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Abstract

The paper is an attempt to summarize the previous
works of the author on integrating deductive and ab-
ductive reasoning paradigms for solving the classifi-
cation task. A two-tiered reasoning and learning ar-
chitecture in which Case-Based Reasoning (CBR) 
used both as a corrective of the solutions inferred by a
deductive reasoning system and as a method for accu-
mulating and refining knowledge is briefly described.
As illustrative e~Amples the applications of the ap-
proach for problems of the case-bnsed maintenance of
rnie-based systems and for case-based refinement of
neural networks are presented.

Introduction
It has been widely recognized in AI literatures that the
main problem in applying the pure deductive reason-
ing for classifying natural concepts is the inadequacy of
representing them by context-independent, logic-style
way. The approaches to solve the problem by applying
the pure abductive reasoning (e.g. CBR) are based 
the exemplar view for concept representation which is
m~inly criticized for lack of explicit meaningSll def-
initions of the concepts to be classified. Michalski
(Michalski 1990) proposed the two-tiered (TT) rep-
resentation for describing such concepts which is an
attempt to integrate two mentioned above extremes.
A concept is described both by its base representation
(BCR) explicitly definlng main concept characteristics
(e.g. in a form of rules) and by its inferential interpre-
tation (ICR) (in a form of so called flexible matching
procedure) implicitly defining the concept boundaries.
Michalski also proposed a hybrid method for using TT
representation in which the solution is searched either
by applying deductive reasoning to BCR or by abduc-
tive reasoning to ICR.

This paper attempts to summarize some previous
results of the author on the problem of learning the
TT domain representation and to present them in a
form of a two-tiered reasoning and learning architec-

ture (TTRLA) in which CBR is used both as a correc-
tive of the solutions inferred by a deductive reasoning
system and as a method for accumulating and refin-
ing knowledge. As illustrative examples the applica-
tions of the approach for problems of the case-based
maintenance of rule-based systems and for case-based
refinement of neural networks are presented.

Two-Tiered Reasoning and Learning
The TTRLA structure (see Figure 1) consists of three
main parts: a Deductive Reasoning System (DRS),
an Inferential Concept Representation Learner (ICRL)
and a Case-Based Reasoner (CB-Reasoner). It should
be mentioned that we consider the problem of finding
the TT domain representation as a useful metaphor for
the problem of improving the classification accuracy of
a deductive system. From this point of view we assume
that the first tier along with its interpretation are fixed
and implemented as a given DRS. Thus the problem
of learning the first tier (BCR) is left out of the scope
of our interest at present. A direct consequence of this
is the possibility of knowledge included into the BCR
to be not only incomplete but inconsistent as well.

Another consequence of the TT metaphor is a con-
sequent character of the TT reasoning in the proposed
TTRLA. The solution of a new e×ample is initially
searched by a deductive reasoning applied to the first
knowledge tier. The inferred solution is considered as a
general or typical one which needs to be further refined
based on the system own problem solving experience
accumulated during its training or/and maintenance
phases. This experience along with the knowledge of
how to utilize it do form the second - ICR tier of the
TTRLA.

The Inferential Concept Representation
Learner

To learn the second tier ICRL uses domain knowl-
edge, training examples and the DRS problem-solving
model. The tier is represented as a memory of cases
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Figure 1: Two-Tiered Reasoning and Learning Architecture.

connected via indexes to the knowledge of the first tier.
A case is represented as a single information struc-
ture containing the case name, a list of case features
(attribute - value pairs) and the case solution. The
Learner should decide i) what training examples are
worth to be transformed and stored into the memory
as useful past cases, ii) how the memory should be in-
dexed to retrieve only relevant to the current situation
cases and iii) how to recognize potentially "d~-gerous"
situations in which the DRS solutions need to be mod-
ified. The Learner should also be able to choose an
appropriate metrics for measuring similarity between
the problem at hand and the retrieved past cases.

