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One of the challenging problems in understanding high-resolution remote sensing images is aerial scene classi�cation. A well-
designed feature representation method and classi�er can improve classi�cation accuracy. In this paper, we construct a new two-
stream deep architecture for aerial scene classi�cation. First, we use two pretrained convolutional neural networks (CNNs) as
feature extractor to learn deep features from the original aerial image and the processed aerial image through saliency detection,
respectively. Second, two feature fusion strategies are adopted to fuse the two dierent types of deep convolutional features extracted
by the original RGB stream and the saliency stream. Finally, we use the extreme learning machine (ELM) classi�er for �nal
classi�cation with the fused features. �e eectiveness of the proposed architecture is tested on four challenging datasets: UC-
Merced dataset with 21 scene categories, WHU-RS dataset with 19 scene categories, AID dataset with 30 scene categories, and
NWPU-RESISC45 dataset with 45 challenging scene categories. �e experimental results demonstrate that our architecture gets a
signi�cant classi�cation accuracy improvement over all state-of-the-art references.

1. Introduction

Aerial scene classi�cation is a key problem in aerial image
understanding, which aims to automatically assign a seman-
tic label to each aerial image in order to know which category
it belongs to [1, 2]. Aerial scene classi�cation has important
application value in military and civil areas such as disaster
monitoring, weapon guidance, and tra�c supervision [3, 4].
Aerial images not only have rich space and texture features
but also contain a large number of scene semantic informa-
tion. However, since the composition of the scene is compli-
cated, it is di�cult to obtain the scene information of interest
directly from the massive image data [5, 6].

In order to understand and identify the scene information
in aerial images, many scene classi�cation methods are pro-
posed; they generally can be divided into two categories:
methods with low-level scene features and methods with
midlevel scene features.�e commonly used low-level meth-
ods include Scale Invariant Feature Transform (SIFT) [7],
Local Binary Pattern (LBP) [8], Color Histogram (CH) [9],
and GIST [10]. �e midlevel methods represent a scene by
coding the low-level local feature descriptors. �e midlevel

coding methods include Bag of Visual Words (BoVW) [11],
Spatial Pyramid Matching (SPM) [12], Locality-Constrained
Linear Coding (LLC) [13], Probabilistic Latent Semantic
Analysis (PLSA) [14], Latent Dirichlet Allocation (LDA) [15],
Improved Fisher Kernel (IFK) [16], and Vector of Locally
Aggregated Descriptors (VLAD) [17].

In recent years, the deep learning methods have a break-
through in computer vision tasks, such as image classi�ca-
tion, object recognition, and face recognition [18–20]. Con-
volutional neural network (CNN) is one of the most success-
ful deep learning algorithms. Recently, CNNmodels, such as
CaeNet [21] and GoogLeNet [22], achieve better perfor-
mance on aerial scene classi�cation than that of low-level and
midlevel methods.

A typical architecture of CNN usually contains many
layers to automatically extract useful features and exploit the
logistic regression for classi�cation. However, this classi�er
cannot reach a satisfactory prediction performance. To solve
this problem, CNN-SVM [23] was proposed. �is architec-
ture is a combination of CNN and support vector machine
(SVM), which uses pretrained CNN as feature extractor
and SVM as a classi�er. Inspired by its success, some new
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combination architectures were proposed, such as CNN-BPR
[24].

Extreme learning machine (ELM) is a learning algorithm
based on single-hidden layer feedforward neural network
(SLFN) [25]. According to its creators, this model is able to
produce good generalization performance and learn thou-
sands of times faster than networks trained using backprop-
agation. In [26], it also shows that the ELM can outperform
SVM. In [27], the authors have con�rmed that theCNN-ELM
outperforms CNN-SVM in the area of high-resolution aerial
scene classi�cation. �erefore, ELM with CNN-learned fea-
tures can perform excellently.

In this paper, we propose a new aerial scene classi�ca-
tion framework that combines the fused deep convolutional
features learned by CNNs with the ELM classi�er. First, two
pretrained CNNs are used as feature extractor to learn deep
features from the original aerial image and the processed
aerial image through saliency detection, respectively. Second,
these two sets of features extracted by the original RGB
stream and the saliency stream are fused to one set of features.
Finally, the ELM classi�er is used for �nal classi�cation with
the fused features. Experimental results on four datasets
illustrate that the proposed architecture outperforms the sate-
of-the-art methods.

