

A TWO-STEP APPROACH TO FINITE ELEMENT ORDERING
by

Steven J. Fenves

Kincho H. Law

Deastment of Civil Engineering Carregie-Mellon Liniversity Pittsbiugh. Pennsylvanua

DTIC

D

DEPARTMENT OF CIVIL ENGINEERING

 CARNEGIE INSTITUTE OF TECHNOLOGY Carnegie -Mellon University DISTRIBUTION STATEMEMA A Approved for public release; Distribution Unlimited$$
819 \text { I7 } 035
$$

A TWO-STEP APPROACH TO FINITE ELEMENT ORDERING.

$$
1 . \quad \text { Steven J./Fenves }
$$

Kincho H. /Law

A Technical Report of
Research Sponsored by
THE OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY
Contract NO NOOO14-76-C-0354

$$
\text { Augane } 981
$$

1.

Department of Civil Engineering Carnegie-Mellon University
Pittsburgh, Pennsylvania

Table of Contents
Summary 1
Introduction 1
Graph Theory Notation and Sparse Matrix Study 3
Symmetric Matrices and Finite Graphs 3
Finite Element Mesh and Its Solution Graph 5
Matrix Factorization and Its Graph Theoretic Model 6
The Cuthill-McKee and the Reverse Cuthill-McKee Ordering Algorithms 8
A Two-Step Approach to Finite Element Ordering 10
Representation of Finite Element Connectivity 10
Ordering the Finite Elements 12
Ordering the Nodal Variables 12
Experimental Results 14
Discussion 16
Acknowledgement 18
References 19
Figures 20
Tables 20
Appendix I. Fortran Computer Program for Labelling the Nodal Variables 32
Appendix Il. Fortran Computer Program for Generating the Adjacency Structure Pair 34 of Element-Element Connectivity

LIST OF FIGURES

Figure 1: Finite Element Mesh and Its Associated Finite Element Solution Graph 21
Figure 2: Matrix Factorization 22
Figure 3: Finite Element Model and Its Associated Finute Element Connectivity Graph 23
Figure 4: Finite Element Models with Uncommon Connectivities 24
Figure 5: Ordering the Finite Elements by the Cuthill-McKee Algorithm 25
Figure 6: The Node Ordering of a 5 by 5 Regular Mesh with 10-Node Traangular 26 Finite Elements
Figure 7: Finite Element Models 27
Figure 8: Examples of Adjacency Structure Pair 29

LIST OF TABLES

Table 1: Extension Time (msec) for RCM Algorithm and Two-Step Ordering Scheme 30 Table 2: Structure of Matrix Factor L Resulting from the RCM algorithm and the 31 Two-Step Ordering Scheme

SUMMARY

A two-step approach to finite element ordering is introduced. The scheme involves ordering of the finite elements first, based on their adjacency, followed by a local numbering of the nodal variables. The ordering of the elements is performed by the Cuthill-McKee algorithm. This approach takes into consideration the underiying structure of the finite element mesh, and may be regarded as a "natural" finite element ordering scheme. The expermental results show that this two-step scheme is more efficient than the reverse Cuthill-McKee algorithm applied directly to the nodes, in terms of both execution time and the number of fill-in entries, particularly when bigher order finite elements are used. In addition to its efficiency, the two-step approach increases modularity and flexibility in finite element programs, and possesses potential application to a number of finite element solution methods.

INTRODUCTION

The use of finite element methods typically involves solving a system of equilibrium equations:
$K \mathbf{u}=\mathbf{R}$
where u and R are, respectively, the displacement and the loading vectors. K is the global stiffness matrix which is often symmetric, positive definite, and populated with many zeros. In the solution process, it is important to take into account the structure of the matrix K. i.e. the pattern of the zero and nonzero entries so that the computational effort is minimized.

The solution process for solving Equation 1 can be divided into four separable tasks ${ }^{12}$:

1. Ordering - to find a proper permutation matrix P, such that the symmetric permuted matrix PKP' has a desirable structure.
2. Storage allocation - to determine the necessary information about the structure of the matrix factor of $P K P^{\prime}$ and to set up the storage scheme.
3. Numeric factorization - to decompose the permuted matrix PKP' into a triple matrix product LDL'.
4. Solution - to compute the solution vector u successively by a forward substitution, $z=L^{-1}\left(P^{\prime} R\right)$, and a backward substitution, $u=P\left(L^{-1} D^{-1} z\right)$.

The identification of these four separabie tasks not only encourages software modularity but also
facilitates the theoretical study of sparse matrices. This paper focuses on the first lask, that of ordering of a system of equilibrium equations resulting from finite element discretization.

When the matrix K is decomposed into its matrix factors L and D, it typically suffers some fill-in: that is, the filled matrix, $F=L+L^{\prime}$, has nonzeros in positions which are zero in K. One objective in ordering a matrix is to minimize the number of these fill-in entries. By doing so, the computing cost may also be reduced since the amount of computation depends on the number of nonzeros in the matrix factor L.

A finite element mesh consists of a collection of finite elements which are connected at their common boundaries. The discretization of the mesh and the finite elements are selected so that the behavior of the physical structure under examination can be properly modelled. The nodal variables are then defined on the finite element mesh; their number depends on the type of finite elements used. Traditionally, most ordering schemes have been developed for ordering directly the nodal variables and, hence, the equilibrium equations in 1 . Very little effort has been reported in developing ordering scbemes which include consideration of the underlying topological structure of the finite element mesh.

One solution scheme specifically designed for solving a system of equations resulting from finite element problems is the frontal solution method ${ }^{14}$. This method is often considered as the most "natural" solution scheme since it operates directly on the underlying structure of the finite element mesh In this solution scheme, the finite elements are assembled and entered into the solution one at a tume. A nodal variable is elminated as soon as all the neighboring finite elements incident to it are available. The remaining assembled nodal variables, which are not yet ready for elimination, are retained in the "front". or "active front".

Another solution scheme which is similar to the frontal solution method is the so-called generalized element method ${ }^{20}$. In this method, the nodal variables of an active front are treated as a superelement. Multiple fronts are allowed, and each front is treated as a superelement. This method has recently attracted attention from numerical analysts ${ }^{6}$. The merit of the frontal solution and the generalized element methods is that both can be extended to include
considerations of auxiliary storage in a simple manner.

Obviously, the efficiency of the frontal solution and the generalized element methods depends on the order in which the finite elements are numbered. The ordering of the nodal variables is implicitly imposed by the order in which the finite elements are processed. To the authors' knowledge, there bave not been any studies reported for ordering the finite elements directly. In this paper, we attempt to examine the feasibility of ordering the finite elements.

It will be shown that ordering the finite elements has considerable computational advantage over ordering the nodal variables, but that ordering the finite elements alone does not completely define the permutation matrix P. It is therefore necessary to include into the ordering scheme a local ordering strategy for numbering the nodal variables of each finite element so that the number of fill-in entries can be minimized. This "two-step" approach, which includes the ordering of the finite elements as well as of the nodal variables, is the subject of this paper.

GRAPH THEORY NOTATION AND SPARSE MATRIX STUDY

The use of graph-theoretic approaches has found many applications in sparse matrix study. Although few results from graph theory are directly applicable to the study of sparse matrices, the graph representation is, nonetheless, a powerful tool to characterize the structure of a sparse matrix.

Symmetric Matrices and Finite Graphs

A finite undirected graph $G=(V, E)$ consists of a finite set V of n elements, called nodes, and a set E of unordered pairs of distinct nodes $\left(v_{i}, v_{j}\right)$, called edges. For any node v in G, the set of nodes adjacent to $v, \operatorname{adj}(v)$, is defined as

$$
\operatorname{adj}(v)=\left\{v_{i} \in V \quad\left\{\left(v, v_{i}\right) \in E\right\}\right.
$$

The number of nodes in $\operatorname{adj}(v)$, denoted by $|\operatorname{adj}(v)|$, is called the degree of v. The deficiency of v, def (v), is the set of distinct pairs of nodes in adj(v) which are not themselves adjacent. A graph is complete if every pair of nodes is adjacent. A subgraph $\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$ of G is a graph for which $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. A complete subgraph is called a clique. A section graph $G\left(V^{\prime}\right)$ is a subgraph $G=\left(V^{\prime}, E\left(V^{\prime}\right)\right)$ induced by a node set V^{\prime}, where
$E\left(V^{\prime}\right)=\left\{\left(\mathbf{v}_{i} \mathbf{v}_{j}\right) \in E \mid \mathbf{v}_{i} \mathbf{v}_{j} \in \mathrm{~V}^{\prime}\right\}$
If a set of nodes $V^{\prime \prime}$ is deleted from the graph $G(V, E)$, the section graph $G\left(V \backslash V^{\prime \prime}\right)$ is obtained from G by removing the nodes $V^{\prime \prime}$ together with their incident edges.

