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Abstract

High-throughput methods for detecting protein-protein
interactions (PPI) have given researchers an initial global
picture of protein interactions on a genomic scale. The huge
data sets generated by such experiments pose new chal-
lenges in data analysis. Though clustering methods have
been successfully applied in many areas in bioinformatics,
many clustering algorithms cannot be readily applied on
protein interaction data sets. One main problem is that the
similarity between two proteins cannot be easily defined.
This paper proposes a probabilistic model to define the sim-
ilarity based on conditional probabilities. We then propose
a two-step method for estimating the similarity between two
proteins based on protein interaction profile. In the first
step, the model is trained with proteins with known annota-
tion. Based on this model, similarities are calculated in the
second step. Experiments show that our method improves
performance.

1 Introduction

Proteins seldom act alone; rather, they must interact with
other biomolecular units to execute their function. An ex-
amination of these interactions is essential to discovering
the biological context of protein functions and the molecu-
lar mechanisms of underlying biological processes.

Recently, new approaches have been developed for a
genome-wide detection of protein interactions. Studies us-
ing yeast two-hybrid system (Y2H) [14, 25, 11, 16] and
mass spectrometric analysis (MS) [10, 13, 24] have gener-
ated large amounts of interaction data. A protein interaction
network (PIN) [4] can be constructed from existing protein-
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protein interaction data by connecting each pair of vertices
(proteins) involved in an interaction. With the ever-growing
size of the interaction network, computational methods to
break them into smaller and more manageable modules are
in great demand. These modules are expected to reflect bio-
logical processes and pathways. We can also get some hints
on the function of uncharacterized proteins by looking at
other known proteins in the same module. Clustering pro-
teins based on the protein interaction network provides a
natural solution to this problem.

This paper will identify and investigate the problem of
how to define the similarity between two proteins for clus-
tering algorithms that use similarity matrix as input. Firstly,
we propose a novel definition of similarity measurement
based on conditional probabilities. Then we propose a
model for predicting the conditional probability. In our
two-step approach of estimating the probability, we use an-
notated proteins available to train our model, followed by
probability prediction based on the model. Our method is
very thin-supervised because the properties of the annotated
proteins are captured in the few parameters in our model
and we do not force any constraint on whether two proteins
should stay in the same cluster. Our experiments show that
our new similarity measurement outperforms current avail-
able measurement. Finally, we conclude the paper and pro-
pose some future work.

2 Related Work

Clustering algorithms have been widely applied in deal-
ing with large data sets in bioinformatics, including gene
expression data analysis [8], DNA and protein sequence
data analysis [12]. These algorithms are shown to be capa-
ble of grouping similar objects and detecting the underlying
patterns. Many successful clustering algorithms in bioin-
formatics domain such as agglomerative hierarchical clus-
tering [8], CAST [2] and CLICK [22] require an input of a



similarity or distance matrix. However, a protein interaction
data set is represented in a different format. We do not have
a straightforward similarity definition for two proteins in the
data set. Though some approaches like superparamagnetic
clustering (SPC) and optimization Monte Carlo algorithms
in [23] have been proposed to cluster proteins directly based
on the network, we expect more choices of clustering algo-
rithms, especially for those that were successfully used in
related domains. To apply those clustering algorithms, the
similarity definition for two proteins is essential for effec-
tively analyzing the data.

In [20], the similarity between two proteins is defined
by the significance of neighborhood sharing of two pro-
teins. Based on this similarity measurement, a hierarchical
clustering method is applied to find protein clusters. How-
ever, how this measurement value can be related to protein
functional similarity is still unknown. Also, as this similar-
ity value is non-zero only for those protein pairs that share
at least one neighbor, many protein pairs that have direct
connections (interactions) will also get a similarity value of
zero.

