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Abstract. In this paper an approximation scheme is developed for the solution of the linear
quadratic Gaussian (LQG) control on a finite time interval for hereditary systems with multiple
noncommensurate delays and distributed delay. The solution here proposed is achieved by means
of two approximating subspaces: the first one to approximate the Riccati equation for control and
the second one to approximate the filtering equations. Since the approximating subspaces have
finite dimension, the resulting equations can be implemented. The convergence of the approximated
control law to the optimal one is proved. Simulation results are reported on a wind tunnel model,
showing the high performance of the method.
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1. Introduction. It is well known that the solution of the linear quadratic regu-
lation problem and of the optimal Gaussian filtering problem for linear delay systems
is found in terms of infinite dimensional operators [7, 8, 9, 10, 11, 12, 13, 17, 23, 31,
36, 37, 39]. On the other hand, implementation of a control/filtering scheme in this
case requires a finite dimensional approximation of such operators.

Although much attention has been devoted to separately developing an approxi-
mation theory for the linear quadratic (LQ) regulation [4, 11, 12, 16, 24, 26, 27, 30,
33, 40] and the optimal Gaussian filtering [14, 20] of delay systems, the approxima-
tion problem of the overall linear quadratic Gaussian (LQG) regulator has not been
conveniently treated in the literature.

The averaging approximation scheme has been used in [24], for both the finite and
infinite horizon LQ problem of delay systems, and convergence results are obtained by
considering a conjecture, later proved to be true [41], that is the question of whether
the sequence of approximating systems gives uniformly exponentially stable systems
for sufficiently large indexes if the underlying retarded functional differential equation
is stable.

The spline approximation scheme developed in [3] has been applied to the LQ
problem of delay systems in [4]. Although numerical simulations show better per-
formance than the averaging scheme, no theoretical convergence results are so far
available. In [6], it is proved that the adjoint of the approximate semigroup governing
the system does not converge in a strong way to the adjoint of such semigroup. As
a consequence, the main hypothesis which guarantees the convergence results in [24]
cannot be satisfied, and therefore this spline approximation scheme cannot be safely
applied.

A new spline approximation scheme has been developed in [27], for the LQ prob-
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lem of delay systems with any number of pure delay terms, assuming the absolute
continuity of the kernel in the distributed delay integral. Theoretical convergence
results are obtained in the finite horizon case, as this approximation scheme does not
guarantee the uniform exponential stability of the approximate semigroups. However,
it is proved in [28, 29] that, in the case of commensurate delays and without dis-
tributed delay, a weaker condition is sufficient to obtain the strong convergence of the
approximated LQ algebraic Riccati equation solution. The authors call this condition
uniform output stability. It is proved that the spline approximation scheme developed
in [27] does satisfy this condition, so that the above convergence result is available
for the infinite horizon case. But, as pointed out by Morris on page 9 of paper [36],
the convergence properties of this approximation scheme are not sufficient to ensure
convergence of the closed loop response.

In [40], a piecewise linear approximation theory has been developed for the finite
and infinite horizon LQ of general delay systems. Theoretical convergence results are
obtained both in the finite and infinite horizon cases, as the condition of uniform
exponential stability is verified.

In [32] error estimates are established for the approximation of delay systems by
means of the averaging scheme. In [26] a scheme using first order splines is developed
satisfying the uniform exponential stability condition, and error estimates are estab-
lished too, as is done in [32] for the averaging scheme. Such a scheme uses the classic
averaging subspace of piecewise constant functions to define the approximated sys-
tem equation, but defines the approximated infinitesimal generator in that subspace
not in the usual averaging methodology but by using an inverse projector from such
subspace to the subspace built up using splines. Such a scheme, which is a mixed
averaging spline one, is used in [26] for the infinite horizon LQ problem of general
hereditary systems.

The matter of uniform exponential stability for spline approximation schemes
has been investigated in [15], in the scalar open loop case. There the real eigenvalue
(unique if the coefficient on delay term is positive, in the hereditary equation) of the in-
finitesimal generator of the semigroup governing the system is used, in order to define
a particular inner product, by which Galerkin spline approximations [3] preserve the
uniform exponential stability of the approximated semigroups. How this can be ap-
plied to optimal multivariables regulator problems is an open and interesting question.

In the synthesis of approximate optimal controllers developed by all above approx-
imation schemes [4, 24, 26, 27, 40] it is assumed that the system state is completely
accessible. Moreover, the approximated control input is generated by a finite rank
feedback operator applied to the true state in the delay time interval. From an engi-
neering point of view, the resulting controller is still infinite dimensional and therefore
not directly implementable.

The synthesis of finite dimensional dynamic output feedback compensators for
hereditary systems in a deterministic setting is considered in paper [25, section 4.2].
The proposed controller is composed of an observer and of a feedback control law from
the observed state. Both the gains, for the finite dimensional observer and control,
are obtained by approximating the solutions of two algebraic Riccati equations. The
resulting controller resembles the solution of an LQG problem, although no reference
to an optimal stochastic control problem is made in the paper. The main tool is the
use of the averaging approximation scheme [2, 24] and the main result is the stability
of the overall closed loop system.

In [35] the same problem is investigated with reference to a general class of de-
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terministic distributed systems.
An approximation theory that provides an implementable scheme for the filtering

problem of systems evolving on Hilbert spaces has been studied in [14, 18, 20, 22].
This theory has been successfully applied to delay systems.

In the literature the case with one pure delay term is usually completely reported
[2, 24, 28, 29, 40] and the general case with multiple noncommensurate delays is
usually just briefly indicated. However, the extension of all results to the general case
is not straightforward [2, 3, 24, 40] or even unfeasible [28, 29].

As a final point of this bibliographic review, we must stress the existence of a
large amount of spline approximation schemes [3, 4, 26, 27, 40] for the deterministic
optimal quadratic state regulator (LQ problem), where the control gain operator is
approximated by approximating the relevant Riccati equation. In principle, the same
approximation schemes could be adapted for approximating the covariance operator
defined by the solution of the dual Riccati equation, and the Kalman filter equation
that solves the LQG problem in the stochastic setting. On the other hand, the
applicability of such schemes to the case of stochastic delay systems with partial
noisy state observations is not a trivial question and it has not been investigated up
to now, and the main problem of proving the convergence remains unsolved.

The control problem with partial state observation has been treated in literature
employing the averaging scheme in a deterministic setting [25]. On the other hand,
a known result [4] is the superiority of spline approximation schemes with respect to
averaging ones, with respect to numerical convergence rate.

On the basis of these considerations the aim of this paper is to define a finite di-
mensional scheme that approximates the solution of the finite horizon linear quadratic
Gaussian control problem for stochastic delay systems with partial observations. The
resulting implementable scheme has the following features:

(i) the optimal closed loop response of the LQG problem can be approximated
with arbitrarily small error;

(ii) the scheme can be applied also in the LQ problem;
(iii) the approximation method is based on splines and not on averaging;
(iv) the matrices that implement the approximation of the optimal filter-controller

scheme are easily parametrized as a function of the approximation order and
can be easily computed;

(v) the scheme allows one to deal with general hereditary systems, that is, with
multiple noncommensurate delays and distributed delay;

(vi) simultaneous approximation of a semigroup and of its adjoint is not required,
so that problems arising from nondensity of the intersection of the respective
generator domains are avoided;

(vii) the scheme allows a quite natural extension to be used for the solution of the
infinite horizon LQG problem;

(viii) the scheme has nice numerical properties, in that it shows good performances
even with a low finite dimensional approximation order;

(ix) the scheme allows one to get a faster convergence of the approximation by
increasing the order of the spline degree.

Of course for most of the above-mentioned points, the scientific literature offers
effective algorithms. Nevertheless, the problem of considering all these issues at the
same time remains an interesting point.

The paper is organized as follows. In section 2 stochastic hereditary systems
are written in state-space form and the infinitesimal generator of the adjoint of the
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semigroup that governs the system is studied. It is proved that such an operator has
a deeply different structure if a weighted inner product is used instead of the usual
one. In section 3 the finite horizon LQG is presented, and theorems for a suitable ap-
proximation scheme are proved. In section 4 an approximation scheme which satisfies
hypotheses of section 3 is described for the general case. In section 5 matrices which
represent finite dimensional linear operators are calculated to implement the method.
In section 6 the infinite horizon case is addressed. In section 7 simulation results are
reported, showing the effectiveness of the proposed method. Section 8 contains the
conclusions.

2. Stochastic delay systems. In this paper we deal with the class of those
dynamical systems that in technical literature are generally known as linear delay
systems, sometimes also called hereditary systems. When state and observation noise
are present, these are described, for t ≥ 0, by stochastic equations of the type

ż(t) = A0z(t) +

δ∑

h=1

Ahz(t− rh)(2.1)

+

∫ 0

−r

A01(ϑ)z(t+ ϑ)dϑ+ B0u(t) + F 0ω(t),

y(t) = C0z(t) + Gω(t)

with z(t) ∈ R
N , u(t) ∈ R

p, y(t) ∈ R
q, ω(t) ∈ R

s, rδ = r > rδ−1 > · · · r1 > r0 = 0,
Ah ∈ R

N×N , A01 ∈ L2([−r, 0];RN×N ), B0 ∈ R
N×p, C0 ∈ R

q×N , G ∈ R
q×s, F 0 ∈

R
N×s.

The noise ω belongs to the Hilbert space L2([0, tf ];R
s) equipped with the stan-

dard Gaussian cylinder measure (this corresponds to model ω as a white-noise process
[1]). Independence of state and observation noises is assumed, that is, F 0G

T = 0

and, without loss of generality, GGT = Iq, where Iq denotes the identity matrix in
R
q×q.

The variable z in the interval [−r, 0] is assumed to be generated as follows:

z(ϑ) = z̄(ϑ) +

∫ 0

−r

k(ϑ, τ)ω̄(τ)dτ, ϑ ∈ [−r, 0],(2.2)

where z̄ is absolutely continuous with derivative in L2([−r, 0];RN ) and the process
ω̄, independent of ω, belongs to the Hilbert space L2([−r, 0];Rs̄) equipped with the
standard Gaussian cylinder measure, and the kernel k(ϑ, τ) is integrable for τ ∈
[−r, 0].

As is well known, system (2.1) can be rewritten in state-space form in the Hilbert
space M2 = R

N×L2([−r, 0];RN ), endowed with the following weighted inner product
[3]:

([
x0

x1

]
,

[
y0

y1

])

M 2

= xT
0 y0 +

∫ 0

−r

xT
1 (ϑ)y1(ϑ)g(ϑ)dϑ,(2.3)

where g(ϑ) is the piecewise constant nondecreasing function defined as

g(ϑ) = χ[−rδ,−rδ−1](ϑ) +

δ−1∑

j=1

(δ − j + 1)χ(−rj ,−rj−1](ϑ),(2.4)

where χS denotes the characteristic function of the interval S.
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Here and in the following the standard assumption is made that summations
vanish when the upper limit is smaller than the lower one (e.g., δ = 1 in (2.4)).

In this paper, for the sake of brevity and whenever it does not cause confusion,
the space L2([−r, 0];RN ) will be simply indicated as L2. In the same way Ck will
denote the space Ck([−r, 0];RN ) of functions with values in R

N that have continuous
derivatives until order k, while the symbol W 1,2 will indicate the space of absolutely
continuous functions from [−r, 0] in R

N , with derivative in L2.
In M2 the system (2.1), (2.2) assumes the form

ẋ(t) = Ax(t) + Bu(t) + Fω(t), x(0) =

[
z̄(0)

z̄

]
+

[
L0

L1

]
ω̄,(2.5)

y(t) = Cx(t) + Gω(t),(2.6)

where A : D(A) �→ M2 is defined as

A

[
x0

x1

]
=




A0x0 +

δ∑

h=1

Ahx1(−rh) +

∫ 0

−r

A01(ϑ)x1(ϑ)dϑ

d

dϑ
x1


(2.7)

with domain

D(A) =

{[
x0

x1

] ∣∣∣
x0 ∈ R

N

x1 ∈ W 1,2
x0 = x1(0)

}
,(2.8)

and the linear operators B,C,F are defined as

B : R
p �→ M2, Bu(t) =

[
B0u(t)

0

]
,(2.9)

C : M2 �→ R
q, C

[
x0

x1

]
= C0x0,(2.10)

F : R
s �→ M2, Fω(t) =

[
F 0 ω(t)

0

]
.(2.11)

The Hilbert–Schmidt operator L =
[
L0

L1

]
, which defines the stochastic initial state

x(0), derives from definition (2.2) and is defined as follows:

L0 : L2([−r, 0];Rs̄) �→ R
N ; L0ω =

∫ 0

−r

k(0, τ)ω̄(τ)dτ,

L1 : L2([−r, 0];Rs̄) �→ W 1,2; L1ω(ϑ) =

∫ 0

−r

k(ϑ, τ)ω̄(τ)dτ.

(2.12)

The mean value and nuclear covariance of the initial state x0 are as follows:

x̄0 =

[
z̄(0)

z̄

]
, P 0 = LL∗.(2.13)
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Remark 2.1. Note that the weighted scalar product (2.3), (2.4) assures that there
exist real α such that A−αI has the nice property to be dissipative [3]. This property
is used in the paper to prove the convergence of the approximation scheme.

For the reader’s convenience, the definitions of some operators related to the
system (2.5), (2.6) that will be extensively used in the paper are reported below.

Proposition 2.2. The operators B∗, C∗, F ∗, BB∗, C∗C, FF ∗, and A∗ are
as follows:

B∗ : M2 �→ R
p, B∗

[
x0

x1

]
= BT

0 x0;(2.14)

C∗ : R
q �→ M2, C∗y =

[
CT

0 y

0

]
;(2.15)

F ∗ : M2 �→ R
s, F ∗

[
x0

x1

]
=

[
F T

0 x0

0

]
;(2.16)

BB∗ : M2 �→ M2, BB∗

[
x0

x1

]
=

[
B0B

T
0 x0

0

]
;(2.17)

C∗C : M2 �→ M2, C∗C

[
x0

x1

]
=

[
CT

0 C0x0

0

]
;(2.18)

FF ∗ : M2 �→ M2, FF ∗

[
x0

x1

]
=

[
F 0F

T
0 x0

0

]
;(2.19)

A∗ : D(A∗) �→ M2,

A∗

[
y0

y1

]
=




δ y1(0) + AT
0 y0

1

g
AT

01y0 −
d

dϑ


y1 −

δ−1∑

j=1

kj(y0,y1)χ[−r,−rj ]





 ,(2.20)

with dense domain

D(A∗) =








y0

y1



∣∣∣

y0 ∈ R
N , AT

δ y0 = y1(−r),
y1 −

δ−1∑

j=1

kj(y0,y1)χ[−r,−rj ]


 ∈ W 1,2





,(2.21)

where

kj(y0,y1) =
y1(−rj)− AT

j y0

δ − j + 1
, j = 1, . . . , δ − 1.(2.22)

The proof that the operator defined by (2.20), (2.21), (2.22) is in fact the adjoint
of operator A is reported in appendix.

Remark 2.3. The difference between the case of just one pure delay and of
multiple pure delays is given by summations in (2.20), (2.21), which vanish in the
first case and complicate the analysis very much in the second one.
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3. The finite horizon LQG for delay systems. In this section the problem
of defining a feedback control law for the stochastic delay system (2.1), (2.2) is con-
sidered. In particular we are interested in the problem of synthesizing the control law
that minimizes the cost functional

Jf (u) =

∫ tf

0

E[zT(t)Q0z(t) + uT(t)u(t)]dt,(3.1)

with 0 < tf < ∞, where matrix Q0 is symmetric nonnegative definite. It can be
readily recognized that the functional (3.1) admits the following representation in
M2:

Jf (u) =

∫ tf

0

E[
(
Qx(t),x(t)

)
+ uT(t)u(t)]dt,(3.2)

where Q : M2 �→ M2 is defined as

Q

[
x0

x1

]
=

[
Q0x0

0

]
(3.3)

and x(t) satisfies system equations (2.5), (2.6). The solution of this problem, as is
well known, is the classical LQG controller given by the following equations [1]:

u(t) = −B∗R(tf − t)x̂(t),(3.4)

R(t) =

∫ t

0

T ∗(t− τ)[Q − R(τ)BB∗R(τ)]T (t− τ)dτ,(3.5)

x̂(t) = T (t)x̂0 +

∫ t

0

T (t− τ) [P (τ)C∗[y(τ)− Cx̂(τ)] + Bu(τ)] dτ,(3.6)

P (t) = T (t)P 0T
∗(t) +

∫ t

0

T (t− τ)[FF ∗ − P (τ)C∗CP (τ)]T ∗(t− τ)dτ,(3.7)

where T (t) is the semigroup governing the system, that is, the semigroup generated
by the operator A in (2.7), (2.8), and x̂0 and P 0 are the expected value and the
covariance operator of the initial state x(0) in M2, respectively. The solution given
by these equations is a very important result only from a theoretical point of view.
For our purposes we need to recall that the solutions of the Riccati equations (3.5),
(3.7) evolve in the Hilbert space of Hilbert–Schmidt operators and moreover, for every
tf < ∞, there exist constants KP and KR such that [20]

sup
t∈[0,tf ]

‖P (t)‖H.S. = KP < ∞,

sup
t∈[0,tf ]

‖R(t)‖H.S. = KR < ∞,
(3.8)

where, as usual, ‖ · ‖H.S. denotes the Hilbert–Schmidt norm [1].
In engineering applications, due to its infinite dimensional nature, such a solution

is not directly implementable. Therefore it becomes important to investigate when
such a solution admits a finite dimensional approximation.

