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Abstract In this paper we introduce a two-step Certified Reduced Basis (RB) method. In

the first step we construct from an expensive finite element “truth” discretization of dimen-

sion N an intermediate RB model of dimension N ≪ N . In the second step we construct

from this intermediate RB model a derived RB (DRB) model of dimension M ≤ N . The

construction of the DRB model is effected at cost O(N) and in particular at cost indepen-

dent of N ; subsequent evaluation of the DRB model may then be effected at cost O(M).

The DRB model comprises both the DRB output and a rigorous a posteriori error bound for

the error in the DRB output with respect to the truth discretization.

The new approach is of particular interest in two contexts: focus calculations and hp-RB

approximations. In the former the new approach serves to reduce online cost, M ≪ N : the

DRB model is restricted to a slice or subregion of a larger parameter domain associated with

the intermediate RB model. In the latter the new approach enlarges the class of problems

amenable to hp-RB treatment by a significant reduction in offline (precomputation) cost: in

the development of the hp parameter domain partition and associated “local” (now derived)

RB models the finite element truth is replaced by the intermediate RB model. We present

numerical results to illustrate the new approach.
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1 Introduction

The Certified Reduced Basis (RB) method is a computational and mathematical framework

for model order reduction of parameter dependent partial differential equations (PDEs). In

particular, the RB method provides rapid and certifiable computation of linear functional

outputs—such as average field values or average fluxes—associated with the solution to the

PDE for any set of input parameter values that configure the PDE in terms of (say) applied

forces, material properties, geometry, or boundary conditions. The RB method is of interest

in two particular contexts: real-time—such as parameter estimation [23] and optimal con-

trol [13]—and many-query—such as multiscale [3, 20] or stochastic simulation [4]. In these

contexts, a computational preprocessing (offline) stage is typically justified. Early contribu-

tions to the RB methodology include [1, 24, 25]. For a review of these as well as more recent

contributions, we refer to [26].

Given any input parameter value from a predefined parameter domain, the RB field ap-

proximation is a Galerkin-optimal linear combination of N precomputed highly accurate

(“truth”) N -degree-of-freedom Finite Element (FE) snapshots of the solution to the PDE

associated with N judiciously chosen parameter values. The RB output approximation is

then evaluated as a linear functional of the RB field approximation. When the solution de-

pends smoothly on the parameters an accurate RB approximation may be computed based

on rather few precomputed snapshots: N ≪ N . Moreover, a rigorous a posteriori RB output

error bound for the difference between the truth output and RB output may also be devel-

oped.

The efficiency of the RB method in the real-time and many-query contexts is effected

through an offline-online computational strategy. The RB offline stage comprises FE snap-

shot selection and computation. This stage may be expensive—N -dependent—but is per-

formed only once as preprocessing. The RB online stage comprises evaluation of the RB

output and RB output error bound for any given input parameter value. This stage is

inexpensive—N -independent—and may thus be effected in real-time and many-query con-

texts. The keys to the N -independent online stage are efficient construction–evaluation

computational procedures that link the offline and online stages through a stored dataset

of size independent of N . These procedures also provide efficient and exhaustive explo-

ration of the parameter domain in the offline selection of optimal FE snapshots through a

Greedy sampling algorithm.

In this paper we introduce a two-step Certified RB method. In the first step we construct

from an expensive FE truth discretization of dimension N an intermediate RB model of

dimension N ≪ N . In the second step we construct from this intermediate RB model a

derived RB (DRB) model of dimension M ≤ N . The construction of the DRB model is

effected at cost O(N) and in particular at cost independent of N ; subsequent evaluation of

the DRB model may then be effected at cost O(M). The DRB model comprises both the

DRB output and a rigorous a posteriori error bound for the error in the DRB output with

respect to the truth discretization.

The DRB model is defined over a parameter subdomain (typically a subregion or sub-

manifold of the original parameter domain associated with the underlying intermediate RB

model) and hence typically M can be chosen significantly smaller than N ; the DRB model

thus enables an additional speedup. The key innovations of this paper are efficient DRB

precomputation—the construction cost of the DRB model is N -independent—and rigorous

and efficient a posteriori bounds for the error in the DRB approximation—the error may be

bounded rigorously with respect to the N -complexity FE truth at evaluation cost indepen-

dent of N and N .
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The notion of two-step model order reduction has been considered in earlier works, albeit

in different contexts and with different emphasis than our approach here. In [29], a “Fourier

model reduction method” for large (non-parametric) control problems is presented. The

Fourier method is first applied to the original equation in order to construct an “interme-

diate order” reduced system; a computationally more intensive reduction method, such as

balanced truncation [22], may then be applied to this intermediate order system. A two-step

strategy is also pursued in [18], where a Krylov subspace method is followed by balanced

truncation in the context of circuit component design.

In this paper, we consider parametric model order reduction in two contexts in which our

new approach is of particular interest:

Focus Calculations We consider the case in which we require many (or real-time) RB

output evaluations in a parameter subdomain or submanifold D′ ⊂ D. For an accurate ap-

proximation over this smaller parameter subdomain, a smaller DRB model may be sufficient

and hence provide faster output computation compared to the standard RB alternative. Ap-

plications include parameter estimation and in particular Bayesian inference [23] and fre-

quentistic validation [14], as well as visualization or indeed design or optimization of an

RB output or RB error bound over a 1-parameter or 2-parameter slice of the full parameter

domain.

hp-RB Approximation The hp-RB method was recently introduced in [7]. This approach

provides an online speedup of the RB approximation through an optimal and automatic par-

tition (h-refinement) of the full parameter domain D into K parameter subdomains V k ⊂ D,

1 ≤ k ≤ K . A standard RB model of dimension N k is then constructed for each param-

eter subdomain (p-refinement); presumably we may choose N k ≪ N since each “local”

approximation space is invoked for a smaller range of parameter values. However, although

the online speedup associated with an hp-RB approximation may be significant, the offline

cost can be rather large: the dimension reduction effected within each subdomain does not

balance the number of parameter subdomains in terms of total offline computational cost.

Thus, in particular, the hp-RB offline stage requires Ntotal =
∑K

k=1 N k > N truth FE snap-

shot computations in total.

With the new two-step approach introduced in this paper, we replace the Ntotal expensive

offline FE truth snapshot computations in the hp-RB offline stage with much less expensive

RB snapshot approximations; we then replace the standard RB model associated with each

parameter subdomain by a DRB model. Through this hp-DRB approach, we may signifi-

cantly reduce the hp-RB offline cost and hence broaden the class of problems amenable to

hp-RB treatment. We include a summary of the hp-RB method in Sect. 5.1.

We may also pursue a mixed approach (for focus calculations or hp-RB approximations),

in which the underlying intermediate RB model is in fact an hp-RB model. However, in

particular with an hp-DRB approach, there is in this case a delicate balance in the offline

stage between additional FE snapshot computations (for the underlying hp-RB model) and

faster hp-RB snapshot computation (for the DRB models). We do not consider this mixed

approach further in this paper.

The paper is organized as follows. We introduce in Sect. 2 the problem statement as

well as notation required later; we also introduce two model problems to which we shall

apply the new method. We introduce in Sect. 3 the new two-step approximation scheme; we

discuss the (Greedy) construction of the RB and DRB approximation spaces, a posteriori

error estimation, and the associated (construction-evaluation) computational procedures. We

consider in Sect. 4 and Sect. 5 the new approach in the context of focus calculations and in
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the context of hp-RB approximations, respectively. In each context we discuss the associated

offline-online computational decoupling, and we present numerical results for our two model

problems; for all our numerical results we use rbOOmit [21], which is an RB plugin for

the open source FE library libMesh [19]. Finally, in Sect. 6, we summarize the paper and

discuss some areas of future work.

2 Problem Statement

2.1 Abstract Framework

We consider linear elliptic second order partial differential equations. For simplicity in the

exposition of our approach we consider the formulation only for real-valued fields, how-

ever the extension to complex fields is straightforward and in fact in our second model

problem (Helmholtz acoustic horn) we present results for this complex case. We introduce

the spatial domain � ⊂ R
d (d = 1,2,3); we shall denote a particular spatial point x ∈ �

as x = (x(1), . . . , x(d)). We further specify the function spaces L2(�) = {v :
∫

�
v2 < ∞},

H1(�) = {|∇v| ∈ L2(�)}, and H 1
0 (�) = {v ∈ H 1(�), v|∂� = 0}; we then introduce the

space Xe associated with the exact solutions of the parametrized PDE as H 1
0 (�) ⊆ Xe ⊆

H 1(�). We next introduce a parameter domain D ⊂ R
P ; we shall denote a particular pa-

rameter value μ ∈ D as μ = (μ(1), . . . ,μ(P )).

We next introduce a parametrized bilinear form a and a parametrized linear functional f

such that for any parameter value μ ∈ D, a(·, ·;μ) : Xe ×Xe → R is coercive and continuous

over Xe , and f (·;μ) : Xe → R is bounded over Xe . We also introduce an Xe-bounded linear

output functional ℓ : Xe → R which we for simplicity assume is parameter independent. We

shall further assume that a and f admit parametrically affine expansions

a(·, ·;μ) =
Qa∑

q=1

aq(·, ·)�q
a(μ), (2.1)

f (·;μ) =
Qf
∑

q=1

f q(·)�q

f (μ), (2.2)

respectively, where Qa ≤ Q, Qf ≤ Q, and Q is finite and relatively small. The assumptions

(2.1) and (2.2) accommodate the construction-evaluation computational procedures which

we shall discuss in detail in Sect. 3.4. However, we note that these assumptions may be

relaxed by the Empirical Interpolation Method [2, 5, 10], which in the non-affine case serves

to construct affine expansions that are good approximations to the non-affine forms.