Meanwhile, some function prediction methods have
been applied to map proteins onto known functional cat-
egories given some annotated proteins in the network. In
[15], a binomial model of local neighbor function labelling
probability is combined with a Markov Random Field
(MRF) propagation algorithm to assign function probabil-
ities for proteins. In [6], another MRF-based method is pro-
posed. It considers a given network and the protein function
assignments as a whole and scores the assignment accord-
ingly. In [3], authors analyze previous MRF-based methods
and propose a novel machine-learning method. As these
methods require large amounts of training data and are lim-
ited to known function categories, they can not replace ex-
plorative clustering methods especially for organisms that
our knowledge is quite limited. Meanwhile, as their algo-
rithms are designed to predict function given a sufficient
large number of annotated proteins, their models are not
fully suited for our objective.

In this paper, by incorporating very limited annotation
data, we provide a theoretically sound framework to define
the similarity between two proteins. We expect this work
will provide more choices for researchers in exploring pro-
tein interaction data.

3 Method

In this section, we propose using conditional probabil-
ity to define the similarity between two proteins based on
their protein interaction profiles. We then propose a model
to define the conditional probability. Based on the model,
we introduce a two-step method for calculating the condi-
tional probability. In the first step, the model is trained with
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Figure 1. Function Propagation from Source
Protein A to Other Proteins in the Network

known protein annotation. Then based on this model, the
similarities are calculated in the second step.

3.1 Novel Similarity Definition

As observed in [21], two interacting proteins show high
homogeneity in annotation. In [27], it is observed that the
farther away two proteins are in the network, the less ho-
mogenous they are. Therefore, we can regard the edges
in the network as a means of message passing. Each pro-
tein tries to propagate its function to neighboring proteins.
Meanwhile, each protein receives these function messages
from its neighboring proteins to decide its own function.
The final probability of a protein having a specific function
is therefore a conditional probability defined on its neigh-
bors’ status of having this function annotation.

Figure 1 illustrates function propagations using one sin-
gle protein A as the source of information. A’s function is
propagated towards its direct neighbors and then its indirect
neighbors. In this process, the message will fade with the
increase of distance (the length of path). E.g. its function is
propagated to protein B via paths A → B, A → C → B,
and A → D → B. Therefore, for the protein B, it receives
messages from all these paths and shows a certain degree of
function homogeneity with the source protein A. Protein C
also propagates its function to E. Protein B propagates its
function to proteins C, D, and F . Though the protein inter-
action network is undirected, the information flow from one
vertex (source vertex) to another (sink vertex) can be con-
veniently represented by a directed graph. Throughout the
paper, we use protein and vertex interchangeably and use
A to represent the source vertex and B to present the sink
vertex. |P | is used to denote the total number of vertices
(proteins) in the network.

For a certain functional label in consideration, we de-
note the probability of A having this function as P (A). As
the result of the function propagation, B shows certain de-
gree of similarity with A’s function. B’s probability of hav-
ing this function by propagation using A as the information



source can then be represented as a conditional probabil-
ity P (B|A). This conditional probability gives the capabil-
ity of A’s function being transferred to B via the network.
Larger P (B|A) value predicates closer function homogene-
ity and therefore higher similarity.

This measurement, however, is not symmetric, i.e., gen-
erally, P (A|B) 6= P (B|A). Therefore, we define the simi-
larity between proteins A and B as the product of two con-
ditional probabilities:

SimilarityAB = P (A|B) ∗ P (B|A). (1)

This measurement reflects the cohesiveness of two pro-
teins’ functions.

3.2 Model for Predicting Conditional Probability

For the function annotation of the sink protein B, its
probability of having a certain function is determined by
all the messages it receives from its neighbors. We call the
message that favors this function annotation a positive mes-
sage. For a protein that has a functional annotation with
probability higher than a random protein in the network, it
can propagate a positive message to its neighbors. When
we consider the sink protein, it will also receive messages
from other neighboring proteins. Therefore, the strength of
homogeneity will depend on both the sum of positive mes-
sages towards the vertex, denoted as PM , and the degree of
the vertex, denoted as D. Then the probability of a vertex
having a specific function can be expressed as a function
of these two values. Similar to [3], we can use a potential
function U(x;PM, D) to express this probability:

P (x|PM,D) =
e−U(x;PM,D)

Z(PM, D)
, (2)

where x is a binary value x ∈ {0, 1} with 1 indicating the
protein has the function under consideration. The normal-
ization factor Z(PM, D) is the summarization over all con-
figurations :

Z(PM, D) =
∑

y=0,1

e−U(y;PM,D).