The Case-Based Reasoner

The Reasoner processes the example to be solved
(which description may be augmented during the de-
ductive problem solving) and its solution found by the
DRS. The CB-reasoner architecture is an instance of
the general architecture of a case-based planer adapted
for solving the classification task (Hammond 1989;
Agre 1995). The crucial points in its operation are
the failure prediction, case retrieval and conflict recon-
ciling.

Failure Prediction The process of searching a so-
lution by means of the second tier starts only when the
current situation is recognized as "dangerous", i.e. if
there is a sufllciently convincing evidence that the solu-
tion inferred by DRS is wrong. This prediction process
is based on comparing the DRS solution to the set of
failure predictors formed by ICRL and extended by the
Repairer. The roles of such predictors are played by
the DRS solutions of the tr~|nlng examples included
in the case memory (if such examples are available)

and/or by the TTRLA solutions recognized as wrong
by the user. In other words, the fact that the DRS
h~s inferred once an erroneous solution is considered
as a sui~cient!.y convincing evidence for suspecting the
system each time it infers the same solution of another
problem. Conversely, if a DRS solution of a new prob-
lem is different from the known failure predictors, there
are no reasons to "suspect" the system and its solution
is accepted without any doubt.

Case Retrieval and Conflict Reconciling The
success of integrated approaches combining several
problem-solving paradigms crucially depends on the
scheme for reconciling the conflicts between them.
Most of the proposed methods (see e.g. (Golding 
Rosenbloom 1991) for integration of CBR with rule-
based reasoning) use a threshold scheme in which the
threshold values are selected ad hoc. We overcome this
deficiency by forming a proper set of cases to be re-
trieved. In this set we include not only the cases re-
jecting the proposed DRS solution but also the cases
confirming it. In such a way the retrieval set reflects
the TTRLA problem solving experience and restricts
the search space only to the relevant (from the system
point of view) cases.

Case-Based MaintenAnce of Rule-Based

System

The first application of the described above TTRLA
is to the task of improving a rule-base system (RBS)
problem-solving behavior in the course of its opera-
tion (Agre 1995) - an important part of the adaptive
maintenance task (Coenen & Bench-Capon 1993). The
main characteristic of the task is that the RBS tr~inlug
examples are assumed to be unknown.
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The First Tier

The first tier knowledge is represented as fiat nonprob-
abilistic rules directly associating conjunctions of the
problem features with problem solutions. A feature is
a nominal attribute-value pair.

The RBS problem-solving behavior is modeled as a
hypothesis driven process in which forward chaining is
used for generation of a list of differential hypotheses
(possible solutions) and backward chaining - for test-
ing them. A hypothesis is considered to be confirmed
if there is a satisfied rule having the solution as its con-
clusion and to be rejected if all rules leading to it have
failed. The system stops its operation either if a con-
firmed hypothesis has been found or if all generated
hypotheses have been tested and rejected.

The Second Tier

The second tier consists of cases solved by the system
in the course of its operation and a case matching pro-
cedure.

Indexing Scheme Cases are indexed by all possible
roles they may play in the rule-based reasoning. Each
solved case may be indexed as true or false negative by
each hypothesis rejected during problem solving and as
true or false positive by the rule inferred the solution.
A special index - untested - is used to specify a failure
mused by an inappropriate application of the domain
knowledge rather than by its incorrectness. Such kind
of failures may occur as a result of some deficiencies
in the mechanism of formation of a list of differential
hypotheses or because of erroneous termination of the
process of hypotheses testing.

Case Matching The case matching procedure is or-
ganized as a Nearest Neighbor algorithm using a case
weighted distance A(X(C),Y) = Wx * 5(X(C),Y),
where:

zj -yj = 1 if zj # yj and zj -yj = 0 otherwise.
For missing values (zj - yj)2 __ ~, (1 

ZT)’ where
Lj is the number of possible values of j-th attribute.