We denote by μ̄ ∈ D a fixed “reference” parameter value; we then introduce the X-inner

product and the associated X-norm for any v,w ∈ Xe as

(w,v)X = 1

2
(a(w,v; μ̄) + a(v,w; μ̄)), ‖v‖X =

√

(v, v)X, (2.3)

respectively (more generally we may consider any inner product with induced norm equiv-

alent to ‖ · ‖X). We further introduce the coercivity and continuity constants of a,

αe(μ) = inf
v∈Xe

a(v, v;μ)

‖v‖2
X

, γ e(μ) = sup
v∈Xe

sup
w∈Xe

a(v,w;μ)

‖v‖X‖w‖X

, (2.4)

respectively.
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We may now introduce the abstract formulation of the exact problem. Given any param-

eter value μ ∈ D, find ue(μ) ∈ Xe such that

a(ue(μ), v;μ) = f (v;μ), ∀v ∈ Xe, (2.5)

and then evaluate the exact output of interest as

se(μ) = ℓ(ue(μ)). (2.6)

We next introduce a high-fidelity truth FE approximation space X ≡ XN ⊂ Xe of finite

dimension N . We may then introduce the truth FE discretization of (2.5)–(2.6): given any

μ ∈ D, find u(μ) ∈ X such that

a(u(μ), v;μ) = f (v;μ), ∀v ∈ X, (2.7)

and then evaluate the truth output of interest as

s(μ) = ℓ(u(μ)). (2.8)

We shall assume that X is chosen rich enough (and thus N large enough) that, for any

μ ∈ D, the error between the exact solution ue(μ) and the truth approximation u(μ) is

negligible at the desired level of numerical accuracy for the RB approximation; the RB

approximation shall be built upon, and the RB error shall be bounded with respect to, this

FE truth approximation.

We now introduce the coercivity and continuity constants of a with respect to X,

α(μ) = inf
v∈X

a(v, v;μ)

‖v‖2
X

, γ (μ) = sup
v∈X

sup
w∈X

a(v,w;μ)

‖v‖X‖w‖X

, (2.9)

respectively; for our a posteriori error estimators, we shall also require a coercivity lower

bound αLB: 0 < αLB(μ) ≤ α(μ), for all μ ∈ D. An efficient computational procedure for

the computation of a coercivity lower bound is possible through the Successive Constraint

Method (SCM) [16, 17, 26].

The RB method [26] provides an acceleration of the truth (2.7)–(2.8) by the construc-

tion of an approximation space of low dimension N ≪ N . This space is optimized for the

particular problem at hand, and thus provides accurate approximations despite the relatively

low cost. The DRB method, which is the focus of this paper, further accelerates the RB

approximation in contexts such as focus calculations and hp-RB approximations by the

construction of an approximation space derived from an intermediate RB approximation

space. This DRB approximation space is tailored to a parameter subdomain or submanifold

of the original parameter domain, and is of even lower dimension M ≤ N .

2.2 Model Problems

2.2.1 A 3D Thermal Block

We introduce here a “thermal block” linear elliptic model problem. We specify the spatial

domain (the thermal block) � = (0,1)3, which is partitioned into eight subblocks

�0 = (0,0.5) × (0,0.5) × (0,0.5), (2.10)
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�1 = (0.5,1) × (0,0.5) × (0,0.5), (2.11)

�2 = (0,0.5) × (0.5,1) × (0,0.5), (2.12)

�3 = (0.5,1) × (0.5,1) × (0,0.5), (2.13)

�4 = (0,0.5) × (0,0.5) × (0.5,1), (2.14)

�5 = (0.5,1) × (0,0.5) × (0.5,1), (2.15)

�6 = (0,0.5) × (0.5,1) × (0.5,1), (2.16)

�7 = (0.5,1) × (0.5,1) × (0.5,1), (2.17)

as shown in Fig. 1. We shall consider the nondimensionalized temperature ue(μ) in �.

We specify unity (inward) heat flux on the floor Ŵbase = {x ∈ ∂� : x(3) = 0}; we specify

thermal insulation ∂ue/∂n = 0 on the walls Ŵwall = {x ∈ ∂� : x(1) = 0 or x(1) = 1} ∪ {x ∈
∂� : x(2) = 0 or x(2) = 1} (here n denotes the outward normal unit vector); and we specify

zero temperature ue = 0 on the top Ŵtop = {x ∈ ∂� : x(3) = 1}. We require continuity of the

temperature and of the heat flux across interior boundaries. We next specify the parameter

domain D = [0.5,2]7; the thermal conductivity in the seven subblocks �i , 1 ≤ i ≤ 7, is

given by μ(i), 1 ≤ i ≤ 7. The thermal conductivity in �0 is equal to unity.

We now specify the exact space Xe = {v ∈ H 1(�) : v|Ŵtop = 0}. We then specify, for all

μ ∈ D and for any w,v ∈ Xe , the bilinear form and linear functional

a(w,v;μ) =
∫

�0

∇w · ∇v +
7

∑

i=1

μ(i)

∫

�i

∇w · ∇v, (2.18)

f (v;μ) =
∫

Ŵbase

v, (2.19)

Fig. 1 The thermal block
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respectively. We also specify, for any v ∈ Xe , the output functional

ℓ(v) = 1

|�out|

∫

�out

v, (2.20)

where �out = (0,0.25) × (0,0.25) × (0,0.25) and |�out| = 0.253 is the size of �out. The

exact weak formulation for the temperature ue(μ) in � is then given by (2.5); the exact

output se(μ) = ℓ(ue(μ)) corresponds to the average temperature over �out. We note that our

affine assumptions (2.1)–(2.2) hold for Qa = 8 and Qf = 1. We choose for this problem the

reference parameter μ̄ = (1,1,1,1,1,1,1) ∈ R
7; thus (w,v)X =

∫

�
∇w · ∇v.

For our numerical results of Sect. 4.2.1 (focus calculations) and Sect. 5.4.1 (hp-RB ap-

proximations) we use for our truth calculations a standard P1(�) FE approximation space

X = XN of dimension N = 9261, which is deemed sufficiently rich. The truth FE for-

mulation of the problem is then given by (2.7). We note that with our choice of inner

product our problem is coercive with a coercivity lower bound given for all μ ∈ D by

αLB(μ) = min{1,μ(1), . . . ,μ(7)}. (In fact here αLB(μ) ≤ αe(μ) (≤ α(μ)).)

2.2.2 A 2D Acoustic Horn

We introduce here a Helmholtz linear elliptic model problem, first proposed in [27]. We

specify a parametrized two-dimensional domain �o(μ) ⊂ R
2, which corresponds to a pa-

rameter dependent acoustic horn inside a truncated circular domain as shown in Fig. 2. (The

subscript o denotes an “original” quantity; for our computational procedures we consider

�o(μ) as the image of a parameter independent “reference” domain under a piecewise affine

mapping.) The horn consists of a straight channel of width a = 1 and length l1 = 3, followed

by a flared section of length l2 = 5. The outlet is of width 2b = 10. The expansion channel

is divided into 3 sections of equal length 5/3. The wall Ŵo,W of the symmetric expansion

channel is modeled as a piecewise linear function; the heights of the sections, b1 and b2,

are considered as our (geometric) parameters. The domain is truncated at the circle Ŵo,R of

radius R = 12.5 centered slightly away from the outlet of the horn.

Fig. 2 The acoustic horn
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We shall consider the nondimensionalized (complex) pressure ue
o(μ) in �o(μ); in

this subsection i =
√

−1. We specify a source,
∂ue

o(μ)

∂no
+ iμ(3)u

e
o(μ) = 2iμ(3), at the in-

let Ŵo,in; we specify a first order (Sommerfeld) radiation boundary condition,
∂ue

o(μ)

∂no
+

(iμ(3) + 1
2R

)ue
o(μ) = 0, at the radiation boundary Ŵo,R; and we specify a Neumann bound-

ary condition, ∂ue
o(μ)/∂no = 0, on the horn wall Ŵo,W. We next specify the parameter

domain D = [1.0,1.8] × [1.8,2.5] × [0,2]; we denote a particular parameter value as

μ = (μ(1),μ(2),μ(3)) = (b1, b2, k) ∈ D, where k is the nondimensional frequency or wave

number.

We now define our complex space Xe
o = {v = vR + ivI : vR ∈ H 1(�o(μ)), vI ∈

H 1(�o(μ))}. Let v̄ denote the complex conjugate of v. We then specify, for all μ ∈ D

and for any w,v ∈ Xe
o, the sesquilinear form and anti-linear functional

ao(w,v;μ) = (1 + iǫ)

∫

�o(μ)

∇w · ∇v̄ − μ(3)

∫

�o(μ)

wv̄

+
∫

Ŵo,in

wv̄ +
(

1

2R
+ iμ(3)

)∫

Ŵo,R

wv̄, (2.21)

fo(v;μ) = 2iμ(3)

∫

Ŵo,in

v̄, (2.22)

respectively. Here ǫ = 0.001 represent a small dissipation in the medium. We also specify,

for any v ∈ Xe
o, the output functional

ℓo(v) =
∫

Ŵo,in

v̄; (2.23)

the output thus corresponds to a measurement of the pressure at the inlet Ŵo,in.