A (simple) path $\left\{v_{i}, \ldots, v_{j}\right\}$ is a sequence of distinct nodes and continuous edges leading from v_{i} to v_{j} such that there are no repeating edges. A graph G is said to be connected if there is at least one path between every pair of distinct nodes in G; otherwise, G is disconnected. A connected subgraph is called a component. The distance $d\left(v_{i}, v_{j}\right.$) between two nodes $v_{\text {, }}$ and v_{j} in a connected graph is the number of edges in the shortest path joining nodes v_{i} and v_{j} The eccentricity $e(v)$ of a node v is then given by $e(v)=\max \left\{d\left(v, v_{i}\right) ; v_{i} \in V\right\}$.

The diameter $\delta(G)$ of the graph $G=(V, E)$ is defined as
$\delta(G)=\max \{e(v), v \in V\}$.
A node v is said to be a peripheral node if $e(v)=\delta(G)$.

For a graph $G=(V, E)$ with n nodes, an ordering (or labelling) of V is a bijection (a one-toone onto mapping) :

$$
a:\{1,2, \ldots, n\} \lll
$$

The ordered graph of G is denoted by $G_{a}=(V, E, a)$. The integer, ranging from 1 to n. assigned to a node by the ordering is called the number or label of that node.

The notation of a level structure ${ }^{2}$ is commonly used to describe the properties of many ordering schemes. A level structure LS of a graph G is an arrangement of the nodes of G into m levels, ordered $L S_{1}, \ldots, L S_{m}$, such that nodes at a given level $L S_{i}$ are connected to no nodes other than $L S_{k-1}$, $L S_{k}$ and $L S_{k+1}$. For a node $v \in V$, there corresponds a level structure rooted at v. The levels of the rooted level structure are determined by

1. assigning $L S_{1}=\{v\}$, and
2. for $k>1$, assigning to LS_{k} the set of nodes adjacent to nodes in $L S_{k-1}$ which have not yet been included in any previous levels.

Given an n by n symmetric matrix K. there corresponds to it a finite graph $G=(V, E)$, where a node $v_{i} \in V$ denotes the $i^{\text {th }}$ row (or column) of the matrix K, and an edge ($\left.v_{i}, v_{j}\right) \in E$
symbolizes an offdiagonal nonzero entry $\mathrm{K}_{\mathrm{ij}}\left(=\mathrm{K}_{\mathrm{ji}}\right)$. An ordering of the graph G of matrix K is equivalent to a symmetric permutation $P K P^{\prime}$, where P is $a n g$ by n permutation matrix. The unordered graphs (in which nodes are not labelled) of K and PKP' are the same. but the node numbers of the associated ordered graphs are different.

Finite Element Mesh and Its Solution Graph

A finite element mesh is a collection of finite elements in which the adjacent finite elements are joined at their common boundaries or vertices. There is a node at each vertex of the finite element mesh. For finite elements of higher order, where higher order polynomial interpolation functions are used, there may also be nodes lying along the sides or on the faces of the finite elements, and/or located internally within the finite element itself. The nodes situated at the interior of the finite element are referred as the internal variables, and the nodes located along the boundaries are called the external variables.

Associated with each node is a set of varables corresponding to the degrees of freedom defined at that node. This set of variables, in turn, corresponds to a submatrix in the global stiffness matrix, which is typically full. During assembly and solution, thas submatrix can convenently be treated as a single entity. For simplicity. the set of variables at a node is referred as the nodal variable.

The finite element mesh can be transformed directly into the finite graph G representing the structure of the global stiffness matrix. We call this graph a finite element solution graph. or, simply, a solution graph (to distinguish it from the finite element connectivity graph to be introduced below). The nodes of the solution graph are the nodal variables defined on the finite element mesh. The edges of the solution graph are constructed by making the nodes of each finite element pairwise adjacent, since a nonzero entry $K_{i j}$ in the global stiffness matrix K implies that the $i^{\text {th }}$ and the $j^{\text {th }}$ nodal variables share at least one incident finite element. In other words. if V ' denotes the set of nodal variables belonging to one finite element. the section graph $G\left(V^{*}\right)$ of the solution graph G is a clique: the union of the cliques over all elements defines the edges in the solution graph. Examples of transforming a finte element mesh into its associated solution
graph are shown in Figure 1.

Matrix Factorization and Its Graph Theoretic Model

The factorization of K can be symbolically modelled using a graph-theoretic approach. This approach is particularly helpful in understanding how the fill-in entries are created during factorization.

The most fundamental scheme of matrix factorization is one analogous to Gaussian elimination. summarized in Figure 2. At the $i^{\text {th }}$ step of the factorization, the $i^{\text {th }}$ column of L and the $i^{\text {th }}$ diagonal entry of D are computed, and the matrix $K^{(i)}$ is condensed and modified to $K^{(i+1)}$. It is in the condensation that the fill-in entries, if any, are created.

Using the finite graph representation of a sparse matrix, the factorization scheme can be modelled graph-theoretically as a node-elimination process ${ }^{18}$. Upon elimination of node v, the elimination graph G_{v} is obtained from $G=(V . E)$ by :

1. deleting node v and its incident edges:
2. adding auxiliary (fill-in) edges such that all adjacent nodes of v form a clique.

That is.
$G_{v}=(V \backslash v, E(V \backslash v) U \operatorname{def}(v))$.
For an ordered graph G_{a}, the elmination is a recursive process defined by

$$
P\left(G_{a}\right)=\left\{G_{0}=G_{a}, G_{1}, \ldots, G_{n-1}\right\}
$$

where G_{1} is called the $i^{\text {tb }}$ elimination graph obtained by eliminating v, from G_{i-1}. The fill-in edges created during the elimination of v_{i}, denoted by f_{i}, are the def(v_{1}) in G_{1-1}. These fill-in edges correspond to the new nonzero entries introduced into the condensed matrix $K^{(1-1)}$ at the $i^{\text {th }}$ step of the factorization.

In a finte element soiution graph the new clique formed by the elmonation of a node can be treated as a new finite element called a generalized element or a superelement ${ }^{20}$. The nodeelimination process on a finite element graph can thus be interpreted as a series of transformation of the finte elements into the superelements. This elimination model also suggests an meresting characteristic related to bugher order finite elements. Internal nodes of a bugher order element are
connected only to the external nodes of that element. Furthermore, all nodes in a finite element form a clique. Hence, if an internal node is eliminated before any of the external nodes of the same element. there is no fill-in since the deficiency of the mintal node noll.

After elimination, the set of fill-in edges is given by

$$
\phi\left(G_{a}\right)=\bigcup_{i=1}^{n-1} f_{i}
$$

The filled graph G_{F}, which represents the structure of the filled matrix. $F=L+L$, is defined by

$$
G_{F}=\left(V, E \cup \Phi\left(G_{a}\right)\right)
$$

The node-elimination model was formally introduced by Rose ${ }^{18}$. Since then efforts have been made to develop efficient algorithms implementing the model ${ }^{19}$. ${ }^{11}$. These algorithms have been encoded into sparse matrix programs such as YMSL ${ }^{-}$and Sparspak ${ }^{9}$. The major application of these algorithms is in the second task presented in the Introduction namely to set up the data structure for storing the numeric entries of the matrix factors.

A node-addition model which sumulates the Cholesky factorization has recently been developed by the authors ${ }^{15}$. For this graph-theoretic model, nodes are added onto the filled graph G_{F}, rather than being eliminated from the original graph G_{a}. The structure of the matrix factor L is constructed one row at a time. When computing the entries of a particular row in L . the model does not require any a priori uformation for the rows beyond the current row. Therefore, this model has the flexibility that the tasks of labelling a nodal variable, determining its row structure in L, and computing the numeric entries of the row can all be performed simultaneously.

