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Abstract—Predicting the impending failure of hard disk drives

(HDDs) is crucial for preventing essential data from losing. In this

paper, a two-step parametric method was developed to predict

the impending failure of HDDs using the aggregate of statistical

models. This method deals with the problem of failure prediction

in two steps: anomaly detection and failure prediction. First,

Mahalanobis distance was used for aggregating all the moni-

tored variables into one index, which was then transformed into

Gaussian variables by Box–Cox transformation. By defining an

appropriate threshold, anomalies in HDDs were detected as a re-

sult. Second, a sliding-window-based generalized likelihood ratio

test was proposed to track the anomaly progression in an HDD.

When the occurrence of anomalies in a time interval is found

to be statistically significant, indicating the HDD is approaching

failure. In this work, we also derived a new cost function to adjust

the prediction rate. This is important in a way to balance the

failure detection rate and false alarm rate as well as to provide

an advanced warning of HDD failures to the users, whereby the

users can back up their data in time. Then the developed method

was applied on a synthetic data set showing its effectiveness on

predicting failures. To demonstrate the practical usefulness, this

method was also applied on a real-life HDD data set. The result

shows that our method could achieve 68% failure detection rate

with 0% false alarm rate. This is much better than the results

achieved by the state-of-the-art methods, such as support vector

machine and hidden Markov models.

Index Terms—Anomaly detection, failure prediction, general-
ized likelihood ratio test, hard disk drive (HDD).

I. INTRODUCTION

T HE technologies used in hard disk drives (HDDs) have

been improved immensely in recent years making the

storage capacity reach several terabits (Tb) per drive [1], [2].

Failure of an HDD may cause serious data loss and services’

down time, which could result in causing tremendous finan-

cial and economic losses to users and communities. On the
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other hand, as HDD has become one of the most competitive

computer industries, designing and manufacturing highly

reliable HDD is essential to maintain the market shares for

manufacturers. Designing new algorithms for online anomalies

detection and failure prediction is strategically important.

Currently, the techniques used by HDD experts for moni-

toring the HDD healthy status mainly fall into three categories.

First, the experts utilize external sensors, such as accelerom-

eters and acoustic emission sensors, to monitor the evolution

of vibration signals during HDD operation [3]. But attaching

these sensors outside the HDD cannot obtain the degradation

signatures, while attaching them inside the HDD may damage

its components and increase the physical size [3]. Second, the

experts utilize the log files of storage systems, which collect

the error events of the software and hardware deployed in the

storage system [4], [5]. However, such techniques generally

fail to provide the insightful information associated with HDD

performance due to lack of close monitoring. Third, the ex-

perts utilize self-monitoring, analysis, and reporting technology

(SMART), which is a built-in function of HDD [6]–[8]. It col-

lects the values of attributes (performance parameters) that cor-

respond to record counts or physical units, e.g., temperature and

current, to determine an HDD’s health state without any intru-

sion. Such an advantage inspired most HDD manufacturers to

adopt this technology.

However, the SMART software used by HDD manufacturers

only provides a basic evaluation. For example, “threshold not

exceeded” and “threshold exceeded” are represented as “drive

OK” and “drive fail,” respectively [7]. The threshold for every

attribute is confidentially defined by manufacturers. In opera-

tion, when any attribute exceeds its predefined threshold value,

the drive is considered a failure, which results in returning to

the manufacturers for replacement. Apparently HDD manufac-

turers would like to minimize false alarm rate (FAR) by setting

a higher threshold. This, however, makes the failure detection

rates (FDRs) to be poor (the FDR of the SMART algorithm is

3–10 % [9]).

Several algorithms have been developed in the past decade

to enhance the FDR. Naive Bayes expectation-maximization

was proposed by Hamerly et al. [10] to predict HDD failure

using the data from Quantum Company. Instead of using all

attributes from the original data set, three attributes (grown

defect count, read soft errors, and seek errors) provided better

prediction performance. Hughes et al. [7] proposed a non-

parametric method, the rank-sum statistical test, to replace the

threshold method. Murray et al. [9], [11] compared different

machine learning methods (multiple-instance naive Bayes,

support vector machine (SVM), autoclass, and rank-sum test)

1551-3203 © 2013 IEEE
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and found that SVM had the highest FDR among all tested

methods under the same FAR. In particular, SVM gets 50.6%

FDR at zero FAR. Tree augmented naive Bayesian (TAN) [12]

and hidden Markov models (HMM) [13] were proposed to

further improve the FDR. The results of TAN [12] showed that

they could achieve over 80% FDR with about 3% FAR. But

when pushing to 0% FAR, it can only deliver a 20%–30% FDR

[12]. The HMM-based approach [13] is able to achieve 52%

FDR at 0% FAR, but fails to get a higher FDR at higher FAR

compared to TAN approach.