Throughout the paper, given a Hilbert space X and a closed subspace S ⊂ X ,
the orthogonal projection operator from X to S will be denoted as ΠS .
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In the next lemma, the linear space of bounded operators on a Hilbert space H
is denoted L(H).

Lemma 3.1. Let H1, H2 be separable Hilbert spaces. Let {Gm(t), t ∈ [0, tf ]}
be a sequence of strongly continuous L(H2) valued functions, strongly convergent to
{G(t), t ∈ [0, tf ]}, uniformly on [0, tf ]. Let K be a compact subset in the Hilbert space
of Hilbert–Schmidt operators mapping H1 to H2.

Then ‖Gm(t)N −G(t)N‖H.S. converges to zero, uniformly with respect to N ∈ K
and t ∈ [0, tf ].

Proof. See [20].
Lemma 3.2. Let H1 and H2 be separable Hilbert spaces. Let G(t) be a semi-

group on H2 and Gn(t) a sequence of semigroups on H2 strongly convergent to G(t)
uniformly with respect to t ∈ [0, tf ]. For 0 ≤ τ ≤ t, let Γ(t, τ) be the mild evolution
operator

Γ(t, τ) = G(t− τ) +

∫ t

τ

G(t− ϑ)Op(ϑ)Γ(ϑ, τ)dϑ,(3.9)

where Op ∈ C ([0, tf ];L(H2)) and let Γn(t, τ) be the sequence of mild evolution oper-
ators

Γn(t, τ) = Gn(t− τ) +

∫ t

τ

Gn(t− ϑ)Opn(ϑ)Γn(ϑ, τ)dϑ,(3.10)

where Opn ∈ C ([0, tf ];L(H2)) converges pointwise strongly to Op, uniformly in [0, tf ].
Let K be a compact subset in the Hilbert space of Hilbert–Schmidt operators mapping
H1 to H2.

Then ‖Γ(t, τ)N−Γn(t, τ)N‖H.S. converges to zero, uniformly with respect to N ∈
K and 0 ≤ τ ≤ t ≤ tf .

Proof. It is

‖Γ(t, τ)N − Γn(t, τ)N‖H.S. ≤ ‖G(t− τ)N −Gn(t− τ)N‖H.S.

+

∫ t

τ

‖G(t− ϑ)Op(ϑ)‖ · ‖Γ(ϑ, τ)N − Γn(ϑ, τ)N‖H.S.dϑ

+

∫ t

τ

‖G(t− ϑ)Op(ϑ)−Gn(t− ϑ)Opn(ϑ)‖

·‖Γn(ϑ, τ)N − Γ(ϑ, τ)N‖H.S.dϑ

+

∫ t

τ

‖(G(t− ϑ)Op(ϑ)−Gn(t− ϑ)Opn(ϑ))Γ(ϑ, τ)N‖H.S.dϑ.

(3.11)

Let M be a positive real such that

M ≥ sup
(t,ϑ)∈[0,tf ]×[0,tf ]

‖G(t)‖‖Op(ϑ)‖,

M ≥ sup
(t,ϑ,n)∈[0,tf ]×[0,tf ]×Z+

‖Gn(t)‖‖Opn(ϑ)‖.
(3.12)
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Then

‖Γ(t, τ)N −Γn(t, τ)N‖H.S. ≤ ‖G(t− τ)N −Gn(t− τ)N‖H.S.

+

∫ t

τ

‖(G(t− ϑ)Op(ϑ)−Gn(t− ϑ)Opn(ϑ))Γ(ϑ, τ)N‖H.S.dϑ

+3M

∫ t

τ

‖
(
Γn(ϑ, τ)− Γ(ϑ, τ)

)
N‖H.S.dϑ.

(3.13)

Applying the Gronwall’s inequality,

‖Γ(t, τ)N −Γn(t, τ)N‖H.S. ≤ e3Mtf
(
‖G(t− τ)N −Gn(t− τ)N‖H.S.

+

∫ t

τ

∥∥(G(t− ϑ)Op(ϑ)−Gn(t− ϑ)Opn(ϑ)
)
Γ(ϑ, τ)N

∥∥
H.S.

dϑ
)

≤ e3Mtf
(
‖G(t− τ)N −Gn(t− τ)N‖H.S.

+

∫ t

τ

∥∥(G(t− ϑ)−Gn(t− ϑ)
)
Op(ϑ)Γ(ϑ, τ)N

∥∥
H.S.

dϑ

+

∫ t

τ

M
∥∥(Op(ϑ)−Opn(ϑ)

)
Γ(ϑ, τ)N

∥∥
H.S.

dϑ
)
.

(3.14)

Since the set of operators {Op(ϑ)Γ(t, τ)N,ϑ ∈ [0, tf ], 0 ≤ τ ≤ t ≤ tf} and the set
{Γ(t, τ)N, 0 ≤ τ ≤ t ≤ tf} are compact in the Hilbert space of Hilbert–Schmidt op-
erators mapping H1 to H2, by Lemma 3.1 the right-hand side of inequality (3.14)
tends to zero for n → ∞, and the lemma is proved.

Theorem 3.3. Let Ψn and Ψ′
n be sequences of finite dimensional subspaces of

M2 contained in D(A) and in D(A∗), respectively. Let ΠΨn
: M2 �→ Ψn and ΠΨ′

n
:

M2 �→ Ψ′
n be the sequences of orthoprojection operators in Ψn and Ψ′

n, respectively.
Let T Ψn

(t) be the semigroup generated by the operator ΠΨn
AΠΨn

: M2 �→ Ψn and
T ∗

Ψ′

n
(t) the semigroup generated by the operator ΠΨ′

n
A∗ΠΨ′

n
: M2 �→ Ψ′

n. Let P n(t)
and Rn(t) be the solutions of the finite dimensional differential Riccati equations

Ṗ n(t) = ΠΨn
AΠΨn

P n(t) + P n(t)(ΠΨn
AΠΨn

)∗

−P n(t)ΠΨn
C∗CΠΨn

P n(t) +ΠΨn
FF ∗ΠΨn

,

P n(0) = ΠΨn
P 0ΠΨn

,

(3.15)

Ṙn(t) = ΠΨ′

n
A∗ΠΨ′

n
Rn(t) + Rn(t)(ΠΨ′

n
A∗ΠΨ′

n
)∗

−Rn(t)ΠΨ′

n
BB∗ΠΨ′

n
Rn(t) +ΠΨ′

n
QΠΨ′

n
,

Rn(0) = 0.

(3.16)

Assume the following hypotheses are satisfied:

(Hp1) ΠΨn
converges strongly to the identity operator;

(Hp2) ΠΨ′

n
converges strongly to the identity operator;

(Hp3) T Ψn
(t) converges strongly to T (t) uniformly in [0, tf ];

(Hp4) T ∗
Ψ′

n
(t) converges strongly to T ∗(t) uniformly in [0, tf ].
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Then

‖P n(t)−ΠΨn
P (t)ΠΨn

‖H.S. → 0,
uniformly in [0, tf ].

‖Rn(t)−ΠΨ′

n
R(t)ΠΨ′

n
‖H.S. → 0,

(3.17)

Proof. See the proof of Theorem 3 in [20].
Remark 3.4. Note that, with the given definitions, in general the semigroup

T ∗
Ψ′

n
(t) generated by the operatorΠΨ′

n
A∗ΠΨ′

n
is different from the semigroup T ∗

Ψn
(t),

the adjoint of the semigroup generated by ΠΨn
AΠΨn

.
Lemma 3.5. Let Ψn and Ψ′

n be sequences of finite dimensional subspaces of
M2 contained in D(A) and in D(A∗), respectively. Let ΠΨn

: M2 �→ Ψn and
ΠΨ′

n
: M2 �→ Ψ′

n be the corresponding sequences of orthoprojection operators. Let
H = M2 × M2 and Hn = M2 ×Ψn. Consider the following operators:

A =

[
A 0
0 A

]
: D(A)×D(A) �→ H,(3.18)

An =

[
A 0
0 ΠΨn

AΠΨn

]
: D(A)× M2 �→ Hn,(3.19)

D(t) =

[
0 −BB∗R(tf − t)

P (t)C∗C −BB∗R(tf − t)− P (t)C∗C

]
: H �→ H,(3.20)

Dn(t) =

[
0 −BB∗Rn(tf − t)ΠΨ′

n

P n(t)ΠΨn
C∗C −ΠΨn

BB∗Rn(tf − t)ΠΨ′

n
− P n(t)ΠΨn

C∗CΠΨn

]
:

H �→ Hn,(3.21)

O(t) =

[
F

P (t)C∗G

]
: R
s �→ H,(3.22)

On(t) =

[
F

P n(t)ΠΨn
C∗G

]
: R
s �→ Hn.(3.23)

Let S(t) and Sn(t) be the semigroups generated by operators A and An, respectively.
Let ΠHn

be the following sequence of orthoprojection operators, strongly converg-
ing to identity,

ΠHn
=

[
I 0
0 ΠΨn

]
: H �→ Hn(3.24)

Assume that assumptions Hp1–Hp4 of Theorem 3.3 are satisfied.
Then

(Th1) Sn(t)converges strongly to S(t) uniformly in [0, tf ];

(Th2) ‖ΠHn
O(t)− On(t)‖H.S. → 0 uniformly in [0, tf ];

(Th3) ‖ΠHn
D(t)− Dn(t)‖H.S. → 0 uniformly in [0, tf ].

Proof. Thesis Th1 is an immediate consequence of hypothesis Hp3.
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As far as Th2 is concerned, we have

‖ΠHn
O(t)− On(t)‖H.S. = ‖ΠΨn

P (t)C∗G − P n(t)ΠΨn
C∗G‖H.S.

≤
∥∥∥ΠΨn

P (t)C∗G −ΠΨn
P (t)ΠΨn

C∗G

+ΠΨn
P (t)ΠΨn

C∗G − P n(t)ΠΨn
C∗G‖H.S.

≤ ‖ΠΨn
‖‖P (t)‖H.S.‖C∗G −ΠΨn

C∗G‖H.S.
+‖ΠΨn

P (t)ΠΨn
− P n(t)‖H.S.‖ΠΨn

‖‖C∗G‖.

(3.25)

From (3.25) it follows that ‖ΠHn
O(t) − On(t)‖H.S. → 0 uniformly with respect to

t ∈ [0, tf ] because of the boundedness of ‖P (t)‖H.S and the uniform convergence of
P n(t) stated in Theorem 3.3.

As for thesis Th3, it is

ΠHn
D(t)− Dn(t) =

[
0 Opn1,2(t)

Opn2,1(t) Opn2,2(t)

]
,(3.26)

where

Opn1,2(t) = BB∗Rn(tf − t)ΠΨ′

n
− BB∗R(tf − t);

Opn2,1(t) = ΠΨn
P (t)C∗C − P n(t)ΠΨn

C∗C;

Opn2,2(t) = ΠΨn
BB∗Rn(tf − t)ΠΨ′

n

+ P n(t)ΠΨn
C∗CΠΨn

−ΠΨn
BB∗R(tf − t)−ΠΨn

P (t)C∗C.(3.27)

To prove Th3 it is sufficient to prove that the three operators in (3.27) converge
uniformly to zero in the H.S. norm. Let us start with operator Opn1,2(t). We have

‖Opn1,2(t)‖ ≤ ‖BB∗‖
∥∥Rn(tf − t)−ΠΨ′

n
R(tf − t)ΠΨ′

n

∥∥
H.S.

‖ΠΨ′

n
‖

+‖BB∗‖
∥∥ΠΨ′

n
R(tf − t)ΠΨ′

n
− R(tf − t)

∥∥
H.S.

.
(3.28)

Moreover, from the uniform convergence of Rn(t) stated in Theorem 3.3, R being
self-adjoint, and for Lemma 3.1, by

‖ΠΨ′

n
R(tf − t)ΠΨ′

n
− R(tf − t)‖H.S.

≤ ‖ΠΨ′

n
R(tf − t)ΠΨ′

n
− R(tf − t)ΠΨ′

n
+ R(tf − t)ΠΨ′

n
− R(tf − t)‖H.S.

≤ 2‖ΠΨ′

n
R(tf − t)− R(tf − t)‖,

(3.29)

it follows that ‖Opn1,2(t)‖H.S. → 0 uniformly in [0, tf ]. Consider now the term Opn2,1(t).
Its Hilbert–Schmidt norm satisfies

‖Opn2,1(t)‖H.S.

≤
∥∥ΠΨn

P (t)−ΠΨn
P (t)ΠΨn

+ΠΨn
P (t)ΠΨn

− P n(t)ΠΨn

∥∥
H.S.

‖C∗C‖

≤
(
‖P (t)− P (t)ΠΨn

‖H.S. + ‖(ΠΨn
P (t)ΠΨn

− P n(t))ΠΨn
‖H.S.

)
‖C∗C‖.

(3.30)
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Since, by Lemma 3.1, ‖ΠΨn
P (t) − P (t)‖H.S. → 0 uniformly and ‖(ΠΨn

P (t)ΠΨn
−

P n(t))ΠΨn
‖H.S. → 0 by Theorem 3.3, it follows that the norm of Opn2,1(t) tends to

zero uniformly in [0, tf ].
It remains to prove that ‖Opn2,2(t)‖H.S. → 0 uniformly.

‖Opn2,2(t)‖H.S. ≤ ‖ΠΨn
‖
∥∥BB∗R(tf − t)− BB∗Rn(tf − t)ΠΨ′

n

∥∥
H.S.

+
∥∥ΠΨn

P (t)C∗C − P n(t)ΠΨn
C∗CΠΨn

∥∥
H.S.

(3.31)

Uniform convergence to zero of ‖BB∗R(tf−t)−BB∗Rn(tf−t)ΠΨ′

n
‖H.S. has already

been proved. Moreover,

‖ΠΨn
P (t)C∗C − P n(t)ΠΨn

C∗CΠΨn
‖H.S.

≤ ‖ΠΨn
‖‖P (t)C∗C − P (t)ΠΨn

C∗CΠΨn
‖H.S.

+
∥∥(ΠΨn

P (t)ΠΨn
− P n(t)

)
ΠΨn

C∗C
∥∥
H.S.

‖ΠΨn
‖.(3.32)

Again, as proved in [20], the term ‖(ΠΨn
P (t)ΠΨn

−P n(t))ΠΨn
‖H.S. → 0 uniformly

and thanks to Lemma 3.1 also ‖C∗CP (t)−ΠΨn
C∗CΠΨn

P (t)‖H.S. → 0 uniformly.
From (3.32) it follows that ‖ΠΨn

P (t)C∗C−P n(t)ΠΨn
C∗CΠΨn

‖H.S. → 0 uniformly,
so that ‖Opn2,2(t)‖H.S. → 0 uniformly in [0, tf ], and the lemma is proved.