�e contributions of this paper are concluded as follows.(1) We employ a two-stream deep architecture to extract
features from the original aerial image and the processed
aerial image through saliency detection, respectively. �us,
we can get two dierent types of deep convolutional features
which contain the appearance information and prominent
information.(2)To the best of our knowledge, it is the �rst to fuse these
two dierent types of deep convolutional features extracted
by the original RGB stream and the saliency stream, which
can get a good representation of the aerial images.(3)Weuse the extreme learningmachine as a classi�er for
�nal classi�cation with the fused features.

�e rest of this paper is organized as follows. Section 2
introduces the related works including convolutional neural
networks and extreme learning machine. Section 3 describes
the proposed two-stream deep fusion architecture in detail.
Section 4 evaluates the performance of the proposed architec-
ture on four dierent benchmark datasets andmakes compar-
isons with several state-of-the-art methods. �e conclusions
are drawn in Section 5.

2. Related Works

2.1. Convolutional Neural Networks. As a branch of machine
learning, deep learning is a calculation model consisting of
multiple processing layers. Much attention has been paid to
deep learning for its great breakthrough in �elds including
image classi�cation, voice understanding, and video analysis.

Deep convolutional neural network is an important
algorithm in �eld of deep learning. It is based on the classical
convolution neural network devised by LeCun [28].

In general, DCNN (deep convolutional neural network)
consists of two major parts (see Figure 1). �e �rst part is
feature extraction, which contains alternating convolutional

and pooling layers. A convolutional layer consists of two
sublayers: convolutional �lter layer and feature mapping
layer. Descriptions of the layers are given as follows.

(1) Convolutional Filter Layer. Convolution is a kind of linear
operation. Noise reduction and characteristic enhancement
can be achieved by using the layer for extraction of character-
istics. Local characteristics can be extracted by the connection
between the input of each neuron and local receptive �eld
of the previous layer. Assume the input image � is a two-
dimensional image with size of � × �; an output with size of((�−�)/�+1)×((�−�)/�+1) can be obtained by the convolu-
tional operation of a trainable �lter set � with size of � × �:

�� = �� + ∑
�

�� ∗ ��, (1)

where ∗ denotes convolutional operation, �� denotes the
input of convolutional layer, 
�� is the parameter of convolu-
tional kernel, �� is the bias, and � represents step length; each
�lter is related to a certain feature.

(2) Feature Mapping Layer. A nonlinear activation function
is used for mapping of results obtained from �lter layer, thus
generating feature graph .

�� = �(�� + ∑
�

�� ∗ ��) , (2)

where � is a nonlinear activation function. Traditional acti-
vation functions include tanh, sigmoid, and so�plus. ReLU
(Restricted Linear Units) is the closest one to the activation
model of stimulated biological neuron, thus gradually being
used as activation function of neural networks.

(3) Pooling Layer. �is layer is used for elimination of
redundant data. A�er dividing the feature graph  into � ×� nonintersectional areas, pooling features � with size of{((� − �)/� + 1)/�} × {((� − �)/� + 1)/�} can be obtained
based on statistical mean value (or maximum value) of the
separate regions. Dimensions of the feature can be greatly
reduced a�er the pooling procedure, thus avoiding over�tting
and enabling the models to be robust.

Acting as a combined eort to extract features of the input
image, convolutional �lter layer, feature mapping layer, and
pooling layer are considered as one layer in the DCNN. A�er
several layers of convolution and pooling, the input image is
represented by some learned features.

�e second part is classi�er. �e learned features can be
put into the logistic regression classi�er for classi�cation.�e
logistic regression classi�er uses so�max as its output-layer
activation function.

�e network parameters are trained by BP (backpropaga-
tion) algorithm [29]with SGD (StochasticGradientDescent).
Dropout strategy [30] is applied to avoid over�tting and
enhance the generalization ability of the networks. �e
dropout strategy is usually used in fully connected layers.

2.2. Extreme Learning Machine. Extreme learning machine
consists of three layers: input layer, hidden layer, and output
layer. �e structure of the ELM is shown in Figure 2.
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Figure 2: �e structure of the ELM.

With regard to � dierent samples (��, ��), �� = [��1, ��2,. . . , ���]� denotes the �th sample and �� = [��1, ��2, . . . , ���]�
denotes the actual label of the �th sample. �e number of
input nodes � is the dimension of each sample; the number of
output nodes� is total number of categories. Given � hidden
nodes and activation function �(�), there must exist a set
of parameters ��, ��, and ��, which can make this network
approach these � dierent samples.