Despite SVM [9], TAN [12], and HMM [13] being able

to achieve higher prediction performance than other methods

mentioned above, they still have certain disadvantages. First,

these methods do not thoroughly take the characteristics of the

observed attributes over time in the failed drives underwent

a process into account: from health to failure. Instead, they

label the observations of the failed drives to be failed (posi-

tive) irrespective of the measurements’ healthy or faulty state.

Labeling an observation as a failure, however, requires much

prior knowledge on the data set, and always to be a major

challenge for the standard supervised learning schemes [14].

Arbitrarily labeling the observations in failed drives as fail

makes the healthy classes confused with failed classes, resulting

in a suboptimal model with poor prediction performance [9].

Second, some of these methods, such as SVM and TAN, tend

to conduct failure prediction based on individual observation.

Using individual anomaly, though can realize real-time pre-

diction, may not be used consistently for providing a reliable

estimate on impending HDD failure. This can be explained on

the one hand by the fact that an individual measurement cannot

give the confident information of an HDD’s health due to the

measurement noise. On the other hand, anomalies are not the

evidence of HDD failure, but the evidence that the HDD system

suffers certain deviation from normal condition to some extent.

Third, the computations of SVM and HMM are too expensive,

making the online application to be impracticable.

The objective of this study is to develop an effective failure

prediction method, which can predict the impending failures of

HDDs with high prediction accuracy, low FAR, and sufficient

backup time, as well as feasibility for online application. To

this end, a two-step parametric (TSP) method was developed.

This method takes the advantage of the nature of the data in

both healthy and failed drives instead of directly labeling the

individual observations to health or fail. The aim is to deal

with the uncertainty of the labels of individual observations

that the standard supervised learning methods cannot handle.

During model training, the individual observations in a drive

were treated as a time series. Through tracking the evolution fea-

tures, the deviation/degradation information of this drive can be

extracted. Making use of such information in conjunction with

the prior knowledge of the drives allows us to develop the de-

cision boundary. Labels of individual observations can be in-

ferred as a result. This manipulation avoids the confusion effect

that exists in SVM and HMM, resulting in the training model

more effective to distinguish the healthy and failed drives.

To obtain a reliable prediction with minimum false alarm, the

failure prediction problem is divided into two steps for deeply

making use of the information of the data. The first step is to

measure the HDD deviations from the health state such that each

observation is indexed as the deviation/distance rather than the

labels. The deviation information is, however, not adequate to

demonstrate the degradation of an HDD due to the measurement

error or some unknown system behaviors. Therefore, the second

step tracks the anomaly progression via a temporal probabilistic

model that can make use of not only the current observation but

also its neighbors, and thus, a confident prediction with min-

imum false alarms can be obtained as a result.

In practice, the accuracy of discrimination is not all in failure

prediction in HDDs. To provide the sufficient time to the users

for backing up the data is also a critical task. The traditional

methods, however, have not well designed for this problem. To

resolve it, a new cost function incorporating an index called

alarm distance, which measures the duration between alarm

point and the real failure point, is developed in this paper. By

minimizing this cost function, the optimal model parameters

with potential capability of providing an early warning can be

selected.

In addition, the algorithms used in the TSP method are not

computationally complex, enabling the proposed method prac-

tical for online application. For example, Mahalanobis distance

is used to transform the multivariate data into univariant data,

which significantly improves the computational efficiency.

The differential evolution algorithm is also applied for quickly

finding the optimal parameter setting through minimizing the

cost function.

For the purpose of performance evaluation, our TSP method

was applied for failure prediction in both synthetic and real data

set. The results show TSP method outperformed the state-of-

the-art methods, such as SVM and HMM in both prediction ac-

curacy and computational efficiency.

The rest of this paper is organized as follows. In Section II,

some related works are briefly reviewed. In Section III, the de-

veloped approach and relevant algorithms are presented. A case

study is conducted in Section IV. Section V gives the corre-

sponding results, which are also compared with the state-of-

the-art methods. Section VI makes some concluding remarks.

