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Abstract In this paper, we build a two-step estimator γ̂STEP, which satisfies√
k(γ̂STEP − γ̂ML)

P→ 0, where γ̂ML is the well-known maximum likelihood
estimator of the extreme value index. Since the two-step estimator γ̂STEP can
be calculated easily as a function of the observations, it is much simpler to use
in practice. By properly choosing the first step estimator, such as the Pickands
estimator, we can even get a shift and scale invariant estimator with the above
property.
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1 Introduction

Let X1, X2, · · · be independent and identically distributed (i.i.d.) random
variables from a distribution function F. Suppose F is in the domain of
attraction of an extreme value distribution, i.e. there exist constants an > 0 and
b n, such that,

lim
n→∞ F n(anx + b n) = Gγ (x),
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for all 1 + γ x > 0, where Gγ (x) = exp(−(1 + γ x)−1/γ ) is the corresponding
extreme value distribution and γ ∈ R is called the extreme value index (see
Gnedenko 1943). Commonly, it is denoted as F ∈ D(Gγ ).

There are a few characterizations of the necessary and sufficient condition
for a distribution function F belonging to the domain of attraction. One of
them is via the “excess distribution function” as in Balkema and de Haan
(1974). Denote the excess distribution function as

Ft(x) := P(X − t ≤ x|X > t) = F(t + x) − F(t)
1 − F(t)

.

Then F ∈ D(Gγ ) is equivalent to

lim
t→x∗ Ft(xσ(t)) = Hγ (x) := 1 − (1 + γ x)−1/γ ,

for all 1 + γ x > 0, where σ(t) is a positive function and x∗ is the right endpoint
of F, i.e. x∗ = sup {x|F(x) < 1}. The distribution function Hγ is the so-called
generalized Pareto distribution (GPD) function. Intuitively, the distribution
function F belongs to the domain of attraction if and only if the excesses above
a high threshold are asymptotically generalized Pareto distributed.

This characterization creates several possible ways to deal with a major issue
in Extreme Value Theory: estimating the extreme value index γ .

Denote Xn,1 ≤ · · · ≤ Xn,n as the order statistics of X1, X2, · · · , Xn. For a
suitable sequence such that kn → ∞, kn/n → 0 as n → ∞, the knth upper
order statistic Xn,n−kn may take the place of the “high threshold”. Then
Xn,n − Xn,n−kn , · · · Xn,n−kn+1 − Xn,n−kn can be recognized as the order statistics
of the empirical excesses above the high threshold. Thus, together as a new
sample, they are asymptotically generalized Pareto distributed. In the rest of
the paper, without declaration, we briefly use k instead of kn.

Theoretically, the 1/2 and 3/4-quantiles of the GPD can be calculated as
(2γ − 1)/γ and (4γ − 1)/γ ; empirically, they can be estimated as Xn,n−[k/2] −
Xn,n−k and Xn,n−[k/4] − Xn,n−k respectively. This creates the quantile estimator,
suggested by Pickands (1975), as follows.

γ̂P = 1

log 2
log

Xn,n−[k/4] − Xn,n−[k/2]
Xn,n−[k/2] − Xn,n−k

.

When γ > 0, the function σ(t) can be chosen as σ(t) = γ t and x∗ = +∞.
Thus, the condition on the excess distribution function can be rewritten as

lim
t→+∞ P

(
X
t

≤ x|X > t
)

= 1 − x−1/γ .

Therefore, similar to the above intuition, by taking Xn,n−k as the “high thresh-
old”, we get that, as n → ∞, the excess ratios Xn,n/Xn,n−k, · · · Xn,n−k+1/Xn,n−k

form a sample of order statistics from a Pareto distribution. By fitting the
Pareto distribution with the maximum likelihood procedure, Hill (1975) sug-
gested the so-called Hill estimator as

γ̂H = 1

k

k−1∑
i=0

log Xn,n−i − log Xn,n−k.
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The Hill estimator is only applied for positive γ . In order to deal with a
general γ ∈ R, Dekkers et al. (1989) introduced the moment estimator,

γ̂M = γ̂H + 1 − 1

2

(
1 − γ̂ 2

H

M (2)
n

)−1

,

where

M (2)
n = 1

k

k−1∑
i=0

(log Xn,n−i − log Xn,n−k)
2.