Lemma 3.6. Let U(t, τ), 0 ≤ τ ≤ t, be the mild evolution operator

U(t, τ) = S(t− τ) +

∫ t

τ

S(t− ϑ)D(ϑ)U(ϑ, τ)dϑ.(3.33)

Let {Un(t, τ)} be the sequence of mild evolution operators

Un(t, τ) = Sn(t− τ) +

∫ t

τ

Sn(t− ϑ)Dn(ϑ)Un(ϑ, τ)dϑ.(3.34)

Then {Un(t, τ)} converges strongly to U(t, τ) uniformly in 0 ≤ τ ≤ t ≤ tf , that is,
given any X ∈ H,

lim
n→∞

sup
0≤τ≤t≤tf

‖Un(t, τ)X − U(t, τ)X‖ = 0.(3.35)

Proof. Let us denote by g(t, τ) and gn(t, τ) the quantities

g(t, τ) = U(t, τ)X,(3.36)

gn(t, τ) = Un(t, τ)X,(3.37)

from which, denoting the approximation error by en(t, τ)

en(t, τ) = g(t, τ)− gn(t, τ),(3.38)

we have

en(t, τ) = S(t− τ)X +

∫ t

τ

S(t− ϑ)D(ϑ)g(ϑ, τ)dϑ

−Sn(t− τ)X −
∫ t

τ

Sn(t− ϑ)Dn(ϑ)gn(ϑ, τ)dϑ,

(3.39)
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and therefore

en(t, τ) = (S(t− τ)− Sn(t− τ))X

+

∫ t

τ

(
S(t− ϑ)D(ϑ)g(ϑ, τ)− Sn(t− ϑ)Dn(ϑ)gn(ϑ, τ)

)
dϑ

(3.40)

from which

‖en(t, τ)‖ ≤ ‖(S(t− τ)− Sn(t− τ))X‖

+

∫ t

τ

‖S(t− ϑ)D(ϑ)− Sn(t− ϑ)D(ϑ)‖‖g(ϑ, τ)‖dϑ

+

∫ t

τ

‖Sn(t− ϑ)‖‖ΠHn
D(ϑ)− Dn(ϑ)‖‖g(ϑ, τ)‖dϑ

+

∫ t

τ

‖Sn(t− ϑ)Dn(ϑ)‖‖en(ϑ, τ)‖dϑ.

(3.41)

Now, given ǫ > 0, by Lemma 3.1 there exists an integer νǫ,X such that, for all n > νǫ,X ,
we have

‖en(t, τ)‖ ≤ ǫ+ S̄D̄

∫ t

τ

‖en(ϑ, τ)‖dϑ,(3.42)

where

S = sup
n,t∈[0,tf ]

‖Sn(t)‖,

D = sup
n,t∈[0,tf ]

‖Dn(t)‖.
(3.43)

By Gronwall’s lemma,

‖en(t, τ)‖ ≤ ǫeS̄D̄(t−τ),(3.44)

and therefore

sup
0≤τ≤t≤tf

‖en(t, τ)‖ ≤ ǫeS̄D̄tf .(3.45)

This concludes the proof.
Now, the main theorem can be given.
Theorem 3.7. Using the same hypotheses of Theorem 3.3, let un(t) be the input

obtained by the following finite dimensional equations:

˙̂xn(t) = ΠΨn
AΠΨn

x̂n(t) +ΠΨn
Bun(t) + P n(t)ΠΨn

C∗
(
y(t)− CΠΨn

x̂n(t)
)
,

x̂n(0) = ΠΨn
x̂(0),

(3.46)

un(t) = −B∗Rn(tf − t)ΠΨ′

n
x̂n(t),(3.47)

where P n and Rn are given by (3.15) and (3.16). Let u(t) be the optimal input, x̂(t)
the optimal estimated state, xn(t) and x(t) the actual state evolving when un(t) and
u(t) are applied to system (2.1), (2.2), respectively.
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Then

lim
n→∞

E‖xn − x‖2
L2([0,tf ];M 2)

= 0,(3.48)

lim
n→∞

E‖x̂n − x̂‖2
L2([0,tf ];M 2)

= 0,(3.49)

lim
n→∞

E‖un − u‖2
L2([0,tf ];Rp) = 0,(3.50)

lim
n→∞

|Jf (un)− Jf (u)| = 0.(3.51)

Proof. Let X =
[
x
x̂

]
and Xn =

[
xn

x̂n

]
. It is

Ẋ(t) = AX(t) + D(t)X(t) + O(t)ω(t),

Ẋn(t) = AnXn(t) + Dn(t)Xn(t) + On(t)ω(t),

X(0) =

[
x(0)
x̂(0)

]
, Xn(0) =

[
x(0)

ΠΨn
x̂(0)

]
,

(3.52)

where A,An,D(t),Dn(t),O(t),On(t) have been defined in Lemma 3.5.
Let S(t), Sn(t), U(t, τ), Un(t, τ) be as in Lemmas 3.5, 3.6. We have

X(t) = S(t)X(0) +

∫ t

0

S(t− τ)
(
D(τ)X(τ) + O(τ)ω(τ)

)
dτ,(3.53)

Xn(t) = Sn(t)Xn(0) +

∫ t

0

Sn(t− τ)
(
Dn(τ)Xn(τ) + On(τ)ω(τ)

)
dτ,(3.54)

which can be rewritten as

X(t) = U(t, 0)X(0) +

∫ t

0

U(t, τ)O(τ)ω(τ)dτ,(3.55)

Xn(t) = Un(t, 0)Xn(0) +

∫ t

0

Un(t, τ)On(τ)ω(τ)dτ.(3.56)

Let us introduce the Hilbert spaces

W X,t = L2([0, t];H), W ω,t = L2([0, t];R
s),(3.57)

and define the operators

Lt : W ω,t �→ W X,t,

f = Lt g, f(τ) =

∫ τ

0

U(τ, ϑ)O(ϑ)g(ϑ)dϑ,(3.58)

Lt,n : W ω,t �→ W X,t,

f = Lt,n g, f(τ) =

∫ τ

0

Un(τ, ϑ)On(ϑ)g(ϑ)dϑ,(3.59)

and the functions

X0 : X0(τ) = U(τ, 0)X(0),(3.60)

X0,n : X0,n(τ)= Un(τ, 0)Xn(0).(3.61)
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In the space W X,t, (3.55), (3.56) can be expressed as

X = X0 + Ltω,(3.62)

Xn = X0,n + Lt,nω,(3.63)

so that

E‖X − Xn‖2
W X,t

= E‖X0 − X0,n + (Lt − Lt,n)ω‖2
W X,t

≤ 2E‖X0 − X0,n‖2
W X,t

+ 2E‖(Lt − Lt,n)ω‖2
W X,t

.
(3.64)

The first term in the right-hand side goes to zero thanks to Lemma 3.6.
For the second term we have

E‖(Lt − Lt,n)ω‖2
W (X,t)

= ‖Lt − Lt,n‖2
H.S.

=

∫ t

0

∫ τ

0

∥∥U(τ, ϑ)O(ϑ)− Un(τ, ϑ)On(ϑ)
∥∥2

H.S.
dϑdτ

≤ 2

∫ t

0

∫ τ

0

∥∥∥
(
U(τ, ϑ)− Un(τ, ϑ)

)
O(ϑ)

∥∥∥
2

H.S.
dϑdτ

+ 2

∫ t

0

∫ τ

0

∥∥∥Un(τ, ϑ)
(
O(ϑ)− On(ϑ)

)∥∥∥
2

H.S.
dϑdτ

≤ sup
0≤ϑ≤τ≤t

sup
M∈{O(ϑ),ϑ∈[0,t]}

∥∥∥
(
U(τ, ϑ)− Un(τ, ϑ)

)
M

∥∥∥
2

H.S.
t2

+ sup
0≤ϑ≤τ≤t, n∈Z+

‖Un(τ, ϑ)‖t2 sup
ϑ∈[0,t]

‖O(ϑ)− On(ϑ)‖2
H.S.

(3.65)

which goes to zero by using Lemmas 3.1, 3.5, and 3.6. This concludes the proof.

4. The approximation scheme. In this section, we will derive the approxima-
tion scheme for the LQG controller (3.4)–(3.7). The first step is the definition of the
sequences Ψn and Ψ′

n of subspaces approximating D(A) and D(A∗). This is made
by a suitable definition of basis vectors for subspaces Ψn ⊂ D(A) and Ψ′

n ⊂ D(A∗).
In order to avoid confusion with the general settings in section 3, the forthcoming
choice for Ψn and Ψ′

n will be denoted by Φn and Φ′
n respectively. In [3] the dynamics

of linear delay systems is approximated using classical first order splines uniformly
distributed over the interval [−r, 0]. With this choice the computation of matrix rep-
resentation of the approximated operators is quite complex due to the fact that in
general, for a given number n of subintervals of [−r, 0], the delay instants −rj do not
coincide with knots of splines.

It is useful to define a multi-index s = (n1, . . . , nδ) that characterizes the partition
of each interval [−ri,−ri−1], for i = 1, . . . , δ, into ni subintervals of length (ri −
ri−1)/ni, in which ni + 1 classical first order splines are considered (see Figure 1),
numbered from 0 to ni.

Definition 4.1. A sequence {sn} of multi-indexes, defined for n = 1, 2, . . .,
where n is the lowest of indexes nj of the multi-index (i.e., n = min{sn}), is denoted
a test sequence if there exists a constant c̄ such that for each n it is max{sn}/n ≤ c̄.

Let tij = −ri−1 − (ri − ri−1)j/ni, for j = 0, 1, . . . , ni, i = 1, . . . , δ. Let splineij be

the spline j of interval i, that is, the spline with knot in tij . Let φk, k = 1, 2, . . . , N,

be the canonical base in R
N .
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Fig. 1. First order splines used for the approximation schemes.

The approximating subspace Φn and Φ′
n are defined as follows.

Definition 4.2. For any given multi-index sn of a test sequence let Φn be the
subspace of linear combinations of vectors vih, vrik defined as follows:

(4.1) v1
k =

[
φk

φkspline
1
0

]
, k = 1, . . . , N,

(4.2) vijN+k =

[
0

φkspline
i
j

]
, k = 1, . . . , N, j = 1, . . . , ni − 1,

(4.3) vδnδN+k =

[
0

φkspline
δ
nδ

]
, k = 1, . . . , N,

(4.4) vrik =

[
0

φksplineri

]
,

i = 1, . . . , δ − 1,

k = 1, . . . , N,
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where

(4.5) splineri = splineini
· χ(−ri,−ri−1] + splinei+1

0 , i = 1, . . . , δ − 1.

Definition 4.3. For any given multi-index sn of a test sequence let Φ′
n be the

subspace of linear combinations of vectors wih, wrik , w′
k defined as follows:

w1
k =

[
0

φkspline
1
0

]
, k = 1, . . . , N,(4.6)

wijN+k = vijN+k, k = 1, . . . , N,
i = 1, . . . , δ,

j = 1, . . . , ni − 1,
(4.7)

w
rj
k =

[
0

φkspline
′
rj

]
, j = 1, . . . , δ − 1, k = 1, . . . , N,(4.8)

where

spline′rj =
(δ − j)

(δ − j + 1)
splinejnj

· χ(−rj ,−rj−1] + splinej+1
0 ,(4.9)

spline′′rj = splinejnj
· χ(−rj ,−rj−1], j = 1, . . . , δ − 1,(4.10)

w′
k =

[
φk

aδkspline
δ
nδ

+
∑δ−1
j=1

1
(δ−j+1)ajkspline

′′
rj

]
, k = 1, . . . , N,(4.11)

where ajk is the k column of matrix AT
j for j = 1, . . . , δ.

Theorem 4.4. For each multi-index sn of a test sequence, it is Φn ⊂ D(A) and
Φ′
n ⊂ D(A∗).
Proof. It is immediate to verify that Φn ⊂ D(A). A more detailed proof is

required to show that Φ′
n ⊂ D(A∗). To this aim it is sufficient to verify that each

vector w belongs to it. It is easy to check that vectors wijN+k, for i = 1, . . . , δ,

k = 1, . . . , N , j = 1, . . . , ni − 1, and vectors w1
k, for k = 1, . . . , N , belong to D(A∗).

Let us consider now the vectors wrik , for i = 1, . . . , δ − 1, k = 1, . . . , N (as usual, we
shall indicate the part in R

N by using the subscript 0 and the part in L2 by using the
subscript 1).

From the definition, for each k it is

(wrik )0 = 0,

(wrik )1 (−rj) = 0, i, j = 1, . . . , δ − 1, i �= j,(4.12)

(wrik )1 (−r) = 0, i = 1, . . . , δ − 1,

so that for k = 1, . . . , N, i = 1, . . . , δ − 1,

(wrik )1 (−r) = AT
δ (w

ri
k )0(4.13)

and

δ−1∑

j=1

kj ((w
ri
k )0, (w

ri
k )1)χ[−r,−rj ] =

δ−1∑

j=1

(wrik )1 (−rj)− AT
j (w

ri
k )0

δ − j + 1
χ[−r,−rj ]

=
(wrik )1 (−ri)

δ − i+ 1
χ[−r,−ri].

(4.14)
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So it is only to be verified that for i = 1, . . . , δ − 1, k = 1, . . . , N ,

(wrik )1 −
1

(δ − i+ 1)
(wrik )1 (−ri)χ[−r,−ri] ∈ W 1,2.(4.15)

Since

spline′ri(−ri)−
1

δ − i+ 1
=

δ − i

δ − i+ 1
= lim
ϑ→−r+

i

spline′ri(ϑ),(4.16)

(4.15) is clearly true.
For vectors w′

k defined in (4.11), for k = 1, . . . , N , it is

(w′
k)1(−r) = aδk = AT

δ φk = AT
δ (w

′
k)0.(4.17)

It is also

(w′
k)1(−ri) = 0, i = 1, . . . , δ − 1,(4.18)

and therefore

δ−1∑

j=1

kj ((w
′
k)0, (w

′
k)1)χ[−r,−rj ] =

δ−1∑

j=1

(w′
k)1 (−rj)− AT

j (w
′
k)0

δ − j + 1
χ[−r,−rj ]

=

δ−1∑

j=1

−AT
j (w

′
k)0

(δ − j + 1)
χ[−r,−rj ] =

δ−1∑

j=1

−ajk
(δ − j + 1)

χ[−r,−rj ].

(4.19)

From

lim
ϑ�→−r+

j

(w′
k)1 (ϑ) =

ajk
δ − j + 1

(4.20)

it follows, for i = 1, . . . , δ − 1,


(w′

k)1 +

δ−1∑

j=1

ajk
(δ − j + 1)

χ[−r,−rj ]


 (−ri) = (w′

k)1(−ri) +

i∑

j=1

ajk
(δ − j + 1)

=

i∑

j=1

ajk
δ − j + 1

=
aik

δ − i+ 1
+

i−1∑

j=1

ajk
δ − j + 1

= lim
ϑ�→−r+

i

(w′
k)1 (ϑ) + lim

ϑ�→−r+
i

δ−1∑

j=1

ajk
δ − j + 1

χ[−r,−rj ](ϑ),

(4.21)

and so

(w′

k)1 +

δ−1∑

j=1

ajk
δ − j + 1

χ[−r,−rj ]


 ∈ W 1,2,(4.22)

(4.17) and (4.22) prove that vectors w′
k, k = 1, . . . , N , belong to D(A∗).

Remark 4.5. Note that a key idea for the previous theorem is the choice of a type
of not uniformly distributed splines.
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Remark 4.6. In the case of just one pure delay, vectors generating subspaces Φn
and Φ′

n become, respectively,

vjN+k =

[
0

φksplinej

]
, k = 1, . . . , N, j = 1, 2, . . . , n,(4.23)

vk =

[
φk

φkspline0

]
, k = 1, . . . , N(4.24)

for Φn, and

w1
k =

[
0

φkspline0

]
, k = 1, . . . , N,(4.25)

wjN+k = vjN+k k = 1, . . . , N, j = 1, 2, . . . , n− 1,(4.26)

w′
k =

[
φk

a1ksplinen

]
, k = 1, . . . , N(4.27)

for Φ′
n. As can be seen, a great simplification is obtained with respect to the general

case. Vectors v are just the ones in [3], and vectors w differ just for the fact that the
nonzero term in R

N is taken from the first N vectors to the last ones, and the L2 part
of these last N vectors is multiplied for the columns of matrix AT

1 . This simplification
with respect to the general case is due to the much simpler domain (2.21).

Consider now a test sequence of multi-indexes {sn}, and consider the associated
sequence of orthoprojection operators ΠΦn

: M2 �→ Φn and ΠΦ′

n
: M2 �→ Φ′

n. For
brevity, from now on the following notation is used:

Πn = ΠΦn
, Π′

n = ΠΦ′

n
.(4.28)

Recall that operators Πn and Π′
n, being orthogonal projectors, have the following

properties:

∀y ∈ M2, ‖Πny − y‖ ≤ ‖x − y‖ ∀x ∈ Φn,(4.29)

∀y ∈ M2, ‖Π′
ny − y‖ ≤ ‖x − y‖ ∀x ∈ Φ′

n.(4.30)

The following results can be given on the convergence of the sequences of projec-
torsΠn, Π

′
n, and of the sequence of semigroups generated byΠnAΠn andΠ′

nA
∗Π′

n.
Theorem 4.7. The sequence of orthoprojection operators Πn : M2 �→ Φn con-

verges strongly to the identity operator.
Proof. Let D = {

[
y0
y1

]
∈ M2|y0 = y1(0),y1 ∈ C2([−r, 0];RN )}. Such set D is

dense in M2 (see the proof of Lemma 2.2 and Remark 3.2 in [3]). Let x =
[
x0

x1

]
∈ D

and let

xn =

[
xn0
xn1

]
=

N∑

k=1

(x1(−r)Tφk)v
δ
nδN+k +

N∑

k=1

δ−1∑

i=1

(x1(−ri)
Tφk)v

ri
k

+

δ∑

i=1

N∑

k=1

ni−1∑

j=1

(x1(t
i
j)

Tφk)v
i
jN+k +

N∑

k=1

(x1(0)
Tφk)v

1
k.