X(C) denotes a case belonging to class C and Y - a
new example to be classified, zj(yj) is the value ofj-th
attribute of X (Y). Art(C) denotes a set of relevant
attribute for class C which is defined as the union of all
attributes which the rules corresponding to this class
refer to. In such a way we avoid the influence of any
redundant (for a particular class) features. Weight 
denotes the importance of j-th attribute of the case

and is calculated as the ratio of the number of all rules
containing this attribute to the whole number of rules.

Weight Wx of a stored case X is defined as a value
reciprocal of the case typicality and calculated as pro-
posed in (Zhang 1992). When more than one best case
belonging to different classes are found the most typical
one (i.e. with the minimum value of W) is preferred.

Selection of Cases to be Retrieved The retrieval
set is determined by comparing the main characteris-
tics of the current situation (the rule inferred the solu-
tion and the set of rejected hypotheses) with indexes
connecting them to the stored cases. The set is formed
by the exceptional cases rejecting the particul~x rule
and by the cases confirming the rule. Since the set of
such "confirming" cases may be empty the correspond-
ing rule treated as a case is also retrieved.

In a situation when no rule-based solution is found
all rules associated with the rejected hypotheses are
retrieved along with all solved cases uncovered by the
corresponding rules.

Learning the Second Tier All cases erroneously
solved by the .system are stored. Such cases are in-
dexed as false positive or true negative w.r.t, the faulty
system solution and false negative, true positive or
untested (depending on the results of the failure anal-
ysis made by the CB-reasoner) w.r.t, the real solution
of the problem. The solved case is also indexed as true
negative w.r.t, all hypotheses tested and rejected by
the system during problem solving session.

A case successfully solved by the system is stored
only if its solution has been found as a result of recon-
ciling a conflict between the paradigms and an identi-
cal case has not been stored. Such cases confirm the
correctness of applying the concrete rule or using the
concrete case to obtain the problem solution. For each
newly stored case the value of weight W reflecting the
case typicality is calculated.

Empirical Evaluation

The approach was implemented in the experimental
system CoRCase (Correcting Rules by Cases) and
tested on two medical domain, - prognosis of breast
cancer recurrence (BC) and location of primary tumor
(PT) - well known in ML community benchmark data
bases I. The main ch_axacteristics of these databases
are summarized in Table 1. (Both bases contain ex-
amples with missing values of some attributes).

The results were evaluated using the random sub-
sampling strategy (Weiss & Kulikowsld 1990). Each

IThe data was prepared by M. Zwitter and M. Soklic
from the University Medical Center, Institute of Oncology,
Ljubljana, Slovenia.
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Domoin Exomple. G-’las#e.
Athr. I V~/Aar I

BC 286 2 9 5.8 IPT SS9 22 17 2.2

Table I: Main characteristics of the databases used in
empirical evaluation,

oo,,,o+,, ,+sm CA+, I TO"’+" I C+’+ I Co C--I
102.0"I’0.6

70.2+2.3 70.6 -I- 1.4 71.3 -.I- 3.0
34.7-I-4.2 33.5-I-1.8 33.I -’I- 2.0 37.0 -.I- 1.6

Table 2: Classification accuracy (%) of the tested
problem-solving methods.

database was randomly split into two non-overlapping
subsets, one fur training (70% of examples) and one
for testing (30% of examples). The experiments were
repeated ten times for different splits and the results
were averaged.

The training sets were used to induce the corre-
sponding sets of rules. Two algorithms of different
types were used to simulate the rules. The first one was
an ID3-1ike algorithm inducing discriminating rules
and the second one was an AQ-type one producing
covering rules.

To evaluate the contribution of CBR and RBR to
the fiinA! classification accuracy of the system four dif-
ferent algorithms for problem solving were tested. The
first one was pure RBR. In the second algorithm the
solution was searched by matching a problem at hand
against the rules treated as cases. In this algorithm
(named TC-search) no testing cases had been stored.
The third algorithm was an incremental extension of
the second one. In this algorithm each solved case had
been stored and then used fur searching solution of
the next problem. The algorithm may be seen as a
naive CBR method for problem solving with exhaus-
tive search in the case space. And the last algorithm
was an implementation of the TT reasoning method
described in this section. The average accuracy and
standard deviations obtained are presented in Table
22.

