
A Type-Based Approach to Program Security*

Dennis Volpano 1 and Geoffrey Smith 2

1 Department of Computer Science, Naval Postgraduate School, Monterey, CA
93943, USA, emaih volpano@cs.nps.navy.mil

School of Computer Science, Florida International University, Miami, FL 33199,
USA, email: smithg@cs.fiu.edu

Abs t r ac t . This paper presents a type system which guarantees that
well-typed programs in a procedural programming language satisfy a
noninterference security property. With all program inputs and outputs
classified at various security levels, the property basically states that a
program output, classified at some level, can never change as a result of
modifying only inputs classified at higher levels. Intuitively, this means
the program does not "leak" sensitive data. The property is similar to
a notion introduced years ago by Goguen and Meseguer to model secu-
rity in multi-level computer systems [7]. We also give an algorithm for
inferring and simplifying principal types, which document the security
requirements of programs.

1 I n t r o d u c t i o n

This paper presents a type system for a procedural language that guarantees
tha t well-typed programs respect the security levels of the variables they manip-
ulate. More precisely, it guarantees tha t well-typed programs are noninterfering,
which basically means that high-security inputs cannot affect low-security out-
puts. Goguen and Meseguer introduced the idea of noninterference years ago as
a notion of security for multi-level computing systems [7]; this papers applies
the notion to programming languages. Our type soundness theorem is a proof
tha t every well-typed program has the noninterference property. The proof de-
pends on two lemmas that , interestingly, turn out to be typing analogs of two
properties known for years within the security community as the simple security
proper ty and the confinement property (also known as the *-property). These
are properties of the Bell and LaPadula model, developed in the early 70's as a
model for multi-level security [4].

In an earlier work [17], we presented a type system to guarantee noninter-
ference in a simple imperative language. In this work, we extend the analysis to
a language with first-order procedures, which can be used polymorphically with
respect to security classes. Also, we address the type inference problem here.

We begin with an overview of the type system. Then we formally present
the system and prove its soundness relative to a s tandard natural semantics.

* This material is based upon activities supported by the National Science Foundation
under Agreements No. CCR-9400592 and CCR-9414421.

608

In Section 6, we turn our at tention to type inference and type simplification.
Finally, we sketch some related efforts and some future research directions.

2 A n O v e r v i e w o f t h e T y p e S y s t e m

Noninterference was introduced as a model of security for multi-level computing
systems [7]. The basic idea is that a system has users, some of whom supply
high-level inputs and others who supply low-level inputs. Low-level users are
only allowed to see low-level system outputs. (For the sake of simplifying the
discussion, we shall consider only two security levels, low and high.) Such a
system has the noninterference proper ty if no mat te r how the high-level inputs
change, the low-level system outputs remain the same.

The idea can also be applied to programming languages. Intuitively, the
notion is tha t high-level program inputs can be altered without affecting any low-
level outputs. As a simple example, consider a procedure with just two formal
parameters x and y:

p r o c P (i n o u t x : low, i n o u t y : high);

Here x and y are t reated as variables with security levels low and high respec-
tively. Suppose the calls P(u : low,v : high) and P(u : low,w : high) te rminate
with some final values for u, v, and w. The final values of v and w may differ.
But if P is noninterfering, the final value of u will be the same in both cases.
Our type system guarantees that well-typed programs are noninterfering.

2.1 Types

The types of the system are stratified into three levels. There are the ~- types,
which are the security levels, the ~r types, which are the types of expressions and
commands, and the p types, which are the types of phrases. The security levels
are assumed to be partially ordered by <. For example, one might have low,
high, trusted and untrusted such tha t low < high and trusted < untrusted. The
relation < is extended to a subtype relation C over the phrase types.

Our ~ r a s e types are similar those of Forsythe [12], except tha t our command
types are parameterized. A command type has the form ~- cmd; the intuition
behind it is tha t a command c has this type only if every assignment in c is to a
variable whose security level is ~- or higher. So if a command has type high cmd,
then it does not contain any assignments to low variables. Other phrase types are
the types of variables, writ ten ~- var, and the types of acceptors, writ ten ~- acc.
A variable of type ~- var stores information whose security level is ~- or lower. An
acceptor is a write-only variable, used to type the o u t parameters of procedures.
A variable is implicitly dereferenced, so there is a rule for converting ~- var to ~-.
Likewise, there is a rule for converting a variable type to an acceptor type, which
is necessary in the left sides of assignments and in procedure calls involving
o u t parameters . The subtype relation is contravariant in both command and

acceptor types.

