonnes per hectare in each size band if an 

area of the crop is harvested in any given week. With early harvesting there is a 

comparatively large quantity of the smaller size band sprouts but as the weeks 

progress there is an increase in size and a peak in overall yield occurring in week 10.  

The cost of harvesting depends on the crop, the harvesting week and the scenario and 

is assumed to be proportional to the quantity harvested.  
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Figure 2: Example of a Yield Profile 

 

Even with known yield profiles for each crop it may not be possible (or economical) 

to satisfy contracts with the grower’s own yield and it is possible to buy on the open 

market to make up for any shortfalls. Similarly it is possible to sell yield in excess of 

that required by customer contracts on the open market. However, if the grower has a 

shortfall (or surplus), it is likely that other growers will be in the same position and, as 

a result, the open market price will be relatively high (or low). 

 

A crop is defined as a particular variety of Brussels sprouts planted in a given week at 

a given spacing and the problem is to decide how much of each of a set of possible 

crops should be planted, where the exact yield profile is not known. 
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The Model 

A linear programming model of Brussels sprouts planting and harvesting has 

previously been developed by Silsoe Research Institute (SRI).13,,14 Although useful, 

the main disadvantage of the model is that the recommended decisions are judged to 

be too risky by growers. In other words the effects of uncertainty were not 

satisfactorily addressed by these earlier models.  

 

The major element of uncertainty that needs to be addressed here is the effect of 

weather on yields. Extensive historical data is available on weather in terms of daily 

temperature and precipitation at a number of locations over many years. Although 

detailed historical data on yields is generally not available, there is considerable 

knowledge on the relationship between weather conditions and yield.15,16 Thus 

weather data for a given year at a given location can be transformed into a yield 

scenario taking into account the soil type at that location. In deterministic models, 

conservative assumptions are typically made when estimating parameters. In this 

application, a yield profile corresponding to the 30th percentile of gross annual yields 

over past years (i.e. the 7th best year out of 10) was used. In the proposed stochastic 

programming (SP) model, 31 years of weather data have been used to create 31 yield 

scenarios. 

 

The 2-Stage Stochastic Linear Programming model presented here is an extension of 

the BRUSPLAN model developed by Hamer14. 
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 The model determines a harvesting schedule for each scenario and a common 

planting plan as illustrated in Figure 3. 

 

 

 

 

 

 

 

Figure 3: Stochastic Programming Problem Structure 

 

A risk term is incorporated in the objective function and the balance between expected 

profit and risk is controlled by a user-specified risk aversion coefficient. 

 

Sets 

 crop,  i = 1,2,3,…,I   

 variety,  v = 1,2,3,…,V  

week,  j = 1,2,3,…,J   

 size band, k = 1,2,3,…,K   

 customer, m = 1,2,3,…,M   

 disease, q = 1,2,3,…,Q  (e.g. Powdery Mildew) 

 scenario, s = 1,2,3,…,S  

 Let Km contain the indices of the size bands specified by customer m. 

 

 

Harvesting Plan 1 

Harvesting Plan S 

Harvesting Plan 2 

Planting Plan 

Scenario 1 

Scenario 2 

Scenario S 
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Data 

 ′c  cost of land  (£/ha) 

 csij cost of harvesting crop i in week j under scenario s (£/ha) 

  dmj demand of customer m in week j  (t) 

 fmj profit from satisfying the demand of customer m in week j (£/t) 

 ssj     profit from selling surplus-to-demand sprouts on the open market 

in week j under scenario s (£/t) 

 ysijk    yield of crop i in week j in size band k under scenario s (t/ha) 

 a area of grower’s land  (ha) 

 c
- cost of extra land required by grower  (£/ha) 

 c
+
 value of land unused by grower  (£/ha) 

 psmj   penalty for failure to satisfy demand of customer m under scenario s 

  (£/t)  (can be seen as the cost of buying on the open market) 

riq  =




    

    