�∑
�=1

��� (���� + ��) = ��, � = 1, 2, . . . , �, (3)

where�� = [��1, ��2, . . . , ���]� is the weight vector that con-
nects the �th hidden node with the input nodes, �� = [��1, ��2, . . . , ���]� is the weight vector that connects the �th hidden
node with the output nodes, and �� is the bias of the �th
hidden node.

Equation (3) can be simpli�ed as matrix form,

�� = �, (4)

where � is the output matrix of the hidden layer and the �th
row of� is the output of the �th hidden node with respect to
the input samples �1, �2, . . . , �	.

�(�1, . . . , ��, �1, . . . , ��, �1, . . . , �	)

= [[[[
[

� (�1�1 + �1) ⋅ ⋅ ⋅ � (���1 + ��)... ...
� (�1�	 + �1) ⋅ ⋅ ⋅ � (���	 + ��)

]]]]
]

� = [[[[
[

��1...
���

]]]]
]�×�

� = [[[[
[

��1...
��	

]]]]
]	×�

.

(5)

In ELM algorithm, the input weights and the hidden
layer biases of SLFN need not be adjusted at all and can be
arbitrarily given. With regard to the �xed input weights and
the hidden layer biases, we just need to �nd a least-squares

solution �̂ of the linear system �� = �:
00000� (�1, . . . , ��, �1, . . . , ��) �̂ − �00000

= min



0000� (�1, . . . , ��, �1, . . . , ��) � − �0000 . (6)

�e minimum norm least-squares solution of the linear
system �� = � is

�̂ = �†�, (7)

where�† is theMoore-Penrose generalized inverse of matrix�.

3. Proposed Architecture

In this section, we propose an eective and e�cient two-
stream deep fusion architecture for aerial scene classi�cation.
�e �rst stream is called original RGB stream, which can
capture the appearance information by using original RGB
images as input to the network. �e second stream is called
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Figure 3: �e proposed two-stream deep fusion architecture.

saliency stream, which can capture the prominent informa-
tion by using the processed images through saliency detec-
tion as input to the network. �is two-stream framework
uses two same deep convolutional neural networks as feature
extractor to describe the original aerial image and the pro-
cessed aerial image through saliency detection, respectively.
�en, we use two famous strategies to fuse the extracted two
sets of features. Finally, the fused features are fed into the
ELMclassi�er for aerial scene classification.Theoverall frame-
work of our proposed method is shown in Figure 3. As de-
scribed in Figure 3, our proposed architecture includes the
following four parts.(1) Preprocessing the aerial images based on unsuper-
vised saliency detection.(2) Using the original RGB stream and the saliency
stream to extract features from the two kinds of aerial image.
�ese two streams use deep convolutional neural networks to
extract features.(3) Fusing the extracted two sets of features.(4)Using the ELM classi�er for aerial scene classi�cation.

3.1. Saliency Detection. When facing visual scenes, human
visual system is capable of quickly focusing our eyes on
some distinctive visual regions and ignoring plain ones. �e
selective visual attention mechanism can help human beings
observe, think, and make decision quickly and e�ciently.
�e saliency detection model [47] emulated human visual
attention can make our architecture more intelligent. By use
of saliency detection, we can get more informative features
which could dominate the category of the image. However,
saliency detection is not suitable for all aerial images. �us,
we adopt the fusion model, which can make good use of each
strength.

�is method includes two sections. One section is the
global perspective which can get a global distribution of
visual properties. In this section, a visual vocabulary for the
aerial scene is built. Each visual word serves as a single
element in depicting the aerial scene.�e representation form
is the histogram of visual word occurrence.

� = {f rq (6�� )} , 6�� ∈ Ω
Ω = {6�� }

= {[6color

1 , . . . ,6color

	color] ; [6texture

1 , . . . ,6texture

	texture ]} ,
(8)

where � ∈ ,  = {color, texture}. f rq(6�� ) indicates the fre-
quency of occurrence of the visual word6�� . �en, a weight-

ed factor >�� for each visual word is introduced according to
the “repetition suppression principle.”

>�� = 1
f rq (6�� ) . (9)

�e other section in this method is the local perspective.
�e representation for patch �� (�� ∈ �) is obtained using
the histogram of visual word occurrence. Finally, the saliency
value of patch �� is computed by

sal (��) = ∑
�∈�

	�∑
�=1

f rq� (6�� ) ⋅ >�� , (10)

where frq�(6�� ) indicates the frequency of occurrence of the
visual word6�� for patch ��.�� denotes the number of color
and texture feature words.