An alternative way to have a general estimator was suggested by Beirlant
et al. (1996) as the UH estimator. By denoting U Hn,n−i = Xn,n−iγ̂H for i =
0, 1, · · · , k, the estimator

γ̂U H = 1

k

k−1∑
i=0

log U Hn,n−i − log U Hn,n−k

is valid for all γ ∈ R.
Although γ̂H and γ̂M perform reasonably well for γ positive and γ ∈ R

respectively, they both have the disadvantage that they are not shift invariant.
The estimator γ̂P is a shift and scale invariant estimator, but according to
de Haan and Peng (1998), it does not perform as well as the other two in most
cases.

A shift invariant estimator needs to be constructed from the excesses instead
of the excess ratios. Hosking and Wallis (1987) proposed the probability-
weighted moment (PWM) estimator by assigning different weights to the
excesses. It is defined as

γ̂PWM = Pn − 4Rn

Pn − 2Rn
,

where

Pn = 1

k

k−1∑
i=0

Xn,n−i − Xn,n−k,

and

Rn = 1

k

k−1∑
i=0

i
k

(Xn,n−i − Xn,n−k).

In order to have consistency, the PWM estimator can only be applied for γ < 1.
To obtain the asymptotic normality, γ should be further restricted as γ < 1/2.
Note that the PWM estimator is shift and scale invariant.

Similar to the idea of the Hill estimator, Smith (1987) applied the maximum
likelihood procedure to fit the GPD with a general γ , which leads to the
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maximum likelihood estimator of the extreme value index. The likelihood
equations are as follows:

k∑
i=1

1

γ 2
log

(
1 + γ

σ
(Xn,n−i+1 − Xn,n−k)

)

−
(

1

γ
+ 1

)
(1/σ)(Xn,n−i+1 − Xn,n−k)

1 + (γ /σ)(Xn,n−i+1 − Xn,n−k)
= 0,

k∑
i=1

(
1

γ
+ 1

)
(γ /σ)(Xn,n−i+1 − Xn,n−k)

1 + (γ /σ)(Xn,n−i+1 − Xn,n−k)
= k, (1)

(the equations for γ = 0 should be interpreted as the limit when γ → 0). For
γ �= 0, they can be simplified to

1

k

k∑
i=1

log
(

1 + γ

σ
(Xn,n−i+1 − Xn,n−k)

)
= γ,

1

k

k∑
i=1

1

1 + (γ /σ)(Xn,n−i+1 − Xn,n−k)
= 1

γ + 1
.

When γ > −1/2, the maximum likelihood estimators for the extreme value
index and the scale, γ̂ML and σ̂ML, are obtained by solving these equations.

In order to obtain the asymptotic normality for most of the estimators
of the extreme value index, further restrictive condition on F is required.
de Haan and Stadtmüller (1996) proposed the generalized second order con-
dition as follows. Denote F← as the generalized inverse of F. Assume that
there exist measurable, locally bounded functions a, � : (0, 1) → (0, ∞) and
� : (0, ∞) → R, such that for all x > 0

lim
t↓0

(F←(1 − tx) − F←(1 − t))/a(t) − (x−γ − 1)/γ

�(t)
= �(x). (2)

According to de Haan and Stadtmüller (1996), |�| is −ρ-varying at 0 for some
ρ ≤ 0, and

�(x) =

⎧⎪⎨
⎪⎩

(x−(γ+ρ) − 1)/(γ + ρ), ρ < 0

−x−γ log(x)/γ, γ �= 0, ρ = 0

log2(x), γ = ρ = 0.

Under the generalized second order condition, for γ > −1/2, Drees et al.
(2004) proved asymptotic normality of the maximum likelihood estimator by
assuming that the sequence kn satisfies

�(kn/n) = O(k−1/2
n ), (3)

as n → ∞. The asymptotic normality is a direct consequence of the following
theorem (Theorem 2.1 in Drees et al. 2004).
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Theorem 1.1 Assume condition (2) holds for some γ > −1/2, and the sequence
kn satisfies Eq. 3. Then the system of likelihood equations (1) has a sequence of
solutions (γ̂n, σ̂n) that verifies

k1/2(γ̂n − γ ) − (γ + 1)2

γ
k1/2�

(
k
n

)∫ 1

0
(tγ − (2γ + 1)t2γ )�(t)dt

d→ (γ + 1)2

γ

∫ 1

0
(tγ − (2γ + 1)t2γ )(W(1) − t−(γ+1)W(t))dt, (4)

k1/2

(
σ̂n

a(k/n)
− 1

)
− (γ + 1)2

γ
k1/2�

(
k
n

)∫ 1

0
((γ + 1)(2γ + 1)t 2γ − tγ )�(t)dt

d→ (γ + 1)2

γ

∫ 1

0
((γ + 1)(2γ + 1)t 2γ − tγ )(W(1) − t−(γ+1)W(t))dt, (5)

as n → ∞, and the convergence holds jointly with the same standard Brownian
motion W. For γ = 0 these equations should be interpreted as their limits when
γ → 0.