The execution times for the numeric factorization as well as the symbolic factorization of a given matrix K depend on the number of nonzeros in the matrix factor L. Therefore, it is worthwhle to develop efficient algorithms to order the matrix K so that the number of fill-10 entries, or equivalently the number of nonzeros in L, is minimized. In the next section, two well known ordering algorithms, namely the Cuthull-McKee algorithm and the reverse Cuthill-Mckee algorithm. are discussed.

The Cuthill-McKee and the Reverse Cuthill-McKee Ordering Algorithms

Let K be an a by n symmetric matrix. For the $i^{\text {th }}$ row of K, define

$$
\sigma_{1}(K)=\min \left\{j \mid K_{i j} \neq 0\right\}
$$

and

$$
\beta_{i}(K)=i-\sigma_{i}(K) .
$$

The number $\sigma,(K)$ denotes the column subscript of the first nonzero entry in the $i^{\text {th }}$ row of matrix K. The number $\beta_{1}(K)$ is usually referred as the local bandwidth of the $i^{\text {th }}$ row of matris K, and is equal to the number of off-diagonal entries between the first nonzero of the row and the main diagonal. The bandwidth and the profile of matrix K are defined as

$$
b(K)=\max \left\{\beta_{1}(K), i=1, \ldots, n\right\}
$$

and

$$
\rho(K)=\sum_{i=1}^{n} \beta_{i}(K)
$$

respectively. The nonzero entries of the filled matrix F of K are confined within the local band of each row. Many ordering schemes have been developed to minimize the bandwidth or the profile of K.

One ordering scheme commonly used with finite element programs to minimize the bandwidth is the Cuthill-McKee algorithm ${ }^{4}$. Basically, the algorithm is a breadth-first technique in labelling the nodes of a graph Once a finite element mesh is tranformed into its finite element solution graph the algorithm numbers the nodes in the following way.

1. Determine a starting node and number it v_{1}.
2. For nodes $v_{i}, i=1 \ldots, n$. find all unlabelled neighboring nodes of the node v, and number them sequentially in increasing order of degree.

This ordering algorithm is essentially the same as that for generating a level structure rooted at the starting node v_{i}.

In selecting a starting node, a peripheral node is preferred ${ }^{13}$. The idea of choosing a peripheral node as a starting node is to generate as many levels as possible in the level structure. since an increase in the number of levels tends to decrease the profile of the corresponding matrix. Unfortunately, existing algorithms for finding a peripheral node are not computationally feasible.

A compromise that has been suggested is to choose a starting node with high eccentricity. Thus node is generally referred as a pseudo-peripheral node. An efficient algorithm to find a pseudo-peripheral node has been suggested and implemented by George and Liu ${ }^{10}$. For most practical cases, the execution time for finding a pseudo-peripheral node is no greater than $O(|E|)$, i.e., the order of the number of edges in the graph $G=(V, E)$.

George et.al. ${ }^{12}$ bave shown that if linear insertion is used for sorting the time complexity for the second step of the Cuthill-McKee algorithm requires al most
$(4|E|+2 c m|E|)$ operations,
Where $\{E$! is the number of edges in the graph G, m is the maximum degree of any node. and c is some constant.

It has been discovered that significant improvements in minimizing the profile can be achueved by simply reversing the node ordering obtained from the Cuthill-McKee algorithm ${ }^{8}$. The resulting algorithm is the well known reverse Cuthill-McKee (RCM) algorithm, which can be summarized as follows :

1. number the nodes by the Cuthill-McKee algorithm: and
2. reorder the nodes by reversing the node numbering obtained in Step 1.

To reverse the ordering of n nodes requires only n operations. Therefore, the overall complexity of the $R C M$ algorithm remains bounded by $O\left(m, E_{i}^{\prime}\right)$.

It has been proved by Liu and Sherman that the RCM algorithm is never inferior to the Cuthill-McKee algorithm ${ }^{16}$. In its application to finite element ordering, they also found that the RCM algorithm is particularly superior when finite elements of higher orders are used.

A listing of computer subroutines for the RCM algorithm can be found in reference 12. A more detailed description of the algorithm can also be found in that reference.

A TWO-STEP APPROACH TO FINITE ELEMENT ORDERING

In this section, we present a "two-step" approach to finite element ordering. The ordering process is divided into two separate tasks. The first task orders the finite elements in the finite element mesh The second task then labels the nodal variables.

Representation of Finite Element Connectivity

The method to be described requares an explicit representation of the connectivity of the finite elements in the mesh. The connectivity of the finite elements can be topologically represented as a graph; we call this graph a finite element connectivity graph, or, simply, a connectivity graph. The nodes in the connectivity graph correspond to the finite elements in the mesh. The edges of the connectivity graph are used to describe the interconnections between the finite elements. One possible way to define the interconnections between the finite elements is to say that two finite elements are adjacent if they share a common node in the mesh. Thus defintion. however, may lead to a huge number of edges in the connectivity graph. Since the efficiency of most existing ordering algorithons is a function of the number of edges in the graph thus representation of funte element connectivity may suffer a significant drawback in terms of the execution time required for ordering the finite elements. Here, we examane an alternative definition in which the number of edges in the finite element connectivity graph can be vastly reduced.

In finite element methods, a continuum is subdivided by imaginary lines or surfaces into a number of finite elements. These elements are assumed to be interconnected at the vertices situated on their boundaries. Therefore. it is simple to assert that the finite elements are topologically interconnected by their boundaries. A finite element of n dimensions. where $n=1,2,3$, posseses boundaries of $(n-1)$ dimensions. For instance, the boundaries of a :dimensional (volumetric) finte element are the 2 -dimensional boundary-faces, so that in a :dimensional continuum, the volumetric finite elements are interconnected by their boundary-faces. In the same fashion 2-dimensional (planar) finite elements are bounded and interconnected by their 1 -dimensional boundary-lines, and 1 -dimensional (linear) finite eiements are connected to their adjacent elements through the 0 -dimensional boundary-nodes. Hence, in a finite element
mesh, two finite elements are said to be adjacent if they are connected at their boundaries, rather than at their vertices. Using this definition, the nodes in the finite element connectivity graph are the finite elements in the finte element mesh, while the edges connecting the nodes in the connectivity graph correspond to the imaginary boundaries of the finite elements separating the continuum. Examples of finite element meshes and their associated connectivity graphs are shown in Figure 3. For a two-dimensional (planar) continumm, it is interesting to note that the finte element connectivity graph is analogous to the dual of a planar graph ${ }^{3}$, with the exterior node in the dual graph omitted. In general, the element-element connectivity relationship is topologically equivalent to the definition of a dual of an n-dimensional complex ${ }^{23,3}$.

In some cases, the connectivity of finite elements cannot be completely represented using the definition given above. As shown in Figure 4(a), n-dimensional finite elements may not necessarily be connected through all their ($n-1$)-dimensional boundaries. Another example may be that the adjacent finite elements do not have the same geometric dimensions, as illustrated in Figure 4(b). Nevertheless, the transformation process described is still valid and apphicable to these cases; the resulting finite element connectivity graph may at worst become a disconnected graph. Each connected component in the connectivity graph can be labelled undependently by the method presented. The nodes at the interface between two connected components must then be numbered higher than all other nodes in the two components. The examples just described are not very common in practice, and will not be pursued further.

There are several major advantages in defining the connectivity of the finite elements by means of their boundaries, instead of their nodes. First, the number of edges in the connectıvity graph is minimized. Furthermore, this definition completely disregards the nodal variables, or vertices. in the finite element mesh. Therefore, the ordering of finite elements can be performed before the types of finite elements, and thus the number of nodal variables, are chosen.

Ordering the Finite Elements

Once the adjacency structure of a connectivity graph has been established the Cuthill-Mckee algorithm can be applied to number the nodes of the connectivity graph which correspond to the finite eiements in the mesh An example of a 5 by 5 regular mesh with triangular finite elements is shown in Figure $5(\mathrm{a})$. The mesh is first transformed into its connectivity graph shown in Figure 50). The nodes in the connectivity graph are ordered by the Cuthill-McKee algorithm. The resulting ordering of the finite elements is given in Figure $5(c)$.