3.2. Feature Extraction. In recent years, CNN models can
get higher classi�cation accuracy than that of low-level and
midlevel methods on aerial scene classi�cation. �e impres-
sive results of CNNs indicate that the features extracted by
CNNs are more typical and representative. �erefore, we
select some of the most popular CNN models as feature
extractor in our original RGB stream and saliency stream.
�ree selected CNN architectures are presented in Figure 4.
We describe the characteristics of eachmodel in the following
part. At the same time, we specify the source of the features
for one speci�c model.

3.2.1. Ca�eNet. Cae (Convolutional Architecture for Fast
Feature Embedding) [21] is one of the most popular libraries
for deep learning, which is developed by the Berkeley Vision
and Learning Center.�e network, whose architecture can be
seen in Figure 4(a), is almost a replication of AlexNet [48].
However, its training process has no data argumentation and
its order of normalization and pooling layers is switched.�e
architecture of CaeNet includes �ve convolutional layers,
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Figure 4: �e architectures of dierent CNNs used in our work.

some of which are followed by max-pooling layers, and three
fully connected layers with a so�max. In our architecture, we
use CaeNet as a feature extractor by extracting features from
the second fully connected layer, which can get features of
4096 dimensions.

3.2.2. VGG-Net-16. VGG-Net [49] achieves the state-of-the-
art accuracy on ILSVRC classi�cation and localization tasks.
Due to the use of very small (3 × 3) convolution �lters in
all layers, the depth of the network can be increased easily
by adding more convolutional layers. �e authors give �ve
con�gurations of VGG-Net, whose depth of weight layers is
from 16 to 19. In our work, we use the VGG-Net-16 model,
whose architecture can be seen in Figure 4(b). �is network
includes thirteen convolutional layers, �ve pooling layers,
and three fully connected layers with a so�max. In our
architecture, we use VGG-Net-16 as a feature extractor by
extracting features from the second fully connected layer,
which can get features of 4096 dimensions.

3.2.3. GoogLeNet. GoogLeNet [22], proposed by Szegedy et
al., is the 22-layer CNN architecture that won the ILSVRC14
competition. �e architecture of this network can be seen in
Figure 4(c). Its main characteristic is the use of the inception
modules, which is derived from the idea of “network in
network.”�e utilization of the inception modules can make
GoogLeNet have two main advantages: (1) in the inception
module, the size of �lters at the same layer is dierent, which
can get more accurate multiscale spatial information; more-
over (2) the design of this module can reduce the number
of parameters of the network, which makes the network less

prone to over�tting and allows it to be deeper. In fact, the
22-layer GoogLeNet with more than 50 convolutional layers
distributed inside the inception modules has approximately
�ve millions of parameters, which is 12 times fewer than
that of CaeNet. In our architecture, we use GoogLeNet as a
feature extractor by extracting features from the last pooling
layer, which can get features of 1024 dimensions.

3.3. Features Fusion. For the original aerial image and the
processed aerial image through saliency detection, we use
the CNN model pretrained on ImageNet to extract features
from the speci�ed layers in the original RGB stream and
the saliency stream. �e fused features which contain rich
information of the image scene can contribute to the process
of classi�cation. How to fuse the two dierent sets of features
is becoming an important issue.

Some methods have been proposed for feature fusion
[50–52]. We select two classical methods for fusing the two
dierent types of features, in aim to get more informative and
signi�cant features to represent the input image.(1) Serial feature fusion strategy is just to concatenate the
two sets of features. �e dimension of the fused features is
equal to the summation of the dimensions of the two sets of
features.(2) Parallel feature fusion strategy is to combine the
two sets of features. Each input image � generated two sets
of features, that is, 1 and 2 representing the two sets of
features. �e �nal fused feature representation is formulated
as

� (�) = 1 (�) + �2 (�) , (11)

where � is the imaginary unit.
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Figure 5: Class representatives of the UC-Merced dataset.

4. Experiments and Analysis

We use the NVIDIA Titan X Pascal GPU (with a 12GBmem-
ory) and 2.0GHz Intel Xeon CPU E5-2683v3 in this exper-
iment. �e proposed architecture is tested on four dier-
ent datasets. Firstly, we give the description of the four data-
sets. Secondly, the setup in our experiments is given. Finally,
the classi�cation performance of the proposed architecture is
compared with the state-of-the-art in the literature.