We then apply a domain decomposition technique (see [26]) to represent the bilinear

and linear forms in our usual affine expansions: we divide �o(μ) into 20 subdomains and

consider each subdomain as the image of a parameter independent “reference subdomain”

under an affine transformation; we denote the union of these reference subdomains by �

(≡ �o(μ̄), where μ̄ = (1.4,2.15,0)). We also introduce a space Xe such that any v ∈ Xe

maps to vo ∈ Xe
o through our piecewise affine transformation. The exact weak formulation

for the pressure ue(μ) ∈ Xe in the reference domain � is then given by a complex version

of (2.5). Furthermore, through the domain decomposition technique we obtain complex ver-

sions of (2.1) and (2.2) for Qa = 25 and Qf = 1, respectively. We finally define, for all

w,v ∈ Xe, our X-inner product for this problem as

(w,v)X =
∫

�

∇w · ∇v̄ +
∫

�

wv̄. (2.24)

For our numerical results in Sect. 4.2.2 (focus calculations) and Sect. 5.4.2 (hp-RB ap-

proximations) we use for our truth calculations a standard P1(�) FE approximation space

X = XN ⊂ Xe of dimension N = 30108, which is sufficiently accurate for our choice of

frequency range. For purposes of illustration we show in Fig. 3 three solution fields corre-

sponding to different parameter values.

Although with the dissipation (and radiation) condition this problem is in fact coercive, it

is preferable to consider for our a posteriori error estimators not a coercivity constant lower
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Fig. 3 The magnitude of the pressure field in �o(μ) for different parameter values

bound but rather an inf-sup constant lower bound βLB: 0 < βLB(μ) ≤ β(μ). Here,

β(μ) = inf
w∈X

sup
v∈X

|a(w,v;μ)|
‖w‖X‖v‖X

, (2.25)

for all μ ∈ D, where | · | denotes complex modulus. Typically, this positive inf-sup lower

bound is constructed by a natural norm version of the SCM procedure [16]. However, in

this paper, for simplicity1 we choose βLB to be a constant: the minimum of the SCM lower

bound over a dense set in D. Admittedly, this choice will compromise both sharpness (since

we invoke a minimum) and rigor (since this minimum is taken over a subset of D) of our a

posteriori error bound.

3 The Certified Derived Reduced Basis Method

In this section we introduce the new two-step RB method. For simplicity our development

here is for coercive linear elliptic equations with real-valued fields. However, the extension

to non-coercive equations and complex fields—required for our Helmholtz acoustic horn

model problem—is straightforward.

3.1 Derived RB Approximation

We introduce the intermediate (standard) RB approximation space XN ⊂ X of dimension

N ≪ N . The space XN is spanned by solutions of (2.7) for judiciously chosen (see Sect. 3.3)

parameter values μ1 ∈ D, . . . ,μN ∈ D,

XN ≡ span{u(μ1), . . . , u(μN )} ≡ span{ζ1, . . . ζN }; (3.1)

here, {ζ1, . . . , ζN } denotes an X-orthonormal basis for XN , obtained through (say) a modi-

fied Gram-Schmidt procedure.2

1The natural-norm SCM procedure in [16] has a multi-parameter domain structure different from the multi-

parameter domain structure of the hp-RB approach considered in this paper; a streamlined merger of these

approaches is the subject of future work.

2In the modified Gram-Schmidt procedure we compute ζ̃i = u(μi ) −
∑i−1

n=1
(ζn, u(μi ))Xζn , 2 ≤ i ≤ N ,

in an iterative fashion in order to preserve numerical stability in finite precision as described in [8]. Here

ζ1 = u(μ1)/‖u(μ1)‖X and ζi = ζ̃i
‖ζ̃i‖X

, 2 ≤ i ≤ N .
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We may then introduce the RB approximation: given any μ ∈ D, find uN (μ) ∈ XN such

that

a(uN (μ), v;μ) = f (v;μ), ∀v ∈ XN , (3.2)

and then evaluate the RB output approximation as

sN (μ) = ℓ(uN (μ)). (3.3)

We now introduce a parameter subdomain or submanifold D′ ⊂ D to which the DRB

model shall be specifically tailored. In the context of focus calculations, we wish to speed

up evaluation of the RB solution, RB output, and RB error bound for any parameter value

in the subdomain D′ ⊂ D; in the context of hp-RB approximations, we wish to speedup

evaluation of the RB solution, RB output, and RB error bound for any parameter value in D

through a partition of D into many (K) subdomains V k ⊂ D, 1 ≤ k ≤ K subdomains.3 With

regard to the hp-RB approximation, D′ denotes in this section any of the K subdomains V k ,

1 ≤ k ≤ K ; the hp-RB approximation is discussed in greater detail in Sect. 5.

We introduce the DRB approximation space XN,M ⊂ XN of dimension M ≤ N . The

space XN,M is spanned by solutions of (3.2) for judiciously chosen (see Sect. 3.3) parameter

values μ′
1 ∈ D′, . . . ,μ′

M ∈ D′,

XN,M ≡ span{uN (μ′
1), . . . , uN (μ′

M)} ≡ span{ψ1, . . . ,ψM}. (3.4)

Here, {ψ1, . . . ,ψM} denotes an X-orthonormal basis for XN,M , obtained through a Gram-

Schmidt procedure; however we note that in practice, we shall not require the explicit (N -

dependent) computation of ψ1, . . . ,ψM . The computational link between the intermediate

and derived RB models will be discussed later in Sect. 3.4.

We may now finally introduce the DRB approximation: given any μ ∈ D′, find

uN,M(μ) ∈ XN,M such that

a(uN,M(μ), v;μ) = f (v;μ), ∀v ∈ XN,M , (3.5)

and then evaluate the DRB output approximation as

sN,M(μ) = ℓ(uN,M(μ)). (3.6)

3.2 A Posteriori Error Estimation

We first recall the a posteriori error estimator for the (standard) RB approximation [26]. We

define the residual

rN (·;μ) = f (·;μ) − a(uN (μ), ·;μ) ∈ X′; (3.7)

we then introduce the Riesz representation of the residual, RN (μ) ∈ X, which satisfies

(RN (μ), v)X = rN (v;μ), ∀v ∈ X. (3.8)

3As described in the introduction, the DRB provides an offline (and not online per se) speedup of the hp-RB

approximation. This offline speedup enlarges the class of problems amenable to RB treatment. However, this

offline speedup may also accommodate larger K—smaller subdomains—and thus implicitly a speedup of the

hp-RB online cost.
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We may then define the RB error bound as4


N (μ) = ‖RN (μ)‖X

αLB(μ)
. (3.9)

We may readily demonstrate that ‖u(μ) − uN (μ)‖X ≤ 
N (μ): We first note that the error

eN (μ) = u(μ) − uN (μ) satisfies

a(eN (μ), v;μ) = rN (v;μ), ∀v ∈ X. (3.10)

We then choose v = eN (μ) and invoke (3.8) to obtain

a(eN (μ), eN (μ);μ) = (RN (μ), eN (μ))X. (3.11)

We apply coercivity to the left hand side and the Cauchy-Schwarz inequality to the right

hand side to obtain

αLB(μ)‖eN (μ)‖2
X ≤ ‖RN (μ)‖X‖eN (μ)‖X, (3.12)

from where we readily derive (3.9). We shall discuss the computation of 
N (μ)—in partic-

ular the dual norm of the residual ‖RN (μ)‖X—in Sect. 3.4; however we note here that we

may in the RB evaluation stage, for any given μ ∈ D, compute 
N (μ) at cost O(Q2N2)—

independently of the truth complexity N .

The a posteriori error estimator for the DRB approximation is very similar. We define

the residual

rN,M(·;μ) = f (·;μ) − a(uN,M(μ), ·;μ) ∈ X′; (3.13)

we then introduce the Riesz representation of the residual, RN,M(μ) ∈ X, which satisfies

(RN,M(μ), v)X = rN,M(v;μ), ∀v ∈ X. (3.14)

We then define the error bound


N,M(μ) = ‖RN,M(μ)‖X

αLB(μ)
, (3.15)

for which we may show that ‖u(μ) − uN,M(μ)‖X ≤ 
N (μ) by arguments analogous to

(3.10)–(3.12). We emphasize that 
N,M(μ) bounds the error in the DRB approximation

with respect to the truth upon which the intermediate RB model is built. We shall discuss

the computation of 
N,M(μ) in detail in Sect. 3.4; however we note here that we may in

the DRB evaluation stage, for any given μ ∈ D′, compute 
N,M(μ) at cost O(Q2M2)—

independently of the truth complexity N and the RB complexity N .

For our sampling algorithm which we discuss in the next section we shall also require

a bound for the error in the DRB approximation with respect to the intermediate RB ap-

proximation. We introduce the Riesz representation of the DRB residual in the RB space,

R̃N,M(μ) ∈ XN , which satisfies

(R̃N,M(μ), v)X = rN,M(v), ∀v ∈ XN . (3.16)

4We note that for our Helmholtz acoustic problem the RB error bound is given as in (3.9) with the coercivity

constant lower bound αLB replaced by an inf-sup constant lower bound βLB.
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We then define the error bound


̃N,M(μ) = ‖R̃N,M(μ)‖X

αLB(μ)
; (3.17)

for which we may show that ‖uN (μ) − uN,M(μ)‖X ≤ 
̃N,M(μ) by arguments analogous to

(3.10)–(3.12).