609

2.2 The Core Language and Typing Rules

The typed language is a core imperative language with procedures; however,
procedures are not first class values. Inspired by Denning's program certification
rules [6], we have developed typing rules tha t ensure noninterference.

For instance, suppose tha t I and h are variables and tha t the identifier typing
-y gives l type low var and gives h type high var. Then the assignment 1 := h
must be rejected, since a change in the initial value of h will affect the final value
of I. This is what Denning termed an explicit f l ow from h to 1. So we introduce
the following typing rule:

7 F- e : T acc, .y F- e~ : T

7 F- c := e ~ : T c md

This rule requires variables l and h in our example to agree on their security
levels. Since they do not agree, even using subtyping, the assignment is rejected.
On the other hand, h := l is accepted. Since low < high, we can coerce the type
of l from low to high to get agreement, allowing the assignment to be given type
high cmd. Alternatively, we can coerce the type of h from high acc to low acc
to give the assignment type low cmd.

I t is worth pointing out tha t subtyping is neither covariant nor contravari-
ant in variable types, because a variable is both an expression (which behaves
covariantly) and an acceptor (which behaves contravariantly). Hence low v a t is
unrelated to high va t .

As another example, suppose we t ry to copy h to l indirectly as follows:

wh i l e h > 0 do
l : = l + l ;
h : = h - 1

o d

Again the final value of 1 is affected by the initial value of h. This is what Denning
termed an impl ic i t f l ow from h to l. Thus, the typing rule for wh i l e insists tha t
the guard and body of the loop be typed at the same security level:

7~- e : T, ~ / F - c : T c m d

3' F- wh i l e e do c : T cmd

Determining whether a given program is noninterfering is, of course, unde-
cidable. As we shall see, our type system is a sound and decidable logic for
reasoning about the noninterference of a program. Therefore, it is necessarily
incomple te- -some noninterfering programs are rejected by the type system.

2.3 S e c u r i t y T y p e Inference

Type inference in this setting a t tempts to prove that a program is noninterfering
and produces a pr inc ipal type tha t succinctly conveys how the program can be
executed securely. A principal type is a constrained type scheme [13] with a

610

contraint set of fiat subtype inequalities among security levels. Consider, for
instance, the following procedure that indirectly copies x to y:

p r o c (in x, o u t y)
l e t v a r a := x in
l e t v a r b := 0 in

whi l e a > 0 do
b := b + 1;
a :-- a - 1;

y : = b

(The construct l e t v a r x := e in c allocates a local variable whose scope is c.)
One principal type for this procedure is

Va, fl w i t h a < ft. fl proc(a,/3 acc)

where a and fl are type variables such that a corresponds to the security level
of x and fl to the security level of y. A call to this procedure can be executed se-
curely provided tha t the arguments have security levels that , when subst i tuted
for the bound variables of the type, satisfy the inequality. The call itself will
have type fl cmd, as conveyed by fl proc. In this sense, the procedure is poly-
morphia The above principal type can be simplified to Vfl. fl proc(fl, fl acc) due
to subtyping of procedure types. As a practical mat ter , it is very impor tan t to
simplify the inferred principal types by exploiting the an t i symmetry of ~ and
the monotonicities of the type constructors. Type inference and simplification

are discussed in detail in Section 6.

3 A Formal Treatment of the Type Sys tem

The syntax of the core imperative language is given below.

(Phrase) p ::= e I c

(Expr) In I
e < e I I p r o c (i n x l , i n o u t x2, o u t x3) c

(Comm) c : : = e : = e ' I c ; c ' I e(el ,e2,e3) I w h i l e e do c I

i f e t h e n c e lse c ~ I l e t v a r x := e in c t

l e t p r o c x(in Xl, i n o u t x2, o u t x3) c in c'

Meta-variable x ranges over identifiers, n ranges over integer literals and I ranges
over locations, which are used in our language for input and output: the initiM
values of any locations in a program represent inputs, and the final values of the
locations represent outputs. (In addition, as will be seen in the natural semantics,
evaluating a l e t v a r causes a new location to be allocated, and later deallocated.)
Also, we assume for simplicity tha t each procedure has exactly three parameters
(one of each kind), and we use 0 for false and 1 for true. Finally, a phrase is

closed if it has no free identifiers.