As notec. earlier. the tume complexity of the Cuthill-McKee algorithm is a function of the number of edges in a graph For a given finite element mesh, the number of edges in the associated connectivity graph is considerably less than the number of edges in its finme element solution graph defined previously. When higher order finite elements are used the difference is even more dramatic. since the number of edges in a finite element solution graph increases combunatorally with the number of nodal varables per finite element. On the other hand. the number of edges in the finite element connectivity graph remains constant for a given discretization of the finite element mesh

Let the finite element mesh consist of ne finite elements, and let nb denote the number of boundaries of finite element 1 . The overall tame complexity of the Cuthill-Mckee algorithm. following from the previous discussion is $O\left(m ; E_{i}\right)$, where m is the largest value of $n b$. $1=1, \ldots$ ne, and $i E$ is the total number of internal boundaries interconnecting the finite elements.

Ordering the .Vodal Variables

A good ordering of the finite elements does not automatically guarantee a good node ordering. wn the sense that the number of fill-in entries is minimized. The ordering of the finte elements does not complete the ordering of K, as the nodal variables associated with the element do not acquire labels by this process. Therefore, one must also consider the ordering of the nodal varables. The proposed strategy is to label the noda! variables of the finte elements following the order in which the finite elements are numbered. For each finite element, the nodal variables
are ordered according to therr valencies, where the valency of a node is the number of finite elements incident at that node. The nodal valency is an indicator of the degree of a node.

The local ordering scheme to label the nodal variables is summarized as follows :

1. Determine the nodal valency for each node in the finite element mesh.
2. (Main loop) Enter the finite elements one at a time following the order in which the finite elements were previously numbered by applying the Cuthill-McKee algorithm to the connectivity graph. For each finite element, find all unlabelled nodes connected to it and number them sequentially in descreasing order of their valencies.
3. (Reverse ordering) Reverse the ordering of the nodal variables obtained in Step 2.

In Step 2 of the local ordering scheme, a nodal variable with minunum valency among the unlabelled nodal variables in a finite element is numbered last. The node ordering obtained is then reversed in Step 3. The motivation behind these two steps is that the nodal variables with the lowest valency in a finite element will be eliminated first. This strategy of minimum degree (valency) ordering has been employed in many popular node ordering schemes, such as the minimum degree ordering algorithm ${ }^{18}$ and the Cuthill-McKee algorithm ${ }^{4}$, although the strategy is used in a different manner in different schemes.

It has been mentioned that by reversing the node ordering obtained from the Cuthill-McKee algorithm, the result can be improved significantly. This property is also true in the local ordering scheme proposed. First, reversing the numbering of the nodal variables which are ordered in decreasing order of their valencies ensures that internal nodal variables are numbered before the external variables of the same element, so that the internal nodal variables are eliminated before the external nodal variables of the same finte element. Hence, there will be no fill-in created when eliminating the internal nodal variables. This ordering strategy also has the property that the nodes situated along a boundary are numbered and eliminated before the corner nodes of the same boundary. Thus is because the corner nodes are in general connected to more finite elements than the nodes located along a boundary. The nodal numbering produced by the proposed scheme for a simple example of a 5 by 5 regular mesh consisting of 10 -node trangular finte elements is shown in Figure 6. The two properties just described are clearly demonstrated
by this example.

For step 1. given the element-node incidence table -- a lisung of the nodes ancident on the finite elements -- the determination of the nodal valencies can be done in exactly

$$
i T i=\sum_{i=1}^{n e} n v_{i} \text { operations, }
$$

Where nv_{i} is the number of nodal variables of the $\mathrm{i}^{\text {tb }}$ finte element, ne is the number of finite elements in the mesh and $|T|$ is the size of element-node incidence table.

To implement step 2, a linear insertion may be used to sort the unlabelled variables of each finite element. For some constant c, the sorting of $n v$, elements by linear insertion requires $c\left(n v_{1}^{2}\right)$ operations ${ }^{3}$. Thus, the time complexity of Step 2 of the algoritbm requares at worst

$$
c\left(\sum_{i=1}^{n e} n v_{i}^{2}\right) \leq c\left(\sum_{i=1}^{n e} n v_{i}\right) n v_{\max }=c|T| n v_{\max } \text { operations, }
$$

where $n v_{\max }=\max (\mathrm{nv})_{i}, i=1, \ldots$, ne. The number of operations required to reverse the node ordering equals to the number of nodal variables, $n \mathrm{n}$. in the finite element mesh. Hence, the time complexity for numbering the nodes. given the ordering of the finite elements, is bounded by $\left.O\left(I T \mathrm{nv}_{\max }\right)^{+n n}\right)$.

EXPERIMENTAL RESULTS

In this section, we report some experimental results comparing the reverse Cuthill-Mckee algorithm and the two-step ordering algorithm. Four finite element models have been selected as examples. They are: (1) a 5 by 5 regular mesh with trangular finite elemeals: (2) an Lsbaped mesh with triangular finite elements; (3) a cross-shaped mesh with rectangular finite elements: and (4) a 2 by 2 by 2 model consisting of rectangular biock finite elements. These models are shown in Figure 7. For each model. linear, quadratic and cubic finte elements have been used. There are altogether twelve test cases.

The computer subroutines for the RCM algorithm bave been adopted from the Sparspak package developed by George and Liu at the University of Water 100^{9} and histed in Reference 12. These subroutines include finding a pseudo-peripheral node of a graph and ordering the nodes by the

RCM algorithm. The input information to these subroutines is the number of nodal varables and an adjacency structure pair representung the node connectivity of the solution graph. A node adjacency structure is illustrated in Figure $8(a)$.

For the two-step ordering scheme, the same set of computer subroutines from Sparspai has been employed to number the finite elements by the Cuthill-McKee algorithm. except that the step for reverse ordering has been omitted. In thus case, the input data for the adjacency structure pair is the node connectivity of the finite element connectivity graph An example of thas data structure is given in Figure $8(b)$. Once the finite elements have been ordered, the adjacency structure can be discarded. The subroutine for performing the second step, that of ordering the nodal variables. is listed in Appendix I. For thus subroutane, the element-node ancidence table is assumed to be available.

The test cases have been run on a DECsystem 20 computer at Carnegle-Mellon University. For each test case. the execution times for the two-step ordering scheme and the RCM algorthm are reported in Table 1. To mimmize tming errors due to a multi-programmed operating system environment, the test cases have been run when the computer was lightly loaded. As the results indicate, the two-step ordering scheme requires much less execution time than the RCM node ordering algorithm, except for the cases when linear triangular finite elements are employed. For those cases, the execution tumes for ordering the nodes by the RCM algorithm and for ordering the finite elements by the Cuthill-McKee algorithm are approximately the same. The deficiency of the two-step ordering scheme is due to the second step of labelling the nodal variables. For cases when hager order finte elements are used. very large amounts of savings in execution times can be achueved.

For each test case, the structures of the matrix factor L resulting from the $R C M$ and the twostep ordering algorithms are summarized in Table 2, in ierms of the profile of the stiffness matrix, the zumber of fill-in entries and the size of the matrix factor. For almost all cases, the profiles resulting from the two-stef ordering scheme are slightly larger than those obtaned from the RCM algorithm. On the other hand, the two-step ordering scheme. in most zases. leads to less fill-in than the RCM algorithm. This result is particularly true for finite element mesines

Where hasher order fante elements are used.

DISCLSSION

In ths paper, a "in-o-step" finme element orderms scheme has been miroduese. In addtion io the effictency achieved, the scheme is also hishly adaptahie to various solution methods commonly used in fintie element analysis.

The major characteristic of the tur-step ordering scheme is that ordering the finte elements and ordering the nodal variables are separated into two independent tasis. The two tasts can be mpiemented as two separate modules. This property of modularity provdes fiexbinty in the software desige of fante element prosams. For mantance one can choose to number ine fmat: elements once the discretization of the finite element mesh is established. Even without the knowledse about the ibpes of finte elements to be used. in ver of current sofituare developments in generating finite element meshes usmg grapha proprocesssors. the tas: of numbering the finte slements can easily be incorporated as an addional module in :be mesh senerater with sery litile extra cost.