(4.31)

By Theorem 2.5 in [42] it is ‖xn1 − x1‖ → 0, and the thesis follows by

‖xn − x‖M 2
= ‖xn1 − x1‖L2

(4.32)
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and by property (4.29).
Theorem 4.8. The sequence of semigroups T Φn

generated by the operators
ΠnAΠn converges strongly to the semigroup governing the system (2.5), (2.6).

Proof. Let D be the set in the proof of the previous theorem. There exists λ > 0
such that (A−λI)D is dense in M2 (see Lemma 2.2 in [3]). There exists α such that
(A−αI) e (ΠnAΠn−αI) are dissipative (see Lemma 2.3 and proof of Theorem 3.1

in [3]). Let x =
[
x0

x1

]
∈ D. Let Πnx =

[
(Πnx)0
(Πnx)1

]
. From

(Πnx)1(−ri) = (Πnx)1(−ri−1)−
∫ −ri−1

−ri

d(Πnx)1(ϑ)

dϑ
dϑ(4.33)

and as ‖d(x1−(Πnx)1)
dϑ ‖ → 0, (see Theorem 4.1 in [3], and Theorems 1.5, 2.5 in [42]), it

follows that ‖AΠnx − Ax‖ → 0. Take into account that (Πnx)1(0) = (Πnx)0 and
that ‖(Πnx)0 − x0‖ → 0.

Thus the Trotter–Kato theorem hypotheses are satisfied ([38], Lemma 3.1
in [3]).

As can be seen, the proofs of the above two theorems follow the same lines of the
proofs in [3], developed for the case of first order splines uniformly distributed in the
interval [−r, 0].

Lemma 4.9. The subspace

U =

{[
y0

y1

] ∣∣∣
y0 ∈ R

N , y1(0) = y0,

y1 ∈ W 1,2 y1(−rj) = AT
j y0, j = 1, . . . , δ

}
(4.34)

is dense in M2.
Proof. As usual, let us prove density in R

N × W 1,2. Let y =
[
y0
y1

]
∈ R

N ×
W 1,2. Let us define the following sequence of functions fn : [−r, 0] → R

N , n >
supi=1,2,...,δ

r
ri−ri−1

,

fn(ϑ) =

(
y0 −

n

r
ϑ

(
y1

(−r

n

)
− y0

))
χ[−r

n
,0]

+
(
AT
δ y0 +

n

r
(ϑ+ r)

(
y1

(
−r +

r

n

)
− AT

δ y0

))
χ[−r,−r+ r

n
]

(4.35)

+

δ∑

i=1

(
AT
i y0 +

n

r
(ϑ+ ri)

(
y1

(
−ri +

r

n

)
− AT

i y0

))
χ[−ri,−ri+

r
n

]

+
(
AT
i y0 −

n

r
(ϑ+ ri)

(
y1

(
−ri −

r

n

)
− AT

i y0

))
χ[−ri−

r
n
,−ri).

Consider the sequence of elements in U ,

yn =

[
y0

fn +
∑δ
i=1 y1χ(−ri+

r
n
,−ri−1−

r
n

)

]
.(4.36)

As y1 is bounded, fn is bounded too, uniformly on n. It follows that

‖yn − y‖2 ≤
(
sup
ϑ,n

‖y1(ϑ)− fn(ϑ)‖2

)
2δr

n
.(4.37)
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Remark 4.10. The previous lemma proves that the intersection between the
domain of A and the domain of A∗ is dense in M2 if the weighted inner product is
used. See that the subspace U is contained in both the domains. It is a standard
result that such an intersection is in general not dense if the usual inner product is
used [11, 14, 24, 27, 43].

Theorem 4.11. The sequence of orthoprojection operators Π′
n : M2 �→ Φ′

n

converges strongly to the identity operator.
Proof. It is sufficient to prove strong convergence in a dense subspace of M2.

Therefore, consider the subspace U in (4.34).
It is shown below that for any y =

[
y0
y1

]
∈ U there exists a sequence of approxima-

tions yn ∈ Φ′
n such that limn→∞ ‖yn − y‖M 2

= 0. Consider the following definition
of yn ∈ Φ′

n:

yn =

N∑

k=1

(yT
0 φk)w

′
k +

N∑

k=1

δ−1∑

i=1

(y1(−ri)
Tφk)w

ri
k ,

(4.38)

+

δ∑

i=1

N∑

k=1

ni−1∑

j=1

(y1(t
i
j)

Tφk)w
i
jN+k +

N∑

k=1

(y1(0)
Tφk)w

1
k.

It is, by substituting expressions of vectors generating the subspace Φ′
n (4.6), (4.7),

(4.8), (4.11),

yn =

[
yn0
yn1

]
=




y0
N∑

k=1

(y1(−r)Tφk)φkspline
δ
nδ




+




0
N∑

k=1

δ−1∑

j=1

(
(yT

0 φk)ajk
δ − j + 1

spline′′rj + (y1(−rj)
Tφk)φkspline

′
rj

)



+




0
δ∑

i=1

N∑

k=1

ni−1∑

j=1

(y1(t
i
j)

Tφk)φkspline
i
j


+




0
N∑

k=1

(y1(0)
Tφk)φkspline

1
0


 .

(4.39)

Moreover, it is readily recognized that

N∑

k=1

(yT
0 φk)aAK = AT

j y0 =

N∑

k=1

(y1(−rj)
Tφk)φk, j = 1, . . . , δ,(4.40)

1

δ − j + 1
spline′′rj + spline′rj = splinerj , j = 1, . . . , δ − 1,(4.41)

so that

‖yn − y‖M 2
=

∥∥∥
N∑

k=1

(y1(−r)Tφk)φkspline
δ
nδ

+

δ−1∑

j=1

AT
j y0

( 1

δ − j + 1
spline′′rj + spline′rj

)
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+

δ∑

i=1

N∑

k=1

ni−1∑

j=1

(y1(t
i
j)

Tφk)φkspline
i
j

+

N∑

k=1

(y1(0)
Tφk)φkspline

1
0 − y1

∥∥∥
L2

=
∥∥∥
N∑

k=1

(y1(−r)Tφk)φkspline
δ
nδ

+

δ−1∑

j=1

y1(−rj)splinerj(4.42)

+

δ∑

i=1

N∑

k=1

ni−1∑

j=1

(y1(t
i
j)

Tφk)φkspline
i
j

+

N∑

k=1

(y1(0)
Tφk)φkspline

1
0 − y1

∥∥∥
L2

=
∥∥∥
δ∑

i=1

N∑

k=1

ni∑

j=0

(y1(t
i
j)

Tφk)φkspline
i
j − y1

∥∥∥
L2

=

δ∑

i=1

∥∥∥
N∑

k=1

ni∑

j=0

(y1(t
i
j)

Tφk)φkspline
i
j − y1 · χ[−ri,−ri−1]

∥∥∥
L2

,

which gives the norm of the error between a function y1 ∈ W 1,2 and its approximation
with first order splines in which the value at each spline knot (the instants tij) is exactly

the value of the function at time tij . It is a standard result that the error tends to
zero in L2 norm for n → ∞ (Theorem 2.4 in [42]) and therefore limn→∞ ‖yn −
y‖M 2

= 0. This implies, by property (4.30), the strong convergence to identity of

operator Π′
n.

Lemma 4.12. There exists a real constant α such that the operator A∗ −αI and
operators Π′

nA
∗Π′

n − αI are dissipative.
Proof. In [3] it has been proved that there exists α such that operator A −

αI is dissipative and therefore generates a semigroup which is a contraction one.
This implies that the adjoint semigroup is a contraction one too and therefore its
infinitesimal generator A∗ − αI is dissipative [1]. Dissipativity of A∗ − αI implies
that for any n the operator Π′

nA
∗Π′

n − αI is dissipative. This happens because for
any x ∈ M2

(
(Π′
nA

∗Π′
n − αI)x,x

)
= (A∗Π′

nx,Π′
nx)− α(x,x)

≤ (A∗Π′
nx,Π′

nx)− α(Π′
nx,Π′

nx)

=
(
(A∗ − αI)Π′

nx,Π′
nx

)
≤ 0.(4.43)

Lemma 4.13. Let D be the dense subspace of M2 defined as

D =








y0

y1



∣∣∣

y0 ∈ R
N , AT

δ y0 = y1(−r),

y1 −

δ−1∑

j=1

kj(y0,y1)χ[−r,−rj ]


 ∈ C2





.(4.44)

Then there exists λ > 0 such that (A∗ − λI)D is dense in M2.
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Proof. Let us at first assume the following additional property on the term A01

in the definition of operator A∗:

(Hp0) :
1

g
AT

01 is a matrix of functions in C1([−r, 0];R),

where g is the weighting function in the inner product (2.4).
Hypothesis (Hp0) will be removed at the end of the proof.
First, it will be shown that under assumption (Hp0) there exists a sufficiently

large λ and matrices P j0 (λ) ∈ R
N×N and P j1 (λ) ∈ R

N×δN , j = 1, 2, . . . , δ − 1, such
that for any z =

[
z0

z1

]
∈ R

N × C1([−r, 0];RN ) there exists y ∈ D such that

(A∗ − λI)y =

[
z0

z̃1(z;λ)

]
,

where z̃1(z;λ) = z1 +

δ−1∑

j=1

(
P j0 (λ)z0 + P j1 (λ)Fλ(z1)

)
χ[−r,−rj ],

(4.45)

in which the linear functional Fλ(z1) : C
1([−r, 0];RN ) �→ R

Nδ is defined as follows:

Fλ(z1) =




∫ 0

−r

eλτz1(τ)dτ

∫ −r1

−r

e−λ(−r1−τ)z1(τ)dτ

...∫ −rδ−1

−r

e−λ(−rδ−1−τ)z1(τ)dτ




.(4.46)

Next, it will be shown that there exists a sufficiently large λ such that for any given
x =

[
x0

x1

]
∈ M2 and for any ε > 0 there exists z =

[
z0

z1

]
∈ R

N × C1([−r, 0];RN ) such
that

∥∥∥
[

x0

x1

]
−

[
z0

z̃1(z;λ)

] ∥∥∥
M 2

≤ ε(4.47)

and therefore, from (4.45),

∀x ∈ M2, ∀ε > 0, ∃y ∈ D :
∥∥x − (A∗ − λI)y

∥∥
M 2

≤ ε,(4.48)

that is, the density of (A∗ − λI)D in M2.
In order to prove (4.45) as a first step it is shown how to find a function Y 1(y0,z1)

such that for any y0 ∈ R
N and z1 ∈ C1([−r, 0];RN ) it is

[ y0

Y 1(y0,z1)

]
∈ D. Next, it

is shown how to define a function Y0(z0,z1) : R
N × C1([−r, 0];RN ) → R

N such that
the composed function Y1(z0,z1) = Y 1(Y0(z0,z1),z1) has the property

(A∗ − λI)

[
Y0(z0,z1)
Y1(z0,z1)

]
=

[
z0

z̃1(z1;λ)

]
.(4.49)

For any given pair y0 ∈ R
N and z1 ∈ C1([−r, 0];RN ) let us consider the differ-

ential equation in C2([−r, 0];RN ),

d

dϑ
f(ϑ) + λf(ϑ) = −

(
z1(ϑ)−

1

g(ϑ)
AT

01(ϑ)y0

)
,(4.50)
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whose solution is

f(ϑ) = e−λ(ϑ+r)f(−r)−
∫ ϑ

−r

e−λ(ϑ−τ)
(
z1(τ)−

1

g(τ)
AT

01(τ)y0

)
dτ.(4.51)

By Lemma A.1 in the appendix, there exists a unique left-continuous function y1 that
satisfies condition (A.1), with f given by (4.51). Such y1 is given by expression (A.6),
and its values at the delay instants are such that

(I(δ−1)N −Hδ,2)




y1(−r1)
...

y1(−rδ−1)


 =




f(−r1)
...

f(−rδ−1)


−Hδ,2




AT
1
...

AT
δ−1


y0,(4.52)

where Hδ,2 is defined in (A.4), Lemma A.1, in the appendix.
In order to guarantee that y =

[
y0
y1

]
∈ D, y1 must satisfy the additional condition

y1(−r) = AT
δ y0.(4.53)

By substituting (4.53) in (A.1) one has

f(−r) = AT
δ y0 −

δ−1∑

j=1

y1(−rj)− AT
j y0

δ − j + 1
,(4.54)

which can be rewritten as

f(−r) = hδ,1




y1(−r1)
...

y1(−rδ−1)


− hδ,2




AT
1
...

AT
δ−1


y0,(4.55)

where

hδ,1 =

[
1

δ
IN · · · 1

2
IN IN

]
,

hδ,2 =

[
1

δ
IN · · · 1

2
IN

]
.

(4.56)

By (4.51) the values of function f at the delay instants are as follows:



f(−r1)
...

f(−rδ−1)


 =




INe−λ(r−r1)

...
INe−λ(r−rδ−1)




f(−r) −
[
0(δ−1)N×N I(δ−1)N

]
Fλ

(
z1 −

1

g
AT

01y0

)
.

(4.57)

By substituting (4.52) and (4.55) into (4.57) and rearranging we have

(4.58)

Hp(λ)




y1(−r1)
...

y1(−rδ−1)


 = Hq(λ)




AT
1
...

AT
δ−1




y0 −
[
0(δ−1)N×N I(δ−1)N

](
Fλ(z1)− Fλ

(
1

g
AT

01

)
y0

)
,
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in which matrices Hp and Hq are defined as

Hp(λ) = I(δ−1)N −Hδ,2 +




INe−λ(r−r1)

...
INe−λ(r−rδ−1)


hδ,2,(4.59)

Hq(λ) =




INe−λ(r−r1)

...
INe−λ(r−rδ−1)


hδ,1 −

[
Hδ,2

0N×δN

]
.(4.60)

Because Hp is nonsingular (Lemma A.3 in the appendix), by (4.58) it results that




y1(−r1)
...

y1(−rδ−1)


 =


H−1

p (λ)Hq(λ)




AT
1
...

AT
δ−1


+

[
0(δ−1)N×N H−1

p (λ)
]
Fλ

(
1

g
AT

01

)

y0

−
[
0(δ−1)N×N H−1

p (λ)
]
Fλ(z1).

(4.61)

From (4.61) and (4.53), recalling that rδ = r, matrices Nj(λ) and Mj(λ), j = 1, . . . , δ
are defined such that

y1(−rj) = Nj(λ)y0 +Mj(λ)Fλ(z1).(4.62)

The left-continuous function y1 = Y 1(y0,z1) we were looking for is given by

y1(ϑ) =





y1(−ri), ϑ = −ri,
i = 1, . . . , δ − 1,

f(ϑ) +

δ−1∑

j=1

y1(−rj)− AT
j y0

δ − j + 1
χ[−r,−rj ](ϑ), ϑ �= −ri,

(4.63)

in which f(ϑ) is given by (4.51). This is such that
[
y0
y1

]
∈ D. Let (A∗

− λI)y =
[
[(A∗

−λI)y]0
[(A∗

−λI)y]1

]
. It is

[(A∗ − λI)y]1 =
1

g
AT

01y0 −
d

dϑ


y1 −

δ−1∑

j=1

y1(−rj)− AT
j y0

δ − j + 1
χ[−r,−rj ]


− λy1

=
1

g
AT

01y0 −
d

dϑ
f − λf − λ

δ−1∑

j=1

y1(−rj)− AT
j y0

δ − j + 1
χ[−r,−rj ].