II. RELATED WORK

Numerous algorithms have been developed for anomaly

detection and failure prediction. Their applications range from

image/video retrieval [15], [16], bearings’ fault detection [17],

[18], to the financial crisis prediction [19]. Most of these

applications are focused on the short-term failure prediction.

There is also another group of failure prediction focusing on

the long-term prediction [20]–[22]. But its prediction accu-

racy highly relies on the physics-of-failure model (or called

degradation model). In our application, an HDD failure may be

caused by many mechanisms, making the difficulty in deriving

a physics-of-failure model. On the other hand, the purpose of

our HDD failure prediction is to provide a short-term (i.e.,

24 h [7]) prediction that can provide a sufficient margin for

the users to back up their data, long-term prediction seems not

necessary. The thorough surveys of the prediction methods can

be found in [14], [15], and [23]. In the following subsections,

we discussed distance measure and generalized likelihood ratio

test, which are related to our work.
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A. Distance Measure and Anomaly Threshold Determination

In literature, a useful way of measuring deviations from the

normal condition with low computational cost is to use distance

measurement. Among distance measurements, Mahalanobis

distance (MD) is superior in the scaling effect and correlation

among the variables compared to Manhattan distance, Eu-

clidean distance, and Hamming distance [24]. Therefore, MD

is widely used in the health monitoring of electronic products

[25], [26]. The implementation of MD can also help to establish

the useful anomaly measures for the prognostic evaluation [25].

Although MD is a useful index to measure the deviations

of system, the threshold for distinguishing the anomalous and

healthy events cannot be directly determined due to the nonpara-

metric nature of MD values. A solution of this problem is to use

the power transformation to transform the MD values into para-

metric variables. Box–Cox transformation is one of the most

popular power transformations due to its competency to Gaus-

sianize data [27]. In this paper, the commonly used limit, mean

plus three standard deviations, in Gaussian distribution is used

as the threshold to determine the anomalies after the transfor-

mation of MD values. A preliminary conference version related

to this part has appeared in [28].

B. Generalized Likelihood Ratio Test (GLRT)

To detect whether there is a significant change in the data

stream, a likelihood ratio test (LRT) is generally utilized. LRT

is based on a hypothesis testing that exploits prior distribution

of data to decide the population of a candidate set [29]. For a

binary case, there are two hypotheses:

: No change

: Presence of a change

The conditional probability density function can be written

as when hypothesis is true, where . Given a

new set that consists independent and identically distributed

observations , the likelihood ratio is

defined as [29]

(1)

where are the model parameters of the conditional proba-

bility density function for .

The classical LRT assumes the model parameters are known.

However, in practice, these parameters are not always available,

and thus, a generalized likelihood ratio test (GLRT) [29] is used

in this paper. It is defined as

(2)

where are the maximum likelihood estimates of .

The GLRT is based on Neyman–Pearson theorem, which

allows the maximization of the probability of detection. In

Section III, a sliding-window-based GLRT is proposed to

compare the observed and expected occurrence of anomalies

within a fixed-width sliding window. When the GLRT of a

window exceeds the prespecified failure threshold, a failure can

be predicted.

III. TWO-STEP PARAMETRIC (TSP) METHOD

In this section, the framework of failure prediction using TSP

method (Fig. 1) is presented. In Subsection A, a failure modes,

mechanisms, and effects analysis (FMMEA) is conducted on

the HDD system to determine the relevant performance param-

eters, called features. In Subsection B, MD is used to compress

the collected SMART data frommultiple variants into one index

to measure the system deviations. Box–Cox transformation is

utilized to transform the MD values into normally distributed

variables. Mean plus three standard deviations is used as the

threshold for anomaly detection. After the anomalies are de-

tected, an anomaly counter is triggered and a sliding window

begins to track the progression of anomalies. The occurrence of

the anomalies in the window is treated as a Bernoulli process.

GLRT is used as a predictor to predict the impending failure

of HDDs. When the impending failure is predicted, a warning

will be issued. Further details on failure prediction are given in

Subsection C. A parameter tuning process is used to determine

the failure threshold and window size before the testing phase

through minimizing a cost function, as discussed in Subsection

D.