Finally, we note that we may readily develop error bounds for the RB (or DRB) output

approximation. For example, for any μ ∈ D,

|s(μ) − sN,M(μ)| = |ℓ(u(μ) − uN,M(μ))| (3.18)

≤ sup
v∈X

ℓ(v)

‖v‖X

‖u(μ) − uN,M(μ)‖X (3.19)

≤ ‖ℓ‖X′
N,M(μ). (3.20)

3.3 Greedy Parameter Sampling

For the construction of both the intermediate RB space XN and the DRB space XN,M , we

invoke a Greedy parameter sampling procedure [26, 28], which we now discuss.

Algorithm 1 XNmax = GreedyRB(μ1, ǫ
RB
tol )

N ← 1

XN = span{u(μN )}
ǫmax
N = maxμ∈�D

train

N (μ)

while ǫmax
N > ǫRB

tol do

N ← N + 1

μN = arg maxμ∈�D

train

N−1(μ)

XN = XN−1 ⊕ span{u(μN )}
ǫmax
N = maxμ∈�D

train

N (μ)

end while

Nmax = N

We first consider the construction of the intermediate RB approximation space. We in-

troduce a training set �D
train ⊂ D of finite cardinality |�D

train| which shall serve as a computa-

tional surrogate for D. We then introduce as Algorithm 1 the GreedyRB sampling procedure.

For a specified tolerance ǫRB
tol and an initial parameter value μ1 ∈ D, Algorithm 1 returns a

space XNmax ⊂ X of dimension Nmax such that 
Nmax(μ) ≤ ǫRB
tol for all μ ∈ �D

train. We typ-

ically choose �D
train “dense” and hence we may anticipate that 
Nmax(μ) ≤ ǫRB

tol for most

μ ∈ D. We note that due to the hierarchical structure of the spaces—X1 ⊂ · · · ⊂ XNmax —we

may readily extract spaces of dimension N < Nmax from XNmax .

We next consider the construction of the DRB approximation space. We introduce a train-

ing set �D′
train ⊂ D′ (⊂ D) of finite cardinality |�D′

train| which shall serve as our computational

surrogate for D′. We then introduce as Algorithm 2 the GreedyDRB sampling procedure. For

a specified tolerance ǫDRB
tol , a desired intermediate RB space (upon which the DRB space

is built) dimension N ≤ Nmax, and an initial parameter value μ′
1 ∈ D′, Algorithm 2 returns
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Algorithm 2 XN,Mmax = GreedyDRB(μ′
1,N, ǫDRB

tol )

M ← 1

XN,M = span{u(μ′
M)}

ǫmax
N,M = max

μ∈�D′
train


̃N,M(μ)

while ǫmax
N,M > ǫDRB

tol do

M ← M + 1

μ′
M = arg max

μ∈�D′
train


̃N,M−1(μ)

XN,M = XN,M−1 ⊕ span{uN (μ′
M)}

ǫmax
M = max

μ∈�D′
train


̃N,M(μ)

end while

Mmax = M

a space XN,Mmax ⊆ XN of dimension Mmax ≤ N such that 
̃N,Mmax(μ) ≤ ǫDRB
tol for all μ ∈

�D′
train. We note that due to the hierarchical structure of the spaces—XN,1 ⊂ · · · ⊂ X1,Mmax —

we may readily extract spaces of dimension M < Mmax from XN,Mmax . We emphasize that

Algorithm 2 is identical to Algorithm 1 except for the procedures for snapshot computation

and error bound evaluation.

We note that in Algorithm 2 we invoke the error bound (3.17) with respect to the inter-

mediate RB approximation in order to ensure convergence of the algorithm: the maximum

error bound ǫmax
N,M → 0 as M → N and hence any specified tolerance ǫDRB

tol > 0 will eventu-

ally be satisfied. We also note that, for any μ ∈ �D′
train, the error in the DRB approximation

with respect to the truth can be bounded as

‖u(μ) − uN,M(μ)‖X ≤ ‖u(μ) − uN (μ)‖X + ‖uN (μ) − uN,M(μ)‖X

≤ 
N (μ) + 
̃N,M(μ) ≤ ǫmax
N + ǫmax

N,M . (3.21)

However, we can not reduce the term ǫmax
N since we increase only M (and not N ) during the

GreedyDRB sampling procedure. As a result we typically choose in practice ǫDRB
tol > ǫRB

tol in

order to avoid GreedyDRB iterations that do not provide significant error (with respect to the

truth) reduction.

We emphasize that in the online stage we bound the error in the DRB approximation with

respect to the truth. We note that in practice we do not invoke 
N (μ)+ 
̃N,M(μ) (in (3.21))

as an error bound, since evaluation of 
N (μ) is expensive (N -dependent). We thus invoke

in the online stage the less expensive (evaluation cost depends on M , and not on N ) bound


N,M(μ) in (3.15). We discuss computational procedures and associated computational cost

next.

3.4 Construction-Evaluation Computational Procedures

The key ingredients in our computational procedures are the affine expansions (2.1) and

(2.2) of a and f , respectively. The construction–evaluation procedures which we introduce

here enable efficient offline–online computational procedures. We discuss application of the

construction–evaluation procedures to the offline–online decoupling for each of our two

particular applications, focus calculation and hp-RB approximation, in Sect. 4 and Sect. 5,

respectively.
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3.4.1 Output Approximation

RB Output We first expand the RB field approximation in terms of the basis functions

ζ1, . . . , ζN of XN as

uN (μ) =
N

∑

n=1

uN,n(μ)ζn. (3.22)

With (2.1) and (2.2) we may then write (3.2) as the linear system

N
∑

j=1

uN,j (μ)

(
Qa∑

q=1

aq(ζj , ζi)�
q
a(μ)

)

=
Qf
∑

q=1

f q(ζi)�
q

f (μ), 1 ≤ i ≤ N, (3.23)

in the coefficients uN,j (μ), 1 ≤ j ≤ N . We obtain the RB output approximation (3.3) as

sN (μ) = ℓ(uN (μ)) =
N

∑

n=1

uN,n(μ)ℓ(ζn). (3.24)

We now identify the construction and evaluation stages. In the construction stage we

compute for 1 ≤ q ≤ Qa the “stiffness matrices” A
q

N ≡ {aq(ζj , ζi)} ∈ R
N×N ; we compute

for 1 ≤ q ≤ Qf the “load vectors” F
q

N ≡ {f q(ζi)} ∈ R
N ; we also compute the terms ℓ(ζi)

(1 ≤ i ≤ N ) required for the output. The construction stage is performed at cost O(N •).
In the evaluation stage, given any μ ∈ D, we evaluate �

q
a(μ), 1 ≤ q ≤ Qa , and �

q

f (μ),

1 ≤ q ≤ Qf , at cost O(Q); we then perform the two summations over q in (3.23) at cost

O(QaN
2 + Qf N), and solve the N × N linear system for the RB coefficients uN,n(μ),

1 ≤ n ≤ N , at cost O(N3) (we must anticipate that the RB system matrix is dense). We

finally evaluate the RB output approximation (3.24) at cost O(N).

DRB Output We first expand the basis functions ψ1, . . . ,ψM of XN,M in terms of the basis

functions ζ1, . . . , ζN of XN as

ψi =
N

∑

n=1

κi,nζn, 1 ≤ i ≤ M; (3.25)

recall that

span{ψ1, . . . ,ψM}
︸ ︷︷ ︸

XN,M

= span{uN (μ′
1), . . . , uN (μ′

M)}
︸ ︷︷ ︸

XN,M

⊂ span{ζ1, . . . , ζN }
︸ ︷︷ ︸

XN

, (3.26)

where ψ1, . . . ,ψM is an X-orthonormal basis for XN,M . We may obtain the coefficients κm,n,

1 ≤ m ≤ M , 1 ≤ n ≤ N , from the Gram-Schmidt procedure for ψ1, . . . ,ψM as follows. For

m = 1, we obtain

ψ1 = uN (μ′
1)

‖uN (μ′
1)‖X

=
∑N

n=1 uN,n(μ
′
1)ζn

(
∑N

m=1

∑N

n=1 uN,n(μ
′
1)uN,m(μ′

1) (ζm, ζn)X
︸ ︷︷ ︸

δm,n

)1/2
(3.27)
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=
∑N

n=1 uN,n(μ
′
1)ζn

(
∑N

n=1(uN,n(μ
′
1))

2)1/2
≡

N
∑

n=1

κ1,nζn, (3.28)

where δi,j is the Kronecker delta symbol. For 2 ≤ m ≤ M , we further obtain ψm =
ψ̃m/‖ψ̃m‖X where, from (3.22) and (3.25),

ψ̃m = uN (μ′
m) −

m−1
∑

s=1

(ψs, uN (μ′
m))Xψs, (3.29)

=
N

∑

n=1

uN,n(μ
′
m)ζn −

m−1
∑

s=1

N
∑

n=1

N
∑

k=1

N
∑

l=1

uN,l(μ
′
m)κs,k (ζk, ζl)X

︸ ︷︷ ︸

δk,l

κs,nζn (3.30)

=
N

∑

n=1

(

uN,n(μ
′
m) −

m−1
∑

s=1

N
∑

k=1

uN,k(μ
′
m)κs,kκs,n

)