From this theorem, Eq. 4 can be rewritten as

k1/2(γ̂ML − γ ) = (γ + 1)2

γ

∫ 1

0

(
tγ − (2γ + 1)t2γ

)
Ln(t)dt + op(1), (6)

where

Ln(t) = Wn(1) − t−(γ+1)Wn(t) + k1/2�̃

(
k
n

)
�(t), (7)

Wn(t) = k−1/2W(kt),

�̃(k/n) ∼ �(k/n) as n → ∞ and W is a standard Brownian motion which
implies that Wn is also a standard Brownian motion. Then the integral of the
two parts Wn(1) − t−(γ+1)Wn(t) and k1/2�̃

( k
n

)
�(t) lead to a mean-zero normal

distribution and the asymptotic bias respectively, which completes the proof
of the asymptotic normality. Notice that the asymptotic bias depends on the
second order parameter ρ and the asymptotic variance can be calculated as
shown in Remark 2.1 and Corollary 2.1 in Drees et al. (2004).

It is clear that the maximum likelihood estimator is shift and scale invariant.
Meanwhile, it performs well for γ > −1/2. But it still has a disadvantage:
there is no explicit formula for this estimator. It is always given by solving
the likelihood equations, but there is even no guarantee for the existence of a
solution. The existence was stated in Drees et al. (2004) but there is no proof
of that statement in the paper. The numerical way to find a solution of these
equations had been discussed in Grimshaw (1993).
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An alternative way to deal with this problem is to find an approximate
solution for the likelihood equations, i.e. an explicit estimator such that the
difference between the maximum likelihood estimator and the alternative
estimator is approximately 0. As an example, Theorem 2.2 and Remark 2.4
in Drees et al. (2004) proved that, when γ = 0, with the generalized second
order condition and assumption on the sequence k as in Eq. 3, we have that

k1/2(γ̂∗ − γ̂ML)
P→ 0,

where

γ̂∗ = 1 − 1

2

(
1 − (m(1)

n )2

m(2)
n

)−1

,

and

m( j)
n = 1

k

k∑
i=1

(Xn,n−i+1 − Xn,n−k)
j, j = 1, 2.

In this case, γ̂∗, a shift and scale invariant estimator with explicit formula,
is close enough to the maximum likelihood estimator. But this is only for a
special case γ = 0. Can we find such kind of estimator in general case? In
this paper, a two-step estimator is established which gives a positive answer to
this question. The idea is similar to the PWM estimator which is based on the
weighted sum of the excesses. However, in the two-step estimator, the weights
are determined in prior according to a pre-estimation of the extreme value
index. This is similar to the UH estimator where the extreme value index is
pre-estimated by the Hill estimator.

In Section 2, Theorem 2.2 shows that, the two-step estimator is close enough
to the maximum likelihood estimator. By suitable choice in the first step, we
may get a shift and scale invariant estimator. Simulations are given in Section 3.
Section 4 concludes the paper.

2 Result and Proof

We start with stating the following theorem in Drees (1998).

Theorem 2.1 Given Eq. 2 with γ > −1/2 and Eq. 3, one can find a probability
space and define on that space a Brownian Motion W and a sequence of
stochastic processes Qn such that

(1) For each n, (Qn(t))t∈[0,1]
d= (Xn,n−[kt])t∈[0,1];
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(2) There exist functions ã(k/n) = a(k/n)(1 + o(�(k/n))) and �̃(k/n) ∼
�(k/n) such that, for all ε > 0,

sup
t∈[0,1]

tγ+1/2+ε

∣∣∣∣ Qn(t) − F←(1 − k/n)

ã(k/n)

−
(

t−γ − 1

γ
− t−(γ+1) W(kt)

k
+ �̃

(
k
n

)
�(t)

)∣∣∣∣
= op(k−1/2) + op

(
�̃

(
k
n

))
, (8)

as n → ∞.

The following notation is introduced in order to shorten the proof in the rest
of the paper.

Yn(t) = k1/2

(
Qn(t) − Qn(1)

ã(k/n)
− t−γ − 1

γ

)
. (9)

When γ = 0, t−γ −1
γ

should be read as − log t.
With the notations in Eqs. 7 and 9, a direct consequence of Theorem 2.1 is

the following lemma.