The results of the experiments indicate that the best
accuracy is achieved by the proposed scheme for combi-
nation of rules and cases. It is particularly interesting
that on the PT database both the TC-search and the
naive CBR methods used separately have worse perfor-
mance than RBR. It proves once again the effectiveness
of the indexing scheme used in the proposed algorithm
which allows to retrieve for matching comparatively
relevant cases.

2See (Agre 1995) for more detailed description and eval-
uation of the experimental results.

Case-Based Refinement of Neural
Networks

The second application of the proposed architecture
was to the problem of case-based refinement of neural
networks (NN) (Agre & Koprinska 1996). Our 
goal was to study the potential of CBR for further
improvement of a trained NN. That is why in that
application only a part of the CB-reasoner architecture
was used (Analyzer, Retriever and Modifier).

The First Tier

The first tier is represented as a trained NN. In order
to not restrict the applicability of the proposed ap-
proach we consider the net as a "black bc~" described
only by its input-output behavior. Thus the set of NN
training examples along with the information how they
have been solved by NN after completion of its training
phase are used as an implicit problem-solving model of
the network.

The Second Tier

The second tier is represented as a case base consisting
of the NN training examples. A case is represented by
a list of (normalized) attribute-value pairs and its real
solution (classification). Each case is indexed both 
its real and NN solutions. If an example has been
correctly classified it is considered as a "typical" case,
otherwise - as an "exceptional" one.

The case matching procedure is implemented as a
Nearest Neighbor algorithm which uses the weighted
Euclidean distance:

A(X,Y) = ,wi \max+ ra in+/
i=1

where n is the number of attributes describing a case,
zi and Yi stand for the values of i-th attribute for cases
X and Y, and mazi and mini - fur the maximal and
minimal values of i-th attribute.

The attribute weights wi are calculated by using
a variant of the ReliefF algorithm (Kononenko 
Robnik-Sikonia 1996).

Empirical Evaluation

The approach was implemented in an experimental sys-
tem CorNCase2 (Correction Network by Cases 
version 2). The system was tested on four well-known
ML benchmark databases described by numerical at-
tributes- glass (GL), diabetes (DB), breast cancer
(BC)s and iris (IR) (Merz & Murphy 1996) (see 
ble 3).

SMiesing values were replaced with the most frequently
occurring values for the respected attributes.
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Domain Examples Atts. Classes Missin$ (%)
BC 699 I0 2 2.2
DB 145 5 3 0.0
GL 214 9 6 0.0
IR 150 4 3 0.0

Table 3: Main characteristics of the databases used in
the empirical evaluation.

Domain TBRBF 1NN ReliefF-1NN CorNCase2
BC 95.5 + 1.2 95.6 :t: 1.1 95.8 + 1.2 96.3~1.2
DB 91.9 "4- 4.1 93.9 -4- 4.4 94.4 -4- 3.3 92.3~4.0
GL 70.2 d: 4.6 69.5 d: 6.5 70.6 + 6.2 ~.0±6.8
IR 97.1 i 2.3 95.3 :t: 1.9 96.4 -4- 2.1 97.3~1.7

Table 4: Classification accuracy (%) on the test data
bases used in the experiments.

Each database was randomly split into two non-
overlapping subsets, one for training (70% of exam-
pies) and one for testing (30% of examples). The 
periments were repeated ten times for different splits
and the results were averaged.

The TB-RBF system (Kubat & Ivanova 1995) was
selected as an instance of NN. TB-RBF uses domain
knowledge in the form of decision trees (or rules) 
define the topology of a radial basis function network.
Each class is mapped to an output node, each attribute
- to an input node and the hidden nodes correspond to
the branches of the tree. To evaluate the CorNCase2
behavior we also tested weighted (ReliefF-1NN) and
unweighted variants of the Nearest Neighbor (1NN)
algorithm working on the TB-RBF training set. The
average accuracy and standard deviations obtained are
presented in Table 4.