611

The types of the core language are stratified as follows:

T : : = 8

7c: :=T i Tproc (f l , f 2 v a r , T3 acc) $ T c m d
p ::=Tr I T v a r] Tacc

Meta-variable s ranges over a set of security levels, which is partially ordered
by ~. The rules of the type system are given in Figure 1. We omit typing rules
for some compound expressions since they are similar to rule (SUM). Notice tha t
rule (INT) allows an integer literal to be given every security level. Intuitively,
a value is never intrinsically sensit ive--i t is sensitive only if it comes from a
sensitive location. Note also tha t rule (LETPROC) allows procedures to be used
polymorphically. The remaining rules of the type system constitute the subtyping
logic and are given in Figure 2.

In the typing judgment)~; 7 F p : p, meta-variable 7 ranges over identifier
typings and A over location typings. An identifier typing is a finite function
mapping identifiers to types of the form T, ~- var or ~- acc; 7(x) is the type
assigned to x by 7, and 7Ix : p] is a modified identifier typing tha t assigns type p
to x and assigns type 7(x ') to any identifier x ' other than x. A location typing is a
finite function mapping locations to ~- types with similar notat ional conventions.

To facilitate the soundness proof, we introduce a syntax-directed set of typing
rules. The rules of this system are just the rules of Figure 1 with rules (IDENT),
(R-VAL), (ASSIGN), (If), and (WHILE) replaced by their syntax-directed coun-
terpar ts in Figure 3. The subtyping rules in Figure 2 are not included in the
syntax-directed system. We write judgments in the syntax-directed system as
)~; 7 Fs p : p. The benefit of the syntax-directed system is that the last rule used
in the derivation of a typing A; 9' ~-~ P : P is uniquely determined by the form of
p and of p. It is also helpful in determining where coercions are needed during
type inference.

Next we establish that the syntax-directed system is actually equivalent to
our original system with respect to the ~r types. First we need two lemmas:

L e m m a 1. I f A; V[x: p'] ks p : 7r and F p C_ p', then A; 7[x : p] ~-s p : 7r.

L e m m a 2. I f A; 7 Fs p : v and F- ~ C 7r ~, then A; V I-s p : ~r t.

Equivalence is now expressed by the following theorem:

T h e o r e m 3 . A;7 F p : ~r i f fA ;V~- sp : 7r.

From now on, we shall assume tha t all typing derivations are done in the
syntax-directed type system, and therefore shall take F- to mean ~-~.

4 A N a t u r a l S e m a n t i c s

We give a natural semantics for closed phrases. A closed phrase is evaluated
relative to a memory it, which is a finite function from locations to integers. The

612

([DENT)

(VAR)

(AOCEPTOR)

(VARLOC)

0NT)
(~-VAL)

(L-VAL)

(SUM)

(coMPos~)

(LETVAR)

(ASSIGN)

(IF)

(WHILE)

(PROCEDURE)

(APPLY)

(LETPROC)

A; y ~ z : ~- 3"(x) = T

)`; 3" }- X : 7" v a t 7(x) = r var

,k; 7 }- x : T acc 7(x) = r a c c

A;'T i- l : T var A(1) = T

A ; 3 ' ~ - n : v

A; 7 }- e : ~- v a r

A ; 3 " F e : T

A;"T F e : 7" var

A; 7 b e : T a c c

A ; 3 " l - e : T , A ; 3 ' t - e t : T
A;7 }-e-F e' : T

A; T t- c : T c m d ,) ` ;7 }- c' : T c m d

)`; ~/ ~- c; c' : T c m d

) ` ;3"~-e :v ,) ` ; 7 [x : 7 " v a r] ~ - e : r ' c m d

)`; 7 }- l e t v a r x :---- e i n c : ~-' c m d

A ; 7 } - e : T a e c , 1 ; 7 [- e' : v
A--;3' 1- e : : e' : v c m d

)`; 3' F e : ~-,)`; 3" ~ c : T c m d ,)`; 3' }- c' : ~- c m d ,

)̀ ---~, 7 F i f e t h e n c e l se e' : 7 e m d

A;~/F e :% A ; y ~ - c : T c m d

A ; 3 ' b w h i l e e do C : T c m d

A; 7[xl : ~ ' l , x2 : 72 v a r , x s : T3 ace] }- c : T c m d

-k;3' t- p r o c (in x~, i n o u t x2~ o u t xa) c :
T pr0C(T1, 7"2 var , 73 acc)