Lemma 2.1 Suppose Eqs. 2 and 3 hold. Then for all ε > 0,

Yn(t) = Ln(t) + op(1)t−(γ+1/2+ε), (10)

as n → ∞, where the op−term is uniform for t ∈ [0, 1].

Our purpose is to find an estimator which is close enough to the maximum
likelihood estimator. Hence, it should have the same asymptotic structure as
the right side of Eq. 6. In order to do so, we should connect Ln(t) with the
observations. From Lemma 2.1, intuitively, we can substitute Ln(t) by Yn(t),
which is partially based on the observations.

There are still two remaining difficulties. First, the asymptotic structure in
Eq. 6 is an integral of the product of Ln(t) and tγ − (2γ + 1)t2γ . To replace
Ln(t) by Yn(t), we have to study the functional approximation between them,
i.e. whether the asymptotic structure is close to the integral of the product
of Yn(t) and such kind of function. Secondly, there is still the parameter γ

unknown. We solve this problem by using a first step estimator of γ , and show
that it is still close enough.

To deal with the first difficulty, we study the weighted integral of the process
Yn(t) on [0, 1]. For the weight function, we focus on (pseudo) power functions.
Suppose a continuous function f : (0, 1] → R satisfies

| f (t)| = O(tγ−δ) when t → 0+, (11)
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for some 0 < δ < 1/2. Then, we can choose a positive ε such that ε + δ < 1/2.
By applying Eq. 10 for this ε, we get

∫ 1

0
f (t)(Yn(t) − Ln(t))dt = op(1).

By checking
∫ 1

0
f (t)�(t)dt < ∞

for f (t) satisfying condition (11), it is insured that,
∫ 1

0
f (t)Ln(t)dt

is bounded in probability as n → ∞. Hence we have the following corollary.

Corollary 2.1 With the same conditions as in Theorem 2.1, given a continuous
function f : (0, 1] → R satisfying Eq. 11 for some 0 < δ < 1/2, we have that

k1/2

(∫ 1

0
f (t)

Qn(t) − Qn(1)

ã(k/n)
dt−

∫ 1

0
f (t)

t−γ − 1

γ
dt

)
=

∫ 1

0
f (t)Ln(t)dt + op(1).

Next let us consider (for γ > −1/2) a continuous function g : (0, 1] → R

satisfying

|g(t)| = O(t2γ−δ) when t → 0+, (12)

For some 0 < δ < (γ ∧ 0) + 1/2. We can find positive numbers ε and δ such
that 2ε + δ < (γ ∧ 0) + 1/2. We write

k1/2

(∫ 1

0
g(t)

(
Qn(t) − Qn(1)

ã(k/n)

)2

dt −
∫ 1

0
g(t)

(
t−γ − 1

γ

)2

dt

)

=
(∫ k−1

0
+

∫ 1

k−1

)
g(t)

(
k−1/2Yn(t) + 2

t−γ − 1

γ

)
Yn(t)dt

= I1 + I2.

Because k−1/2Yn(t) = op(t−(γ+ε)) uniformly for all t ∈ [k−1, 1], and∫ 1
0 g(t)t−(2γ+1/2+2ε)dt is finite, by applying Eq. 10 for this ε, we get

I2 =
∫ 1

k−1
g(t)

(
2

t−γ − 1

γ
+ op

(
t−(γ+ε)

))
(Ln(t) + op(1)t−(γ+1/2+ε))dt

=
∫ 1

k−1
2g(t)

t−γ − 1

γ
Ln(t)dt + op(1)

=
∫ 1

0
2g(t)

t−γ − 1

γ
Ln(t)dt + op(1).
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The last equality comes from that the final integration is bounded in probabil-
ity as n → ∞.

For the rest part, I1, it is going to be proved that I1 = op(1). On the interval
[0, k−1), for any 0 < η < 1

(
Qn(t) − Qn(1)

ã(k/n)

)2

=
(

Qn(ηk−1) − Qn(1)

ã(k/n)

)2

= op(k2(γ+ε)).

Note that

δ < 2γ + 1 ⇒
∫ k−1

0
g(t)dt = O(k−(2γ−δ+1)).

Finally, we have that

k1/2
∫ k−1

0
g(t)

(
Qn(t) − Qn(1)

ã(k/n)

)2

dt = op(k2ε+δ−1/2) = op(1).

Meanwhile,

k1/2
∫ k−1

0
g(t)

(
t−γ − 1

γ

)2

dt = O(kδ−1/2) = op(1),

which completes the proof of I1 = op(1).
This conclusion is rewritten as the following corollary.