It can be seen that CorNCase2 outperforms TB-RBF
in all databases. Moreover, in three of them (BC, GL
and LD) the proposed integrated method outperforms
both problem-solving paradigms used in the integra-
tion. These results prove the effectiveness of the pro-
posed scheme for indexing and retrieving cases.

Discussion and Related Works
The idea of TT concept representation proposed
by Michalski was further elaborated (Zhang 1991;
Bergadano et al. 1992) and applied not only for rules
but also for decision trees (Kubat 1996) and neural
networks (Sun 1995). From this point of view the pro-
posed architecture may be seen as a tool for incremen-
tal learning the TT domain representation. The main
differences from other methods solving similar tasks
are as follows:

First, in our approach there is no need to learn the
first tier, as a consequence it may contain not only
incomplete but incorrect knowledge as well.

Second, in contrast to some other approaches us-
ing rules for representing the first tier our case match-
ing procedure does not need the tr~inlng examples the
rules were generated from. The proposed similarity
measure uses only the domain knowledge encoded into
the rules. This allows to apply the method to im-
prove performance of classification rules independently
on the way of their construction.

Third, the approach is incremental enabling to refine
the domain description by storing some of newly solved
cases as a part of the second tier. These cases along
with the indexing information reflecting the roles they
played in the problem solving, may be further used for
real refinement of the first tier.

The proposed architecture may be considered in a
broader context of hybrid systems integrating different
problem solving and learning paradigms (e.g. (Plaza
eta/. 1993; Domlngos 1996) etc). From this point
of view the main characteristics of the approach are
the consequent organization of integrated reasoning in
which CBR is-used for correcting solutions inferred by
a deductive system. The method for conflict recon-
ciling may be considered as an extension of the one
proposed in (Golding & Rosenbloom 1991) and based
on an available model of DRS. The necessity of using
heuristically defined threshold values playing an im-
portant role for determining the CBR solution in such
kind of methods is avoided by a proper selection of
the retrieval set containing cases not only rejecting a
deductively inferred solution but construing it as well.

Finally, the architecture may be viewed as an ap-
proach for building a new generation knowledge-based
systems (KBS). In the current stage of the informa-
tion technology the great part of the international ex-
perience in the KBS development is available in an
electronic form as i) databases with unexplained ex-
amples of problems solved in a concrete domain; ii)
knowledge acquired during building a concrete KBS iii)
KBS shells intended to solve some fixed task(s) based
on a concrete formalism of knowledge representation
and a model of knowledge processing (KBS model).
The availability of such knowledge components radi-
caliy changes the modern technology of KBS develop-
ment. The emphasis now is on analyzing, identifying
and adapting the already developed components rather
then on the development of a KBS "from scratch".

The proposed architecture allows us re-using avail-
able knowledge components by adapting them to an
implicit requirement for advanced KBS - a possibility
to operate in a real (open) environment.

128



Conclusion and Future Work

In this paper a two-tiered reasoning and learning archi-
tecture is presented. The integrated reasoning process
is sequential - the initial solution is inferred by a deduc-
tive reasoning system which plays a role of the first tier,
and then this solution is modified (when necessary) 
the second tier designed aa a case-baaed reasoning sys-
tem. Both tiers are connected by an indexing schema
based on an available problem-solving model of the first
tier. Two applications of the architecture - for improv-
ing the classification behavior of a rule-based system
and a neural network - are briefly described.

The problem of providing a more tight integration of
neural networks with CBR is still one of the future di-
rections of our work. The solution will be searched for
exploring more sophisticated problem-solving model of
a NN. Regarding the classification on problems for
multiple classifier combination (Xu, Krzyzuk, & Suen
1992) our current approach has solved the first type
combination problem i.e. a combination based on the
abstract level of classifier output information. In the
future we intend to design an integration, based on the
classifier output information of the measurement level
(the combination problem of the third type).
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