The authors recognize that the two-stef orderms scheme presented requtes two sets of mput data: one to describe the adjacency of the fanite slements and the second for the elemen:-ncie incidence iable. These two sets of data can both be senerated by a mesh generaios. Conventionally, bowever, only the element-node inerdence table ts ereated. in Appendn il, we present a computer prosram to determane the element-element adjacency structure par usins the element-node modence table as input. Thus computer program serves promarity for illusiration purposes, and is not meant to be efficient. The authors emphasaze that ithe fante clement adjacency structure should be generated by the mesh generaior. partuculat! when a graphical preprocessor is used.

Since the burth of the finite element methods, efforts have been made to deveiof famte elements using polynomal interpolation functions of hasher orders. The expeamenta! results favor strongly the use of the iwo-step ordering scheme with fugher order finite slaments. la many finnte eiement problems. the finte elements are frogressmely modifed by usiag moreolaton func:ans
of tocreasingly bugher order so as to improve the accuracy of the solution. At each modification. the structure of the global suffness matrix changes, but the number and the distribution of the finite elements in the mesh often reman unchanged. Examples of these problems are quality control in finite element analysis and nonlinear structural analysis ${ }^{2}$. For this type of problem, the ordering of finite elements needs only be determined once. The result can be used to reorder the nodal variables upon each modification made to the finte elements. Moreover. the step in ordering the nodal variables by the two-step ordering scheme can be performed much faster than a complete re-numbering by the node ordering schemes.

In large scale structural analysis, substructuring is often used to divide the structure tato two or more smaller components, called substructures, which are interconnected at their boundaries. Topologically, the substructures can be treated in the same manner as fanite elements. Therefore, the strategy for ordering the finite elements may well be applied to the ordering of the substructures. In substructuring analysis, the external nodal variables located along the boundaries of the substructures are ordered last. As discussed previously, this characteristic is also embedded in the node ordering strategy of the two-step scheme. Hence, there is no reason that the two-step approach cannot be extended to an ordering scheme for substructuring methods.

One of the characteristics of the frontal solution method is that the assembling of the finite elements and the solution process are performed samultaneously. For this solution method, it is the numbering of the finte elements that really matters. However, a proper ordering of the nodal variables for each finte element can further reduce the number of fill-in entries and, thus, the computation cost of the solution process. In the two-step scheme presented. the strategy is to label the nodal variables following the ordering of the finite elements; then the final node ordering is reversed. As a result. the order in which the nodal variables are to be eliminated ought to follow the reverse order in which the finite elements are numbered. Therefore, by entering the finite elements in the reverse order of their numberings. the assembling and factorization tasks can also be performed simultaneously. However, unlike the frontal solution method. where the nodal varıables are arranged in an arbitrary order. the nodal variables are preordered by the two-step ordering scheme to reduce the number of fill-in entries. This pre-
ordering of the nodal variables has the advantage that the data structure for the matra factors can be sel up adependentl: Throughout the entire orderins scheme, the stracture of the slohal stiffoess matran need zot extst. With ibe nodal variables pre-otdered. one can proesed drectly to construct the data structure for the matrix factors using existing simbolic factorization algorithms 9. 15. Consequently, while this two-step ordering sibeme can improve the software modularity for finte element prostams, many characteristics of the "natural" frontal solution method can still be retained in the solution process.

The authors do not clam that the iwo-stef ordermg scheme proposed in this paper is optimal in minmizing the number of fill-in entries. In fact. it has recently been proved that the problem of computing the minimum fill-in 15 NP-complete ${ }^{2 t}$. This ordering scheme is recommended because of 115 effictency, modulanty and flexibilty, and his potential applicathor to vazious othe: finte element problems. Most of all, the two-step orderas scheme acludes the coasiczeatice of the underlying topological structure of the finte element mesk. and may therefore be tegarded as a "natural" finite element ordering scheme.

ACKンOWLEDGEMENT

This woris was supported by the Office of Naval Research under Giant Noceli-7r-C-0ミ54.

REFERENCES

1. Aho. A.V.. J.E. Hopcroft and J.D. Ullmann. The Design and Analysis of Computer A/gorithms. Addıson-Wesley Publishing Company, 1974.
2. Arany. I., and L. Szoda. An Improved Method for Reducing the Bandwidth of Sparse Symmetric Matrices. Information Processing 71. Proceedıngs of IFIP Congress 71, IFIP. August, 1971, pp. 1246-1250.
3. Branin, F.H. Jr. The Algebraic-Topological Basis for Network Analogies and the Vector Calculus. Tech Rept. TR 00.1495, Systems Development Division. IBM. July, 1966.
4. Cuthill, E.. and J. Mckee. Reducing the Bandwidth of Sparse Symmetric Matrices. Proc. 24th Nat. Conf. of the ACM. Association for Computer Machinery. 1969. pp. 157-172.
5. Deo. N.. Graph Theory with App/ications to Engineering and Computer Science. Prentice-Hall. Inc., 1974.
6. Duff. I.S. Recent Developments in the Solution of Large Sparse Linear Equations. In Computing Methods in Applled Sciences and Engineering, R. Glowinski and J.L. Lions. Eds., North Holland Publisbung Company, 1980, pp. 407-426.
7. Eisenstat. S.C., M.C. Gursky, M.H. Schultz, and A.H. Sherman. Yale Sparse Matrix Pacisage 1. The Symmetric Codes. Research Report 112, Dept. Of Comp. Sci.. Yale Unversity. July. 1977.
8. George. A. Computer Implementation of the Finte Element Method. Tech STAN-CS-71208. Computer Science Dept., Stanford University, 1971.
9. George A.. and J.W.H. Liu. User Guide for Sparspak: Waterloo Sparse Linear Equations Package. Research Report CS-78-30, Unversity of Waterloo, 1978.
10. George, A., and J.W.H. Liu. "An Impiementation of a Pseudo-Peripheral Node Finder." ACM Trans. on Matn. Software 5 (1979), 139-162.
11. George. A., and J.W.H. Liu. "An Optimal Algorithm for Symbolic Factorization of Symmetric Matrices." S/AM J. Comput. 9, 3 (August 1980). 583-593.
12. George, A., and J.W.H. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall Inc., 1981.
13. Gibbs. N.E.. W.G. Poole Jr., and P.K. Stockmeyer. "An Algorithm for Reducing the Bandwidth and Profile of a Sparse Matrix." SiAM J. Numer. Anal. 13. 2 (April 1970.
14. Irons. B.M. "A Frontal Solution Program for Finite Element Analysis." / nternationa/ Journal for Numerical Methods in Engineering 2 (1970). $5-32$.
15. Law. K.H., and S.J. Fenves. Sparse Matrices. Graph Theory, and Reanalysis. Proceedinss of the First International Conference on Computing in Civil Engineering. American Societ: of Civil Engineers, 1981.
16. Liu. W-H., and A.H. Sherman. "Comparative Analysis of the Cuthll-McKee and the Reverse Cuthili-McKee Ordering Algorithms for Sparse Matrices." S/AM J. Numer. Anal. i3. 2 (April 1976). 198-213.
17. Maurer. W.D., and T.G. Lewis. "Hast Table Mtheods." ACM Computing Survevs 7. (March ! 9^{7} : . 5-19.
18. Rose. D.J. A Graph-Theoreth Study of the Numencal Solutan of Sparse Posime Defimt Systems of Linear Equations. In Graph Theory anc Computing. R.C. Read. Ec..Academic Press. 10~2. pp. 18ミ-217.
19. Rose. D.J.. R.E. Tarjan, and G.E. Lueser. "Algonthmic Aspects of Vertex Elmanaticn as Graphs." S/AM J. Comput. 5. 2 1June 1976), 200-283
20. Speelpennas. B. The Generalized Element Method. Tech Rept. LiuCDCS-R-フ8-Q46. Defi of Computer Schence. Unmersity of Illinols at Uibbana-Cbamparn. November, 1075.
21. Szabo. B.A.. P.K. Basu and D.A. Dunavant. Quathy Coniroi in Finte Element Anal:sis. Proceedngs of the First lnternatonal Conference on Computne in Civel Engmeerng. Amerian Socery of Canl Engneers. 1081 .
22. Tarjan. R.E., and A.C.C. lao. "Stornse a Sparse Table." Communicailons of the ACM
23. 11 (November 1979). 606-611.
24. Veblen. O.. Colloquium Pubilazions. Volume V. Part Ii. Second Ednan: Ana'ysis Situs. American Mathematical Soctety 19:l.
 Mein. 2. 1 March 19§1), ---70.