We also adopt a linear combination of variables:

U(x;PM, D; α) = (α0 + α1 ∗ PM + α2 ∗D) ∗ x.

We choose this model instead of the binomial-
neighborhood model in [15] because the latter assumes that
the neighbors of a vertex behave independently (the proba-
bilities of taking a function are independent). As the clus-
tering algorithm is designed to find dense part of the protein
interaction network, our similarity measurement must han-
dle such situations. In this case, the independence assump-
tion is problematic [3].

Though our model is similar to the model in [3], our
major interest lies in defining the similarity between two
proteins and therefore (a) we always treat only one single
protein as annotated protein, and (b) we consider proteins
beyond direct neighbors of the source protein.

3.3 Iterative Function Propagation

For each protein B that is connected (either directly con-
nected or indirectly connected via some intermediary pro-
teins) with the protein A, we can have a layer associated
with it which is the shortest path length between the two
proteins, denoted as Dist(A,B). We use N (k)(A) to de-
note the set of proteins whose shortest path length to A is
k:

N (k)(A) = {B|Dist(A,B) = k}.

We abbreviate N (1)(A) as N(A). We call a protein B ∈
N (k)(A) a k-step neighbor of A.

Given a source protein A, we iteratively calculate the
conditional probability of all other proteins’s having the
function annotation: we start from protein A’s direct neigh-
bors and calculate the conditional probability for them.
Then using the conditional probability of these direct neigh-
bors of A, we calculate the conditional probability of the
direct neighbors of these direct neighbors, i.e., A’s 2-step
neighbors. This iteration continues until we get a condi-
tional probability for each protein that is connected with A.

Having introduced the order for conditional probability
estimation, we define the positive message in Equation (2)
as follows:

We start from proteins belonging to N (1)(A), i.e, the di-
rect neighbors of A. As each protein B of this layer is di-
rectly connected with the source protein equally, we omit
this direct connection message A → B and consider only
the messages for its same-layer neighbors. Therefore, we
can use the number of shared neighbors between A and B
as the value of positive messages for protein B.

For a general case of a protein B belonging to N (k)(A)
with k > 1, we only regard those messages from its neigh-
bors that belongs to N (k−1)(A) as positive. Each protein in
layers less than k− 1 will have to propagate its information
to proteins in N (k−1)(A) to affect the function annotation.
Therefore, this information has already been captured in A’s
(k − 1)-step neighbors. The messages from the same layer
proteins, as we will show in the experiment part, are gen-
erally weak for k > 1 and therefore, omitted. The positive
messages can be expressed as the sum of the product of two
conditional probabilities:

PMB←A =
∑

C∈N(B)∩N(k−1)(A)

P (B|C) ∗ P (C|A), (3)
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Figure 2. Iterative Estimation of Conditional
Probabilities

where we use PMB←A to explicitly represent that the pos-
itive message is from source A to sink B via the network.

The product of two conditional probabilities P (B|C) ∗
P (C|A) measures the probability of A’s function being suc-
cessfully propagated to B via the path A → ... → C → B.
Summing up all these probabilities over proteins that are
both B’s direct neighbors and A’s (k − 1)-step neighbors
gives the strength of the message propagation from A to B
via the network. As from the previous k − 1 steps, we have
already estimated the conditional probabilities P (Y |X) for
each X and Y ∈ ⋃

i=1,..k−1 N (i)(X), we have the condi-
tional probabilities P (B|C) and P (C|A) available.

Figure 2 gives an example of our function propagation
process. We use vertex A as the source and start with esti-
mating the conditional probability of its direct neighbors:
P (B|A), P (C|A), and P (D|A). Figure 2(a) shows our
function propagation messages from A to B in layer one.
The messages towards vertex B are marked in dark lines,
which are the messages from vertices C and D. Figure 2(b)
shows our function propagation from k-step neighbors H
and G to a (k + 1)-step neighbor I .