A. Feature Selection by FMMEA

FMMEA is a systematic method for analyzing the

physics-of-failure of a system [30]. During implementa-

tion of FMMEA, the potential failure mechanisms and models

for potential failure modes can be identified using accelerated

life test, numerical stress analysis, past experience, and engi-

neering judgment. The criticality of the failure mechanisms

can be quantified by their risk priority number (RPN). The

RPN is determined by the product of the failure occurrence

and severity of each mechanism. According to the values of

RPNs, failure mechanisms can be prioritized. Then, the failure

precursors\performance parameters (in this paper also called

features) can be selected according to the critical failure modes

and failure mechanisms.

In our early conference version [31], FMMEAwas applied to

identify potential failure mechanisms and failure modes, as well

as the critical features of HDDs. The head-disk interface and

head stack assembly were identified as themost vulnerable com-

ponents. The features that are highly correlated with the health

of head-disk interface and head stack assembly were selected as

critical. The identified failure mechanisms are mainly focused

on wear, overstress, and resonance. According to these mech-

anisms, the key features can be determined as: flying height,

read/write errors, seek errors, and servo errors. The features may

vary among the HDD manufacturers due to the different mean-

ings and interpretations. For the SMART data used in our paper,

the key features are listed in Section V.

B. Anomaly Detection

This section is to present an anomaly detectionmethod, which

distinguishes anomalous behaviors from healthy events in each

drive. Because a preliminary work has been reported in an ear-

lier conference version [28], we only give a brief introduction

to the anomaly detection.

The training data is a subset of healthy data, denoted as .

The columns of are attributes (features) denoted as . To
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Fig. 1. Flowchart of failure prediction using TSP.

eliminate the scale effect among the attributes, each individual

attribute is normalized by

(3)

where denotes the th observation at the th attribute

is the number of observations;

is the number of attributes. and are the mean and standard

deviation of the vector , respectively.

The MD value of each observation is given by

(4)

where is the transpose of , and

is the correlation matrix of the attributes.

To transform the MD values into normally distributed vari-

ables, the Box–Cox transformation [27] is utilized

(5)

Fig. 2. Observations (transformed MD) in healthy drives.

where is the transformation parameter that can be optimized

by maximizing the logarithmic likelihood function

where is the sample size of the training data and

is mean value of .

To detect the anomalies, we use the mean plus three stan-

dard deviations , which is commonly used to iden-

tify the “out-of-control” points with a 99.7% confidence level

[32], of the transformedMD values to be the anomaly threshold.

During the test process, if the transformed MD values exceed

this threshold, the observations will be determined as anomalies.

C. Failure Prediction

When anomalies occur in an HDD, failure may not happen

immediately. This can be explained by two folds. First, the

anomalies are indeed the symptoms that the HDD has deviated

from the healthy state to some extent rather than the symptoms

of failure. The failure does not happen until the anomalies

propagate to a certain level. Second, the measured anomalies

may be resulted from measurement noises. These noises are

generally randomly distributed no matter the HDD is in a

healthy state or faulty state. Fig. 2 shows the transformed MD

values in the healthy drives during 600 operational hours. It can

be seen from this figure, although the anomalies occur, they are

randomly and sparsely distributed. In contrast, the anomalies

in failed drives (Fig. 3) are intensely distributed throughout the

operating hours.

This fact indicates that the drive approaches failure when

the anomalies frequently occur. Motivated by this fact, we use

a sliding-window-based GLRT method to track the anomaly

progression and predict the HDD failure. The main idea is

that when the occurrence of anomalies within a certain time

interval (sliding window) demonstrates a significantly increase
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Fig. 3. Observations (transformed MD) in failed drives.

Fig. 4. Principle of sliding window. Open circle stands for normal event, solid

circle stands for anomaly event.

compared to the expected value, implying the drive approaches

failure.

The procedure of the sliding-window-based GLRT method is

proposed as follows:

1) Through comparing with the anomaly threshold, ,

the transformed MD values in the drives can be converted

into binary variables by (6). Let be the

sequence of the binary variables in a drive.

(6)

where , “0”, denotes normal event and “1”

denotes anomaly happens.

2) A sliding window (Fig. 4) with window size is used

to scan all binary variables in the drives. The number of

anomalies in the window is denoted as .

(7)

where denotes each time in the drive’s life

. For example, at , there is one anomaly in the window,

denoted as . At , there are two anomalies in the

window, denoted as .