Corollary 2.2 With the same conditions as in Theorem 2.1, given a continuous
function g : (0, 1] → R satisfying Eq. 12, for some 0 < δ < 1/2 + γ , we have that

k1/2

(∫ 1

0
g(t)

(
Qn(t) − Qn(1)

ã(k/n)

)2

dt −
∫ 1

0
g(t)

(
t−γ − 1

γ

)2

dt

)

=
∫ 1

0
2g(t)

t−γ − 1

γ
Ln(t)dt + op(1).

In order to obtain the right side of Eq. 4, we introduce the following
functions to apply Corollary 2.1 and Corollary 2.2.

f 1(γ, t) = 1√
2γ + 1

tγ ,

f 2(γ, t) = ∂ f 1(γ, t)
∂γ

,

f 3(γ, t) = t 2γ ,

f 4(γ, t) = ∂ f 3(γ, t)
∂γ

.
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Denote weighted moments with true γ as

h(1)
n (γ ) =

∫ 1

0
f 1(γ, t)(Qn(t) − Qn(1))dt,

h(2)
n (γ ) =

∫ 1

0
f 3(γ, t)(Qn(t) − Qn(1))2dt.

The asymptotic behavior of h(1)
n (γ ) and h(2)

n (γ ) can be obtained by applying
Corollary 2.1 and Corollary 2.2 for f 1 and f 3 as follows

k1/2

(
h(1)

n (γ )

ã(k/n)
− 1√

2γ + 1(γ + 1)

)
=

∫ 1

0
f 1(γ, t)Ln(t)dt + op(1), (13)

k1/2

(
h(2)

n (γ )

(ã(k/n))
2 − 2

(2γ + 1)(γ + 1)

)
=

∫ 1

0
2 f 3(γ, t)

t−γ − 1

γ
Ln(t)dt

+ op(1). (14)

They lead to the asymptotical behavior of their combination as

k1/2

(
(h(1)

n (γ ))2

h(2)
n (γ )

− 1

2(γ + 1)

)

= k1/2

(
h(1)

n (γ )

ã(k/n)
− 1√

2γ + 1(γ + 1)

)
· 2

√
2γ + 1

2

+ k1/2

(
h(2)

n (γ )

(ã(k/n))
2 − 2

(2γ + 1)(γ + 1)

)
· (−1)

2γ + 1

4
+ op(1)

= √
2γ + 1

∫ 1

0
f 1(γ, t)Ln(t)dt − 2γ + 1

2

∫ 1

0
f 3(γ, t)

t−γ − 1

γ
Ln(t)dt + op(1)

= − 1

2γ

∫ 1

0

(
tγ − (2γ + 1)t2γ

)
Ln(t)dt + op(1). (15)

Define an auxiliary random variable as

ϕ(γ ) := 1

2

h(2)
n (γ )

(h(1)
n (γ ))2

− 1.

From Eq. 15 and

1

2(ϕ(γ ) + 1)
=

(
h(1)

n (γ )
)2

h(2)
n (γ )

,

we get the asymptotical behavior of ϕ(γ ) as

k1/2(ϕ(γ ) − γ ) = (γ + 1)2

γ

∫ 1

0

(
tγ − (2γ + 1)t2γ

)
Ln(t)dt + op(1).
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Compared to Eq. 6, we proved that

k1/2(ϕ(γ ) − γ̂ML) = op(1).

Now the only problem is that, the real parameter γ is still a part of the
auxiliary random variable ϕ(γ ). We introduce a first step estimator to replace
it and try to keep the asymptotic property at the same time. By rewriting the
final estimator in explicit form, we define the two-step estimator as

Definition 2.1 Suppose a first step estimator of the extreme value index, γ̂ (1), is
given, which uses the largest k order statistics. Assume the first step estimator
approaches γ in speed 1/

√
k, i.e.

k1/2
(
γ̂ (1) − γ

) d→ N, (16)

where N is a random variable with a suitable distribution. For all of the
suggested estimators above, it follows a normal distribution.

If γ̂ (1) > −1/2, define the weights w
( j)
i as

w
( j)
i =

∫ i
k

i−1
k

t jγ̂ (1)

dt = 1

jγ̂ (1) + 1

((
i
k

) jγ̂ (1)+1

−
(

i − 1

k

) jγ̂ (1)+1
)

, (17)

for j = 1, 2 and i = 1, · · · , k. Then, define the weighted moments as

WM ( j)
n =

k∑
i=1

w
( j)
i (Xn,n−i+1 − Xn,n−k)

j, j = 1, 2. (18)

Finally, define the estimator

γ̂STEP = 2γ̂ (1) + 1

2

WM (2)
n(

WM (1)
n

)2 − 1, (19)

as the two-step estimator of the extreme value index.