After we calculate the value of positive messages, we can
use Equation (2) to get the representation of the probability.

3.4 Two-Step Method for Similarity Estimation

From our definition above, we get both the representa-
tion of the conditional probability for each two vertices in
the graph and the order of estimating the probability. How-
ever, this probability is not a numerical value yet. Instead,
it is represented as a function of the parameters α in our
model. In this section, we use a two-step method to esti-
mate parameters and calculate the conditional probabilities.

In most organisms, there are some annotation data for
proteins. Therefore, we have some training samples with
known xi, PMi, and Di values.

In the first step (model training step), we use these train-
ing samples to estimate the parameters (α) that maximize
the joint probability:

P =
∏

i

P (xi|PMi, Di).

We use the simplex method (the Nelder-Mead algorithm)
[19] to estimate these parameters. To get a comparatively
accurate estimation, we estimate these parameters sepa-
rately for each layer.

In the second step (conditional probability estimation
step), the numerical values of the conditional probabilities
are calculated using Equation (2) and the parameters (α)
estimated in the previous step.

3.5 Pruning Algorithm to Reduce Space and Time
Complexity

Our method above estimates the conditional probability
for each pair of vertices in the network and therefore, a to-
tal number of |P | ∗ (|P | − 1) probabilities must be calcu-
lated. However, this is unnecessary because for most pairs,
the function propagation is very weak and the conditional
probability value is very close to that of a random pair.
Therefore, we make an improvement of the above method
by adopting two pruning heuristics:

a. Positive message-based pruning: In this type of prun-
ing, we try to identify non-promising pairs before represent-
ing its probability using Equation (2). After we calculate the
positive message towards a vertex, we test whether the posi-
tive message is too low. Generally, there are a large number
of such pairs. The probabilities of these pairs are expected
to be comparatively low while the variance inside is very
small. Therefore we simply combine them into a separate
set LowSet. Then we estimate the probability of the data
set LowSet using annotated protein pairs in the data set.
We use this probability estimate for all such pairs without
going through the normal two-step training and estimation
process.

b. Probability-based pruning: After we calculate each
conditional probability, we prune the further propagation of



non-promising vertices. Initially, we can estimate the con-
ditional probability of two random vertices and we denote
this value as randPrb. With the information degradation
in message passing, when one vertex’ conditional probabil-
ity is only slightly higher than randPrb, it will send very
weak positive messages to the farther neighbors. Therefore,
when we meet a vertex B that has the conditional probabil-
ity P (B|A) < randPrb + ε, we stop the propagation from
this vertex B as if it does not have any connection towards
one more step vertices.

The whole algorithm is presented in Figure 3.

Algorithm ConditionalProbabilityEstimation()
Input: PIN, protein annotation data
Output: conditional probability set CPS and randPrb
1. Estimate randPrb using annotated proteins
2. for all vertex A do
3. N (0)(A) ← {A}
4. for k ← 1 to |P | − 1 do
5. LowSet ← φ
6. for all vertex A do
7. Get N (k)(A) from N (k−1)(A)
8. for all vertex B ∈ N (k)(A) do
9. Calculate D(B) and PMB←A

10. if (PMB←A < PMthreshold) then
11. LowSet ← LowSet ∪ {(A,B)}
12. else
13. Represent P (B|A) using Equation (2)
14. Estimate parameters α using annotated proteins
15. Estimate average probability Plow for LowSet
16. stopPropagation ← true
17. for all vertex A do
18. for all vertex B ∈ N (k)(A) do
19. if (A,B) ∈ LowSet then
20. P (B|A) ← Plow

21. else
22. Calculate P (B|A) using Equation (2)
23. if P (B|A) < randPrb + ε then
24. N (k)(A) ← N (k)(A)− {B}
25. if P (B|A) > randPrb then
26. CPS ← CPS ∪ {< A, B, P (B|A) >}
27. if N (k)(A) 6= φ then
28. stopPropagation ← false
29. if stopPropagation = true then
30. break
31. return CPS and randPrb

Figure 3. Algorithm for Conditional Probabil-
ity Estimation.