3) In the healthy drives, the probability of each sample to be

an anomaly is denoted by , the can be

thought as a sequence of Bernoulli trials, and this process

as a Bernoulli process [33]. The null is the probability of

an anomaly in a window in the healthy drives

(8)

For some unknown , the pulse odds-ratio alternative is

[34]

otherwise
(9)

The logarithm of generalized likelihood ratio for the hy-

pothesis test can be written as

(10)

Take the derivative of the expression of can obtain

by solving

4) Given a training/validation set consisting of drives,

the prior knowledge of the drives are the final status,

denoted as . The training/valida-

tion drives can be written as ,

where drive consists of generalized likelihood ratios

. Given a failure threshold , the

labels can be assigned to in drive by

(11)

The health status of this drive can be estimated by

. The generalized likelihood ratio in a drive first

hits the determines the alarm time . The optimal

and were obtained by minimizing the cost function,

which will be discussed in detail in Subsection D.

5) After the optimal and are obtained, the incoming

new drives will be tested. If in a testing drive is greater

than , a failure warning is reported to the users. Other-

wise, anomaly tracking continues.

D. Cost Function and Parameters Tuning

For manufacturers, cost saving is a very important factor that

needs to consider. Apparently, the prediction errors can lead to

monetary cost. For example, if a failed drive is not detected, the

data in the drive may be lost. If a healthy drive is false alarmed,

the warranty issues will be caused. Different parameter (i.e.,

and in this paper) settings may incur different predic-

tion errors, and hence different monetary costs. Therefore, min-

imizing the cost function is a way to optimize the relevant model

parameters.

A commonly used cost function can be expressed as [35]

(12)

where is the ratio of the number of failed products to the

number of total products, is the ratio of the number of healthy

products to the number of total products. FN is miss detection,

also known as false negative. It is a measure that a product is

determined to be healthy when it is not. FP is false alarm, also

known as false positive. It predicts a product as failed when it

is in fact healthy. is the weight that associates with miss
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Fig. 5. Alarm distance.

detection, is the weight that associates with false alarm.

As previously discussed in this paper, HDD manufacturers are

very concerned with FAR due to the warranty issues. Therefore,

HDD manufacturers can place a larger to penalize false

alarms.

For our HDD problem, the expected cost can be minimized

by adjusting the parameters

minimize

subject to:

(13)

where is the implicit functions of and is the

likelihood ratios in th drive, is the number of validation drives.

is the number of samples in a HDD. Because only the

asymmetry of the weights have an influence on the final results,

the weights, , were constrained by .

Manufacturers can use these weights to multiply the unit cost

to get the total costs. For simplicity, this paper assumes the unit

cost to be one, which does not affect the analysis.

In failure prediction problem, the prediction accuracy is not

all. To provide the sufficient time to the users for backing up

their data is also a critical task. To cope with this problem, we

introduce an index called alarm distance that measures the dura-

tion between alarm point and the real failure point (Fig. 5). The

alarm time is determined by the time when the likelihood ratio

in a window hit the failure threshold. The real failure time

is the prior knowledge of the drives. At the real failure time, the

drive cannot work at all. A larger alarm distance means the users

have more time to back up their data.

To obtain the parameters with the potential capability of pro-

viding an earlier warning (a larger alarm distance), we incorpo-

rate the averaged alarm distance into the cost function (12). To

our best knowledge, this is the first time to incorporate the alarm

distance into the cost function for optimizing the model param-

eters. The optimal alarm distance may, however, conflict with

the optimal prediction accuracy. For example, a lower threshold

may provide longer alarm distance but may increase the false

alarms as well. To avoid damaging the prediction accuracy that

is the primary objective of this study, we placed a small weight

Fig. 6. Illustration of the parameter tuning in the validation process.

on the averaged alarm distance. After some manipulations, (13)

becomes

minimize

subject to:

(14)

where AD is the measured alarm distance, is the weight of

, and is the number of failed drives in the

validation set.

Fig. 6 shows the illustrations of the parameter tuning. The

core of this tuning process is to solve (14). We used the dif-

ferential evolution algorithm [36], which is a population-based

algorithm similar to genetic algorithm, to do this work. This al-

gorithm includes three operators: mutation, crossover and se-

lection. Due to the high efficiency, effectiveness, and robustness

in optimization, it has been widely used in many practical ap-

plications: fault diagnosis, digital filter design, and neural net-

work training [37]. Alternative algorithms including genetic al-

gorithm, particle swarm optimization, and ant colony optimiza-

tion may also be able to solve this problem. The key parame-

ters in implementing differential evolution are scale vector ,

crossover rate CR, and the number of population NP. Storn et

al. [36] suggested some choices: (1) (2)

(3) . Where is the dimension of the pa-

rameters that need to optimize. In this paper, we choose the pa-

rameters as follows: , and a

maximum generation (iteration) number .