1

0
 
if crop is susceptible to disease

otherwise

i q
 

 uq upper limit on the proportion of crop harvested each week  

that is susceptible to disease q  

 probs probability of scenario s 

 

Variables 

 Fsjmk Weight of sprouts sold in week j to customer m in size band k  

under scenario s  (t) 

 Hsij Area of crop i harvested in week j under scenario s  (ha) 

 Ssjk Weight of surplus-to-demand sprouts of size k sold on the open 

market in week j under scenario s (t) 
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 L
- Area of extra land required by grower  (ha) 

 L
+ Area of land unused by grower (ha) 

 Psmj  Shortage in demand of customer m in week j under scenario s   (t)  

 Ai Total area of crop i planted  (ha) 

 

Objective Function (to be maximised) 

 O.F.   =  (weighted) Expected Profit  -  Risk Term   

=   (1-ω ) E( Profits)  -  ω  E ( | Profits-E( Profits) | )  

 

where E(Profits) =  {probs
s

∑ s Ssj
j k

sjk
,

∑   +  f Fmj sjmk
m j k, ,

∑   -  c Hsij sij
i j,

∑   + 

           c+
L

+
  -  c-

L
- -  ′c Ai

i

∑ -  p Psmj smj
m j,

∑   }   

and ω  represents the risk aversion coefficient. 
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Constraints 

Marketing Constraint 

   y H S Fsijk sij sjk sjmk
mi

− − =∑∑ 0   ∀s ∀j ∀k. 

Demand Constraint 

   Fsjmk
k

∑  = mjsmj dP +  ∀s ∀j ∀m. k ∈ Km 

Sell on Open Market  

   Ssjk
k

∑  ≤  0.25  dmj
m

∑   ∀s ∀j. 

Land Use Constraints 

  Ai
i

∑    = a  +  L
-
  -  L

+
 

   Ai  = Hsij
j

∑   ∀s ∀i. 

Disease Constraint 

   (r y H )      u diq
i

sijk sij
k

q mj
m

∑ ∑ ∑≤   ∀j ∀q ∀s. 

Individual Variety Limit 

 Ai
i I

v
∈
∑     ≤  0.4  Ai

i

∑   ∀v. 

  where Iv contains the indices of the crops associated with variety v. 

Individual Crop Limit  Ai ≤  0.2  Ai
i

∑   ∀i.  

 

Constraint set (1) states that the weekly harvest is sold either to customers or on the 

open market. In set (2), the weekly shortfall is defined as the difference between 

demand and the amount supplied. A limit on the amount sold on the open market (as a 

 
 
 

(1) 
 
 
 
 

(2) 
 
 
 
 

(3) 
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proportion of demand) is represented by set (3). Constraint set (4) states that the total 

area of all crops planted equals the land required and set (5) ensures the area of each 

crop planted equals the area harvested. Constraint sets (6), (7) and (8) place limits on 

the harvest that is susceptible to disease (as a proportion of demand), on the area of 

each variety and the area of each crop (as proportions of total area), respectively. 

These last three sets of constraints ensure that the planting plans produced are less 

‘risky’ than would otherwise be the case.  

 

The size of the model is controlled by the cardinality of the sets as given by 

I,V,J,K,M,Q and S. Up to 31 varieties, 5 sowing dates and 4 spacings are allowed in 

the model, but external pre-processing reduces the number of combinations such that 

in practice, 11 varieties, 4 sowing dates and 2 spacings are considered, giving 88 crops 

in total. A model of this size results in 12643 constraints, and 103383 variables. 

 

By the start of a season (end of March), the decision process involves the grower 

deciding how to use the available land. The variables L- and L+ are determined at this 

time and specify the area of land the grower uses for Brussels sprouts. The data value 

c
+ can be seen as representing an opportunity cost on the value of the land for growing 

an alternative vegetable. The first-stage variables represent decisions as to the area, 

spacing and timing of planting the different varieties. The plants grow according to 

the subsequent weather pattern (rainfall, temperatures, sunlight). A sample of 31 

weather patterns have been considered and, depending on which scenario occurs, 

appropriate harvesting decisions will be made in order to satisfy demand. These are 

the second-stage recourse decisions which are clearly constrained by what has been 

planted at the first-stage. Other second-stage decisions include deciding how much of 



 13

the harvest to supply to each customer, and buying and selling on the open market as 

required for that year.  