Quodratic Triangular Element

FINITE ELEMENT MESH

FINITE ELEMENT SOLUTION GRAPH

Fioure 1: Fintic Element ilch and lis Awoziated Finite Elament Solution Graph


```
COMMENT : { Fミここここ:!.g %: =nto LDit |
EEG:%
        Se= K
        FOE E=1um: = 1 U!:Z2 n; DC
    E\Xiこ?!
        E =: = !:Z;
```



```
        ミミごN
            Lzi = K
            FOR covu-n k = i+i unz:% :; ここ
            EESIN
                y*zoz=k(z)
                Enこ; (v =or =ovumin k .)
        END; (* {o: row ; *)
    ERこ; (* Eor covuma i *)
END.
```


(a) Finite elenent mesh with triangular elements

(b) Finite element mesh with rectanguiar elements

(c) 3-dimensional finite clement model with rectangular volumetric ciements

Fireurc 3: Finite Element Model and lis Assoicaied Finite Elcmont Cunnctivit: Graph

(a) Finite element mesh with n dimensional elements connected through boundaries other than those of $(n-1)$ boundaries

(b) Mesh with finite cements of different dimensions

Figure 4: Finite Element Models with Uncommon Connesinites

(a) A : by 5 finite element grid

(b) Connectivity sraph of the三by s finite element grid

(c) The ordering of finite elements

Figure $5:$ Ordering the Finite Elements by the Cuthill-Ifckec Alpurithm

$$
\begin{aligned}
& \text { Frure a: The Vode Ordering of a } 5 \text { by } 5 \text { Rewular Vesh } \\
& \text { wth } 10 \text {-Nade Triangular finite Elements }
\end{aligned}
$$

(i) linear element

(ii) quadratic element

(iii) cubic element

(i) linear element

(ii) quadratic element

(b) L-shpacd mesh with triangular finite eiements

(i) linear element

(ii) quadratic element

(iii) cubic element
(c) Cross-shaped mesh with rectangular finite elements

(i) linear element

(d) 2 by 2 by 2 bluck with volumetric finite cicments

Figure 7: Finite Element Madels (cont.)

(i) Finite element sclution graph

liote	H.Eう. nooes			
	2	4		
2	1	\vdots	4	5
3	2	5	6	
4	1	2	5	
5	2	3	4	6
6	3	5		

(ii) Noce connection (able

Node No.	1	2	3	4	5	6

IA

(iii) Node-node adjacency structure pair (IA,JA)
(a) Adjacency structure pair of finite element solution graph

(i) Finite element connectivity graph

Element	Adj. elements	
\vdots	II	
$I I$	I	III
III	$I I$	IV
	III	

(ii) Element connection table

Element No.

IA

JA
(iii) Element-eiement acjacency structure pair (IA,JA)
(b) Adjacency structure pair of finite element connectivity graph

Figure 8: Examples of Adjacency Structure Pair
Scheme

Macte 1	$\begin{aligned} & \text { No. } \\ & \text { of } \\ & \text { Ele. } \\ & \text { ments } \end{aligned}$	Type of E)e ment	No. of nosers per olement	No. of Equations	$\begin{aligned} & R C M \\ & \text { algor } 4 \text { inm } \\ & (\text { nisec }) \end{aligned}$	Iwo-sten schome (msec)			$\begin{aligned} & \text { Two-Step } \\ & \text { / RCM } \end{aligned}$
						ETpmient ordering	$\begin{gathered} \text { Node } \\ \text { ordering } \end{gathered}$	rotal	
$\begin{aligned} & 5 \text { by } 5 \\ & \text { regrian } \\ & \text { mesh } \end{aligned}$	50	llenar quad. cublc	3	36	12	10	3	13	1.08
			6	121	16	10	10	20	0.43
			10	256	145	10	17	27	0. 19
Lshaped mesh	120	linear quad. cutula							
			3	73	23	- 29	14	43	1.87
			6	265	111	129	19	48	0.13
			10	577	373	[29	41	70	0.13
Crossshaped mesh		linear quad cubic							
	96		4	96	34	118	11		
			${ }^{\text {B }}$	345	142	-18	27	45	0.32
			12	565	319	, 18	40	58	0.18
2 oy 2		linear	4	27	14	2	2	4	0.29
Dy 2	8	guad.	20	81	89	2	8	10	0.12
block		cubic	32	135	- 192	2	10	12	0.06

Table 2: Structure of Matrix Factor L Resulting from the RCM Algorithin and the Two-Step Ordering Scheme

Mode 1		Type of Element	No. of nortes per element	No of Equatlons	$\begin{aligned} & \text { No. of } \\ & \text { nonzeros } \\ & \text { in } \\ & \text { of } k \end{aligned}$	RCM	algorithm		Two-step scheme			Ratio: Two-step/rcm		
						proflle	$\begin{aligned} & \text { No. Of } \\ & \text { filil-i, } \end{aligned}$, L	Profile	No. of $f 111-1 r$	Ti	Proflle	$\begin{gathered} \text { No. } \\ \text { fil } \end{gathered}$	Ti
5 by 5 regular mesh	50	linear quad. cubic	3	35	85	155	70	155	155	70	155	1.00	1.00	1.00
			6	121	555	1189	634	1189	1235	576	1131	1.04	0.91	0.95
			10	256	1860	4140	2280	4110	4110	1458	3318	0.99	0.64	0.80
shaped mesh	120	linear quad. cubic	3	73	192	510	318	510	499	307	499	0.98	0.97	0.98
			6	265	1296	4208	2912	4208	4458	2864	4160	1.06	0.98	0.99
			10	577	4392	14496	10104	14496	15111	7368	11760	1.04	0.73	0.81
Cross: shaped mest)	96	linear quad. cublc	4	96	412	1298	669	1081	1702	646	1058	1.31	0.97	0.98
			4	345	2196	7282	3408	5604	9318	3222	5418	1.28	0.95	0.97
			12	565	5352	17832	8457	13809	22788	7728	13080	1.28	0.91	0.95
$\begin{aligned} & 2 \text { by } 2 \\ & \text { by } 2 \\ & \text { block } \end{aligned}$	8	I Inear quad. cubic	4	27	158	230	72	230	230	42	200	1.00	0.58	0.87
			20	81	1202	1823	621	1823	1823	309	1511	1.00	0.50	0.83
			32	135	3212	4916	1704	4916	4916	822	3212	1.00	0.48	0.65

Appendix 1．Fortran Computer Program for Labelling the Nodal Variables

Given the ordering of the fintte elements，the subroutune listed belou labels the nodal variables in the finute element mesh

```
C/******************************************************************************
こ/*
C/* Subroutine NODORD :
C/* Given -he ordering of trefimire eiements, FPDM,
c/* this surroutzme NODOR2 labels the nocai variables *
C/* as follows
C/* 2. Determine the vaiency cf eacr node, giver the *
こ/* Siemert-roce zncidence tabie zNC *
J/* 2. Label the nodes oE each Einite e:ement, ir decreasing *
c/* order of =he:r valencies (2inear inserticn is useá) *
C/* 3. Reverse the node ordering obrainet frcm step 2. *
c/*
C/* Input variables :
C/* INC - node-eiement INCidence table
C/* ELPM - Eiemert PerMuta=ion vector
C/* NV - Number of Vertices in the fin:ite element mest.
C/* NVE - Number c: Vertices per Einite Eiemer:
C/* NE - Number of Eir:=e Elements in the mesh
こ/*
\sigma/* Ou=put Variables :
C/* PERM - node PERMuこa=ion vector
C/*
C/* Working variables :
C/* INVD - INVrse Permuta=ion veceor
c/* NDVL - NoDe vaiency vector
C/*
C/*********x**********************************x*********************************
    SUGROUTINE NODORD(ELPN, INC, PERM, INVE, NDV,, NV, NVE, NE)
    IMPLIC:T INTEGER (4-Z)
    DIMENSION INC(NE,NVE), PERM(NV), ENVO(NV), EZFN(NE), NDVG(NV)
C/*
C/* In:tialization
c/*
    DO 10 K = 1,NV
        PERM(K) = 0
        INVP(K)=0
        NDVL(K)}=
    20 2ONT:NUE
こ/*
c/* Determine node vajency
こ/*
    CO 20I = I,NE
    20 20 K = 1,NVE
        NOEE = INC(I,K)
        IF(NODE.EQ.O) GOTO 20
        NDVL (NODE) = NDVE (NODE) + ?
    20 cont=NUE
c/*
c/* Er.ter the eiements secuent:aここy fcこiowing the:= c=at=:ngs
c/*
    NXTNOD = 0
```

```
    DO 250 I = 1,NE
    ELEM = ELPM(I)
    START = NXTNOD + 1
    DC 110 K = 1,NVE
        NODE = INC(ELEM, K)
        IF(INVP(NODE).NE.O.OR.NODE.EQ.O) GOTO 110
            NXTNOD = NXTNOD + 1
            PERM(NXTNOD) = NODE
            INVP(NODE) = NXTNOD
    CONTINUE
~/*
c/*
C/*
c/*
c/*
    Now, reverse the node ordering
    KMID = NV/2
    J = NV
    DO 150 K = i,KMID
        I = PERM(K)
        PERM(K) = PERM(J)
        PERM(J) = I
        J=J-1
        CONTINUE
        RETURN
        END
```