A;3' }- e : -r proc(71 , v2 v a t , ~'3 acc) ,
A;~f ~- e l : T1,)~;~/ ~- e2 : T2 var , k;3" }- e3 : T3 a C ~

A--;, 3" i- e (e l , e 2 , e a) : "r crag

),;3' t- p r o c (in x l , i n o u t x2, o u t x3) e : lr,
A; 7 F [proc (in x l , i n o u t x2, o u t x3) c / x] c ' : "r c m d

k;---7 b l e t p r o c x (in x t , i n o u t x2, o u t x3) c i n e' : 7 c m d

Fig . 1. t tules of the Type System

c o n t e n t s of a l o c a t i o n l E d o r a (#) is t h e in teger i t(I) , a n d we w r i t e it[1 : = n]
for t h e m e m o r y t h a t ass igns n to l o c a t i o n l, a n d # (l ') to a l o c a t i o n l ' ~ l; t h u s
#[1 : = n] is a n u p d a t e of it if I e d o m (i t) a n d a n e x t e n s i o n of i t i f I ~ d o r a (i t) .

Since express ions a n d c o m m a n d s a re pu re , ou r s e m a n t i c s uses it }- e ~ n for
t h e e v a l u a t i o n of a n express ion a n d # t- c =~ it ' for t h e e v a l u a t i o n of a c o m m a n d .
C o m m a n d s are n o n e x p a n s i v e in t h a t d o r a (i t) = d o r a (i t ') . We let it - l s t a n d for

it w i t h l o c a t i o n l r e m o v e d f rom i ts d o m a i n .

613

(BASE) T < T ~
FTCr'

(REFLEX) I- p C_ p

(TRANS)]-- p C_ p', ~- pt C ptl
[- p C p"

(ACe-) F T C_ r'
t- T I a c c (=~ T O, CC

(CMD-) �9 T C T'
1- T' cmd C_ T cmd

(PROC) I - f lU_n , ~-~-ac~-~, ~-~-'g~-
f- r proc(T1, "1"2 vat , 73 ace) C r' proc(r[, "1-2 var, T~ ace)

(SUBTYPE))~; .7 ~- p : p, ~- p C p'
A;~/t-p : p'

Fig. 2. Subtyping rules

(IDENT') ~(x) = ~, ~ _< ~'
A;'y F- x : 7'

(R-VAL I) ,~; ~/ [- e : T var, W <_ V'
A; ")' t- e : T'

(ASSIGN t) ,~; ~ [- e : T ae(], A; ~ ~- e ' : T, T ! __~ T

A;TF-e: - - - -e ' :T ' cmd

(IF') A ; T i - e : % A ; T F c : r c m d , A ; T F - c ' : ~ ' c m d , T '<_T
A; 7 }- if e t h e n c e l se c' : T' cmd

(WHILE'))1;7 t- e : T, A; 7 F- c : T cmd, 7' < r
A;7 t- while e do e : T' cmd

Fig. 3. Syntax-directed typing rules

The evaluat ion rules are given in Figure 4. We write [e ' / x]e to denote the
capture-avoiding subst i tu t ion of e' for all free occurrences of x in e. Note the
use of subst i tu t ion in rules (CALL), (BINDVAR) and (BINDPROC); this allows us
to avoid environments and closures in the semantics.

5 T y p e S o u n d n e s s a s N o n i n t e r f e r e n c e

In this section, we establish the semantic soundness of our type sys tem by proving
a noninterference theorem. Before proving soundness, we require some lemmas
t h a t establish useful propert ies of the type sys tem and semantics.