4.1. Datasets. �e �rst dataset is the well-known UC-Merced
Land Use dataset [31], which consists of 2100 high-resolution
remote sensing images of 21 classes. �e size of each image
scene is 256 × 256 pixels. �e class samples are shown in
Figure 5. �ere are some highly overlapped classes, such as
“dense residential,” “medium residential,” and “sparse resi-
dential,” which make this dataset di�cult for classi�cation.
�is dataset has been widely used to evaluate dierent aerial
scene classi�cation methods. For more information, visit
http://vision.ucmerced.edu/datasets.

�e second dataset is WHU-RS dataset [53], which is
collected from Google Earth imagery. �ere are 950 high-
spatial resolution imageswith 600× 600 pixels divided into 19
classes. �e class samples are shown in Figure 6. �e images
in this dataset are collected from dierent regions all over
the world, which creates more challenges because of its high
diversity. �is dataset has also been widely used to evaluate
dierent aerial scene classi�cation methods. For more infor-
mation, visithttp://dsp.whu.edu.cn/cn/staff/yw/HRSscene.html.

�e third dataset named AID (a new large-scale aerial
image dataset), which is collected fromGoogle Earth imagery
[41]. �ere are a number of 10000 (600 × 600) pixel images
within 30 classes in the AID dataset. Compared with other
remote sensing image datasets, the AID dataset has some
properties which include high intraclass variations, small
interclass dissimilarity, and relative large-scale. Figure 7
shows a sample image for each class included in this dataset.

For more information, visit http://www.lmars.whu.edu.cn/
xia/AID-project.html.

�e fourth dataset is NWPU-RESISC45 dataset, which
contains 31500 images and covers 45 scene classes with 700
images in each class [46]. Figure 8 shows a sample image for
each class included in this dataset. For more information,
visit http://www.escience.cn/people/JunweiHan/NWPU-RE-
SISC45.html. �e AID dataset and the NWPU-RESISC45
dataset are more challenging datasets, which have been used
for testing some high performance aerial scene classi�cation
methods.

4.2. Experimental Setup. For feature extractor selection, we
use CaeNet, VGG-Net-16, andGoogLeNet as feature extrac-
tor, respectively. �ese three networks are all pretrained
on ImageNet [54]. A�er that, we use two fusion strategies
to combine among the extracted features. In classi�cation
section, we use the extreme learning machine.

With regard to training set generation, we adopt two
dierent settings. For the UC-Merced dataset, the ratio of the
number of training set is set to be 50% and 80%, respectively,
and the le� for testing. For theWHU-RSdataset, the ratios are
set to be 40% and 60%, respectively. For the AID dataset, the
ratios are set to be 20% and 50%, respectively. For theNWPU-
RESISC45 dataset, the ratios are �xed at 10% and 20%,
respectively. Considering that CNN requires a prede�ned size
for the input image, all images are resized according to the size
of the receptive �eld of the selected CNN model.

In this paper, we use the overall accuracy to evaluate the
methods.�e evaluation procedure is repeated ten times for a
reliable performance comparison.�e�nal results are report-
ed as the mean and standard deviation over the ten runs. In
this section, we do not make comparisons with the results of
some �ne-tuned networks because our architectures only use
the pretrained networks, which is for the sake of fair compari-
son.

http://vision.ucmerced.edu/datasets
http://dsp.whu.edu.cn/cn/staff/yw/HRSscene.html
http://www.lmars.whu.edu.cn/xia/AID-project.html
http://www.lmars.whu.edu.cn/xia/AID-project.html
http://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html
http://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html
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Figure 6: Class representatives of the WHU-RS dataset.

4.3. UC-Merced Dataset. With regard to the UC-Merced
dataset, we �rst analyze the in�uence of dierent features
extractors and fusion strategies on the classi�cation perfor-
mance. �e experimental results are shown in Table 1. In
Table 1, we can see that the two-stream architectures provide
superior performance compared to the single CNNs without
fusion, which illustrates that data fusion is helping the system
to increase its accuracy. �e serial feature fusion strategy
based architectures provide inferior performance compared
to the parallel feature fusion strategy based architectures
with the same CNN feature extractor. At the same time,
we also see that the features extracted by VGG-Net-16 are
more representative and discriminative. In this dataset, our
best classi�cation accuracy rates are 96.97% and 98.02%,
using 50% and 80% training ratios, respectively. �ese best
results are achieved by the architecture that uses VGG-Net-
16 network and parallel feature fusion strategy.

We also make a comparison of the proposed architec-
ture against several state-of-the-art aerial scene classi�cation
methods on this dataset, as shown in Table 2. As we can see
from Table 2, our architecture outperforms all other aerial

scene classi�cation methods, with an increase in overall
accuracy of 1.08% and 0.60% over the second best model
using 50% and 80% training ratios, respectively. �e good
performance of our method mainly bene�ts from the fusion
of two dierent types of deep convolutional features and the
extreme learning machine.