IV. PERFORMANCE EVALUATION

To evaluate the failure prediction performance provided by

our method, two performance metrics, receiver operating char-

acteristic (ROC) curve and alarm distance, are introduced.
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A. Receiver Operating Characteristic (ROC)

ROC curve is to evaluate the prediction accuracy. It is a

tradeoff plot between FDR and FAR [38]. FAR is defined by

the ratio of the false alarmed drives to the total healthy drives.

(15)

where is the number of false alarmed drives and is the

number of total healthy drives.

FDR is defined by the ratio of detected failed drives to the

total failed drives.

(16)

where is the number of detected failed drives and is the

number of total failed drives.

B. Alarm Distance

This metric is used to guarantee the users have enough time

to back up their data. The goal of SMART designed by HDD

manufacturers is to provide a warning at least 24 h before drive’s

failure [7].

V. RESULTS AND DISCUSSION

In this section, the experimental results are presented. The

state-of-the-art methods, including SVM and HMM, are com-

pared with our developed method using both synthetic data and

real-life data.

A. Synthetic Data Set

The synthetic data is designed to simulate the data in reality,

which consists of the time series corresponding to the product

evolves from health to fail. The data may be also non-Gaussian

distributed and highly noised. To simulate the non-Gaussian

characteristics, we used the Weibull distribution to generate the

data. The alternative distributions include exponential distribu-

tion and lognormal distribution. The synthetic data set contains

600 non-Gaussian time series, where 300 time series stand for

healthy products, 300 time series stand for the failed products.

Each time series contain 500 observations. For ease of under-

standing, we defined the time interval between two observa-

tions is one hour. The parameters of the two classes are given

in Table I. The parameters— and —are the shape and scale

parameter of Weibull distribution respectively. For the healthy

products, we used a mixture of several sets of Weibull distri-

butions to simulate the products suffering different states and

with high measurement noises. For the failed products, we used

two sets of Weibull distributions to simulate the failed products

evolving from health to fail.

We compared with SVM and HMM using the synthetic data

first. All experiments were repeated ten times, the results were

then averaged over these ten runs. In TSP method, we randomly

TABLE I

PARAMETERS OF SYNTHETIC DATA

selected 60% of the healthy time series as the training set, and

used the remaining data as the testing set. To obtain the ROC

curve, the failure threshold was varied to obtain the different

pairs of FAR and FDR.

For implementation of SVM,we usedmySVM to perform the

experiments, in which the SVM model is similar to [9]. Radial

kernel function was used in the model. We randomly selected

60% of the total failed and healthy time series as the training

sets for positive and negative models, respectively, and treated

the remaining data as the testing set. A time series is predicted

to be failed if any of its observation is predicted as positive. The

parameters of the model were varied to obtain the ROC curve.

For implementation of HMM, we used discrete HMM model

which is similar to [13]. The selection of training and testing

set was similar to SVM. Binning method was used to discretize

the data. The number of bins was set to 10. More bins did

not improve the prediction performance. The number of states

was set to be 30. The time series were segmented to different

sequence segments by a fixed-size window. The positive model

was trained with sequence segments, which were randomly

sampled from the failed time series. The negative model was

trained with sequence segments of healthy time series, also

randomly sampled. A time series is predicted as failed if any

of its sequence segments of certain consecutive observations

over time is predicted as failed. The threshold to determine

failure is the difference of the sequence log-likelihoods that

were calculated over positive and negative models. We also

varied this threshold to obtain the ROC curve.

The comparison among three methods is shown in Fig. 7. For

overall performance, SVM performed worst, TSP performed

best. In the lower FAR region, SVM and HMM with window

size 10 show nearly no detected failures. Conversely, TSP ob-

tained much better results in this region, especially when the

window size was set to 50 (84% FDR). It is also interesting

that at 0% FAR, TSP with window size of 100 could not per-

form better than that when the window size was set to 50, in-

dicating the prediction accuracy did not monotonically increase

with window size.

In terms of alarm distance, we used the averaged alarm dis-

tance to compare the performance. TSP still got the best perfor-

mance. In particular, TSP can achieve more than 100 h of aver-

aged alarm distance when the window size is set to 50. SVM
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Fig. 7. ROC performance comparison of TSP, SVM, and HMM.