ζn ≡
N

∑

n=1

κ̃m,nζn. (3.31)

We thus identify κm,n = κ̃m,n/‖ψ̃m‖X , 1 ≤ n ≤ N , with

‖ψ̃m‖X =
(

N
∑

n=1

N
∑

k=1

κ̃m,nκ̃m,k (ζn, ζk)X
︸ ︷︷ ︸

δn,k

)1/2

(3.32)

=
(

N
∑

n=1

κ̃2
m,n

)1/2

. (3.33)

In practice, we do not explicitly perform this (N -dependent) Gram-Schmidt procedure since

we do not explicitly require the DRB basis functions ψm, 1 ≤ m ≤ M . From (3.27), (3.31),

and (3.33), we obtain the coefficients κm,n at cost O(NM2) (we use a sum-factorization

technique in (3.31)).5

We next expand the DRB field approximation in terms of the basis functions of XN,M as

uN,M(μ) =
M

∑

m=1

uN,M,m(μ)ψm. (3.34)

With (2.1) and (2.2) we may then write (3.5) as the linear system

M
∑

j=1

uN,M,j (μ)

(
Qa∑

q=1

aq(ψj ,ψi)�
q
a(μ)

)

=
Qf
∑

q=1

f q(ψi)�
q

f (μ), 1 ≤ i ≤ M (3.35)

in the coefficients uN,M,j (μ), 1 ≤ j ≤ M . We obtain the DRB output approximation (3.6) as

sN,M(μ) = ℓ(uN,M(μ)) =
M

∑

m=1

uN,M,m(μ)ℓ(ψm). (3.36)

5In (3.28), (3.31), and (3.33) we invoke the fact that (ζk, ζl)X = δk,l ; however this is only true in infi-

nite precision. An improvement to the numerical stability of our approach is thus to compute and store

(ζk, ζl)X , 1 ≤ k, l ≤ N ; we may then obtain κ1,n from (3.27) rather than from (3.28), and κ̃m,n and ‖ψ̃m‖X ,

2 ≤ m ≤ M , from (3.30) and (3.32) rather than from (3.31) and (3.33), respectively. Note (3.30) requires

O(N2M) operations but (3.31) only O(NM2).
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With (3.25), we note that we may write aq(ψj ,ψi), f q(ψi), and ℓ(ψi) as

aq(ψj ,ψi) =
N

∑

n=1

κj,n

(
N

∑

m=1

κi,maq(ζn, ζm)

)

, 1 ≤ q ≤ Qa, 1 ≤ i, j ≤ M, (3.37)

f q(ψi) =
N

∑

n=1

κi,nf
q(ζn), 1 ≤ q ≤ Qf , 1 ≤ i ≤ M, (3.38)

ℓ(ψi) =
N

∑

n=1

κi,nℓ(ζn), 1 ≤ i ≤ M, (3.39)

respectively. We may then identify the construction and evaluation stages. In the construc-

tion stage we first obtain, for 1 ≤ q ≤ Qa , the matrices A
q

N,M ≡ {aq(ψj ,ψi)} ∈ R
M×M from

the matrices A
q

N ∈ R
N×N by (3.37) at cost O(N2M) through a sum factorization technique

as follows: for 1 ≤ q ≤ Qa , we first compute and store (temporarily) the terms

τ
q

i,n =
N

∑

m=1

κi,maq(ζn, ζm), 1 ≤ i ≤ M, 1 ≤ n ≤ N, (3.40)

at cost O(N2M); we then perform the outer summation

aq(ψj ,ψi) =
N

∑

n=1

κj,nτ
q

i,n, 1 ≤ i, j ≤ M, (3.41)

at cost O(M2N). The total cost of (3.37) is thus O(N2M) (for each q) since M ≤ N .

We next obtain, for 1 ≤ q ≤ Qf , the vectors F
q

N,M ≡ {f q(ψi)} ∈ R
M from the vec-

tors F
q

N ∈ R
N by (3.38) at cost O(MN); and we obtain ℓ(ψi), 1 ≤ i ≤ M , from ℓ(ζn),

1 ≤ n ≤ N , by (3.39) at cost O(MN). The cost of the construction stage is thus N -

independent. In the evaluation stage, given any μ ∈ D′, we evaluate �
q
a(μ), 1 ≤ q ≤ Qa , and

�
q

f (μ), 1 ≤ q ≤ Qf , at cost O(Q); we then perform the two summations over q in (3.35)

at cost O(QaM
2 + Qf M), and solve the M × M linear system for the DRB coefficients

uN,M,m(μ), 1 ≤ m ≤ M , at cost O(M3). We finally evaluate the DRB output approximation

(3.36) at cost O(M).

3.4.2 A Posteriori Error Bound

We discuss here the computational procedures associated with the residual dual norms re-

quired for our a posteriori error estimators. We refer to [16, 17, 26] for the computational

procedures associated with the coercivity (or stability factor) lower bound (the SCM).

Dual X-Norm of RB Residual We now discuss the construction-evaluation procedure for

the dual norm of the RB residual. With (2.1), (2.2), and (3.22), we may expand (3.8) as

(RN (μ), v)X =
Qf
∑

q=1

f q(v)�f
q (μ) −

N
∑

n=1

uN,n(μ)

Qa∑

q=1

aq(ζn, v)�q
a(μ) (3.42)

=
N̄

∑

i=1

φi(μ)L
i(v), (3.43)
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for all v ∈ X. Here N̄ = Qf + NQa , and the Li ∈ X′ and φi : D → R are defined explicitly

as

L
i = f i, 1 ≤ i ≤ Qf , (3.44)

L
Qf +i+(n−1)Qa = ai(ζn, ·), 1 ≤ i ≤ Qa, 1 ≤ n ≤ N, (3.45)

φi = �i
f , 1 ≤ i ≤ Qf , (3.46)

φQf +i+(n−1)Qa = uN,n�
i
a, 1 ≤ i ≤ Qa, 1 ≤ n ≤ N. (3.47)

We then define li ∈ X, 1 ≤ i ≤ N̄ , such that

(li, v)X = L
i(v), ∀v ∈ X. (3.48)

Hence, by linearity,

RN (μ) =
N̄

∑

i=1

φi(μ)li . (3.49)

We may now identify the construction and evaluation stages. In the construction stage

we solve (3.48), 1 ≤ i ≤ N̄ , and compute the inner products (li, lj )X , 1 ≤ i, j ≤ N̄ , at cost

O(N •). In the evaluation stage, given the RB solution coefficients for any μ ∈ D, we evalu-

ate φi(μ), 1 ≤ i ≤ N̄ , at cost O(Qf + QaN), and perform the summation

‖RN (μ)‖2
X =

N̄
∑

i=1

N̄
∑

j=1

φi(μ)φj (μ)(li, lj )X, (3.50)

at cost O(N̄2) = O(Q2N2).

Dual X-Norm of DRB Residual We next discuss the construction-evaluation procedure for

the dual norm of the DRB residual. With (2.1), (2.2), and (3.34), we may expand (3.14) as

(RN,M(μ), v)X =
Qf
∑

q=1

f q(v)�f
q (μ) −

M
∑

m=1

uN,M,m(μ)

Qa∑

q=1

aq(ψm, v)�q
a(μ) (3.51)

=
M̄

∑

i=1

ϕi(μ)H
i(v), (3.52)

for all v ∈ X. Here M̄ = Qf +MQa , and the Hi ∈ X′ and ϕi : D′ → R are defined explicitly

as

H
i = f i, 1 ≤ i ≤ Qf , (3.53)

H
Qf +i+(m−1)Qa = ai(ψm, ·), 1 ≤ i ≤ Qa, 1 ≤ m ≤ M, (3.54)

ϕi = �i
f , 1 ≤ i ≤ Qf , (3.55)

ϕQf +i+(m−1)Qa = uN,M,m�i
a, 1 ≤ i ≤ Qa, 1 ≤ m ≤ M. (3.56)
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We then define hi ∈ X, 1 ≤ i ≤ M̄ , such that

(hi, v)X = H
i(v), ∀v ∈ X. (3.57)

Hence, by linearity,

RN,M(μ) =
M̄

∑

i=1

ϕi(μ)hi . (3.58)

We now note, by (3.25), that we may further expand the HQf +i+(m−1)Qa in (3.54) in terms

of the intermediate RB basis {ζn}N
n=1 as

H
Qf +i+(m−1)Qa = ai(ψm, ·) =

N
∑

n=1

κm,na
i(ζn, ·), (3.59)

for 1 ≤ i ≤ Qa and 1 ≤ m ≤ M ; thus, by linearity,

hQf +i+(m−1)Qa =
N

∑

n=1

κm,nl
Qf +i+(n−1)Qa , (3.60)

for 1 ≤ i ≤ Qa and 1 ≤ m ≤ M . We recall the definition of li , 1 ≤ i ≤ Qf + QaN , from

(3.48), (3.44), and (3.45).