(4.64)

Finally, recalling the definition (4.50) of function f , it is

[(A∗ − λI)y]1 = z1 − λ

δ−1∑

j=1

(
Nj(λ)− AT

j

)
y0 +Mj(λ)Fλ(z1)

δ − j + 1
χ[−r,−rj ].(4.65)

Until now we have showed that, for any y0 ∈ R
N and for any z1 ∈ C1([−r, 0];RN ) it

is possible to find y1 such that y =
[
y0
y1

]
∈ D and satisfies (4.65).
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Now, using the computed y1 = Y 1(y0,z1), we are ready to prove that there exists
a positive λ such that for any z0 ∈ R

N and z1 ∈ C1([−r, 0];RN ), a y0 can be found
such that y =

[
y0
y1

]
∈ D and satisfies (4.45). The application of operator (A∗ − λI)

gives, for the part in R
N ,

[(A∗ − λI)y]0 = δ y1(0) + AT
0 y0 − λy0.(4.66)

Note that from (4.63) y1(0) = f(0) and evaluation of f(0) according to (4.51), in
which expression (4.54) of f(−r) is substituted, gives

[(A∗ − λI)y]0 = Q0(λ)y0 +Q1(λ)Fλ(z1),(4.67)

in which

Q0(λ) = δe−λrAT
δ − δe−λr

δ−1∑

j=1

Nj(λ)− AT
j

(δ − j + 1)
+ δ

∫ 0

−r

eλτ
1

g
AT

01dτ + AT
0 − λIN ,

(4.68)

Q1(λ) = −δ [ IN×N0N×N(δ−1) ]−
δ−1∑

j=1

δe−λr

δ − j + 1
Mj(λ).

It is clear that there exists a sufficiently large λ such that Q0(λ) is nonsingular, due
to the presence of the term −λIN (the other terms are all bounded functions of λ).
Therefore, given z0 ∈ R

N and z1 ∈ C1([−r, 0];RN ), the function Y0(z0,z1) = y0 ∈
R
N such that [(A∗ − λI)y]0 = z0, thanks to (4.67), is given by

y0 = Y0(z0,z1) = Q−1
0 (λ)(z0 −Q1(λ)Fλ(z1)).(4.69)

Substitution of (4.69) in the expression (4.65) for [(A∗ − λI)y]1 gives

[(A∗ − λI)y]1 = z1 − λ

δ−1∑

j=1

(
Nj(λ)− AT

j

)
Q−1

0 (λ)z0

(δ − j + 1)
χ[−r,−rj ]

− λ

δ−1∑

j=1

(
Nj(λ)− AT

j

)
Q−1

0 (λ)Q1(λ)Fλ(z1) +Mj(λ)Fλ(z1)

(δ − j + 1)
χ[−r,−rj ].

(4.70)

This expression allows one to define the matrices P j0 (λ) and P j1 (λ) used in (4.45) as

P j0 = −λ

(
Nj(λ)− AT

j

)
Q−1

0 (λ)

(δ − j + 1)
,

(4.71)

P j1 = −λ

(
Nj(λ)− AT

j

)
Q−1

0 (λ)Q1(λ) +Mj(λ)

(δ − j + 1)
.

Composition of functions Y 1(y0,z1) and Y0(z0,z1) gives the announced function
Y1(z0,z1). This concludes the proof that, for λ sufficiently large, for any

[
z0

z1

]
∈

R
N × C1([−r, 0];RN ) there exists

[
y0
y1

]
∈ D such that (4.45) holds.

Consider now the continuous linear function Φλ defined as follows:

Φ(λ) : L2([−r, 0];RN ) �→ L2([−r, 0];RN ),

Φ(λ)(g) = g +

δ−1∑

j=1

P j1 (λ)Fλ(g)χ[−r,−rj ].
(4.72)
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Let us define the following subspace of L2([−r, 0];RN ):

R = Φ(λ)(C1([−r, 0];RN )).(4.73)

The proof of the lemma is obtained if the setR is proved to be dense in L2([−r, 0];RN ).
This is true because it can be readily shown that density of R is sufficient to conclude
that ∀x ∈ M2, for any ε > 0, there exists a y ∈ D such that ‖x−(A∗−λI)y‖M 2

≤ ε

(i.e., density of (A∗ − λI)D).
Given a x =

[
x0

x1

]
∈ M2, take yA ∈ D as follows: yA,0 = Y0(x0, 0) = Q−1

0 (λ)x0

and yA,1 = Y1(x0, 0). It is, by construction,

(A∗ − λI)yA =

[
x0∑δ−1

j=1 P j0 (λ)x0χ[−r,−rj ]

]
.(4.74)

From the density of R, there exists zB,1 ∈ C1([−r, 0];RN ) such that the function

z̃B,1 = zB,1 +

δ−1∑

j=1

P j1 (λ)Fλ(zB,1)χ[−r,−rj ](4.75)

satisfies

∥∥∥
δ−1∑

j=1

P j0 (λ)x0χ[−r,−rj ] − z̃B,1

∥∥∥
L2

≤ ε

2
,(4.76)

and from result (4.45) there exists yB ∈ D such that (A∗ − λI)yB =
[

0
z̃B,1

]
.

Exploiting again the density of R there exists zC,1 ∈ C1([−r, 0];RN ) such that
the function

z̃C,1 = zC,1 +

δ−1∑

j=1

P j1 (λ)Fλ(zC,1)χ[−r,−rj ](4.77)

satisfies
∥∥∥x1 − z̃C,1

∥∥∥
L2

≤ ε

2
.(4.78)

Again, from result (4.45) there exists yC ∈ D such that (A∗ − λI)yC =
[

0
z̃C,1

]
. It is

now an easy matter to show that vector y = yA − yB + yC is such that

‖x − (A∗ − λI)y‖M2 = ‖x − (A∗ − λI)(yA − yB + yC)‖M 2

≤
∥∥∥
[

0
x1 − [(A∗ − λI)yA]1 + z̃B,1 − z̃C,1

] ∥∥∥
M 2

(4.79)

≤
∥∥x1 − z̃C,1

∥∥
L2

+
∥∥∥
δ−1∑

j=1

P j0 (λ)x0χ[−r,−rj ] − z̃B,1

∥∥∥
L2

≤ ε.

It remains to prove that R is dense for sufficiently large λ. We will show that if
for any f ∈ L2([−r, 0];RN ) there exists a vector α ∈ R

Nδ such that

Fλ(f)− Fλ



δ−1∑

j=1

P j1αχ[−r,−rj ]


− α = 0,(4.80)
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then for any f ∈ L2([−r, 0];RN ) a sequence {fk}, fk ∈ R ∀k ≥ 0 can be found
such that ‖f − fk‖L2 → 0. Existence of α in (4.80) for any f is ensured by the
nonsingularity of matrix

Γ(λ) = INδ×Nδ +

δ−1∑

j=1

Fλ
(
P j1 (λ)χ[−r,−rj ]

)
(4.81)

for sufficiently large λ, and this is a sufficient condition for density of R.
To this purpose consider a f ∈ L2, let α be the solution of (4.80), and define the

function

f = f −
δ−1∑

j=1

P j1αχ[−r,−rj ].(4.82)

It is such that Φ(λ)(f) = f . Let {gk} be a sequence of functions in C1([−r, 0];RN )
such that ‖f − gk‖L2 → 0. From the continuity of function Φ(λ) it is ‖Φ(λ)(f) −
Φ(λ)(gk)‖L2 → 0. Defining functions fk = Φ(λ)(gk) ∈ R, the sequence {fk} converges
to Φ(λ)(f), that is, f and density of R, under nonsingularity of Γ(λ), is proved.

It remains to prove the nonsingularity of the δN × δN matrix Γ(λ) defined in
(4.81) for a sufficiently large λ. Such a proof is reported in [39] and is worked out by
showing that det

(
Γ(λ)

)
is a continuous function of λ and that there exists the limit

matrix Γ = limλ→+∞ Γ(λ). Such a matrix can be easily proved to be nonsingular,
because it is block triangular (each block is N × N), in which the diagonal consists
of the following nonsingular δ blocks: block 1 is IN , block j, for j = 2, . . . , δ, is
I + 1

δ−j+1IN . It follows that limλ→+∞ det
(
Γ(λ)

)
= det

(
Γ
)
�= 0, and therefore there

exists λ0 such that for every λ > λ0 matrix Γ(λ) is nonsingular.
So, chosen λ such that Γ(λ) and Q0(λ) are both nonsingular, the proof of this

lemma is completed in the case of hypothesis Hp0.
To remove such a hypothesis it is sufficient to consider a sequence Ak01 in the

space L2([−r, 0];RN×N ), which converges to A01 and satisfies hypothesis Hp0. Let
A∗
k be the corresponding sequence of operators. Let Dk ∈ L(M2) be defined as

Dk

[
y0

y1

]
=

[
0

1
g (A

k
01 − A01)

Ty0

]
.

Thus A∗
k = A∗ + Dk and ‖Dk‖L(M 2)

≤ ‖Ak01 − A01‖L2([−r,0];RN×N) . From Propo-

sition 2.3 in [5, page 28], and Theorem 1.1 in [38, page 76], it follows that any λ
with Re(λ) > ω0 + supk ‖Dk‖ belongs to the resolvent set of A∗ and A∗

k, for every k,
where ω0 is such that ‖T (t)‖ ≤ eω0t, T (t) being the semigroup generated by A (see
Lemma 2.3 in [3]). Let us choose a λ in the resolvent sets of A∗ and A∗

k, such that
(A∗
k − λI)D is dense in M2 for every k. It is sufficient that corresponding matrices

Γk(λ) in (4.81) and Qk0(λ) in (4.68) are nonsingular. Thus, given x ∈ M2, given ǫ > 0,
a sequence yk can be found such that

‖(A∗
k − λI)yk − x‖ <

ǫ

2
.(4.83)

From

‖(A∗ − λI)yk − x‖ ≤ ‖(A∗
k − λI)yk − x‖+ ‖Dk‖‖yk‖(4.84)
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it follows that there exist k0 such that ‖(A∗ − λI)yk0 − x‖ < ǫ, provided yk is
uniformly bounded. It is sufficient that ‖Dk0‖ < ǫ

2 supk ‖yk‖
. It remains to prove

uniform boundedness of yk. Let vk = (A∗
k − λI)yk − x. From (4.83) it is ‖vk‖ < ǫ

2
for every k. From

(A∗
k − λI)−1 = (A∗ +Dk − λI)−1 = [I − (λI − A∗)−1Dk]

−1(A∗ − λI)−1(4.85)

it follows that

‖(A∗
k − λI)−1‖ ≤ ‖[I − (λI − A∗)−1Dk]

−1‖‖(A∗ − λI)−1‖.(4.86)

If k is sufficiently large such that ‖(λI −A∗)−1Dk‖ ≤ d < 1, the following inequality
holds:

‖[I − (λI − A∗)−1Dk]
−1‖ ≤

∞∑

l=0

‖(λI − A∗)−1Dk‖l ≤
1

1− d
,(4.87)

which proves the uniform boundedness of ‖(A∗
k − λI)−1‖. The uniform boundedness

of yk follows by

yk = (A∗
k − λI)−1(vk − x).(4.88)

Such a device to prove the density of (A∗ −λI)D in M2 when hypothesis Hp0 is not
satisfied has been introduced in [24, Theorem 7.2] for the one delay case.

Lemma 4.14. The operator Π′
nA

∗Π′
n converges strongly to the operator A∗ in

the subspace D defined in Lemma 4.13.
Proof. Since it is

‖Π′
nA

∗Π′
nx − A∗x‖M2 ≤ ‖Π′

n(A
∗Π′

n − A∗)x‖M2 + ‖Π′
nA

∗x − A∗x‖M2 ,(4.89)

and limn→∞ ‖Π′
ny − y‖M2 = 0, ∀y ∈ M2 (strong convergence), the lemma is proved

if for any x ∈ D

‖A∗Π′
nx − A∗x‖ → 0.(4.90)

It is

‖A∗Π′
nx − A∗x‖2 = ‖δx1(0) + AT

0 x0 − δ(Π′
nx)1(0)− AT

0 (Π
′
nx)0‖2

+
∥∥∥
1

g
A01x0 −

1

g
A01(Π

′
nx)0 −

d

dϑ


x1 −

δ−1∑

j=1

kj(x0,x1)χ[−r,−rj ]




+
d

dϑ


(Π′

nx)1 −
δ−1∑

j=1

kj((Π
′
nx)0, (Π

′
nx)1)χ[−r,−rj ]




∥∥∥
2

L2

≤ δ2‖x1(0)− (Π′
nx)1(0)‖2 +

(
‖AT

0 ‖+ 2
∥∥∥
1

g
AT

01

∥∥∥
L2

)
·
∥∥∥x0 − (Π′

nx)0
∥∥2

+ 2S2
n(x),

(4.91)
where

Sn(x) =
∥∥∥

d

dϑ


x1 −

δ−1∑

j=1

kj(x0,x1)χ[−r,−rj ]




− d

dϑ


(Π′

nx)1 −
δ−1∑

j=1

kj((Π
′
nx)0, (Π

′
nx)1)χ[−r,−rj ]




∥∥∥
L2

.

(4.92)
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Strong convergence of Π′
n ensures that for n → ∞ the second term in the right-hand

side of (4.91) goes to zero.
To prove that the term Sn(x) goes to zero too, let

x =

[
x0

x1

]
=

N∑

k=1

x0(k)w
′
k +

δ−1∑

i=1

N∑

k=1

(x1(−ri)
Tφk)w

ri
k

+

δ∑

i=1

ni∑

j=1

N∑

k=1

(x1(t
i
j)

Tφk)w
i
jN+k +

N∑

k=1

(x1(0)
Tφk)w

1
k.

(4.93)

It is such that x0 = x0, so that ‖x − x‖M 2
= ‖x1 − x1‖L2 and therefore

‖x −Π′
nx‖M 2

≤ ‖x1 − x1‖L2
.(4.94)

Considering that the function
∑δ−1
j=1 kj(·, ·)χ[−r,−rj ] is piecewise constant it is

Sn(x) =
∥∥∥

d

dϑ
x1 −

d

dϑ
(Π′
nx)1

∥∥∥
L2

(4.95)

and

Sn(x) ≤
∥∥∥

d

dϑ
x1 −

d

dϑ
x1

∥∥∥
L2

+
∥∥∥

d

dϑ
x1 −

d

dϑ
(Π′
nx)1

∥∥∥
L2

.(4.96)

As for the first term at the right-hand side of inequality (4.96), since it is

∥∥∥
d

dϑ
x1 −

d

dϑ
x1

∥∥∥
L2

=

(
δ∑

i=1

∥∥∥
d

dϑ
x1χ[−ri,−ri−1] −

d

dϑ
x1χ[−ri,−ri−1]

∥∥∥
2

L2

) 1
2

,(4.97)

by standard results of spline analysis (see Theorem 2.5 in [42]), each term in the
summation goes to zero for n → ∞.

As for the second term, from definition of vectors w that generate V ′
n, it is, by

applying the Schmidt inequality (see Theorem 1.5 in [42]),

∥∥∥
d

dϑ
x1 −

d

dϑ
(Π′
nx)1

∥∥∥
L2

=

(
δ∑

i=1

∥∥∥
d

dϑ
x1χ[−ri,−ri−1] −

d

dϑ
(Π′
nx)1χ[−ri,−ri−1]

∥∥∥
2

L2

) 1
2

≤
(
δ∑

i=1

(√
12

ni
ri − ri−1

∥∥(x1 − (Π′
nx)1

)
χ[−ri,−ri−1]

∥∥
L2

)2
) 1

2

.

For each term in the summation it is
∥∥(x1 − (Π′

nx)1
)
χ[−ri,−ri−1]

∥∥
L2

≤
∥∥x1 − (Π′

nx)1
∥∥
L2

≤
∥∥x1 − x1

∥∥
L2

+
∥∥x1 − (Π′

nx)1
∥∥
L2

≤ 2‖x1 − x1‖

≤
(
δ∑

i=1

(∥∥(x1 − x1

)
χ[−ri,−ri−1]

∥∥
L2

)2
) 1

2

.