Fig. 8. Alarm distance performance comparison of TSP, SVM, and HMM.

shows better performance than HMM. Changing the window

size shows nearly no effect on the HMM results.

B. Real-Life HDD Data

The real-life data set was acquired from the real HDDs, which

includes 369 drives from one model, where 178 drives were la-

beled as healthy and 191 drives were labeled as failed [39]. The

healthy drives were from the manufacturer. The failed drives

were field returned. Each drive contains 300 samples (observa-

tions) at most, and the interval between two samples is 2 h. In

other words, only the last 600 h of data were recorded.When the

time exceeded 600 h, the data were overwritten. There are some

failed drives with less than 300 samples because they were not

able to survive 600 h of operation. Each sample contains 60 per-

formance-monitoring attributes, in addition to other attributes

such as the drive’s serial number and total power-on-hours. Not

all attributes were monitored in every drive. The neglected at-

tributes were set to constant.

1) Data Processing and Selected Features: A preliminary

examination was executed before using the data. Attributes with

Fig. 9. Normal probability plot for the training data (MD).

Fig. 10. Normal probability plot for the transformed values of the training data

(MD).

all zeros were abandoned. The 47 critical features1were selected

by FMMEA. Detailed information can be found in [31].

2) Implementation of TSP: During implementation of TSP,

60% of the healthy HDDs were randomly selected to build the

baseline Mahalanobis space. The normal probability plot was

used to check whether the MD values are subject to the normal

distribution or not. The original MD values and the data trans-

formed by Box–Cox transformation are shown in Figs. 9 and

10, respectively. The original data (Fig. 9) are far from the

normal distribution, while the transformed data are nearly nor-

mally distributed.

We investigated the influence of different parameter settings

on FDR, FAR and alarm distance using the rest 40% healthy

drives and all failed drives, as illustrated in Figs. 11–13. With

the increase of failure threshold, FDR almost linearly decreases

(Fig. 11). Lower threshold can predict more failures, but can in-

crease FAR as well. The linear decrease of FDR indicates that

the failures are nearly uniformed distributed. It was also found

that FDR is insensitive to window size (the FDR difference be-

tween window size 10 and window size 50 is less than 5%).

In contrast, FAR is sensitive to window size (Fig. 12). It can

1FlyHeight 1–16, GList 1–3, PList, Reads, Writes, ReadError 1–12, Read-

Error 18–20, Servo 1–3, Servo 5–10, and WriteError.
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Fig. 11. FDR as a function of failure thresholds for different window size.

Fig. 12. FAR as a function of failure thresholds for different window size.

be explained that for a short window, only few data points at

a time are considered, small differences in these data points,

such as measurement noise could result in misclassifying these

data as an instance of failure. A larger window can capture the

stable change in the data points, and thus can prevent the false

alarms effectively. Alarm distance also shows to be sensitive

to window size (Fig. 13). Either larger window size or higher

failure threshold could result in a time delay on prediction, but

better FAR. The tradeoff between real-time prediction and the

accuracy of prediction leads to the difficulty in determining a

good set of the parameters ( and , and therefore, a tuning

process is needed.

3) Parameter Optimization: To tune the parameters, 60% of

the failed drives were randomly selected, which together with

the 60% training drives (healthy) were used as the validation

set. The rest 40% healthy drives and 40% failed drives were

used as the testing set. By varying the weights ( and

in cost function, the different FAR, FDR, and alarm distance can

obtain. The weight of AD in this experiment

was set at . The experiment was also repeated 10 times to get

an average value. Three sets of weights in the cost function were

compared in Table II. It is found that at 0% FAR, TSP method

can achieve 68.42% FDR. Table III shows the prediction perfor-

mance in terms of alarm distance at different . Concerning

Fig. 13. Averaged alarm distance as a function of failure thresholds for dif-

ferent window size.

TABLE II

PREDICTION PERFORMANCE WITH DIFFERENT

WEIGHTS IN COST FUNCTION

TABLE III

ALARM DISTANCE DISTRIBUTIONS OF FAILED DRIVES

WITH DIFFERENT WEIGHTS

the goal of SMART is to provide at least 24-h alarm distance,

46.05% drives can meet this requirement at (0%

FAR). If placing a lower weight to false alarm, more drives can

reach that goal, but the FAR increases.