We next consider the inner products (hi, hj )X , 1 ≤ i, j ≤ M̄ . First, it is clear that

(hi, hj )X = (li, lj )X, 1 ≤ i, j ≤ Qf ; (3.61)

further, we note that

(hQf +i+(m−1)Qa , hj )X =
N

∑

n=1

κm,n(l
Qf +i+(n−1)Qa , lj )X, (3.62)

(hj , hQf +i+(m−1)Qa )X =
N

∑

n=1

κm,n(l
j , lQf +i+(n−1)Qa )X, (3.63)

for 1 ≤ i ≤ Qa , 1 ≤ m ≤ M , and 1 ≤ j ≤ Qf ; we finally note that

(hQf +i+(m−1)Qa , hQf +j+(m′−1)Qa )X

=
N

∑

n=1

κm,n

(
N

∑

n′=1

κm′,n′(lQf +i+(n−1)Qa , lQf +j+(n′−1)Qa )X

)

, (3.64)

for 1 ≤ i, j ≤ Qa , 1 ≤ m,m′ ≤ M . The key observation here is that once (li, lj )X ,

1 ≤ i, j ≤ N̄ , are given from the intermediate RB construction stage, the analogous data

(hi, hj )X , 1 ≤ i, j ≤ M̄ , for the DRB model may be obtained at cost O(N•)—independently

of the truth complexity N .

We may now identify the construction and evaluation stages. In the construction stage we

obtain (hi, hj )X , 1 ≤ i, j ≤ M̄ , from (li, lj )X , 1 ≤ i, j ≤ N̄ , by (3.61)–(3.64). The cost is

dominated by the summation (3.64), for which we invoke a sum factorization technique: we
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first compute and store the term in parentheses for 1 ≤ i, j ≤ Qa , 1 ≤ n ≤ N and 1 ≤ m′ ≤
M at cost O(Q2

aN
2M); we then perform the outer summation (over n) for 1 ≤ i, j and 1 ≤

m,m′ ≤ M at cost O(Q2
aM

2N). The total cost is thus O(Q2
aN

2M) since M ≤ N . (Direct

evaluation of (3.64) requires O(Q2N2M2) operations.) In particular, the DRB construction

stage is N -independent. In the evaluation stage, given the DRB solution coefficients for any

μ ∈ D′, we evaluate ϕi(μ), 1 ≤ i ≤ M̄ , at cost O(M̄) = O(Qf + QaM), and perform the

summation

‖RN,M(μ)‖2
X =

M̄
∑

i=1

M̄
∑

j=1

ϕi(μ)ϕj (μ)(hi, hj )X (3.65)

at cost O(M̄2) = O(Q2M2).

Dual XN -Norm of DRB Residual We next discuss the construction-evaluation procedure

for the dual norm of the DRB residual with respect to the intermediate RB approximation

space, ‖R̃N,M(μ)‖X . With (2.1), (2.2), and (3.34), we may expand (3.16) as

(R̃N,M(μ), v)X =
Qf
∑

q=1

f q(v)�f
q (μ) −

M
∑

m=1

uN,M,m(μ)

Qa∑

q=1

aq(ψm, v)�q
a(μ) (3.66)

=
M̄

∑

i=1

ϕi(μ)H
i(v), (3.67)

for all v ∈ XN . We then define h̃i ∈ XN , 1 ≤ i ≤ M̄ , such that

(h̃i, v)X = H
i(v), ∀v ∈ XN . (3.68)

Hence, by linearity,

R̃N,M(μ) =
M̄

∑

i=1

ϕi(μ)h̃i . (3.69)

We next consider the inner products (h̃i, h̃j )X , 1 ≤ i, j ≤ M̄ . We note that h̃i ∈ XN may

be written as

h̃i =
N

∑

n=1

ηi
nζn, 1 ≤ i ≤ M̄, (3.70)

where the coefficients ηi
1, . . . , η

i
N satisfy

N
∑

n=1

ηi
n (ζn, ζm)X
︸ ︷︷ ︸

δm,n

= ηi
m = H

i(ζm), 1 ≤ m ≤ N, (3.71)

thanks to the X-orthonormal basis for XN . Hence

(h̃i, h̃j )X =
N

∑

m=1

N
∑

n=1

ηi
mηj

n (ζm, ζn)X
︸ ︷︷ ︸

δm,n

=
N

∑

n=1

H
i(ζn)H

j (ζn), (3.72)
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for 1 ≤ i, j ≤ M̄ .

We may now identify the construction and evaluation stages. In the construction stage we

compute the inner products (h̃i, h̃j )X , 1 ≤ i, j ≤ M̄ , from (3.72) at cost O(NM̄2); note that

Hi(ζn), 1 ≤ i ≤ M̄ , 1 ≤ n ≤ N , may be evaluated from (3.53) and (3.59) at cost O(N2M̄)

since the matrices A
q

N , 1 ≤ q ≤ Qa , and vectors F
q

N , 1 ≤ q ≤ Qf , are computed and stored

during the construction stage for the intermediate RB output. In the evaluation stage, given

the DRB solution coefficients for any μ ∈ D, we evaluate ϕi(μ), 1 ≤ i ≤ M̄ , at cost O(Qf +
QaM), and perform the summation

‖R̃N,M(μ)‖2
X =

M̄
∑

i=1

M̄
∑

j=1

ϕi(μ)ϕj (μ)(h̃i, h̃j )X, (3.73)

at cost O(M̄2) = O(Q2M2).

We note that as an alternative to the bound 
̃N,M(μ) we may directly compute ‖uN (μ)−
uN,M(μ)‖X at cost O(QN2 +N3). However typically M is significantly smaller than N and

thus computation of 
̃N,M(μ) is typically less expensive than computation of ‖uN (μ) −
uN,M(μ)‖X when the bound is required for many μ as in the GreedyDRB algorithm.

4 Focus Calculations

In the context of focus calculations we require many (or real-time) RB output (or RB error

bound) evaluations over a parameter subset or submanifold D′ ⊂ D. Given an intermediate

RB model developed for the parameter domain D, a smaller DRB model is typically suffi-

cient over D′ ⊂ D. This smaller DRB model may yield significant speedup compared to the

standard RB alternative while preserving numerical accuracy.

4.1 Offline-Online Decomposition

We now discuss the offline-online decomposition associated with the focus calculation con-

text. The offline stage is the construction of the intermediate RB model over D: we per-

form GreedyRB (Algorithm 1) for a specified initial parameter value μ1 ∈ D and a specified

error bound tolerance ǫRB
tol (to be satisfied over the training set �D

train ⊂ D). This stage is

expensive—the cost is O(N •)—but performed only once as preprocessing.

In the online stage, given a parameter subdomain or submanifold D′ ⊂ D, we first con-

struct the DRB model: we perform GreedyDRB (Algorithm 2) for a specified initial param-

eter value μ′
1 ∈ D′, a specified intermediate RB space (constructed offline and upon which

the DRB approximation is built) dimension N ≤ Nmax, and a specified error bound toler-

ance ǫDRB
tol (to be satisfied over the training set �D′

train ⊂ D′). The cost of this step derives

from RB snapshot computation and RB error bound preprocessing and evaluation; below

M̄max ≡ Qf + QaMmax.

1. RB snapshot computation. We compute Mmax intermediate RB snapshots of complexity

Nmax. The cost is O(Mmax(QN2
max + N3

max)) (we must anticipate that the RB system is

dense).

2. DRB construction. We obtain the parameter independent matrices and vectors associated

with the DRB system at cost O(QN2
maxMmax); note that we obtain these entities directly

from the respective intermediate RB entities (computed offline).

3. DRB error bound preprocessing. We must compute M̄2
max inner products (3.72) for our

error bound 
̃N,M (used in the GreedyDRB sampling procedure) and M̄2
max inner products
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Fig. 4 The RB output values on

D′ for the thermal block; note

that the DRB and standard RB

outputs are indistinguishable

(3.61)–(3.64) for our error bound 
N,M (used for DRB output certification). The total

cost is dominated by (3.64) and is O(Q2N2
maxMmax).

4. DRB error bound evaluation. We compute the DRB approximation and evaluate the DRB

error bound 
̃N,M over the training set �D′
train at each GreedyDRB iteration. The cost is, to

leading order, O(Mmax|�D′
train|(M3

max + M2
maxQ

2)).

5. DRB focus calculations. For any new parameter value μ ∈ D′ and given 1 ≤ M ≤ Mmax,

we perform DRB evaluation: computation of the DRB solution, DRB output, and DRB

error bound with respect to the truth approximation at cost O(M3 + M2Q2).

Note that the focus calculation online stage includes the construction of the DRB model

over D′—steps 1–4 above. The key point is that this DRB model is built inexpensively

(N -independently) upon the underlying intermediate RB model; the subsequent DRB eval-

uation stage (step 5 above, performed many times over D′) is then independent of N and N .

As a result, in the many-query context, a DRB approach may provide significant speedup

compared to the standard RB alternative.

We finally note the important role of the sum factorization invoked in (3.37) and (3.64).

The complexity reduction—a factor of M—is significant in practice in particular for focus

calculations since the calculations (3.37) and (3.64) are performed online.

4.2 Numerical Results

4.2.1 Thermal Block

We develop a DRB approximation for the thermal block problem introduced in Sect. 2.2.1

in order to accelerate a focus calculation. We first generate an intermediate RB approxima-

tion of dimension Nmax = 96: we perform GreedyRB for μ1 = (0.75,0.75) and ǫRB
tol = 10−4

over a uniformly distributed random training set �D
train ⊂ D of size |�D

train| = 104. We then

specify a two-dimensional submanifold D′ ≡ [0.75,1.5]2 × {μfixed} ⊂ D, where μfixed =
(0.7,0.8,0.9,1.0,1.1) ∈ R

5, and we perform RB focus calculations with this standard RB

model over a 100 × 100 uniform grid of parameter values, �focus ⊂ D′. The RB outputs

(evaluated for each μ ∈ �D
train via (2.20)) are shown in Fig. 4; the RB output error bounds

are shown in Fig. 5 (top).