We use the protein interaction network and protein an-

notation data as input. The output is a conditional prob-
ability set CPS and the randPrb probability value. For
each significant conditional probability P (B|A), we put
< A, B, P (B|A) > into the set CPS. For the rest of
conditional probabilities, we approximate their values by
randPrb. The pseudo code from Step 5 to Step 14 is the
model training phase, while from Step 15 to Step 28 is the
probability estimation phase, and Steps 10 and 23 are our
positive message-based and probability-based pruning tech-
niques, respectively. Though we iterate k from 1 to |P | − 1
in Step 4, the iteration will most likely end early at Step 30
when none of the vertices has farther neighbors to propagate
messages.

4 Experiments and Results

In this section, we compile several data sets and con-
struct our protein interaction network. We analyze the net-
work and find some properties on annotation transferring.
Then we show that our estimated conditional probabilities
correspond well with the real probabilities. Also, using a
hierarchical clustering algorithm, we compare our method
with previous measurement based on neighbor-sharing.

4.1 Data Sets

We compiled four data sets of yeast protein interactions:

Table 1. Data Sets of Protein-Protein Interac-
tions.

Data Set Interactions Proteins
Ito 4392 3275
DIPS 3008 1586
Uetz 1458 1352
MIPS4 788 469
Combined 9049 4325

Table 1 includes the four data sets we used for our exper-
iments: Ito data set is the “full” data set by Ito et al. [14],
DIPS data set is the set of yeast interactions in DIP [26]
database that are generated from small-scale experiments,
Uetz data set includes published interactions in [25] and un-
published interactions on their website[1], and MIPS4 data
set includes four data sets [24, 18, 7, 9] deposited in MIPS
[17]. Combining these together, we construct a protein in-
teraction network with 4325 proteins and 9049 interactions.

For protein annotation, we use “subcellular localization”
and “cellular role” in YPD [5] as protein localization and
protein function annotation, respectively.



4.2 Statistics of the Data

Firstly, we investigate the relationship between the con-
ditional probability and the shortest path length. In [27],
two proteins with short distance are shown to be likely to
share function and this function homogeneity degrades very
fast with the increase of shortest path length. Similar result
is observed in our experiments. Also, we calculate the con-
ditional probability of random protein pairs and list result in
Table 2.

Table 2. Conditional Probability vs Distance.
distance function localization

1 0.466739 0.601983
2 0.168622 0.356103
3 0.116772 0.312443
4 0.0974867 0.276011

Random 0.0982235 0.257639

Table 2 shows the fading of annotation transferring with
the increase of distance. Direct connections strongly af-
fect one protein’s annotation, while indirect neighbors show
a much weaker influence. Proteins more than three steps
away are generally negligible. Therefore, paths with length
greater than three are very weak in affecting a protein’s an-
notation. This justifies our calculation of positive messages
for a k-step vertex using only (k − 1)-step neighbors ex-
cept for 1-step vertices, in which case we use the same layer
propagation. Also, this property of the data guarantees that
our pruning method will dramatically reduce the computa-
tional complexity. In our experiments, very rarely do we
need to calculate conditional probabilities four steps away.

4.3 Effectiveness of Conditional Probability Pre-
dicted

To validate the probabilities estimated by our model, we
bin the protein pairs based on their predicted conditional
probabilities. We bin them into bins with a span of 0.05
in probability. We calculate the real probability of the bin
and the estimated probability of it. The real probability is
the average probability of the bin estimated using known
protein annotation in the bin without going through our pre-
dicting process. The estimated probability is the average
predicted probability of the pairs using our method. The
result is shown in Figure 4.

Figure 4 shows that our predicted probabilities are very
close to real probabilities. Therefore, we conclude that our
model can effectively predict the conditional probabilities.
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(b). Protein Localization

Figure 4. Effectiveness of Conditional Proba-
bility Estimation.