(4.98)

Again, by standard results on spline approximation (Theorem 2.5 in [42]), each term
in the summation goes to zero for n → ∞. This proves that Sn(x) goes to zero for
n → ∞.
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It remains to prove that the term δ‖x1(0) − (Π′
nx)1(0)‖2 in the right-hand side

of (4.91) goes to zero for n → ∞.
First, note that being x ∈ D(A∗) it is such that for i = 1, . . . , δ − 1

x1(−r+
i )−

i−1∑

j=1

kj(x0,x1) = x1(−ri)−
i∑

j=1

kj(x0,x1),(4.99)

where x1(−r+
i ) denotes the limit of x1(ϑ) for ϑ approaching −ri from the right

(note that in general x1(−r+
i ) �= x1(−ri)). Simple computations, taking into account

definition (2.22) of kj , give

x1(−r+
i ) =

δ − i+ 2

δ − i+ 1
x1(−ri)−

1

δ − i+ 1
AT
i x0.(4.100)

Since also Π′
nx ∈ D(A∗), it is such that

(Π′
nx)1(−r+

i ) =
δ − i+ 2

δ − i+ 1
(Π′
nx)1(−ri)−

1

δ − i+ 1
AT
i (Π

′
nx)0.(4.101)

At point −r it is

x1(−r) = AT
δ x0, (Π′

nx)1(−r) = AT
δ (Π

′
nx)0.(4.102)

Since it has been proved that limn→∞ ‖x0 − (Π′
nx)0‖ = 0, from (4.102) it follows

lim
n→∞

‖x1(−r)− (Π′
nx)1(−r)‖ = 0.(4.103)

Starting from (4.103), the proof that ‖x1(0)− (Π′
nx)1(0)‖ goes to zero is obtained if

we prove the following recursive implication:

lim
n→∞

‖x1(−ri)− (Π′
nx)1(−ri)‖ = 0,(4.104)

⇓
lim
n→∞

‖x1(−ri−1)− (Π′
nx)1(−ri−1)‖ = 0.(4.105)

First note that if (4.104) is true, then comparing (4.100) and (4.101), recalling that
‖x0 − (Π′

nx)0‖ → 0, it follows

lim
n→∞

‖x1(−r+
i )− (Π′

nx)1(−r+
i )‖ = 0.(4.106)

From (4.106), since it has been proved that in any interval [−ri,−ri−1]

lim
n→∞

∥∥∥
(

d

dϑ
x1 −

d

dϑ
(Π′
nx)1

)
χ[−ri,−ri−1]

∥∥∥
L2

= 0,(4.107)

implication (4.105) is easily obtained. This completes the proof of the Lemma.
Theorem 4.15. The sequence of semigroups T ∗

Φ′

n
generated by the operators

Π′
nA

∗Π′
n converges strongly to T ∗, the adjoint of the semigroup generated by A.

Proof. The results in Lemmas 4.12, 4.13, and 4.14 imply that the hypotheses of
the Trotter–Kato theorem, as stated in [38] and reported also in Lemma 3.1 in [3],
are satisfied, and this proves the convergence of T ∗

Φ′

n
to T ∗.
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Now the main result of the paper can be given, that is, the theorem on the
convergence of the proposed finite dimensional approximation scheme of the LQG
controller for hereditary systems.

Theorem 4.16. Let Φn and Φ′
n be the sequences of finite dimension subspaces

of M2 in Definitions 4.2, 4.3. Let un(t) be the input function obtained by

un(t) = −B∗Rn(tf − t)Π′
nx̂n(t),(4.108)

where

˙̂xn(t) = ΠnAΠnx̂n(t) +ΠnBun(t) + P n(t)ΠnC
∗
(
y(t)− CΠnx̂n(t)

)
,

(4.109)
x̂n(0) = Πnx̂(0)

in which P n and Rn are the finite dimensional solutions of the Riccati equations
(3.15) and (3.16) in which the projectors Πn and Π′

n are considered. Let u(t) be
the optimal input, x̂(t) the optimal estimated state, xn(t) and x(t) the actual state
evolving when un(t) and u(t) are applied to system (2.1), (2.2), respectively.

Then

lim
n→∞

E‖xn − x‖2
L2([0,tf ];M 2)

= 0,(4.110)

lim
n→∞

E‖x̂n − x̂‖2
L2([0,tf ];M 2)

= 0,(4.111)

lim
n→∞

E‖un − u‖2
L2([0,tf ];Rp) = 0,(4.112)

lim
n→∞

|Jf (un)− Jf (u)| = 0.(4.113)

Proof. The proof comes from Theorem 3.7, whose assumptions (from Hp1 to Hp4)
are satisfied thanks to Theorems 4.7, 4.8, 4.11, and 4.15.

5. Implementation of the method. In this section the numerical implementa-
tion of the approximation scheme described in the previous section, and which satisfies
all properties listed in the introduction, is reported.

Consider two Hilbert spaces U and V and two finite dimensional subspaces Un ⊂ U
and Vm ⊂ V of dimension n and m, respectively. Let (u1, . . . ,un) be a basis of Un
and (v1, . . . ,vm) a basis of Vm. Consider the nonsingular matrices T n ∈ R

n×n and
Zm ∈ R

m×m, whose components are defined as

Tn(i, j) = (ui,uj)U , i, j = 1, . . . , n,
(5.1)

Zm(h, k) = (vi,vj)V , i, j = 1, . . . ,m.

Recall that the orthoprojection operator from U to Un performs the following opera-
tion on a vector x ∈ U :

Π(x;Un) =

n∑

i=1

αiui with




α1
...

αn


 = T−1

n



(x,u1)U

...
(x,un)U


 ,(5.2)

and the orthoprojection operator from V to Vm performs the following operation on
a vector y ∈ H2:

Π(y;Vm) =

m∑

i=1

βivi with




β1
...

βm


 = Z−1

m



(y,v1)V

...
(y,vm)V


 .(5.3)
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Let us denote as ξn the isomorphism that associates to a vector x ∈ Un its coordinate
representation

ξn : Un �→ R
n; ξn(x) = T−1

n



(x,u1)U

...
(x,un)U


(5.4)

and as ξm the isomorphism

ξm : Vm �→ R
m; ξm(y) = Z−1

m



(y,v1)V

...
(y,vm)V


 .(5.5)

Consider now the algebra S of linear operators from Un to Vm. It is

S ∈ S, ξm(S(ui)) = Z−1
m



(S(ui),v1)V

...
(S(ui),vm)V


 .(5.6)

The following isomorphism ηmn is induced between S and the algebra of matrices
m× n:

S ∈ S, ηmn (S) = Z−1
m S, S ∈ R

m×n, Si,j = (S(uj),vi)V ,(5.7)

that is, such that

ξm(S(x)) = ηmn (S) ξn(x), x ∈ Un.(5.8)

Isomorphisms between points of finite dimensional spaces and their coordinate
representations and between linear operators on finite dimensional spaces and their
matrix representations allow us to write the approximated Riccati equations for con-
trol (3.16) and for filtering (3.15) as

˙̃
P n(t) = ÃnW

−1
n P̃ n(t) + P̃ n(t)W

−1
n Ã

T

n + Λ̃nb− P̃ n(t)W
−1
n Σ̃nW

−1
n P̃ n(t),

(5.9)
˙̃
Rn(t) = ÃnVVV −1

n R̃n(t) + R̃n(t)VVV
−1
n ÃT

n + L̃n − R̃n(t)VVV
−1
n S̃nVVV

−1R̃n(t)

and the approximated filter equation (3.46) and control equation (3.47) in the form

˙̂xn,C(t) = W−1
n ([Ãn − P̃ n(t)Σ̃n]x̂n,C(t) + P̃ n(t)W

−1
n Γny(t)− T̃ n(tf − t)x̂n,C(t)),

un(t) = −
[
0 BT0

]
VVV −1

n R̃n(tf − t)VVV −1
n T̃ n,2x̂n,C(t),

ẑn(t) = [ IN×N 0N×nN ] x̂n,C(t).

(5.10)

In (5.9) and (5.10) x̂n,C is the coordinate expression of vector x̂n in the basis of

Φn, ẑn(t) is the approximation of the optimal estimate of z(t), P̃ n(t) and R̃n(t)

are square matrices whose components are defined as {P̃ n(t)}i,j = (P n(t)vj ,vi) and

{R̃n(t)}i,j = (Rn(t)wj ,wi). Matrices Λ̃n, Σ̃n, Γn, W n, Ãn, T̃ n,1, VVV n, T̃ n,2(t),
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Ãn, L̃n, S̃n are numerical matrices computed by simple scalar products of elements
in finite dimensional subspaces as follows:

Λ̃n(i, j) = (FF ∗vj ,vi) ,

Σ̃n(i, j) = (C∗Cvj ,vi) ,

Γn(i, j) = (C∗φj ,vi) ,

W n(i, j) = (vi,vj),

Ãn(i, j) = (Avj ,vi),

T̃ n,1(i, j) = (BB∗wj ,vi) ,

VVV n(i, j) = (wi,wj),

T̃ n,2(i, j) = (vj ,wi),

Ãn(i, j) = (A∗wj ,wi) ,

L̃n(i, j) = (Qwj ,wi),

S̃n(i, j) = (BB∗wj ,wi).

(5.11)

Finally, it is T̃ n(t) = T̃ n,1VVV
−1
n R̃n(t)VVV

−1
n T̃ n,2.

Thus, denoting by

Sc(n, t) = W−1
n (Ãn − P̃ n(t)W

−1
n Σ̃n − T̃ n,1VVV

−1
n R̃n(tf − t)VVV −1

n T̃ n,2),

Pc(n, t) = W−1
n P̃ n(t)W

−1
n Γn,

Qc(n, t) = − [ 0 BT
0 ]VVV −1

n R̃n(tf − t)VVV −1
n T̃ n,2

(5.12)

with P̃ n(t) and R̃n(t) solutions of the matrix differential equations (Riccati) in (5.9),
the approximate LQG controller can be written as follows:

˙̂xn,C(t) = Sc(n, t)x̂n,C(t) + Pc(n, t)y(t),

un(t) = Qc(n, t)x̂n,C(t).
(5.13)

The vector x̂n,C(t) ∈ R
(n1+1+

∑
δ

i=2
ni)N .

Remark 5.1. It is important to stress the fact that matrices in (5.11) have a
fixed structure and, in the case of hereditary systems without distributed delay, such
matrices depend only on the multiindex sn and on the matrices Aj (j = 0, 1, . . . , δ),
B0, C0, F 0, G that describe the system and on the weight matrix Q0 that defines
the cost functional. This property follows from the fact that splines are not uniformly
distributed over the interval [−r, 0]: each interval [−ri,−ri−1] has an independent
spline distribution.

The numerical computation of matrices (5.11) is a straightforward function of
the multi-index sn and of the system matrices. As an example, the expressions of
matrices in (5.11) are reported for systems with two pure delay terms (multi-index
sn = (n1, n2) with n = inf(n1, n2)) and no distributed delay.

W n =

[
W n,a W n,b

0n2N×n1N W n,c

]
,(5.14)
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W n,a =

(
r1

n1

)




n1

r1
+ 2/3 1/3 0 . . . 0

1/3 4/3 1/3
. . .

...

0 1/3
. . .

. . . 0
...

. . .
. . . 4/3 1/3

0 · 0 1/3 2/3 + n1

r1
r−r1
3n2




(n1+1)×(n1+1)

⊗ IN×N ,

W n,b =

[
0 . . . . . . 0

r−r1
6n2

IN×N 0 . . . 0

]

(n1+1)N×n2N

,

W n,c =

(
r − r1

n2

)



1/6 2/3 1/6 0 . . .

0 1/6
. . .

. . . 0
...

. . .
. . . 2/3 1/6

0 · 0 1/6 1/3




n2×(n2+1)

⊗ IN×N .

(5.15) Ãn = Ãn,1 + Ãn,2,

Ãn,1 =

[
A0 0 . . . 0 A1 0 . . . 0 A2

0 . . . . . . . . . . . . . . . . . . . . . 0

]
,

Ãn,2 =

[
Ãn,2,a Ãn,2,b

0n2N×n1N Ãn,2,c

]
,

Ãn,2,a =




1 −1 0 . . . 0

1 0 −1
. . .

...

0 1
. . .

. . . 0
...

. . .
. . . 0 −1

0
... 0 1 −1/2




n1+1×(n1+1)

⊗ IN×N ,

Ãn,2,b =

[
0n1N×n2N

[−1/2IN×N 0 . . . 0 ]

]
,

Ãn,2,c =




1/2 0 −1/2 0 . . .

0 1/2
. . .

. . . 0
...

. . .
. . . 0 −1/2

0
... 0 1/2 −1/2




n2×(n2+1)

⊗ IN×N .

(5.16) VVV n =

[
VVV n,a VVV n,b
VVV T

n,b VVV n,c

]
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with

VVV n,a =
r1

n1




2/3 1/3 0 . . . 0

1/3 4/3 1/3
. . .

...

0 1/3
. . .

. . . 0
...

. . .
. . . 4/3 1/3

0 · 0 1/3 4/3




n1×n1

⊗ IN×N ,

VVV n,b =

[
0(n1−1)N×(n2+1)N

[ r16n1
IN×N 0 . . . 0 r1

6n1
AT

1 ]

]

n1N×(n2+1)N

,

VVV n,c = VVV n,c,1 + VVV n,c,2,

VVV n,c,1 =

(
r − r1

n2

)




1/3 1/6 0 . . . 0

1/6 2/3 1/6
. . .

...

0 1/6
. . .

. . . 0
...

. . .
. . . 2/3 1/6AT

2

0 · 0 1/6A2 0




(n2+1)×(n2+1)

⊗ IN×N ,

VVV n,c,2 =



r1
6n1

IN×N 0 . . . 0 r1
6n1

AT
1

0 . . . . . . . . . 0
r1
6n1

A1 0 . . . 0 I + r1
6n1

A1A
T
1 + r−r1

3n2
A2A

T
2


 .

(5.17) T̃ n,2 =




T̃ n,2,a T̃ n,2,b

T̃ n,2,c T̃ n,2,d

T̃ n,2,e T̃ n,2,f

T̃ n,2,g T̃ n,2,h




(n1+n2+1)N×(n1+n2+1)N

,

T̃ n,2,a =

(
r1

n1

)







2/3 1/3 0 . . . 0

1/3 4/3 1/3
. . .

...

0 1/3
. . .

. . . 0
...

. . .
. . . 4/3 1/3

0 · 0 1/3 4/3




n1×n1

⊗ IN×N

[
0

1
3IN×N

]




n1N×(n1+1)N

,

T̃ n,2,b = 0n1N×n2N ,

T̃ n,2,c = [ 0 . . . 0 r1
6n1

IN×N
r−r1
3n2

IN×N + r1
3n1

IN×N ]N×(n1+1)N ,

T̃ n,2,d = [ r−r16n2
IN×N0 . . . 0 ]N×n2N

,
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T̃ n,2,e =

[
0 . . . 0 r−r1

6n2
IN×N

0 . . . . . . 0

]

(n2−1)N×(n1+1)N

,

T̃ n,2,f =

(
r − r1

n2

)






2/3 1/6 0 . . .

1/6
. . .

. . . 0

0
. . . 2/3 1/6

. . . 0 1/6 2/3




(n2−1)×n2

⊗ IN×N

[
0

1
6IN×N

]



(n2−1)N×(n2−1)N

,

T̃ n,2,g = [ IN×N 0 r1
6n1

A1
r1
3n1

A1 ]N×(n1+1)N ,

T̃ n,2,h = [0 . . . 0 r−r1
6n2

A2
r−r1
3n2

A2 ]N×n2N
.

(5.18) Ãn = Ãn,1 + Ãn,2,

Ãn,1 =

[
0 . . . . . . . . . 0

2IN×N 0 . . . 0 AT
0

]

(n1+n2+1)N×(n1+n2+1)N

,

Ãn,2 =

[
Ãn,2,a Ãn,2,b
Ãn,2,c Ãn,2,d

]

(n1+n2+1)N×(n1+n2+1)N

,

Ãn,2,a =




−1 1 0 . . . 0

−1 0 1
. . .

...

0 −1
. . .

. . . 0
...

. . .
. . . 0 1

0
... 0 −1 0




n1×n1

⊗ IN×N ,

Ãn,2,b =
[

0 . . . . . . . . . 0
1/2IN×N 0 . . . 0 1/2AT

1

]

n1N×(n2+1)N

,

Ãn,2,c =



0 . . . 0 −1/2IN×N

...
...

... 0
0 . . . 0 −1/2A1




(n2+1)N×n1N

,

Ãn,2,d =







−1/4 1/2 0 . . . 0

−1/2 0 1/2
. . .

...

0 −1/2
. . .

. . . 0
...

. . .
. . . 0 1/2

0
... 0 −1/2 0




n2×n2

⊗ IN×N

∣∣∣

1/4AT
1

0
...
0

1
2AT

2

1/4A1 0 . . . 0 − 1
2A2

∣∣ 1
4A1A

T
1 + 1/2A2A

T
2




.
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Remark 5.2. In the case of just one pure delay, matrices in (5.11) are much
simpler, due to the fact that vectors v and w are much simpler. Matrices which
involve v vectors have been computed in [3]. Here, just to have an idea of such a

simplification, matrix Ãn in (5.18) is reported in the case of one pure delay term.

(5.19) Ãn = Ãn,1 + Ãn,2,

Ãn,1 =

[
0 0 0

IN×N 0 AT
0

]
,

Ãn,2 =







−1/2 1/2 0 . . . 0

−1/2 0 1/2
. . .

...

0 −1/2
. . .

. . . 0
...

. . .
. . . 0 1/2

0
... 0 −1/2 0




n×n

⊗ IN×N

∣∣∣ 0
1
2AT

1

0 − 1
2A1

∣∣ 1
2A1A

T
1




.

If there is the distributed delay too, then the following matrix must be added in the
right-hand side of (5.19):

Ãn,3 =




0 (D′n
0 )T

...
...