 

The model produces a harvesting schedule for each scenario and a single planting 

plan.  At the time of implementing the planting plan, it will not be known what 

harvesting schedule will be required. Thus, the derived harvesting schedules are not 

used and, in practice, harvesting decisions will be made by the grower in the light of 

actual crop growth and market conditions as they evolve during the season.  

 

The Objective Function is in the spirit of the E-V (Mean-Variance) approach of 

Markowitz6,17 which balances expected profit against risk, using a risk aversion 

coefficient ω  to control the relative weighting applied to each term. The larger the 

value of ω , the greater the aversion to risk. This is a MOTAD model18 (Minimisation 

of Total Absolute Deviation), where the risk is measured in terms of absolute 

deviations from the mean profit rather than by the variance - the advantage being it 

can be modelled linearly. Hazell and Norton19 show that there is generally very little 

difference between the solutions obtained using these two formulations. 

It should be noted that both positive and negative deviations from the mean profit are 

penalised. Counter-intuitively, this has the effect of penalising ‘good’ years with 

higher-than-average profits. However, since the sum of the positive deviations about 

the mean equals the sum of the negative deviations, the inclusion of only the negative 

deviations is simply a matter of scaling the risk aversion coefficient. Another 

approach is to consider deviations about a specified value instead of about the mean 

and to minimise the sum of the absolute values of the negative deviations. In this 

approach, the specified value would generally be less than the mean and would have 
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the effect of penalising the ‘worst’ years whilst not penalising years that, although 

worse than the mean, are not as bad as the specified value. 

 

Computational Aspects 

Before analysing any solutions from the model, the effect of including the risk term 

will be considered. Without this term, the model has the characteristic structure of a 

typical two-stage stochastic programming formulation. There are constraints relating 

to just the first stage variables, those relating to each scenario in the second stage and 

those linking the two stages. This structure is exploited when using decomposition 

techniques20 for solving large-scale stochastic linear programs. On inclusion of the 

risk term, constraints are included which connect all scenarios and all the variables in 

the objective function. This complicates the structure and results in an increased 

solution time. 

 

Results/Analysis 

The stochastic programming model was formulated using the MPL Modelling 

System21 and the deterministic equivalent problem was solved using the interior point 

method of FortMP.22 The model was run for a variety of risk aversion coefficients ω  

and a comparison of the various solutions obtained is made.  

 

In order to evaluate the benefit of the stochastic programming approach compared to 

the deterministic linear programming approach, a fair basis of comparison is needed. 

The SP approach takes into account 31 yield scenarios corresponding to 31 years of 

weather data, whereas the LP approach just considers a single yield scenario (the 
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slightly pessimistic 30th percentile year). The evaluation procedure adopted here is to 

obtain a planting plan using the LP model and then run the SP model with this 

planting plan fixed. The SP model then determines optimal harvesting schedules for 

the specified planting plan. These results are then compared with the solution obtained 

from the full SP model in which a planting plan is derived together with the 

corresponding harvesting schedules. 

 

The objective function of the model presented in the previous section maximises a 

composite function comprising expected profit over scenarios and a risk term 

representing the variation in profits between scenarios as measured by Mean Absolute 

Deviation. The risk aversion coefficient ω  determines the relative weightings 

attached to the two terms. By selecting a set of increasing values of ω , a number of 

solutions can be obtained that reflect decreasing risk.  

 

Table 1 shows the expected profit and associated mean absolute deviations obtained 

for both the SP and LP approaches for a range of risk aversion coefficients, ω . 