4.4. WHU-RS Dataset. On the WHU-RS dataset, to evaluate
the in�uence of dierent features extractors and fusion
strategies on the classi�cation performance, we do the same
experiments discussed above for UC-Merced dataset. �e
results are shown in Table 3. �e classi�cation results in
Table 3 once again prove that the parallel feature fusion
strategy is better than the serial feature fusion strategy. On the
40% training ratio, VGG-Net-16 is the best feature extractor,
while CaeNet is the best one on the 60% training ratio.

Table 4 shows the comparison of the classi�cation accu-
racies between our proposed architecture and the other state-
of-the-art methods. As we can see from Table 4, TEX-Net-LF
and DCA by addition are the most competitive approaches.
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Figure 7: Class representatives of the AID dataset.

Table 1: Classi�cation performance of the proposedmethod on theUC-Merced dataset using dierent feature extractors and fusion strategies.

Dierent architectures Feature size
Training ratios

50% 80%

Without fusion (CaeNet(RGB)) 4096 94.60 ± 0.63 95.69 ± 0.91

Without fusion (CaeNet(saliency)) 4096 92.62 ± 0.74 94.04 ± 0.88

Without fusion (VGG-Net-16(RGB)) 4096 94.77 ± 0.73 95.91 ± 1.41

Without fusion (VGG-Net-16(saliency)) 4096 92.82 ± 0.91 94.31 ± 0.99

Without fusion (GoogLeNet(RGB)) 1024 93.31 ± 0.71 94.99 ± 0.78

Without fusion (GoogLeNet(saliency)) 1024 91.32 ± 0.98 93.30 ± 0.55

Fusion strategy 1 (CaeNet) 8192 95.79 ± 0.52 96.83 ± 0.91

Fusion strategy 2 (CaeNet) 4096 96.74 ± 0.49 97.80 ± 0.88

Fusion strategy 1 (VGG-Net-16) 8192 96.02 ± 0.77 97.05 ± 1.00

Fusion strategy 2 (VGG-Net-16) 4096 96.97 ± 0.75 98.02 ± 1.03

Fusion strategy 1 (GoogLeNet) 2048 94.46 ± 0.60 96.17 ± 0.90

Fusion strategy 2 (GoogLeNet) 1024 95.41 ± 0.58 97.12 ± 0.96
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Figure 8: Class representatives of the NWPU-RESISC45 dataset.

TEX-Net-LF is the method described in [43], which con-
structed an architecture where fusing the features obtained
from the texture coded mapped image and the standard RGB
image. DCA by addition is also a fusion method, which used
the �rst and second output fully connected layers of the net-
work and employed the DCA to fuse the two sets of features
[44]. �e �nal experimental results clearly demonstrate that
our architecture achieves the highest classi�cation accuracy
rate than other state-of-the-art methods.

4.5. AID Dataset. On the AID dataset, Table 5 shows the
in�uence of dierent features extractors and fusion strategies
on the classi�cation performance. As we can see fromTable 5,
the parallel feature fusion strategy is the best fusion method
in our architecture. Moreover, using CaeNet and VGG-Net-
16 as feature extractors achieves competitive performance
compared to GoogLeNet.

Table 6 shows the classi�cation performance comparison
of our architecture compared to the state-of-the-art methods.
Our best architecture outperforms all other methods, with
an increase in overall accuracy of 1.45% and 1.62% over the
second best model using 20% and 50% training ratios,
respectively.

4.6. NWPU-RESISC45 Dataset. On the NWPU-RESISC45
dataset, Table 7 shows the in�uence of dierent features
extractors and fusion strategies on the classi�cation perfor-
mance. Table 8 shows the classi�cation performance com-
parison of our architecture compared to the state-of-the-art

methods. Our best architecture uses CaeNet as its feature
extractor and employs the parallel feature fusion strategy,
which achieves remarkable classi�cation results.

From the classi�cation results on all datasets, we can note
that VGG-Net-16 andCaeNet have the similar performance,
while GoogLeNet performs slightly worse. �e CaeNet has
only 8 layers, which is much simpler than the VGG-Net-16
and the GoogLeNet with 16 and 22 layers, respectively. From
this phenomenon, we can conclude that simpler network
performs better. However, we should note that all networks
we used are trained on ImageNet whose images are all natural
images. �us, the deeper network (GoogLeNet) is more suit-
able for processing natural images, which may not be good
at processing aerial scenes.