0 (D′n
n−1)

T

0 A1(D
′n
n )

T


 ,

where

D′n
j =

∫ 0

−r

A01(s)splinej(s)ds j = 0, 1, . . . , n.

6. Remarks on the infinite horizon case. The methodology here presented
for LQG control of hereditary systems over a finite time-horizon can be applied also
for LQG control over infinite time-horizon. The basis is the paper [14] in which,
under suitable conditions, the convergence of the solution of an approximate Riccati
differential equation, evaluated in a sufficiently large time, to the solution of the cor-
responding infinite dimensional algebraic Riccati equation is proved. The hypotheses
required in [14] for such a convergence are satisfied by hereditary systems and by
the approximation scheme here presented. Such hypotheses are the Hilbert–Schmidt
property of operators Q and FF ∗, the convergence of the sequence of projection
operators involved, and the convergence of the semigroups approximating the semi-
group generated by the operator which, in the algebraic Riccati equation, multiplies
on the left the unknown Riccati operator. Structural properties are requested in
paper [14] of approximate controllability of pairs (A,F ) and (A∗,Q). In that pa-
per the approximate solution of an algebraic Riccati equation is found by exploiting
the approximability of the corresponding dynamical Riccati equation and its time
convergence toward the steady state, and finding a large enough time-horizon T to
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approximate the steady-state solution. Such a solving method, which requires only
convergence of one approximating semigroup, does not allow for a uniform conver-
gence of the approximate solution toward the actual one (see Theorem 3.2 of [14],
relationship among ǫ, T , and n). On the other hand, such a solving method does not
require the uniform exponential stability of the approximating semigroups nor the
convergence of the adjoint approximate semigroups.

Using the approximate solutions of the Riccati algebraic equations, by using the
above paper, the infinite horizon LQG controller can be built. The problem of guaran-
teeing the convergence of the approximation schemes in infinite horizon case continues
to be worthy of attention.

Nevertheless, when the state is fully available, the approximation scheme here
presented has the nice property to guarantee convergence also in the infinite horizon
case, as stated in the following theorem.

Theorem 6.1. Consider system (2.5), with fully available state, that is,

(6.1) y(t) = x(t)

and the following cost functional

(6.2) JI(u) = lim
tf→∞

1

tf

∫ tf

0

E[(Qx(t),x(t)) + uT(t)u(t)]dt,

with Q : M2 �→ M2 as in (3.2). Let the pair (A,B) be stabilizable and the pair
(A,Q) be detectable. Let

(6.3) un(t) = −B⋆Rn(T )Π
′
nxn(t),

where Rn(T ) is the approximate solution of the algebraic Riccati equation for control

(6.4) A⋆R + RA − RBB⋆R + Q = 0

obtained [14] by evaluating the approximate dynamic Riccati equation (3.16) in a suit-
able time T , and xn(t) is the corresponding evolving state. Let x(t) be the state
evolving when the optimal infinite horizon LQG control law is applied to the system.
Then, for every ǫ > 0, there exists a Tǫ, such that for every T > Tǫ there exists an nT ,
such that for every n > nT the semigroup which governs the closed loop system, that
is, the one generated by A − BB⋆Rn(T )Π

′
n, is exponentially stable and, moreover,

(6.5) E‖xn(t)− x(t)‖ < ǫ ∀t ∈ [0,∞).

Proof. First let us prove that E‖x(t)‖ is uniformly bounded. Let S(t) be the
semigroup generated by the optimal closed loop infinitesimal generator A − BB⋆R,
with R the solution of the algebraic Riccati control equation. There exist positive
constants M and σ such that ‖S(t)‖ ≤ Me−σt. It is

(6.6)

E‖x(t)‖ ≤ E‖S(t)x(0)‖+ E‖
∫ t

0

S(t− τ)Fω(τ)dτ‖

≤ Me−σt
√

E(‖x(0)‖)2 +
(∫ t

0

M2e−2σ(t−τ)‖F ‖2
H.S.

) 1
2

≤ M
√
Tr(P 0) +

M√
2σ

‖F ‖H.S.
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Consider now the equation

(6.7) ξ̇n,T (t) = (A − BB⋆Rn(T )Π
′
n)ξn,T (t).

It is

(6.8) ξn,T (t) = S(t)ξn,T (0) +

∫ t

0

S(t− τ)BB⋆(R − Rn(T )Π
′
n)ξn,T (τ)dτ

by which it follows that

(6.9)

‖ξn,T (t)‖ ≤ Me−σt‖ξn,T (0)‖ +

∫ t

0

Me−σ(t−τ)‖BB⋆(R − Rn(T )Π
′
n)‖H.S.ξn,T (τ)dτ

and by the Gronwall inequality

(6.10) ‖ξn,T (t)‖ ≤ Me(−σ+M‖BB⋆
(R−Rn(T )Π′

n)‖H.S.t)ξn,T (0).

Now let ǫ > 0. By Theorem 3.2 in [14] and by the inequality

(6.11) ‖R − Rn(T )Π
′
n‖H.S. ≤ ‖Π′

nRΠ′
n − Rn(T )Π

′
n‖H.S. + ‖R −Π′

nRΠ′
n‖H.S.,

it follows that there exists Tǫ such that for every T > Tǫ there exists nT such that for
every n > nT

(6.12) ‖R−Rn(T )Π
′
n‖H.S. < min

{
σ

2M‖BB⋆‖ ,
ǫσ

2M‖BB⋆‖ supτ∈[−r,∞) E‖x(τ)‖

}

and so

(6.13) ‖ξn,T (t)‖ ≤ Me
−σ
2 tξn,T (0),

which implies the exponential stability of the closed loop semigroup.
As far as the second part of the thesis is concerned, let

en(t) = x(t)− xn(t).

It is

(6.14) ėn(t) = (A − BB⋆Rn(T )Π
′
n)en(t) + BB⋆(Rn(T )Π

′
n − R)x(t)

by which, taking into account (6.12),

(6.15)
E‖en(t)‖ ≤

∫ t

0

Me(−σ+M‖BB⋆
(R−Rn(T )Π′

n)‖H.S.)(t−τ)

·‖BB⋆(R − Rn(T )Π
′
n)‖H.S.E‖x(τ)‖dτ < ǫ.

7. Examples. Simulations reported in this section have been performed by
MATLAB on a PC using the 3rd order Runge–Kutta integration algorithm.1

1Simulation programs are available upon request.
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Example 1. Consider the following unstable hereditary system:

(7.1)

d2z(t)

dt2
=

dz(t)

dt
+ z(t) +

dz(t− r1)

dt
+ z(t− r1)

+
dz(t− r2)

dt
+ z(t− r2) + u(t) + ω1(t),

y(t) = z(t) + ω2(t),

where z(t), u(t), y(t) ∈ R, ω1(t), ω2(t) ∈ R are independent white Gaussian standard
noises.

By denoting Z(t) =
[ z(t)

dz(t)
dt

]
, and ω(t) =

[
ω1(t)
ω2(t)

]
, the system (7.1) can be rewritten

as follows:

(7.2)

Ż(t) =

[
0 1
1 1

]
Z(t) +

[
0 0
1 1

]
Z(t− r1)

+

[
0 0
1 1

]
Z(t− r2) +

[
0
1

]
u(t) +

[
0 0
1 0

]
ω(t)

y(t) = [ 1 0 ]Z(t) + [ 0 1 ]ω(t).

The weight matrix in the functional (3.1) has been chosen as

(7.3) Q0 =

[
1000 0
0 0

]
.

The time tf has been chosen equal to 10, and the delays have been chosen as r1 = 1.2
and r2 = 2.5. The initial value of Z(ϑ), ϑ ∈ [−r2, 0], has been chosen as follows:

Z(ϑ) =

[
e−ϑ

cos(10ϑ)

]
,

while the initial estimate Ẑ(ϑ) has been set to 0 in the same interval. The covariance
operator P 0 of the initial state in M2 has been chosen as follows:

P 0x = (x, φ)φ,

where x, φ ∈ M2, φ =
[
φ0

φ1

]
, φ0 = φ1(ϑ) =

[
1
1

]
, ϑ ∈ [−r2, 0].

The integration step has been chosen equal to 0.0025.
Figures 2–5 report the first component of the actual Z(t) evolving when the ap-

proximated input is applied to the system and of the estimated Ẑ(t) for different values
of n1 and n2. Figures 6–9 report the second component of Z(t) and Ẑ(t). In Figures
10–13 the first component and the second one of Z(t) and Ẑ(t), the approximated
control input and the noisy output, are reported for n1 = n2 = 6.

Example 2. Consider now the well-known National Transonic Facility [4, 27,
40], the liquid nitrogen wind tunnel at NASA Langley Research Center in Hampton,
VA. Here only one of the state variables is measured, the guide vane angle, while no
measurement of the mach number nor of the guide vane angle derivative is available.
Moreover, we suppose an additive Gaussian noise corrupts the dynamics of the system
and the above measure. A simplified model of such a system is given by (see [4] for the
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Fig. 2. The case of n1 = n2 = 2: true and estimated Z1(t).
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Fig. 3. The case of n1 = 3, n2 = 2: true and estimated Z1(t).
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Fig. 4. The case of n1 = 3, n2 = 3: true and estimated Z1(t).
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Fig. 5. The case of n1 = 4, n2 = 3: true and estimated Z1(t).
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Fig. 6. The case of n1 = n2 = 2: true and estimated Z2(t).
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Fig. 7. The case of n1 = 3, n2 = 2: true and estimated Z2(t).
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Fig. 8. The case of n1 = 3, n2 = 3: true and estimated Z2(t).
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Fig. 9. The case of n1 = 4, n2 = 3: true and estimated Z2(t).
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Fig. 10. The case of n1 = n2 = 6: true and estimated Z1(t).
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Fig. 11. The case of n1 = n2 = 6: true and estimated Z2(t).
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Fig. 12. The case of n1 = n2 = 6: the input u(t).
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Fig. 13. The case of n1 = n2 = 6:: the noisy output y(t).



1280 A. GERMANI, C. MANES, AND P. PEPE

deterministic model)

(7.4)

ż(t) =



−a 0 0
0 0 1
0 −ω̄2 −2ξω̄


 z(t) +



0 ka 0
0 0 0
0 0 0


 z(t− 0.33)

+




0
0

−ω̄2


u(t) + F0ω1(t)

y(t) = [ 0 1 0) ] z(t) +G0ω2(t)

with (1/a) = 1.964, k = −0.0117, ξ = 0.8, ω̄ = 6.0, and ω1(t), ω2(t) ∈ R independent
white Gaussian standard noises. As in the LQ problem developed in [4, 27, 40], the
matrix Q0 in the functional (3.1) has been chosen as follows:

(7.5) Q0 =



10000 0 0
0 0 0
0 0 0


 .

In simulations we have supposed to know exactly the initial state

z(τ) =



−0.1
8.547
0


 , τ ∈ [−0.33, 0],

and we have used

F 0 =




0
0
10


 , G = 1.

Figures 14–17 show the three components of the state and the input for n = 2.
Computed values of the functional

(7.6) J10 =

∫ 10

0

[zT(t)Q0z(t) + u2(t)]dt

for different n and the same noise realization are reported in Table 1. The integration
step has been chosen equal to dT = 0.001, the integral J10 has been computed as

dT
∑10/dT
k=0 zT(kdT )Q0z(kdT ) + u2(kdT ).

We have considered also the infinite horizon LQ problem: this means that we
have considered only the Riccati equation for control and evaluated the dynamic ap-
proximated Riccati operator in a sufficiently large time. We have stopped integration
when the norm of the difference between the Riccati matrix operators evaluated in
time kdT and (k + 1)dT was less than 10−10.

Tables 2–5 report the values of matrices Πn0 and of matrices of functions Πn1 (ϑ)
[4, 27, 40] of the approximated, not yet implementable, LQ control law

(7.7) un(t) = Πn0 z(t) +

∫ 0

−r

Πn1 (θ)z(t+ θ)dθ.
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Fig. 14. Finite horizon LQG for the wind tunnel. The case of n = 2: true and estimated z1(t)
(almost coincident).
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Fig. 15. Finite horizon LQG for the wind tunnel. The case of n = 2: true and estimated z2(t)
(almost coincident).
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Fig. 16. Finite horizon LQG for the wind tunnel. The case of n = 2: true and estimated z3(t)
(almost coincident).
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Fig. 17. Finite horizon LQG for the wind tunnel. The case of n = 2: the input u(t).
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Table 1

Values of J10 computed for different values of n.

n J10

2 136.41324
4 136.41311
8 136.41310

Table 2

Values of matrix Πn

0 for different values of n.

n = 2

[
8676.5662 −9.8145 −0.9479
−9.8145 0.0182 0.0018
−0.9479 0.0018 0.0002

]

n = 4

[
8676.9112 −9.8149 −0.9477
−9.8149 0.0184 0.0018
−0.9477 0.0018 0.0002

]

n = 8

[
8676.9959 −9.8150 −0.9477
−9.8150 0.0185 0.0018
−0.9477 0.0018 0.0002

]

n = 16

[
8677.0170 −9.8150 −0.9477
−9.8150 0.0185 0.0018
−0.9477 0.0018 0.0002

]

Table 3

Values of Πn

1 (1, 2) for different values of n.

j Π21(−jr/16) Π41(−jr/16) Π81(−jr/16) Π161 (−jr/16)

0 −41.3798 −41.3931 −41.3962 −41.3970

1 — — — −42.0024

2 — — −42.6103 −42.6140

3 — — — −43.2288

4 — −43.8343 −43.8491 −43.8499

5 — — — −44.4742

6 — — −45.1014 −45.1051

7 — — — −45.7393

8 −46.3182 −46.3773 −46.3796 −46.3802

9 — — — −47.0246

10 — — −47.6721 −47.6757

11 — — — −48.3306

12 — −48.9777 −48.9920 −48.9923

13 — — — −49.6579

14 — — −50.3271 −50.3306

15 — — — −51.0071

16 −51.6883 −51.6904 −51.6909 −51.6910
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Table 4

Values of Πn

1 (2, 2) for different values of n.

j Π21(−jr/16) Π41(−jr/16) Π81(−jr/16) Π161 (−jr/16)

0 0.0684 0.0690 0.0691 0.0692

1 — — — 0.0685

2 — — 0.0678 0.0677

3 — — — 0.0670

4 — 0.0665 0.0663 0.0663

5 — — — 0.0656

6 — — 0.0650 0.0649

7 — — — 0.0643

8 0.0646 0.0635 0.0636 0.0636

9 — — — 0.0629

10 — — 0.0623 0.0623

11 — — — 0.0616

12 — 0.0613 0.0610 0.0610

13 — — — 0.0604

14 — — 0.0598 0.0597

15 — — — 0.0591

16 0.0585 0.0585 0.0585 0.0585

Table 5

Values of Πn

1 (3, 2) for different values of n.

j Π21(−jr/16) Π41(−jr/16) Π81(−jr/16) Π161 (−jr/16)

0 0.0067 0.0067 0.0067 0.0067

1 — — — 0.0066

2 — — 0.0065 0.0065

3 — — — 0.0065

4 — 0.0064 0.0064 0.0064

5 — — — 0.0063

6 — — 0.0063 0.0063

7 — — — 0.0062

8 0.0062 0.0061 0.0061 0.0061

9 — — — 0.0061

10 — — 0.0060 0.0060

11 — — — 0.0060

12 — 0.0059 0.0059 0.0059

13 — — — 0.0058

14 — — 0.0058 0.0058

15 — — — 0.0057

16 0.0056 0.0056 0.0056 0.0056

In Tables 3–5 the values of the second column, the only one not zero, of matri-
ces Πn1 of continuous functions are reported, just in instants −jr/n, j = 0, 1, . . . , n
(between such points the continuous function in consideration is a one degree poly-
nomial).

In the wind tunnel example, and in all other examples we have simulated, no
oscillations appear for Πn1 (ϑ), which was an important problem arising while consid-
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Table 6

Values of Π80 for different approximation schemes.

[2, 24]

[
8671.3161 −9.8336 −0.9500
−9.8336 0.0179 0.0018
−0.9500 0.0018 0.0002

]

[4]

[
8676.9829 −9.8154 −0.9477
−9.8154 0.0185 0.0019
−0.9477 0.0019 0.0002

]

[27]

[
8677.02698 −9.81505 −0.94768
−9.81505 0.01851 0.00186
−0.94768 0.00186 0.00019

]

[40]

[
8677.02502 −9.81503 −0.94768
−9.81503 0.01851 0.00186
−0.94768 0.00186 0.00019

]

[this paper]

[
8676.99592 −9.81502 −0.94769
−9.81502 0.01850 0.00186
−0.94769 0.00186 0.00019

]

Π0

[
8677.02405 −9.81505 −0.94768
−9.81505 0.01851 0.00186
−0.94768 0.00186 0.00019

]

Table 7

Values of J(un) for different schemes and n = 8.