4) Comparative Analysis: In this section, we compare our re-

sults to a set of methods that were mentioned in Section I. First,

we focused on the SVM and rank-sum schemes, which were

proposed by Murray et al. in [9]. The SVM-based method using

the radial kernel function has the best performance (50.6% FDR

with 0% FAR) among those studies; rank-sum-based method

has second-best performance (52.8% FDR with 0.7% FAR).

Second, we considered TAN and HMM, which were developed

by Tan et al. [12] and Zhao et al. [13] to improve the FDR using

the same data set.

Fig. 14 shows the ROC curves obtained by different methods.

The overall performance of TSP method is much better than
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Fig. 14. ROC comparison for different approaches.

TABLE IV

PREDICTION RESULTS COMPARISON AT 0% FAR

other methods. In particular, TSP got 68.4% FDRwith 0% FAR.

This result is about 18% higher than that of SVM in [9].

Table IV shows the prediction results at 0% FAR and the

drawbacks of different methods. SVM, TAN, and HMM are su-

pervised classification methods, which assume the observations

in the failed drive are failed even those observations are mea-

sured in healthy state. This leads to the confusion effect and poor

prediction performance. In contrast, TSP method takes advan-

tage of the nature of the data in both healthy and failed drives

rather than labeling individual observation, which avoids the

healthy data being labeled as failed, thus improving the FAR

while maintaining a high FDR. Rank-sum method does not re-

quire labeling the observations in failed drives, but it is a non-

parametric method, whose disadvantage is that the data informa-

tion cannot be thoroughly utilized, especially in the case that the

underlying distribution of the data follows some parametric dis-

tribution. In terms of computational efficiency, TSP uses MD to

compress the multidimensional data into univariate data, which

requires much less computation than themultivariant classifiers,

e.g., SVM.

Murray et al. [9] summarized the alarm distances of failed

drives at 0% FAR. The results show that 48% of the failed drives

could be detected with an alarm distance of more than 24 h. TSP

shows comparable results. While at the region of lower than 24

h (Table III), TSP performed much better, which indicates that

these failed drives were detected at the end of their lives. The

FAR obtained by TAN method [12] is bigger than 5%, thus we

did not compare with it. HMM [13] did not measure the alarm

distance, therefore, we also did not conduct the comparison.

TABLE V

COMPUTATION TIME

We also compared the computation efficiency among the

methods (Table V). The computational times of SVM and

HMM were also reproduced in our computational platform

(Matlab 7.1 environment on an Intel Dual Core2 Processor

running at 3.00 GHz, and 3.25 GB RAM). SVM shows compu-

tationally expensive, about 2.5 days. HMM shows much fast,

but the result is only based on one window size (window size

equals 50 observations). If includes other window sizes for

optimization, the computation time will increase to many times

of the reported one.

VI. CONCLUSION

In this paper, we presented a novel way of predicting failures

in HDDs using a two-step parametric (TSP) method. This

method takes the advantage of the nature of the data in both

healthy and failed drives by dealing with the uncertainty of the

labels of individual observations. Such a manipulation avoids

the confusion effect that exists in the standard supervised

learning methods, such as SVM and HMM. By dividing the

failure prediction into two steps, the degradation information in

each HDD can be reliably tracked by a temporal probabilistic

model that can make use of not only the current observation

but also its neighbors, and thus, a confident prediction with

minimum false alarms can be obtained as a result. In addition,

to provide sufficient time to the users for backing up their

data, a new cost function incorporating the alarm distance was

developed to ensure that the model parameters with potential

capability of providing an early warning were selected as

optimal. Both synthetic and real-life data sets were used to

evaluate the developed methodology.

Based on the evaluation results, TSP method outperforms

previous works in predicting the HDD failures. In particular,

TSP method could achieve 68.42% FDR at 0% FAR. It is about

18% improvement compared to the SVM-based approach pro-

posed by [9]. Considering the alarm distance, TSP was able to

provide a notification of 24 h in advance for 46.05% of the failed

drives without any false alarm, which is comparable to the result

of SVM. The computation of TSP method is also much less than

SVM-based and HMM-based approach, making it a practicable

way of predicting the HDD failures for online application.

Finally, although our methodology was proposed to deal with

HDD problems, it could be useful in a wide industrial area,

where the products may suffer some deviations before they fail

and require certain margin to take actions to prevent the prod-

ucts’ damage.
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