5. Conclusion

In this letter, we propose a novel two-stream deep fusion
framework for aerial scene classi�cation on high-resolution
remote sensing images. In this framework, we �rstly use
pretrained convolutional neural networks as feature extractor
to learn features from the original aerial image and the pro-
cessed aerial image through saliency detection. �en, the
two sets of deep features extracted from the original RGB
stream and the saliency stream are fused to one set of features.
Finally, the ELM classi�er is used for �nal classi�cation with
the fused features. We test our architecture on four challeng-
ing datasets. In contrast with other state-of-the-art methods,
our proposed architecture can achieve better classi�cation
results.
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Table 2: Comparison with the state-of-the-art methods on the UC-Merced dataset.

Methods
Training ratios

50% 80%

SCK [31] - 72.52

SPCK [32] - 73.14

BoVW [33] - 76.81

BoVW + SCK [31] - 77.71

BRSP [34] - 77.80

SIFT + SC [35] - 81.67 ± 1.23

SSEA [36] - 82.72 ± 1.18

MCMI [37] - 88.20

OverFeat [38] - 90.91 ± 1.19

VLAD [39] - 92.50

VLAT [39] - 94.30

MS-CLBP + FV [40] 88.76 ± 0.79 93.00 ± 1.20

CaeNet [41] 93.98 ± 0.67 95.02 ± 0.81

GoogLeNet [41] 92.70 ± 0.60 94.31 ± 0.89

VGG-VD-16 [41] 94.14 ± 0.69 95.21 ± 1.20

CNN-ELM [27] - 95.62

salM3LBP-CLM [42] 94.21 ± 0.75 95.75 ± 0.80

TEX-Net-LF [43] 95.89 ± 0.37 96.62 ± 0.49

Fusion by addition [44] - 97.42 ± 1.79

Ours 96.97 ± 0.75 98.02 ± 1.03

Table 3: Classi�cation performance of the proposed method on theWHU-RS dataset using dierent feature extractors and fusion strategies.

Dierent architectures Feature size
Training ratios

40% 60%

Without fusion (CaeNet(RGB)) 4096 95.79 ± 1.37 96.87 ± 0.66

Without fusion (CaeNet(saliency)) 4096 93.21 ± 1.55 95.86 ± 0.50

Without fusion (VGG-Net-16(RGB)) 4096 96.09 ± 0.56 96.64 ± 1.08

Without fusion (VGG-Net-16(saliency)) 4096 93.75 ± 0.86 95.55 ± 0.89

Without fusion (GoogLeNet(RGB)) 1024 93.77 ± 0.79 95.32 ± 1.92

Without fusion (GoogLeNet(saliency)) 1024 91.22 ± 0.78 94.10 ± 1.19

Fusion strategy 1 (CaeNet) 8192 96.78 ± 1.02 98.00 ± 0.59

Fusion strategy 2 (CaeNet) 4096 97.74 ± 0.98 98.92 ± 0.52

Fusion strategy 1 (VGG-Net-16) 8192 97.28 ± 0.62 97.81 ± 0.87

Fusion strategy 2 (VGG-Net-16) 4096 98.23 ± 0.56 98.79 ± 0.99

Fusion strategy 1 (GoogLeNet) 2048 94.78 ± 0.77 96.34 ± 1.09

Fusion strategy 2 (GoogLeNet) 1024 95.72 ± 0.87 97.29 ± 1.20

Table 4: Comparison with the state-of-the-art methods on the WHU-RS dataset.

Methods
Training ratios

40% 60%

Bag of SIFT [45] - 85.52 ± 1.23

MS-CLBP + BoVW [40] - 89.29 ± 1.30

GoogLeNet [41] 93.12 ± 0.82 94.71 ± 1.33

VGG-VD-16 [41] 95.44 ± 0.60 96.05 ± 0.91

CaeNet [41] 95.11 ± 1.20 96.24 ± 0.56

salM3LBP-CLM [42] 95.35 ± 0.76 96.38 ± 0.82

TEX-Net-LF [43] 97.61 ± 0.36 98.00 ± 0.52

DCA by addition [44] - 98.70 ± 0.22

Ours 98.23 ± 0.56 98.92 ± 0.52
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Table 5: Classi�cation performance of the proposed method on the AID dataset using dierent feature extractors and fusion strategies.