Appendix II．Fortran Computer Program for Generating the Adjacency Structure Pair of

 Element－Element ConnectivityGiven the element－node incidence table，the following set of subroutines determines the adjacency structure par of element－element connechinty of an arbirary finite element mesh These subroutines are moluded only for mustrating bow the element－slement adjacency may be generated if the mesh generator produces only the element－node incidence table．The subroutines are not efficient in storage，in that space is provided for the enture symmetric node－node adjacency table，denoted by NEL．Since this table is very sparse，the function HiASH could be replaced by one that explonts sparsity ${ }^{-1}$（and the varable NEDGE reduced accordingly or other effictent lechniques for sioring sparse tables may be used ${ }^{2}$ ．

```
C/****************************************************************************
C/*
    Subroutine SETUP
        Purpose : SETUP is the main subrou=ine =c generate the *
                        element-eiement acjacency s=ruc=ure from =he *
                        element-node incidence table, :NC, for a piarar *
                        Einite eiemen: mesh.
        Enput variabies :
            -NC - element-node incidence =able
        Global variabies :
            NE - no. cf elements in the mest.
            NV - no. of nodes in the mesh
            NVE - no. of nodes per element
            NEPGS3 - (NE - 2)
            NEDGE - Possinie naximum no, OE eages in she soiucion graph
                        ( = NV * (NV-\) / 2 )
            gMAX - Ectal no. of edges in the sclu=ion graph
            EDGFil - (EDGMAX + 1)
            NELS - cour:eer {or the edge-elemert s=ruc=ure palr *
            MavSus - max. subscript used in the eiement-element *
                                    adjacency st=ucture par= (see surrou=ine ĖMAここ) *
    ごこEut :
```



```
        2n the array EOC_ Erom Loca=:or _Oc:A to (iOCJi+MavSUE-j). *
        The array in is s=orec in PCOL(こOCJA) =0 EOここ(こOCこA+NE); *
        the array IA is s=ored ir. FOOL(ここCごA) to POCL(こOCJA+MAXSUE-i).
        SuErOutines `sed :
C/* EDGSET, EDGSi%, E:MADJ *
                *
C/* EDGSET, EDES゙%n, EこMADJ *
C/* *
C/**************************************************************************
    SURROUMZNE SETYP(INC, POCL)
    IMP:こC:= INGESER (A-Z)
    COMMON /EYSTEM/ NE, NV, NVE, NESNS:
```

```
        COMMON /GRAPH/ NEDGE, EDGMAX, EDGPLI, NELS, MAXSUE
        COMMON /IOSET/ iN, :O, JERUG
        -CgTEAL DEBUG
        J_MENSION INC(NE,NVE), POOL(1)
c/*
        ?hase : : =0 set up she edge-element adjacency s=ruc=ure
        LOCNEL = 1
        LOCSTA = LCCNEL + NEDGE
        CALL EDGSET(INC, POOL(LOCNEL), POOL(LOCSTA))
            Phase 2 : to build the edse-eiement adjacency
                structure paar
        EDGPLI = EDGMAX + I
        LOCEL = LOCSTA + EDGPL1
        LCCPOS = LOCEL + NELS
        CALL EDGBLT(INC, FOOL(LCONEL), POCL(LOCSTA), POOL(LOCEL),
    *
        Phase 3 : =0 build the eiement-element adjacency
                structure pair
        LOCIA = LOCPOS
        LOCJA = LOCIA + NEFISSI
        CAIL ELMADJ(INC, POOL(IOCNEL), POOL(JOCSTA), POCL(iOCEL),
                        POOL(LOC:A), POOL(LOCJA))
        RETURN
        END
C/***************************************************************************
C/*
    Function :HASH
        Purpose : to determine the location of an edge in
c/* the symmetric node adjacency ma=zix
c/*
C/* Inpu: Variables :
E/* N2,N2 - nodes in the mesn (or graph)
C/*
c/* Output Variable :
C/* HASH - loca=ion of edge (NL,N2) in =he symmet:=a node
C/* adjacency matrix
c/*
C/**************************************************************************
    INTEGER FUNCTION EASH(N2,N2)
    IMPLICIT INTEGER (A-Z)
    J = AMAXO(N1,N2)
    I = AMINO(N2,N2)
    #MS: = ((J-2)*(コ一ミ))/2 + I
    RETURN
    END
C/**************************************************************************
C/*
C/* Subroutine EDGSET
c/*
c/*
    Purpose : to set up counter START of the edge-eiement
                        adjacency structure parr (START, EL)
C/* {EL Wil: De devermaned in subroutine EDGEZ:.}
c/*
c/* Input variable :
```

```
C/* INC - e_eme:t-node =ncicence =acie
C/* Ou_pu= Varzables :
C/* NEL(HAS:(N2,N2)) - eage no. assigned to node pair (N-,N2)
c/* { criy edges with more than one inciaent ezemert
                are assignec a rumber. }
    smARm - starting position for the edge-element adjacency
        structure pair
        { START(k+1) - START(k) = no. of eiements adjacent
                    to edge k }
    Intermediave Variable :
        NEL(HASH(N2,N2)) - ir step 1, the array is a node-acjacenay
        maここix denoting numbe= oE eiemerits in=0 edge (Nz,N2)
    c/*
C/*****************************************************************************
    SUBRCUTINE EDGSET(INC, NEL, START)
    IMPE:CIF ENTEGER (A-Z)
    COMMON /SYSTEN/ NE, NV, NVE, NEPLSI
    COMMON /GRAPH/ NEDGE, EDGMAY, EDGP:1, NELS, MAXSUS
    DIMENSION INC(NE,NVE), NEL(NEDGE), START(1)
c/*
C/* Initiaijzation
c/*
    DC 5 I = 2,NEDGE
        NEL(I)=0
        5 CONTINUE
C/*
c/* S=ep 2 : to build the noce acjacency matrix
C/*
    DO 10I = I,NE
        NN = NVE
        DO 10 J = 1, NN-1
            NI = ENC(I,J)
            IF(NI.EZ.O) GONO 10
            DC 10 K= J+1,NN
                N2 = INC(I,K)
                IF(N1.EQ.N2 .OR. N2.EQ.0) GOTC 10
                EDGE = HASH(N1,N2)
                NEL (EDGE) = NEL (EDGE) + I
    CONTINUE
        Step 2 :
            (I) Eo set up counter START Eor the
                edge-element adjacency structure
            (2) to assign a number to the edges (with two
                or more incident eiements ).
    POSIT = 0
    NELS = 1
    DC :5I= I, NEDGE
        IF(NEL(I) .LE. 1) GOTO 14
            PCSIT = POSIT + 1
            START(POS:T) = NELS
            NELS = NELS + NEL(I)
            NEL(I) = POSIT
            GOTO :5
            NEL(I) = 0
```

```
    IS SONT:NUE
        EDGMAX = PCSIT
        START(EDGMAY+1) = NELS
        RETURN
        END
こ/***********************************************************************
こ/*
c/* Subrou:ine EDGELT
Purpose : to build the array EL of the edge-element adjacency
C/* structure parr (START, EL).
c/* Input variables :
I/* INC - eiement-node incidence Eamie
C/* NEL (k) *
C/* NEL(k) - edge no. assigned =0 node pair (N1,N2) *
C/* {x = HASH(N2,N2) } *
c/* Smax̃ - scarting position for the edge-eiemert acjacency *
c/* structure pai= mmarm(k) = no. of eiements adjacent *
    { START(x+1) - START(k) = no. of eiements acjacert *
                                    to edge k }
    Ouzput variable :
        Ei - edse-element adjacency structure pair
            l The set of elements incident to edge k is secred *
                in EL(START(k)) =0 EL(START(k+{)).}
    Wcrking variable :
c/* POSIm(k) - pointer to current empty position in EL for edge k *
C/*
C/*******************************************************
            IMPLICIT INTEGER (A-Z)
            GOMMON /SYSTEM/ NE, NV, NVE, NEPLSI
            COMMON /GRAPY/ NEDGE, EDGMAX, EDGPLL, NE:S, MAYSUE
            DEMENSION INC(NE,NVE), NEL(NEDGE), START(EDGPLI), EL(NELS),
        * pOSIT(EDGMAX)
C/*
c/* Initiaisze working vector poSit
c/*
    DO 10 I = 1, EDGMAX
        PCS:T(I) = START(I)
    cONTINUE
C/*
C/* Fill edge-element adjacency EL
C/*
    DC 20 I = 1,NE
        NN = NVE
        IC 20 J = =, NN-I
            N2 = NNC(I,J) incte N: :
            IF(N1.EQ.O) GOTO 20
            DC 20 k = J+1, NN
                N2 = INC(I,K) :node N2:
                IF(N2.EQ.O .OR. NI.EQ.N2) GOTO 20 :check se:E locp:
                    EDGE = HASH(N1,N2) llocation in NE::
                        IF(NEL(EDGE) .EQ. O) GOTO 20
                EDGACT = NEL(EDGE) ledge number:
                    EL(POSIT(EDGACT)) = I {assigr: I to En:
                        POSIT(EDGACT) = POSIT(EDGACM) + 1 :update PCS:T:CR:
    CONTINUE
```