L e m m a 4 (E x p r e s s i o n S u b s t i t u t i o n) . / f l;~/[x : 7] F p : p, t h e n A;O' F

[n / x] p : p, a n d i f I ; ~/ t- l : p a n d A;-),[x : p] }- p : p' , t h e n A; ~/ f- [1/x]p : p ' .

614

(VAL)

(CONTENTS)

(ADD)

(SEQUENCE)

(BRANCH)

(CALL)

(UPDATE)

(BINDVAR)

(LOOP)

"(mNOPROC)

it }- n ~ n

it }- t ~ it(t) l e do~(i t)

it }- e ~ n, it }- e~ ~ n '
it }- e + e ' :::~ n + n'

it }- c ~ it', Iz' }- c' ~ It"
it }- c ; d ~ It"

i t k e ~ 1, it b c ~ it'
it b i f e t h e n c e lse c' ~ it'

it }- e ~ 0, i t } - d ~ i t '
it }- i f e t h e n c e lse d ~ it '

it }- e =~ n, it }- [n, l, l ' / x l , x2, x3]c ~ it'
it }- (p r o c (in xl , i n o u t x2, o u t x3) c)(e, 1, l') ~ it'

it }- e ~ n, I E dora(it)
i t } - l := e ~ it'[l := n]

it }- e ~ n, l is the first location not in dom(it) ,

it[1 := n] }- [1/x]c ~ it '
it }- l e t v a r x := e i n c ~ it~ - l

i t } - e ~ 0
} - w h i l e e do c ~ i t

i t } - e ~ l , # } - c ~ i t ' , i t ' } - w h i l e e do c ~ i t "
it }- w h i l e e do c ~ it"

it }- [proc (in x l , i n o u t x2, o u t x3) c/x]c' ~ it'
it }- l e t p r o c x (i n x l , i n o u t x2, o u t x3) c i n c' ~ it'

Fig . 4. The Evaluat ion Rules

L e m m a 5 (S i m p l e S e c u r i t y) . I f A; ~/ ~- e : "r, t hen f o r every l in e, A(1) < "r,

and f o r every x free in e, ~/(x) < T.

L e m m a 6 (C o n f i n e m e n t) . I f A t- c : T c m d , It t- c ~ Itl, dom(A) = dora(I t) ,

and l is a location ass igned to in c, t hen A(1) > T or Itt(1) = I t(l) .

Now we are r e a d y to prove t h e s o u n d n e s s t h e o r e m .

T h e o r e m 7 (N o n i n t e r f e r e n c e) . Suppose

(a)) ~ - c : ~ ,
(b) I t } - c ~ It ' ,
(c) y ~ - c ~ # ,
(d) dora(#) = d o m (~) = dora(A), and
(e) u(l) --- It(1) f o r all 1 such tha t A(1) < T.

T h e n # (1) - - I t ' (l) f o r all 1 such tha t A(l) < 7.

615

In the absence of procedures, this theorem can be proved directly [17]. Here,
however, we prove the Noninterference Theorem as a corollary to the following
theorem, whose proof is omitted due to space restrictions.

T h e o r e m 8. Suppose

(a) ~; Ix1 : r l , . . . , xk : rk] ~- c : r~,
(b) # ~- [n , , . . . , n k / X l , . . . , X k] e ~ Iz',
(c) , ~- [n l , . . . , n ' J x ~ , . . . , xk]c ~ ~',
(d) dora(#) = dora(v) = dom()~),
(e) ~(l) = #(l) for aU l such that A(l) < r, and
(f) V Ti < r, for all i such that 1 < i < k.

Then z/(1) = #'(l) for all l such that A(1) <_ r.

It is well known that polymorphic variables can easily break traditional forms
of type soundness [16]. The same is true of a security type system. Giving a
variable polymorphic type opens the door to "laundering". It would be possible
to store high information and retrieve it as something low. But soundness can also
break in more subtle ways due to mutable objects, like variables and first-class
references, coupled with higher-order polymorphic procedures. It is interesting
to note that if the core language were extended with these features, then existing
techniques such as weak types [14] or limiting polymorphism to values [19] could
be used to preserve soundness.