Dierent architectures Feature size
Training ratios

20% 50%

Without fusion (CaeNet(RGB)) 4096 87.57 ± 0.32 90.22 ± 0.42

Without fusion (CaeNet(saliency)) 4096 84.45 ± 0.28 87.21 ± 0.48

Without fusion (VGG-Net-16(RGB)) 4096 87.24 ± 0.18 90.60 ± 0.31

Without fusion (VGG-Net-16(saliency)) 4096 84.25 ± 0.11 87.62 ± 0.56

Without fusion (GoogLeNet(RGB)) 1024 84.18 ± 0.53 87.15 ± 0.69

Without fusion (GoogLeNet(saliency)) 1024 81.12 ± 0.55 84.28 ± 0.67

Fusion strategy 1 (CaeNet) 8192 92.26 ± 0.52 94.36 ± 0.29

Fusion strategy 2 (CaeNet) 4096 92.32 ± 0.41 94.42 ± 0.33

Fusion strategy 1 (VGG-Net-16) 8192 92.04 ± 0.28 94.53 ± 0.18

Fusion strategy 2 (VGG-Net-16) 4096 92.11 ± 0.31 94.58 ± 0.25

Fusion strategy 1 (GoogLeNet) 2048 89.15 ± 0.45 91.25 ± 0.59

Fusion strategy 2 (GoogLeNet) 1024 89.21 ± 0.39 91.31 ± 0.49

Table 6: Comparison with the state-of-the-art methods on the AID dataset.

Methods
Training ratios

20% 50%

BoVW [42] - 78.66 ± 0.52

MS-CLBP + FV [42] - 86.48 ± 0.27

GoogLeNet [41] 83.44 ± 0.40 86.39 ± 0.55

CaeNet [41] 86.86 ± 0.47 89.53 ± 0.31

VGG-VD-16 [41] 86.59 ± 0.29 89.64 ± 0.36

salM3LBP-CLM [42] 86.92 ± 0.35 89.76 ± 0.45

Fusion by addition [44] - 91.87 ± 0.36

TEX-Net-LF [43] 90.87 ± 0.11 92.96 ± 0.18

Ours 92.32 ± 0.41 94.58 ± 0.25

Table 7: Classi�cation performance of the proposed method on the NWPU-RESISC45 dataset using dierent feature extractors and fusion
strategies.

Dierent architectures Feature size
Training ratios

10% 20%

Without fusion (CaeNet(RGB)) 4096 77.34 ± 0.32 80.54 ± 0.22

Without fusion (CaeNet(saliency)) 4096 75.06 ± 0.51 78.20 ± 0.33

Without fusion (VGG-Net-16(RGB)) 4096 77.10 ± 0.14 80.45 ± 0.31

Without fusion (VGG-Net-16(saliency)) 4096 74.94 ± 0.23 78.09 ± 0.48

Without fusion (GoogLeNet(RGB)) 1024 76.87 ± 0.45 79.12 ± 0.23

Without fusion (GoogLeNet(saliency)) 1024 74.67 ± 0.52 77.04 ± 0.19

Fusion strategy 1 (CaeNet) 8192 80.15 ± 0.23 83.08 ± 0.21

Fusion strategy 2 (CaeNet) 4096 80.22 ± 0.22 83.16 ± 0.18

Fusion strategy 1 (VGG-Net-16) 8192 79.95 ± 0.12 82.96 ± 0.19

Fusion strategy 2 (VGG-Net-16) 4096 80.03 ± 0.19 83.02 ± 0.14

Fusion strategy 1 (GoogLeNet) 2048 79.69 ± 0.47 81.46 ± 0.22

Fusion strategy 2 (GoogLeNet) 1024 79.75 ± 0.41 81.52 ± 0.28
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Table 8: Comparison with the state-of-the-art methods on the NWPU-RESISC45 dataset.

Methods
Training ratios

10% 20%

GIST [46] 15.90 ± 0.23 17.88 ± 0.22

LBP [46] 19.20 ± 0.41 21.74 ± 0.18

Color histograms [46] 24.84 ± 0.22 27.52 ± 0.14

BoVW + SPM [46] 27.83 ± 0.61 32.96 ± 0.47

LLC [46] 38.81 ± 0.23 40.03 ± 0.34

BoVW [46] 41.72 ± 0.21 44.97 ± 0.28

GoogLeNet [46] 76.19 ± 0.38 78.48 ± 0.26

VGGNet-16 [46] 76.47 ± 0.18 79.79 ± 0.15

AlexNet [46] 76.69 ± 0.21 79.85 ± 0.13

Ours 80.22 ± 0.22 83.16 ± 0.18
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