RETURN

END

C/***		
C/*	Subroutine Elmadu	
C/*	Purpose : to set up the ejement-element adjacency structure	
C/*	pair (IADJ,JADJ).	
C/*		
C/*	Input Variables :	
C/*	INC - element-node incidence table	
E/*	NEL(k) - edge no. assigned to node pair ($\mathrm{N} 1, \mathrm{~N} 2$)	
C/*	\{ $\mathrm{k}=\mathrm{HASH}(\mathrm{N}, \mathrm{N} 2)$ \}	
C/*	START - starting position for the edge-element adjacency	
C/*	structure pair	
C/*	\{ START $(k+1)$ - START (k) = no. of elements adjacent	*
C/*	to edge k	
C/*	EL - edge-element adjacency structure pair	
C/*	\{ The set of elements incident to edge k is stored	
C/*		*
C/*		*
C/*	Output variables :	
C/*	(IADJ,JADJ) - element-ėement adjacency structure pait	*
C/*		*

 SUBROUTINE ELMADJ(INC, NEL, START, EL, IADJ, JADJ)
 IMPLICIT INTEGER (A-Z)
 COMMON /SYSTEM/ NE, NV, NVE, NEPLSI
 COMMON /GRAPH/ NEDGE, EDGMAX, EDGPL1, NELS, MAXSUB
 COMMON /IOSET/ IN, IC, DEBUG
 LOGICAL DEEUG
 DIMENSION IN \(\sim(N E, N V E), N E L(N E D G E), ~ S T A R T(E D G P L I), ~ E L(N E L S)\),
 IADJ (NEPLSI), TADI (1)
 Initiailze IADJ (1)
 $\operatorname{IADJ}(i)=1$
C/*
C/*
C/*
C/*
For each element, Eind ail incident elements and
queue them in JADJ
DO $50 I=1, N E$
ELMENT = I \quad ffor eiement I:
$L I=I A D J(I)$
FILE $=0$
$\mathrm{NN}=\mathrm{NVE}$
DO $40 \mathrm{~J}=1, \mathrm{NN}-1$
$N 2=I N C(I, J) \quad$ incde $N Z:$
IF(Ni.EE.O) GOTO 40
DO $4 \mathrm{CK}=\mathrm{K}+1$, NN
N2 $=\operatorname{INC}(5, K) \quad$: node N2:
IF (N2.EQ.N2 .OR. N2.EQ.0) GOTO 40 :check seif loop:
EDGE $=$ HASH $\left(N_{+}, N 2\right)$!location in NEL:
IF(NE: (EDGE).EQ.C) GOTO 40
EDGNUM = NEL(EDGE) :edge number:
BEGIN = START (EDGNUM) :for al? elements
END = STAR* $($ EDGNUM-1) - \quad : incident $=0$
DC 30 IEL = EEGIN, END : edoge EJGNUN:
$E: M=E L(I E L) \quad$:a ne:gr. eiemers:

```
            IF(ELM.EQ.ELMENT) GOTO 30 :same as element I?:
            L2 = LI + FILL
            IF(FILL.EQ.O) GOTO 20
                DO 10 JJ = L1, L2-1
                IF(JADJ(JJ).EQ.ELM) GOTO 30
                CONTINUE
                    JADJ(L2) = ELM
                            FILL = FILL + I
                CONTINUE
            CONTINUE
            IADJ (ELMEN'+1) = IADJ(ELMENm) + FILLL !update IADJ:
CONTINUE
MAXSUB = IADJ(NEPLSI)
IF(.NOT.DEBUG) RETURN
            Print out results
C/*
C/*
C/*
WRITE(IO,1100)
DO 50 I = 1,NE
    LI = IADJ(I)
    L2 = IADJ (I+1) - I
    IF(L2.LT.LI) GOTO 50
        WRITE(IO,1000) I, LI, L2, (JADJ(K), K=L1,:L2)
        CONTINUE
        RETURN
```

```
EORMAN(T5, I4, m_C, i6, T18, IG, (T30,20I6))
FORMAT(IHI, T2, 'ELEMENT', TIO, 'IDAJ(I)', TI8, 'IALJ(I+I)',
END
```


UNCLASSIFIED

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
	3 Recidemers catalog numaea
a Titlenana subilne)	5. TYPE OF REPORT \& PERIOO COVERED Technical Report
	6. Performing ong. report number
T. Autmon(a) Stenen J. Fenves, Kincho H. Law	$\begin{aligned} & \text { CONT RACT O GAANT NUMEER(O) } \\ & \text { NO0014-76-C-0354 } \end{aligned}$
P. Pinfonming oaganization name and adoness Department of Civil Eng ineering Carnegie-Mellon University Pittsburgh, Pennsylvania 15213	10. PROGAAMEEEENT PROJECT, TASK
Office of Naval Research Arlington VA 22217	12 Report date August 1981
	$\begin{array}{\|c} \hline \text { 13. NUMAE OF PAGES } \\ 39 \\ \hline \end{array}$
	is. SECURITY CLASS. (ot time toporn) UNCLASSIFIED
	TSe. OECLISSSIF/CATIONTOOMMGRAOING

Approved for pubiic release; distribution unlimited
17. DISTMIBUTION STATEMENT (OI the abaspact entersed in Elock 20, il differont froen Report)
18. SUPPLEMEMTARY NOTES
19. KEY wOCDS (Continue on peverse alde If neceeeary and identify by block number)

Two-step ordering; finite element ordering; sparse matrices; graph-theoretic approach; solution graph; connectivity graph; Cuthill-McKee algorithm; RCM algorithm; execution time; fill-in entries.

\rightarrow A two-step approach to finite element ordering is introduced. The scheme involves ordering of the finite elements first, based on their adjacency, followed by a local numbering of the nodal variables. The ordering of the elements is performed by the Cuthill-McKee algorithm. This approach takes into consideration the underlying structure of the finite element mesh, and may be regarded as a "natural" finite element ordering scheme. The experimental results show that this two-step scheme is more efficient than the reverse Cuthill-McKee_aloorithm anolied_directly_to_tho_noder in_terms

20 Abstract (Continued)

Of both execution time and the number of fill-in entries, particularly when higher order finite elements are used. In addition to its efficiency, the two-step approach increases modularity and flexibility in finite element programs, and possesses potential application to a number of finite element solution methods.