6 T y p e I n f e r e n c e

For the sake of describing type inference in this setting, we need to introduce
extended types that can contain type variables (~, /3,...) in place of security
levels. We use metavariables ?, ~, and ~ to range over extended types. Also, we
use ~ to range over extended identifier typings that map identifiers to extended
types; FTV(~) gives the set of free type variables of ~.

A type inference algorithm W, defined by cases on the phrases of the lan-
guage, is given in Figures 5 and 6. It takes as input a location typing ~, an
extended identifier typing ~, a program phrase p, and a set V of type variables,
which represents the set of "stale" type variables; this allows W to choose "fresh"
type variables as necessary. If it succeeds, then it returns a set of flat subtype
inequalities C, an extended type ~, and an updated set V' of stale type vari-
ables. Note that the constraint ? = ?' abbreviates the two inequalities ~ < ?P
and ~' _%< ~.

We now establish the correctness of algorithm W. An instantiation I is a
mapping from type variables to (ordinary) r types. It can be applied, in the usual
way, to extended types, to extended identifier typings, and to sets of inequalities
among extended types.

L e m m a 9 . /] FTV(.~) C_ V and (C ,~ ,V ') -- W (A , ~ , p , V) succeeds, then V'
contains all type variables in C, ~, and V.

616

W (~ , ~ , p , v) = case ~ of

x : case ~(x) of
~:({~<~},~,vu{~}) a c e
? va~ : ({? < a} , ~, v u {a}) a r v
default : fail

n : ({ } , ~ , V U {a}) a c e

~: ({~(0 < ~ } , ~ , V U {~}) ~ r V

el Jr e2 :

let (C l , ~ l , V ') = W () ~ , ~ , ~ l , V)

let (C~,'~, V") = W()h'~,e2, V')
in (Ci U C2 V {?, = ~2},~].,V")

p r o c (in Xl, i n o u t x2, o u t x ~) e :

let (C, ~ cmd, V') = W(A, ~[xl : a, x2 : fl ear, x~ : 5 ace], c, V U {a,/~, 5})
in (C, ~ proc(o~, fl ear, 5 ace), V') ol, fl and 5 • V

el; e~ : let (C,,~1 c ~ d , V ') = W (~ , ~ , c l , Y)
let (C2, ~2 cmd, V") = W()h'~, c2, V')
in (c1 0 c2 u {~1 = ~2}, ~ ~md,y")

i f e t h e n cl e l se c2 :
let (C,'T, V') = W(~,'~,e, V)
let (Cl,'T1 cmd, V") = W(A,~ ,c l , V')
let (C2, ~2 cmd, V'") = W(A,'~, c2, V")
in (C U C1 U C~ U {? = ~1 = ~2, a <__ ~}, a cmd, Y'" 0 {a}) a r V'"

w h i l e e do c :
let (C, ~, V') = W (~,, ~, e, V)
let (C ' , ~ ~ cmd, V") : W(A, ~,c, V')
in (C U C' U {~ = ~ , a <_ ~}, ~ crag, V" U {a}) a ~ V"

el : ~ e2 :
let (C,~ ' , V') = W(,k,'~,e2,V)
case et of

x : i f~ (x) = ~ ear or ~(x) = ~ acc then
(C U {~ = ~ , a <_ "~'}, a cmd, V' U {a}) cz r V'

else fail
I : (CU {~(Z) = ~ ' , ~ < ~ ' } , a cmd,Y ' U {a}) a r V'

default : fail

l e t v a r x := e in c :

let (C,'T, V') = W()h ~,e, V)
let (c ' ,~ ~md,V") = W(~ ,~ [~ : ~ ~ d , ~ , V ')
in (CU C ' , ~ cmd, V ')

l e t p r o e x (in xl , i n o u t x2, o u t xs) c in d :
let (C,~ ,V ') = W (A , ~ , p r o c (in xz, ixaout x2, o u t xa) c,V)
let (C ' , ~ cmd,Y") = W (A , ? , [p r o c (irl xt , i n o u t x~, o u t x3) c/x]c' ,V')
in (C U C ' , ~ cmd,V")