Table of Expected Profits and SP LP

Mean Absolute Deviations Profit MAD Profit MAD

0.00 45900 3830 44175 5645

Risk 0.25 45840 3450 44170 5620

Aversion 0.50 45100 2405 44000 5400

Coefficient 0.75 42315 780 35365 685

0.90 39320 115 33305 115

ω

 

Table 1: Expected Profits and Mean Absolute Deviations 
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It can be seen that the expected profit for the planting plan from the stochastic model 

(SP) is higher than that from the deterministic model (LP) for all values of ω . 

Regarding the risk aversion term, it can be seen from Table 1 that, for values of ω  > 

0.5, the Mean Absolute Deviation is substantially reduced. Such high levels of risk 

aversion are unrealistic as solutions are obtained in which, in order to achieve similar 

profits over the years, poor harvesting decisions are made in order to worsen what 

would otherwise be ‘good’ years. 

 

Figure 4 compares the set of yearly profits from planting plans derived from two 

values of the risk aversion coefficient in the SP model (ω =0.25, 0.75).  
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     = 0.25

     = 0.75

 

 

Figure 4: Yearly Profits for two Risk Aversion Coefficients 

 

ω
 
 ω
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For ω  = 0.75, there is less variation from year-to-year and there are a few years in 

which a slightly greater profit is achieved. However, in the majority of years, the 

profit from the planting plan corresponding to ω  = 0.75 is significantly lower, and the 

expected profit over all years is lower as a result. Clearly for this model, it is 

preferable to have a value of ω  closer to 0.25, since the benefits of good years can be 

realised. 

 

The annual profit in each of the 31 scenario years for both the LP and SP approaches 

for a typical value of the risk factor is shown in Figure 5.  
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Figure 5: Annual Profits for LP and SP Planting Plans (ω =0.25) 

 

Since the LP model considers only one yield scenario, it is not surprising that it 

performs poorly in some years. However in each of two years considered, 1961 and 

1987, the two approaches give virtually the same (low) expected profit. These two 
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years are years of low yield and the variation in the yields associated with different 

planting plans is somewhat limited. In other words the expected profit is relatively 

insensitive to the planting plan. However, in other years (1964, 1973, 1974, 1980, 

1981) the SP approach does significantly better than the LP approach. It is in these 

years that the benefit of the SP approach is apparent when the robustness of the 

solution results in substantially higher profit. Similar profiles are obtained for other 

values of ω  in the range 0.1 to 0.5. 

 

The implications in terms of changes in planting plans for the grower can be seen in 

Figure 6. The areas of each crop to be planted are similar for the two planting plans, 

with the main two crops (46 and 51) being grown in almost identical quantities. 

However, the changes that are present give rise to the significantly different profits 

already reported.  
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Figure 6: Comparison of Planting Plans 

 

 

 

Modifications to the model 

It is possible to make a number of refinements to the model to cater for various 

practical considerations. For example, growers may require a minimum area for each 

crop that they select. This means including semi-continuous variables in the model, 

where the area of each crop is either 0 or not less than, say, 0.5 ha. This can be 

modelled by introducing integer variables to the formulation with a resulting increase 

in computational complexity. An investigation into this aspect showed little benefit 

compared to a simple rounding heuristic but resulted in substantially increased 

execution times. Crops where the solution value indicated planting less than 0.25 ha 

were rounded to zero and those above 0.25 ha were given a lower bound of 0.5 ha. 

The model could then be resolved with these values fixed, giving an appropriate new 

set of harvesting decisions. 

 

Summary 

Solutions from deterministic models are unsatisfactory for many horticultural 

applications, due to the high degree of uncertainty in model parameters caused, 

predominantly, by the weather. The proposed stochastic programming model provides 

vegetable growers with the opportunity to implement planting plans that are more 

robust than would be the case with a deterministic model. The control of risk is a 
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major benefit and, as was demonstrated in the application presented in this paper, 

need not result in a reduction in expected profit.  
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