[2, 24] [4] [27] [40] [This paper] Theor. value [27]

136.7361 136.7354 136.40094 136.4490 136.4131 136.40490

ering the approximation scheme [4]. In that approximation scheme Πn1 is increasingly
oscillatory with increasing n, while in our scheme, as in [27, 40], each function in Πn1
is monotone. This property becomes very important if one wants to implement the
approximating feedback law in a real system [27].

In Table 6 the approximations of order n = 8 of matrix Π0, denoted Π8
0, are

reported, computed with approximation schemes in [2, 24, 4, 27, 40] and with the
method presented in this paper. Also the exact optimal Π0 is reported, as computed
in [27].

Table 7 reports the values of the functional

(7.8)

∫ ∞

0

[zT(t)Q0z(t) + u2(t)]dt

computed using the same approximation schemes for n = 8.
The value computed with the method proposed in this paper is obtained by

numerical integration of (7.6). The value computed with tf = 20 is quite the same
(for n = 2 it is J20 = 136.4133).
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Table 8

Numerical values of J10 computed for different values of n.

n J10
2 136.41325
4 136.41312
8 136.41311
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Fig. 18. Infinite horizon LQG for the wind tunnel. The case of n = 2: true and estimated
z1(t) (almost coincident).

To conclude, the infinite horizon LQG control is considered: the solutions of
the approximate algebraic Riccati equations for control and filtering are used in the
control scheme. The resulting controller is a dynamic finite dimensional stationary

system driven by the noisy output. The values of the index
∫ 10

0
[zT(t)Q0z(t)+u2(t)]dt,

computed for different n and for the same noise realization, are reported in Table 8.
All approximation schemes give, within numerical errors, practically the same

value of the cost functional. It is indeed remarkable that the proposed approxima-
tion scheme is able to reach such value of the functional starting from noisy output
measurements and not, as the other schemes do, starting from noiseless full state
information (in a delay interval).

In Figures 18–20 the three components of the state are reported in the infinite
horizon case, for n = 2. The plots of the input and of the output are reported in
Figures 21 and 22.

Comparison with the methods presented in [25, 26] cannot be reported because
such papers do not contain numerical results.
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Fig. 19. Infinite horizon LQG for the wind tunnel. The case of n = 2: true and estimated
z2(t) (almost coincident).
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Fig. 20. Infinite horizon LQG for the wind tunnel. The case of n = 2: true and estimated
z3(t) (almost coincident).
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Fig. 21. Infinite horizon LQG for the wind tunnel. The case of n = 2: the input u(t).
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Fig. 22. Infinite horizon LQG for the wind tunnel. The case of n = 2: the noisy output y(t).
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8. Conclusions. In this paper a new spline approximation scheme has been
developed for the finite horizon LQG control of general hereditary systems. The
approximated LQG controller is a finite dimensional linear system driven by the noisy
output. It has been proved that the approximated implementable feedback input and
the corresponding state converge to the optimal ones. The approximation scheme
makes use of first order splines, introduced by [3] for hereditary systems, suitably
adapted to the LQG problem which involves three differential equations, that is,
the filter equation and the two Riccati equations required for the computation of
the optimal stochastic control. Generally in the literature one of these equations is
considered, that is the Riccati equation for the deterministic state feedback optimal
control [4, 24, 26, 27, 40]. A methodology with two approximating subspaces has
been necessary to apply such spline functions to obtain convergence of the overall
LQG problem.

The main feature of the proposed scheme is from a numerical point of view. Indeed
our proposal of an implementable LQG controller gives practically the same results of
the well-known LQ controller, with a complete knowledge of the infinite dimensional
state in a deterministic setting, with reference to an important widely studied case as
the NASA National Transonic Facility. The choice of spline environment instead of
averaging one is motivated in [4], where its numerical advantages are stressed.

Moreover, the proposed method for choosing splines has the important degree of
freedom regarding the possibility of approximating separately the semigroup governing
the system and its adjoint. This allows us to use splines of any order [3]. This is very
promising for obtaining very good performances in the future.

Future work will involve the infinite horizon LQG problem, which in this paper
has been only sketched. For such a problem, the approximation scheme developed
here can be used, and convergence of the type in paper [14] can be obtained. As a
final remark, we would like to stress that the methodology presented in this paper
can involve more than one type of approximation for the three equations governing
the LQG stochastic control in order to get the best combination of theoretical and
numerical convergences of approximation schemes developed until now [2, 3, 24, 26,
27, 40].

Appendix.

LEMMA A.1. For any y0 ∈ R
N and for any function f ∈ C0([−r, 0];RN ), there

exists a unique left-continuous function y1 : [−r, 0] �→ R
N such that

(A.1) y1 −
δ−1∑

j=1

kj(y0,y1)χ[−r,−rj ] = f ,

where kj are functions defined in (2.22).
Proof. In the case δ = 1 the summation vanishes and the lemma is trivially true.

In the case δ > 1, consider (A.1) in time instants −rk

(A.2) y1(−rk)−
k∑

j=1

y1(−rj)− AT
j y0

δ − j + 1
= f(−rk), k = 1, . . . , δ − 1,

which can be put in matrix form as

(A.3)




y1(−r1)
...

y1(−rδ−1)


 =




f(−r1)
...

f(−rδ−1)


+Hδ,2




y1(−r1)
...

y1(−rδ−1)


−Hδ,2




AT
1
...

AT
δ−1


y0,
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where matrix Hδ,2 is defined as follows (IN is the N ×N identity matrix):

(A.4) Hδ,2 =




1
δIN 0 · · · 0 0
1
δIN

1
δ−1IN · · · 0 0

...
...

. . .
...

...
1
δIN

1
δ−1IN · · · 1

3IN 0
1
δIN

1
δ−1IN · · · 1

3IN
1
2IN




.

Now, let us define a vector η ∈ R
(δ−1)N as

(A.5) η =




η1
...

ηδ−1


 = (I(δ−1)N −Hδ,2)

−1







f(−r1)
...

f(−rδ−1)


−Hδ,2




AT
1
...

AT
δ−1


y0




and the left-continuous function

(A.6) ȳ1(ϑ) =





ηi, ϑ = −ri,

f(ϑ) +

δ−1∑

j=1

ηj − AT
j y0

δ − j + 1
χ[−r,−rj ](ϑ), ϑ �= −ri,

in which i = 1, . . . , δ − 1. It is readily verified that ȳ1 satisfies (A.1).
Uniqueness is proved by recognizing that any other function ỹ1 satisfying (A.1)

verifies also (A.3), and therefore ỹ1(−rk) = ȳ1(−rk), k = 1, . . . , δ− 1. The difference
between expression (A.1) with y1 = ȳ1 and the same expression in which y1 = ỹ1 is
used gives ȳ1 − ỹ1 = 0. This concludes the proof of uniqueness.

Proof of Proposition 2.2. Only (2.20) and (2.21) require a little mathematics.
The case δ = 1 (summations in (2.20) and (2.21) vanish) is a standard result [24, 43].
For the case δ > 1, let L : D(L) �→ M2 be the operator defined as (see (2.20), (2.21))

L : D(L) �→ M2,

L

[
y0

y1

]
=




δ y1(0) + AT
0 y0

1

g
AT

01y0 −
d

dϑ


y1 −

δ−1∑

j=1

kj(y0,y1)χ[−r,−rj ]





 ,

D(L) =








y0

y1



∣∣∣

y0 ∈ R
N , AT

δ y0 = y1(−r),
y1 −

δ−1∑

j=1

kj(y0,y1)χ[−r,−rj ]


 ∈ W 1,2





.

We will show that
(a) for every x ∈ D(A) and every y ∈ D(L), it is (y,Ax)− (Ly,x) = 0;
(b) the set D(L) is dense in M2.
These two items together state that L is the adjoint of A, that is, A∗ as defined

in (2.20), (2.21).
Let us prove item (a). Take x ∈ D(A) and y ∈ D(L), let us show that (y,Ax)−

(Ly,x) = 0:
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(A.7)

(y,Ax)− (Ly,x) = yT
0

∑δ
j=1 Ajx1(−rj)− δ yT

1 (0)x0

+
∫ 0

−r
g(ϑ)

[
yT

1 (ϑ)
d
dϑx1(ϑ) +

d
dϑ

(
y1 −

∑δ−1
j=1 kj(y0,y1)χ[−r,−rj ]

)T

x1(ϑ)

]
dϑ.

y1 −
∑δ−1
j=1 kj(y0,y1)χ[−r,−rj ] being absolutely continuous, the integral term in (A.7)

can be rewritten as

(A.8)

δ∑

i=1

∫ −ri−1

−ri

(δ − i+ 1)
d

dϑ





y1 −

δ−1∑

j=1

kj(y0,y1)χ[−r,−rj ]




T

x1(ϑ)


 dϑ

+
δ∑

i=1

∫ −ri−1

−ri

(δ − i+ 1)



δ−1∑

j=1

kj(y0,y1)χ[−r,−rj ]




T

d

dϑ
x1(ϑ)dϑ

and after a simple computation

(A.9)

δ∑

i=1

(δ − i+ 1)





y1 −

δ−1∑

j=1

kj(y0,y1)χ[−r,−rj ]




T

x1




−ri−1

−ri

+

δ∑

i=2

(δ − i+ 1)

(
i−1∑

h=1

kh(y0,y1)

)T

[x1(−ri−1)− x1(−ri)]

= δyT
1 (0)x1(0)− yT

1 (−r)x1(−r)−
δ−1∑

i=1

yT
0 Aix1(−ri).

Now, replacing the integral term in (A.7) with the above expression and taking into
account that x1(0) = x0 and y1(−r) = AT

δ y0, it follows that (y,Ax)− (Ly,x) = 0.
Let us now prove item (b). It is sufficient to prove thatD(L) is dense in R

N×W 1,2.
Let y0 ∈ R

N , y1 ∈ W 1,2. Consider the following sequence of functions y1,k ∈ W 1,2,

defined for integers k > 1
r−rδ−1

:

(A.10)

y1,k(ϑ) =

{
y1(ϑ), ϑ ∈ [−r + 1

k , 0],

(1− k(ϑ+ r))AT
δ y0 + k(ϑ+ r)y1(−r + 1

k ), ϑ ∈ [−r,−r + 1
k ).

Being that −r + 1/k < −rδ−1, it is y1,k(−rj) = y1(−rj) for j = 1, . . . , δ − 1. As y1

is uniformly bounded in [−r, 0], given any positive ǫ there exists kǫ such that

(A.11) ‖y1 − y1,k‖L2
<

ǫ

2
for k > kǫ.

Note that, since y1,k(−r) = AT
d y0, if δ = 1, then

[
y0

y1,k

]
∈ D(A∗), and the density of

D(A∗) in R
N ×W 1,2 and hence in M2 is proved.

If δ > 1 in general
[

y0
y1,k

]
�∈ D(A∗). For any integer n > supj=1,2,...,d

1
rj−rj−1

it is

convenient to define δ functions in W 1,2 as follows:

(A.12) χnj (ϑ) =

{
χ[−r,−rj ](ϑ), ϑ �∈ (−rj ,−rj +

1
n ),

−n(ϑ+ rj − 1
n ), ϑ ∈ (−rj ,−rj +

1
n ),

for j = 1, . . . , δ − 1,
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are such that

(A.13) ‖χnj − χ[−r,−rj ]‖L2 =
1√
3n

, for j = 1, . . . , δ − 1.

By Lemma A.1, for any n > supj=1,2,...,d
1

rj−rj−1
, there exists a function y1,k,n such

that

(A.14) y1,k,n −
δ−1∑

j=1

kj(y0,y1,k,n)χ[−r,−rj ] = y1,k −
δ−1∑

j=1

kj(y0,y1,k)χ
n
j

(note that the right-hand side term is in C0 and therefore Lemma A.1 can be applied).
It can be shown that y1,k,n(−rj) = y1,k(−rj), j = 1, . . . , δ, so that

[
y0

y1,k,n

]
∈

D(A∗).
Moreover,

(A.15)

∥∥∥
[

y0

y1,k

]
−

[
y0

y1,k,n

] ∥∥∥
M 2

=
∥∥∥
δ−1∑

j=1

kj(y0,y1)(χ
n
j − χ[−r,−rj ])

∥∥∥
L2

≤
δ−1∑

j=1

∥∥∥kj(y0,y1)
∥∥∥

1√
3n

,

where formula (A.13) is used.
Thus, there exists an integer nǫ such that for n > nǫ it is

(A.16)
∥∥∥
[

y0

y1,k

]
−
[

y0

y1,k,n

] ∥∥∥
M 2

<
ǫ

2
.

Finally, for any pair k, n such that k > kǫ and n > nǫ it is

(A.17)
∥∥∥
[

y0

y1

]
−

[
y0

y1,k,n

] ∥∥∥
M 2

< ǫ,

which proves the density of D(L) in M2.
Remark A.2 The proof of this proposition concerning the adjoint operator A⋆

can also be done by methodology shown in [15]. Using standard Lax–Milgram-type
representation theorems, a relationship follows between equivalent inner products,
so that an adjoint operator in a given inner product can be found by another one
obtained in an equivalent inner product (see [15] and references therein).

LEMMA A.3. For any nonnegative λ the matrix Hp(λ) defined in (4.59) is non-
singular.

Proof. The expression of Hp(λ) is here reported for the reader’s convenience:

(A.18) Hp(λ) = I(δ−1)N −Hδ,2 +




INe−λ(r−r1)

...
INe−λ(r−rδ−1)


hδ,2.

As a first step, nonsingularity of matrix IN(δ−1)−Hδ,2 is proved. By the definition
of Hδ,2 in (A.4) it is
(A.19)

IN(δ−1) −Hδ,2 =




IN − 1
δIN 0 · · · 0 0

− 1
δIN IN − 1

δ−1IN · · · 0 0
...

...
. . .

...
...

− 1
δIN − 1

δ−1IN · · · IN − 1
3IN 0

− 1
δIN − 1

δ−1IN · · · −1
3IN IN − 1

2IN




.
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A direct computation shows that the inverse of IN(δ−1) −Hδ,2 is

(A.20) (IN(δ−1) −Hδ,2)
−1 = IN(δ−1) +Hδ,2,

where matrix Hδ,2 is defined as

(A.21) Hδ,2 =




1
δ−1IN 0 · · · 0 0
1
δ−2IN

1
δ−2IN · · · 0 0

...
...

. . .
...

...
1
2IN

1
2IN · · · 1

2IN 0
IN IN · · · IN IN




.

The verification can be made writing the following expression for the kth column
block of matrix IN(δ−1) −Hδ,2 as

(A.22)




0
...

IN
...
0



−




0
...

1
δ−(k−1)IN

...
1

δ−(k−1)IN




(the first k − 1 blocks are zero) and the following expression for the jth row block of

matrix
(
IN(δ−1) −Hδ,2

)−1
as

(A.23) [ 0 · · · 0 IN 0 · · · 0 ] +
[

1
δ−j IN . . . 1

δ−j IN 0 · · · 0
]

(the first j blocks are nonzero). The product when j < k is a sum of zeroes and is
trivially zero. It can also be verified that when j > k, the product gives zero, and when
j = k, the product gives IN . This verifies the expression (A.20) for (IN(δ−1)−Hδ,2)

−1.
Given the invertible matrix IN(δ−1) − Hδ,2, the determinant of Hp(λ) can be

written as follows:
(A.24)

det(IN(δ−1) −Hδ,2) · det


I(δ−1)N + (IN(δ−1) −Hδ,2)

−1




INe−λ(r−r1)

...
INe−λ(r−rδ−1)


hδ,2


 .

Since for any pair of matrices A ∈ R
n×m and B ∈ R

m×n

(A.25) det(In +A ·B) = det(Im +B ·A),

the determinant of Hp(λ) can also be written as
(A.26)

det(IN(δ−1) −Hδ,2) det


I(δ−1)B + hδ,2(IN(δ−1) −Hδ,2)

−1




INe−λ(r−r1)

...
INe−λ(r−rδ−1)





 .

Recalling the expression of hδ,2 defined in (4.56) it follows that

(A.27) hδ,2
(
IN(δ−1) −Hδ,2

)−1




INe−λ(r−r1)

...
INe−λ(r−rδ−1)


 = c(λ)IN ,
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where c(λ) is the sum of positive terms that are functions of λ. Therefore it is

(A.28) det(Hp(λ)) = det(IN(δ−1) −Hδ,2) det((1 + c(λ))IN ) =
1

δN
(1 + c(λ))N ,

and this proves the nonsingularity of Hp(λ) for any nonnegative λ.
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