We then consider the corresponding DRB approach. We generate a DRB model of di-

mension Mmax = 9 which satisfies a tolerance ǫDRB
tol = 10−4 (with respect to the Nmax = 96
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Fig. 5 Standard RB output error

bounds on D′ with respect to the

truth discretization (top); and

DRB output error bounds on D′
with respect to the truth

discretization (bottom)

intermediate RB model) over a uniformly distributed random training set �D′
train ⊂ D′ of size

|�D′
train| = 100. We then calculate the DRB outputs and DRB output error bounds over �focus;

in this case the DRB online computation (including execution of GreedyDRB and evaluation

over �focus) is a factor of 63 faster than the standard RB alternative. Moreover, as shown in

Fig. 5, the maximum output error bounds (with respect to the underlying truth FE approx-

imation) in the standard RB and derived RB approximations are 3.6 · 10−5 and 14 · 10−5,

respectively; hence the DRB yields a significant speedup with only very mild impact on the

accuracy of the approximation over D′.

4.2.2 Acoustic Horn

We develop a DRB approximation for the acoustic horn problem introduced in Sect. 2.2.2 in

order to accelerate a focus calculation. We first generate an intermediate RB approximation

of dimension Nmax = 109: we perform GreedyRB for μ1 = (1.4,2.15,1.0) and ǫRB
tol = 10−4

over a uniformly distributed random training set �D
train ⊂ D of size |�D

train| = 104. We then

specify a one-dimensional slice D′ ≡ {μfixed} × [0.5,1.0] ⊂ D, where μfixed = (1.4,2.2) ∈
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Fig. 6 The RB output values on

D′ for the acoustic horn (top),

and the output error bounds on

D′ with respect to the truth

discretization for the standard RB

and DRB approximations

(bottom)

R
2, and we perform RB focus calculations with this standard RB model over a uniform grid

of 1000 parameter values, �focus ⊂ D′.
We then consider the corresponding DRB approach. We generate a DRB model of dimen-

sion Mmax = 11 which satisfies a tolerance ǫDRB
tol = 10−4 (with respect to the Nmax = 109

intermediate RB model) over a uniformly distributed random training set �D′
train ⊂ D′ of

size |�D′
train| = 1000. We then calculate the DRB outputs and DRB output error bounds over

�focus; in this case the online computation (including execution of GreedyDRB and evaluation

over �focus) is a factor of 10 faster than the standard RB alternative. The focus calculation

speedup here is less than for the thermal block because, first, D′ is not so “small” compared

to D, and second and more importantly, we perform fewer focus calculations (by a factor

of 10). As shown in Fig. 6, the maximum output error bounds (with respect to the underlying

truth FE approximation) in the standard RB and derived RB approximations are 9.8 · 10−5
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and 12 · 10−5, respectively; hence the DRB yields a significant speedup with only very mild

impact on the accuracy of the approximation over D′.

5 hp-RB Approximation

5.1 Summary of the hp-RB Method

The hp-RB method introduced in [7] (see also [6, 11]) provides a partition of the parameter

domain D into K parameter subdomains V k ⊂ D, 1 ≤ k ≤ K ; for each parameter subdomain

V k , the algorithm generates an associated RB approximation space Xk

Nk ⊂ X of dimension

N k spanned by truth FE snapshots associated with parameter values within V k . The approach

is motivated by order reduction: we may choose the dimension N k of the “local” space Xk

Nk

relatively small compared to the dimension N of the “global” space XN while preserving

numerical accuracy. We thus obtain significant speedup of the RB output and RB error bound

evaluation. However, the offline (precomputation) cost associated with an hp-RB approach

is significantly larger than the offline cost associated with the standard RB procedure, and

must thus in practice be taken into consideration.

We now review the hp-RB method. We first describe the splitting procedure for an arbi-

trary subdomain V ⊆ D. Given V ⊆ D and a parameter “anchor point” μV
1 ∈ V , we compute

the truth FE snapshot u(μV
1 ) and define the one-dimensional “temporary” RB space

XV

1 = span{u(μV

1 )} (5.1)

associated with V . We next introduce a finite training set �V
train ⊂ V ; we then evaluate the

RB error bound 
V
N=1 for the RB approximation associated with the space XV

N=1 (essen-

tially (3.9) with an appropriate change of notation) for each parameter value μ ∈ �V
train—

essentially one iteration of the GreedyRB algorithm restricted to V ⊂ D—in order to identify

a second parameter value

μV

2 = arg max
μ∈�V

train


V

N=1(μ). (5.2)

We then split V into two subdomains Vleft ⊂ V and Vright ⊂ V based on (Euclidean, say)

distance ‖ · ‖2 to the points μV
1 and μV

2 : any point μ ∈ V belongs to Vleft if and only if

‖μ − μV
1 ‖2 ≤ ‖μ − μV

2 ‖2; otherwise, μ ∈ V belongs to Vright. Finally, we define μV
1 as the

anchor point for Vleft and we define μV
2 as the anchor point for Vright.

We may now describe the hp-RB method. The first step is h-refinement: We apply the

splitting scheme discussed above for V = D, and then recursively for V = Vleft and V = Vright

(sketched in Fig. 7 for two levels of splitting). We terminate the splitting of a subdomain V

if maxμ∈�V

train

V

N=1(μ) ≤ ǫh
tol, where ǫh

tol is a specified tolerance for the h-refinement step.

The result of this hierarchical procedure is K = K(ǫh
tol) parameter subdomains V k ⊂ D,

1 ≤ k ≤ K .

The next step is p-refinement: Greedy construction of the approximation spaces Xk

Nk ,

1 ≤ k ≤ K . We here choose N k , 1 ≤ k ≤ K , such that a specified tolerance ǫ
p

tol ≤ ǫh
tol is

satisfied over training sets �V k

train ⊂ V k , 1 ≤ k ≤ K . Note that this step is essentially execution

of the GreedyRB algorithm for ǫRB
tol = ǫ

p

tol restricted to each subdomain V k ⊂ D, 1 ≤ k ≤ K .

In practice, we also apply if necessary an additional splitting step (see [6]) after the

p-refinement. Essentially, this step performs additional h-refinement of a subdomain if ǫ
p

tol is



J Sci Comput

Fig. 7 h-refinement partition procedure

not satisfied for specified N
hp
max basis functions. The additional splitting proceeds recursively

with h-refinement and p-refinement steps until ǫ
p

tol is satisfied for N
hp
max basis functions, thus

providing for direct control of the tolerance ǫ
p

tol and the RB space dimension.

Thanks to the hierarchical construction of the partition, we may organize the subdomains

(and associated approximation spaces) as the leaf nodes in a binary tree with Boolean flags,

as illustrated in Fig. 7. This tree-structure partition is important in the hp-RB online stage:

the cost to determine which subdomain V k∗
contains any given μ ∈ D is O(log(K)) for K

subdomains [7].

The hp-RB approximation reads as follows: first, given any μ ∈ D, determine k∗ =
k∗(μ) ∈ [1,K] and hence V k∗

and Xk∗

Nk∗ through a binary search; given 1 ≤ N ≤ N
hp
max,

we write N̂ = min{N,N k∗} and X
hp

N = Xk∗

N̂
. Then, determine uK

N (μ) ∈ X
hp

N such that

a(uK
N (μ), v;μ) = f (v;μ), ∀v ∈ X

hp

N ; (5.3)

finally evaluate the hp-RB output approximation

sK
N (μ) = ℓ(uK

N (μ)). (5.4)

We define the hp-RB error bound as


K
N (μ) = ‖RK

N (μ)‖X

αLB(μ)
, (5.5)

where RK
N (μ) ∈ X denotes the Riesz representation of the residual

rK
N (·;μ) = f (·;μ) − a(uK

N (μ), ·;μ) ∈ X′. (5.6)

We may readily show that ‖u(μ) − uK
N (μ)‖X ≤ 
K

N (μ) by arguments analogous to (3.10)–

(3.12).

5.2 DRB Modification

We now discuss the application of the two-step RB approach within the hp-RB context.

We introduce a “global” intermediate RB approximation space XNmax of dimension Nmax

constructed by GreedyRB (Algorithm 1) for a specified initial parameter value μ1 ∈ D and

a specified error bound tolerance ǫRB
tol (to be satisfied over the training set �D

train ⊂ D). The
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necessary modifications to the hp-RB method discussed in the previous subsection are then

as follows. First, during the h-refinement step we replace the truth snapshot u(μV
1 ) by an

RB snapshot uNmax(μ
V
1 ) ≈ u(μV

1 ); we thus replace the RB space XV
1 in (5.1) by the DRB

space

XV

Nmax,1 = span{uNmax(μ
V

1 )}. (5.7)

We further replace the RB error bound 
V
N=1 in (5.2) by a DRB error bound 
̃V

Nmax,M=1

(essentially (3.17) with an appropriate change of notation). We then invoke this DRB error

bound (with respect to the underlying RB approximation) to determine a second parameter

value

μV

2 = arg max
μ∈�V


̃V

Nmax,M=1(μ). (5.8)

As before, μV
1 and μV

2 determine the splitting of V into Vleft and Vright. Note that we ter-

minate the splitting of a subdomain V if maxμ∈�V

train

̃V

Nmax,M=1(μ) ≤ ǫh
tol; typically ǫh

tol is

chosen much greater than ǫRB
tol . As before, we apply the splitting procedure recursively until

convergence; the result is K = K(ǫh
tol) subdomains V k ⊂ D, 1 ≤ k ≤ K .