Fig . 5. Algorithm W

617

~(~1, ~2, ~3) :
let (C,~ proc(~l, ~2 var, ~3 acc), V') = W(A,~, e, V)
let (C', ~', -- y") w(~,~,~l,V')
let C" = case e2 of

x : if ~(x) = ~" vat then C U C' U {~' ---- ~1,~" -- ~2} else fail
l: c u c ' u { ~ ' =~,~(l)=%}
default : fail

in case e3 of
x : if ~(x) = ~ ' vat or ~(x) ---- ~ ' acc then (C" U {~" = ~3},~ cmd, V")

else fail
l : (C" U {A(I) -- ~3},~ cmd, V")
default : fail

Fig. 6. Algorithm W, continued

T h e o r e m 1 0 (S o u n d n e s s) . Suppose (C , ~ , V ') = W(A, '~ ,p ,V) succeeds, and
I is an instantiation such that I (C) is true, and I(~) and I(~) contain no type
variables. Then ~; X(~) ~ p: •

Proof. By induct ion on the s t ructure of p. We show the mos t interesting case;
the other cases are similar and follow s t ra ightforwardly by induction.

Suppose (C, ~ cmd, Y") = W(A, '~ , le tvar x := e i n c, V), I (C) is t rue and
I (~) and I (~) are closed. From W, we have C = Cz U C2 where

(c1, ~', v') = w(~, ~, e, v)

and

(C2, ~ cmd, V") = W(A, ~ [x : ? ' var] , c, Y ') .

Let I ' extend I so tha t I ' (? ') is closed. Clearly, I '('~) = I(-~) and I ' (?) = I (?)
since I ' extends I and I (~) and I (~) are closed. Further , I ' (C1) is t rue since
I (C) is true. So by induction, A; I ' (~) F e : I ' (? ') , or A; I (~) k- e : I '(~'). Also,
I '(~[x : ~' var]) is closed and I ' (C2) is true, since I (C) is true. So by a second
use of induction, A;I ' ('~[x : ? ' var]) F c : I ' (?) cmd. But I '(~[x : ~' var]) =
/ ' (~) [x : I ' (? ') var], so we have A; I('~)[x : I '(~') vat] k- c: I(?) cmd. Therefore,
by rule (LETVAR),)~; I(~) ~- l e t v a r x : ~ e in c : I (~) cmd. []

T h e o r e m 11 (C o m p l e t e n e s s) . Suppose A;I(~) k- p : ~r and FTV('~) C Y.
Then (C, "~, V ') = W(A, ~,p, V) succeeds and there exists an instantiation I ' such
that I ' extends I, except on variables in V ' - V, I ' (C) is true, a n d / ' (~) = ~r.
Moreover, if W(A, ~,p, V) does not succeed, then it halts with fail.

Proof. By induct ion on the s t ructure of p. We show two of the more interest ing
cases, w h i l e and p r o c ; the others are similar.

Suppose A; I (~) t- w h i l e e d o c : W' cmd and F T V (~) C V. Then, by rule
(WHILE'), there is a type ~- such tha t A;I(-~) F e : T, A;I('~) F C : T cmd, and
T' < w. So, by induction, (C, ~1, V') = W(A, ~, e, V) succeeds, V C V' , and there
exists an ins tant ia t ion I i such tha t I1 extends I , except on variables in V ' - V,

618

I I (C) is true and i [1(~1) ---- T. So ~-1 has the form ~1 and/1(71) = T. And so ~i
does not cause the first pat tern match to fail.

Now F T V (~) C V', a n d / 1 and I agree on all variables in ~ since no type
variable in V' - V is a member of ~. So A;/1 (~) F c : ~- cmd. By induction again,
(C', ~2, V ') = W(A, ~, e, V') succeeds, V' C V ' , and there is an instant ia t ion/2
such t h a t / 2 e x t e nds / i , except on type variables in V " - V' , I2(C') is true and
I2(~2) = ~- cmd. So ~2 has the form ~2 cmd and I2(~.2) = ~-. Thus, the second
pat tern match succeeds and so does W(A, ~, whi le e do c, V), returning

(C U C' U {~1 = 72, ot S 71}, oL cmd, V H U {oL})

where a r V ' . Now/2 extends I, except on variables in (V" - V') U (V t - V)
which is V" - V since V C_ V' C V" by Lemma 9. Let I ' = / 2 [a := 7-']. Then F
extends I except on variables in (V" - V) U {a}, or (V" U {a}) - V since a r V.