4.4 Comparing with the Unsupervised Method

We compare our similarity definition with the similar-
ity defined in [20]. The previous method computes the P-
values for all protein pairs: It defines the distance between
two proteins A and B as the P-value of observing the num-
ber of shared neighbors under the hypothesis that neighbor-
hoods are independent. The P-value, denoted as PVAB , is
expressed as:

PVAB =

min(|N(A)|,|N(B)|)∑
i=|N(A)∩N(B)|

(
|N(A)|

i

)
×

(
|P | − |N(A)|
|N(B)| − i

)

(
|P |

|N(B)|

) .

When merging two subclusters, geometric means of two
individual P-values are used for the new group’s P-value.
Therefore, if we define the similarity SimilarityAB be-
tween proteins A and B as:

SimilarityAB = − log(PVAB),

then arithmetic means of two individual similarities can be
used to define new similarity values when merging clus-
ters. Therefore, the transformed algorithm based on stan-
dard UPGMA (Unweighted Pair Group Method with Arith-
matic Mean) is equivalent to the original algorithm.



As our main focus here is to find a good similarity mea-
surement for clustering methods that require a similarity
matrix, we apply the same hierarchical clustering method,
i.e., UPGMA and compare the result. After creating the den-
drogram, we cut at various levels of the tree to get multiple
clusters. We treat each cluster as a set of predictions for
the homogeneity of two proteins’ annotation: each protein
shares its function (localization) with each another protein
in the cluster. Therefore, we make M ∗ (M − 1)/2 predic-
tions for a cluster of size M . Then we calculate the number
of predictions and the precision of the predictions. Using
different cutoffs, we can compare the precision of different
methods at various numbers of predictions in a Number-Of-
Predictions vs Precision plot.

To make a fair comparison, we use randomly selected
20% annotated proteins as our training set and treat the rest
80% annotated proteins as ’unknown’ in our clustering pro-
cess. Then we exclude those proteins pairs that are both
among the annotated 20% training proteins in the resulting
predicted protein pairs. Therefore, the previously known
annotation relationships in the clustering process are not
counted in our testing process. Making too few predictions
will severely limit the power of the prediction while making
too many predictions will bring a large number of false pos-
itives. Here, we choose the number of predictions at every
1000 interval up to 40000 and present the result in Figure 5.

Figure 5 shows that our method almost always outper-
forms the method using P-value as similarity measurement
and therefore, the effectiveness of our method.

As we used only 20% annotated proteins for training and
we did not force any two proteins into a certain cluster, we
conclude that our method is ”light” supervised.

We list here the estimated α values of the first layer for
protein function:

α = (1.1678,−1.2529, 0.00456244).

We observe that α1 < 0 and α2 > 0, i.e., the conditional
probability is positively related to the positive messages and
negatively related to its degree. Also, we observe that pos-
itive messages have much more effect than the degree on
the final probability, i.e., |α1| > |α2|. As for the first layer
(direct neighbors), the positive message from A to B is the
number of shared neighbors between A and B, these obser-
vations agree well with the P-value-based method in [20].
Comparatively, our method is shown to be more accurate in
representing the relationship between different factors.

5 Discussion and Future Work

We have presented a model for systematically defining
the similarity between two proteins based on protein inter-
action profile. Then we used a two-step approach to build
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(b). Protein Localization

Figure 5. Comparison of The Clustering Re-
sult Using Different Similarity Measurements.

the model and calculate the similarity. To speed up cal-
culation, we exploit the property of the protein interaction
network and propose two pruning heuristics. Experiments
show the advantage of our method comparing with previous
work.

Besides hierarchical clustering algorithms, many other
clustering algorithms have been proposed to effectively
mine large scale biological data sets. The measurement pro-
posed here can also be used in these clustering algorithms.
We plan to investigate the performance of various clustering
algorithms.

Although our model for conditional probability defini-
tion is shown to be effective, it is still a simplified model
for the complex biological system. In the future, we will
explore different kinds of models.
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