The following theorem shows that this estimator is close enough to the
maximum likelihood estimator.

Theorem 2.2 Assume Eq. 2 holds and the sequence k satisfies Eq. 3. If
γ > −1/2, then

k1/2(γ̂STEP − γ̂ML)
P→ 0.

Proof of Theorem 2.2 We have already proved that the auxiliary random vari-
able ϕ(γ ) is close enough to the maximum likelihood estimator. Since the two-
step estimator is in fact ϕ(γ̂ (1)), in order to complete the proof of the theorem,
we only need to show that the difference between the two-step estimator and
the auxiliary random variable is also negligible, i.e.

√
k(ϕ(γ ) − γ̂STEP) = op(1). (20)
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From Eq. 18 and the definition of Qn(t) in Theorem 2.1, by changing γ into its
estimator γ̂ (1) in h(1)

n (γ ) and h(2)
n (γ ), we can rewrite the weighted moments in

the definition as

(
WM (1)

n , WM (2)
n

) d=
(

h(1)
n

(
γ̂ (1)

) √
2γ̂ (1) + 1, h(2)

n

(
γ̂ (1)

))
.

According to the definition of γ̂STEP in Eq. 19, it is clear that

1

2(γ̂STEP + 1)
= 1

2γ̂ (1) + 1

(
WM (1)

n

)2

WM (2)
n

d=
(
h(1)

n

(
γ̂ (1)

))2

h(2)
n

(
γ̂ (1)

) . (21)

��

This is a slight change from ϕ(γ ) in sense of the following lemma.

Lemma 2.2 Under the conditions of Theorem 2.2, we have

k1/2

((
h(1)

n

(
γ̂ (1)

))2

h(2)
n

(
γ̂ (1)

) −
(
h(1)

n (γ )
)2

h(2)
n (γ )

)
= op(1). (22)

Proof of Lemma 2.2 We start with the Taylor expansion of f 1(γ̂
(1), t),

f 1(γ̂
(1), t) = f 1(γ, t) + (

γ̂ (1) − γ
)

f 2(γ, t) +
(
γ̂ (1) − γ

)2

2

∂ f 2(s, t)
∂s

|s=ηn(t),

where ηn(t) is a random variable depending on n and t, but always between

γ and γ̂ (1). Since γ̂ (1) P→ γ as n → ∞, we have ηn(t)
P→ γ uniformly for all t ∈

(0, 1]. Then, for any δ > 0,

∂ f 2(s, t)
∂s

|s=ηn(t) = Op
(
tηn(t)(log t)2

) = tγ−δ Op(1),

when n → ∞, the Op−term is uniform for all t ∈ (0, 1]. So we can continue
with the Taylor expansion as follows,

f 1
(
γ̂ (1), t

) = f 1(γ, t) + (
γ̂ (1) − γ

)
f 2(γ, t) +

(
γ̂ (1) − γ

)2

2
tγ−δ Op(1)

= f 1(γ, t) + (
γ̂ (1) − γ

)
f 2(γ, t) + (

γ̂ (1) − γ
)

tγ−δop(1),
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as n → ∞. In this expansion, the op−term is also uniform for t ∈ (0, 1]. Then,
by using this expansion and applying Corollary 2.1 for f 2 satisfying Eq. 12, we
get that

k1/2

(
h(1)

n

(
γ̂ (1)

) − h(1)
n (γ )

ã(k/n)
+ (

γ̂ (1) − γ
) 2γ 2 + 6γ + 3

(γ + 1)2(2γ + 1)3/2

)

= k1/2

(∫ 1

0

(
f 1

(
γ̂ (1), t

) − f 1(γ, t)
) Qn(t) − Qn(1)

ã(k/n)
dt

− (
γ̂ (1) − γ

) ∫ 1

0
f 2(γ, t)

t−γ − 1

γ
dt

)

= k1/2

{∫ 1

0

[
f 2(γ, t)

(
γ̂ (1) − γ

) + (
γ̂ (1) − γ

)
tγ−δop(1)

] Qn(t) − Qn(1)

ã(k/n)
dt

− (
γ̂ (1) − γ

) ∫ 1

0
f 2(γ, t)

t−γ − 1

γ
dt

}
(23)