Next, in the p-refinement step, we associate to each V k a DRB approximation space

XNmax,Mk , 1 ≤ k ≤ K ; the p-refinement step is thus essentially execution of GreedyDRB for

ǫRB
tol = ǫ

p

tol restricted to each V k , 1 ≤ k ≤ K . We typically choose ǫ
p

tol such that ǫRB
tol ≤ ǫ

p

tol <

ǫh
tol. As before, we apply in practice an additional splitting step which provides simultaneous

control over the tolerance ǫ
p

tol and the maximum DRB space dimension M
hp
max.

With the modifications above, the hp-DRB approximation reads as follows: first, given

any μ ∈ D, determine k∗ = k∗(μ) and hence V k∗
and Xk∗

Nmax,Mk∗ through a binary search;

given 1 ≤ M ≤ M
hp
max, we write M̂ = min{M,Mk∗} and X

hp

Nmax,M = Xk∗
Nmax,M̂

. Then, deter-

mine uK
Nmax,M(μ) ∈ X

hp

Nmax,M such that

a(uK
Nmax,M(μ), v;μ) = f (v;μ), ∀v ∈ X

hp

Nmax,M ; (5.9)

finally evaluate the hp-DRB output approximation

sK
Nmax,M(μ) = ℓ(uK

Nmax,M(μ)). (5.10)

We define the hp-DRB error bound as


K
Nmax,M(μ) =

‖RK
Nmax,M(μ)‖X

αLB(μ)
, (5.11)

where RK
Nmax,M(μ) ∈ X denotes the Riesz representation of the residual

rK
Nmax,M(·;μ) = f (·;μ) − a(uK

Nmax,M(μ), ·;μ) ∈ X′. (5.12)

We may readily show that ‖u(μ)−uK
Nmax,M(μ)‖X ≤ 
K

Nmax,M(μ) by arguments analogous to

(3.10)–(3.12). We recall from our discussion in Sect. 3.4.2 that we may evaluate 
K
Nmax,M(μ)

inexpensively at cost independent of N and N .

We emphasize that with these modifications we access entities of truth complexity N

only for the construction of the intermediate RB model (of complexity N ≪ N ) upon which

the hp-DRB approximation is constructed. We discuss the offline-online decoupling of the

hp-DRB method in the next subsection.



J Sci Comput

5.3 Offline-Online Decomposition

The hp-DRB offline stage comprises intermediate RB model construction and then hp-DRB

partition and approximation space construction based on this underlying RB model.

1. RB model construction. We construct an intermediate RB model over D: we perform

GreedyRB (Algorithm 1) for specified μ1 ∈ D and ǫRB
tol . The cost is N -dependent.

2. hp-DRB partition and approximation space construction. We construct an hp-DRB

model based on the intermediate RB model in step 1 as discussed in the previous two

subsections. This step includes, for each DRB approximation space, construction of the

parameter-independent entities required for DRB output and DRB error bound evalua-

tion. The cost is N -independent.

The offline stage may be expensive; however with the DRB modification in step 2 above

we significantly reduce the offline computational cost compared to a standard hp-RB ap-

proach: the Ntotal =
∑K

k=1 N k truth FE snapshots of N -dependent complexity required by

the standard hp-RB offline stage are replaced by Mtotal =
∑K

k=1 Mk RB snapshots of Nmax-

dependent complexity.6

In the online stage, given any new parameter value μ ∈ D, we first determine which

subdomain V k∗ ⊂ D contains μ through a binary search at cost O(logK). Then, for given

1 ≤ M ≤ M
hp
max, we compute the DRB solution, DRB output, and DRB error bound at cost

O(M3 + M2Q2). We note that the online cost is independent of the truth complexity N

and the complexity N associated with the underlying intermediate RB model. We empha-

size that in the online stage, we invoke the DRB error bound with respect to the FE truth

approximation.

We finally note that the offline-online decomposition associated with the hp-DRB ap-

proximation is rather different from the offline-online decomposition associated with focus

calculations: the DRB “technology” is invoked in the offline (and not online) stage.

5.4 Numerical Results

5.4.1 Thermal Block

We now apply the hp-DRB method to the thermal block problem introduced in Sect. 2.2.1.

For the underlying intermediate RB space XNmax we use the same space as for the thermal

block focus calculation example: Nmax = 96. We then pursue the hp-DRB procedure dis-

cussed above for ǫh
tol = 0.3, ǫ

p

tol = 10−3, and M
hp
max = 25; the initial parameter value for the

partition procedure is μD
1 = (0.5,0.5,0.5,0.5,0.5,0.5,0.5). The hp-DRB offline computa-

tion results in a partition of D into K = 7565 subdomains, each of which has an associated

DRB approximation space of dimension at most M
hp
max = 25.

We now introduce a uniformly distributed random test set �test ⊂ D of size |�test| =
1000. We then define, for 1 ≤ N ≤ Nmax, the maximum error bound associated with the RB

approximation,

ǫ
�test
N = max

μ∈�test


N (μ); (5.13)

6Note that we expect here that Mk ≈ Nk as long as Mk is significantly smaller than Nmax, 1 ≤ k ≤ K .

Also note that for simplicity in this argument we assume that K is the same for the hp-RB and hp-DRB

approaches.
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Fig. 8 Maximum RB (squares)

and hp-DRB (circles) error

bounds over random test

parameter values as a function of

approximation space dimension

we also define, for 1 ≤ M ≤ M
hp
max, the maximum error bound associated with the hp-DRB

approximation,

ǫ
K,�test
Nmax,M = max

μ∈�test


K
Nmax,M(μ). (5.14)

In Fig. 8 we compare ǫ
�test
N and ǫ

K,�test
Nmax,M as functions of the approximation space dimensions

N and M , respectively: clearly the hp-DRB approximation provides significant dimension

reduction. For example, N = 30 and M = 15 basis functions are required for an error bound

of approximately 10−2 for the RB and hp-DRB approximation, respectively. The hp-DRB

thus provide in this case online computational savings by a factor of 8 (provided the dense

system matrix LU-factorization dominates online cost).

The main point of this example is not the dimension reduction provided by the hp-DRB

procedure per se: we would have obtained similar dimension reduction were we to use

a standard hp-RB procedure. Our emphasis here is on the offline stage, which requires

232608 snapshots: this task is feasible in the hp-DRB case in which each snapshot is an

RB calculation (Nmax = 96 degrees of freedom), but would clearly be prohibitive in the

standard hp-RB case in which each snapshot is a truth calculation (N = 9261 degrees of

freedom).

5.4.2 Acoustic Horn

We now apply the hp-DRB method to the acoustic horn problem introduced in Sect. 2.2.2.

For the underlying intermediate RB space XNmax we use the same space as for the acoustic

horn focus calculation example: Nmax = 109. We then pursue the hp-DRB procedure dis-

cussed above for ǫh
tol = 10, ǫ

p

tol = 10−4, and M
hp
max = 30; the initial parameter value for the

partition procedure is μD
1 = (1.4,2.15,1.0). The hp-DRB offline computation results in a

partition of D into K = 997 subdomains as shown in Fig. 9, each of which has an associated

DRB approximation space of dimension at most M
hp
max = 30.

We now introduce a uniformly distributed random test set �test ⊂ D of size |�test| = 1000

and show in Fig. 10 ǫ
�test
N and ǫ

K,�test
Nmax,M as functions of the approximation space dimensions

N and M , respectively: clearly the hp-DRB approximation provides significant dimension
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Fig. 9 The parameter domain

partition associated with the

hp-DRB approximation for the

acoustic horn problem; note that

one octant of the parameter

domain is hidden

Fig. 10 Maximum RB (squares)

and hp-DRB (circles) error

bounds over random test

parameter values as a function of

approximation space dimension

reduction. As for the thermal block example, our main point here is that the DRB strategy

enables a feasible hp-DRB offline computation, compared to a prohibitive or infeasible hp-

RB offline computation.

6 Conclusions and Future Work

We have demonstrated that the new DRB method may provide significant online speedup in

the context of focus calculations, for example for visualization or optimization of RB outputs

and RB error bounds over a subdomain or submanifold of the original parameter domain.
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Further, we have demonstrated that the DRB method may provide significant offline speedup

for hp-RB computations, or indeed enable hp-RB computations for problems for which the

cost of the standard hp-RB offline stage is prohibitive.

There are several opportunities for extensions. First, the DRB method readily extends

to linear parabolic (coercive or non-coercive) problems; we refer to [9, 12] and [6] for

(standard) RB and hp-RB treatment of this class of problems, respectively. We may also

straightforwardly apply the DRB approach to quadratically nonlinear problems; see [6] for

hp-RB treatment of the unsteady incompressible Navier-Stokes equations. Second, we be-

lieve that the DRB method will further increase the efficacy of the RB method in applications

on “lightweight” hardware [15] where it is crucial to minimize the cost of a reduced order

model both in terms of computation time and memory footprint. In future work we plan to

investigate applications of DRB technology in a range of new areas such as in situ parameter

estimation, uncertainty quantification and design/optimization.
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