= (
γ̂ (1) − γ

) (∫ 1

0
f 2(γ, t)Ln(t)dt

)
+ k1/2(γ̂ (1) − γ )op(1) + op(1)

= op(1). (24)

A similar relationship between h(2)
n (γ̂ (1)) and h(2)

n (γ ) is given as

k1/2

(
h(2)

n

(
γ̂ (1)

) − h(2)
n (γ )

(ã(k/n))
2 + (

γ̂ (1) − γ
) 8γ 2 + 24γ + 12

(γ + 1)2(2γ + 1)2

)
= op(1). (25)

From Eqs. 13 and 14, we have that as n → ∞,

h(1)
n (γ )

ã(k/n)

P→ 1√
2γ + 1(γ + 1)

,

and

h(2)
n (γ )

(ã(k/n))
2

P→ 2

(2γ + 1)(γ + 1)
.

Considering with Eqs. 24 and 25, we also have that as n → ∞,

h(1)
n (γ̂ (1))

ã(k/n)

P→ 1√
2γ + 1(γ + 1)

,

h(2)
n (γ̂ (1))

(ã(k/n))
2

P→ 2

(2γ + 1)(γ + 1)
.
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Finally, by using Eqs. 24, 25 and the four equations above, we can calculate
that

k1/2

((
h(1)

n

(
γ̂ (1)

))2

h(2)
n

(
γ̂ (1)

) −
(
h(1)

n (γ )
)2

h(2)
n (γ )

)

= k1/2

(
h(1)

n

(
γ̂ (1)

) − h(1)
n (γ )

ã(k/n)

) (
h(1)

n

(
γ̂ (1)

) + h(1)
n (γ )

ã(k/n)

)
1

h(2)
n

(
γ̂ (1)

)
/(ã(k/n))2

+ k1/2

(
h(2)

n

(
γ̂ (1)

)−h(2)
n (γ )

(ã(k/n))
2

)

·(−1)

(
h(1)

n (γ )/ã(k/n)
)2

(
h(2)

n (γ )/(ã(k/n))2
) (

h(2)
n

(
γ̂ (1)

)
/(ã(k/n))2

)

= k1/2
(
γ̂ (1) − γ

)(− 2γ 2 + 6γ + 3

(γ + 1)2(2γ + 1)3/2
· 2

√
2γ + 1

2

+ 8γ 2 + 24γ + 12

(γ + 1)2(2γ + 1)2

2γ + 1

4

)
+ op(1)

= op(1).

The lemma has been proved. ��

Lemma 2.2 shows that

√
k

(
1

2(ϕ(γ ) + 1)
− 1

2(γ̂STEP + 1)

)
= op(1),

which implies Eq. 20 as a direct consequence. Hence we complete the proof of
Theorem 2.2.

Remark 2.1 From the definition of the two-step estimator, it is clear that, if
the first step estimator is shift and scale invariant, the final estimator should be
the same. So we can choose the Pickands’ estimator γ̂P mentioned in Section 1
as the first step estimator. Although the Pickands’ estimator itself does not
perform very well in most of the cases, after the two-step procedure, it will be
close enough to the maximum likelihood estimator.

Remark 2.2 Obviously, we can also use the final two-step estimator as the first
step estimator, and iterate the same procedure once more. It results in a three-
step estimator. If the first step estimator is shift and scale invariant, so is the
final three-step one. Simulations in Section 3 will show that the three-step
estimator is even more accurate.
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Remark 2.3 The weighted moments WM ( j)
n ( j = 1, 2) can be represented in

another way as

WM (1)
n = 1

γ̂ (1) + 1

k∑
i=1

(
i
k

)γ̂ (1)+1

(Xn,n−i+1 − Xn,n−i),

WM (2)
n = 1

2γ̂ (1) + 1

k∑
i=1

(
i
k

)2γ̂ (1)+1

(Xn,n−i+1 − Xn,n−i)

× (
Xn,n−i+1 + Xn,n−i − 2Xn,n−k

)
.

3 Simulations

Simulations have been done for three cases: γ positive, negative and γ = 0.
We also try to simulate for both large and small sample size.

For large sample size simulation, a sample with sample size 10,000 from
a certain distribution is generated. In case γ > 0, we choose the Cauchy
distribution which has a positive extreme value index γ = 1 and a second order
index ρ = −2. In case γ = 0, we choose standard Normal distribution. Both
the extreme value index γ and the second order index ρ are equal to 0. In case
γ < 0, we choose the Reversed Burr distribution. Such a distribution function
is given as

F(x) = 1 −
(

4

4 + x−2

)2

, x < 0.

It belongs to the domain of attraction of the extreme value distribution with
extreme value index γ = −1/4 and ρ = −1/2.

We choose the Pickands estimator as the first step estimator, calculate the
two-step estimator and the maximum likelihood estimator. The three-step
estimators described in Remark 2.2 are also demonstrated in the figures. In
order to study the sensitivity of the first step estimator, we also use the moment
estimator as the first step estimator for the same simulated samples. For γ

positive, they are presented separately in Figs. 1 and 2. For γ = 0 and γ

negative, the results are shown in Figs. 3–6.
From these figures we observe that, the two-step estimator is close enough

to the maximum likelihood estimator. Hence, it can be a good substitute of the
maximum likelihood estimator with explicit formula. Furthermore, the three-
step estimator is closer, i.e. it will be better to iterate the procedure for more
steps. With the moment estimator as the first step estimator, the performance
of the two-step is improved. Hence, it will be helpful to choose an accurate first
step estimator, even if not location invariant.

Secondly, we turn to small sample size. We generate 500 samples with
sample size 1,000 each, calculate the maximum likelihood estimator and two-
step estimator in each sample, and take the average of the estimators among
the samples. We also calculate the mean squared error (MSE) for both
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Fig. 1 Cauchy
(γ = 1, ρ = −2)
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the maximum likelihood estimator and the two-step estimator. Denote the
calculated estimator as γ̂i for sample i, where 1 ≤ i ≤ 500. Then the mean
squared error is defined as follows

MSE = 1

500

500∑
i=1

(γ̂i − γ )2,

where γ is the known extreme value index.

Fig. 2 Cauchy
(γ = 1, ρ = −2)
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Fig. 3 Normal (γ = 0, ρ = 0)
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Because the Pickands estimator does not perform very well for small
sample size, we use the moment estimator as the first step estimator. In these
simulations, the three-step estimator is ignored. For γ positive, we change to
the Pareto distribution with γ = 1/2, i.e. the distribution function is F(x) =
1 − 1/x2. In this case ρ = −∞. Together with the large sample size simulation
study, all these simulation studies cover the entire range of all possible ρ, i.e.
ρ ∈ [−∞, 0].

Fig. 4 Normal (γ = 0, ρ = 0)
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Fig. 5 Reversed Burr
(γ = −1/4, ρ = −1/2)
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The averaged estimations for γ positive are shown in Fig. 7 with its corre-
sponding MSE pictures in Fig. 8. Figures 9, 10, 11 and 12 present the results for
γ = 0 and γ negative.

From the multi-sample simulations, we again observe that the two-step
estimator is close enough to the maximum likelihood estimator, while the MSE
is in a comparable level.

Fig. 6 Reversed Burr
(γ = −1/4, ρ = −1/2)
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Fig. 7 Pareto
(γ = 1/2, ρ = −∞)
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Furthermore, we also make simulations for even smaller sample size, for ex-
ample, 100. The results are no longer comparable with the maximum likelihood
estimator. From the simulation study, we recommend the two-step estimator
for relatively larger sample size, for instance, at least 1,000.

Fig. 8 MSE: Pareto
(γ = 1/2, ρ = −∞)
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Fig. 9 Normal (γ = 0, ρ = 0)
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Fig. 10 MSE: Normal
(γ = 0, ρ = 0)
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Fig. 11 R-Burr
(γ = −1/4, ρ = −1/2)
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Fig. 12 MSE:
R-Burr(γ = −1/4, ρ = −1/2)
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4 Conclusion

In the literature of estimating the extreme value index, a variety of estimators
are proposed. A good estimator should have the following properties:

1) Performing a smaller estimation error;
2) Satisfying theoretical properties such as shift and scale invariant;
3) Easy to calculate.

Most of the explicit estimators do not satisfy the shift invariant property or
perform a relatively worse estimation, while the maximum likelihood estima-
tor is shift and scale invariant and provides a reasonably nice performance.
However, it is not explicitly given.

In this paper, we propose an explicit two-step estimator which is close
enough to the maximum likelihood estimator. Therefore it has the same as-
ymptotic behavior. Furthermore, by a suitable choice of the first step estimator,
it is shift and scale invariant. By iteration, we can get three-step or even more
step estimators which performs better according to an extensive simulation
study.

Open Access This article is distributed under the terms of the Creative Common Attribution
Non-commercial License which permits any noncommercial use, distribution, and reproduction in
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