Finally, we establish that I ' (C U C'U {71 = ~2, a _< 71 }) is true. By Lemma 9,
V' contains all type variables in C and in ~1, so neither a nor any variable in
V" - V' is a member of C or ~1. Thus I ' and /1 agree on all type variables in C
and ~1- So F(C) is true and F(71) = 7. Likewise, by Lemma 9, V" contains all
type variables in C' and ~2. Since a r V", I ~ a n d / 2 agree on all type variables
in C' and ~2. So I ' (C ') is true and I'(72) = ~-. By the third hypothesis of rule
(WHILE'), I ' (a) <_ I'(71) and we're done.

Now suppose that

A; I(~) ~- p r o c (in Xl, i n o u t x2, ou t x3) c : ~- proc(T1, 7-2 var, T3 acc)

and F T V (~) C_ V. Then by rule (PROCEDUI~E), we have

A;I(~)[Xl : 71,x2 : 72 var, xu : ~-3 acc] F c: ~- cmd .

Let /1 = I[a :-~ ~'l,fl := ~'2,5 : = "/-3] where a, fl,5 ~ V. Since F T V (~) C V,
then a, fl, and 6 do not occur in ~. So A;/1 (~[xl : a , x2 : fl vat, x3 : 6 acc]) F
c : 7" cmd. Hence, by induction, W(A,~[xl : a, xe : fl var,x3 : 6 acc],c,V tJ
{a, fl, 6}) succeeds, returning (C, ~, V'), V U {a, fl, 6} C__ V', and there exists an
instantiation I ' such that F extends I1, except on variables in V ' - (V U {a, fl, 5}),
I ' (C) is true, and I ' (~) = ~- cmd. So ~ has the form 7 cmd and I ' (~) = T. Thus
the pat tern match succeeds and so does

W(A; ~, p r o c (in xl , i n o u t x2, o u t x3) c, V)

returning (C, ~ proc(a, fl vat, 6 acc), V') . Now/1 extends I except on variables
a, ,~ and 6. So I ~ extends I except on variables in (V ' - (V U {a, fl, 5}))U {a, fl, 5}
which is V' - V since a, fl, and 6 are in V' but not V. []

It follows from these theorems that we can check whether p is typable with
respect to A and V by first running W()~, 7,P, 0), and, if it succeeds with (C, ~, V),
then checking whether C is satisfiable with respect to the partial ordering of
security levels. Checking the satisfiability of a fiat set of subtyping inequalities
with respect to a partiM order has been studied previously [15, 18]. It is NP-
complete, in general, but can sometimes be done efficiently, for example, if the
partial order is a disjoint union of lattices.

619

6.1 P r i n c i p a l Types

In addition to checking typability, type inference gives us the ability to com-
pute principal types, tha t document all possible types of a program. We use
constrained quantification [13] for our principal types:

a ::= V~ with C.

In such a type scheme, the type variables ~ can be instantiated only in ways
tha t satisfy the subtype inequalities in C.

The instances of a type scheme are defined as follows:

D e f i n i t i o n 12 (I n s t a n c e) . V~ w i t h C . ~ ~- ~ if there exists an instantiation
I whose domain is ~ such tha t I (C) is true and ~- I (~) C ~r. In this case we say
tha t 7r is an instance of V~ w i t h C . ~.

D e f i n i t i o n 13 (P r i n c i p a l T y p e) . a is a principal type for p with respect to)~
and 7 if for all ~,)~; 7 F p : ~r iff a ~- ~.

By the Soundness and Completeness theorems above, we can compute a
principal type for p with respect to)~ and ~/by running (C, ~, V) = W(A, %p, 0),
verifying tha t C is satisfiable, and forming the type scheme F~ w i t h C . ~, where

contains all type variables free in C or ~. (Note tha t the definition of the
instance relation could in fact have required tha t I (~) = ~r; the weaker definition
was adopted to allow for more type simplification, as we discuss below.)

Here is an example of type inference. Calling W on the procedure given in
Section 2.3 produces the principal type

Vc~, % u, o, e, L, (, #, 5, 71, 8, n, ~,/~, ~ w i t h

{ ~ < 7, u = o , e = t , u < e , c = r 7 < c, t = #, 5 = , , t < 5 , ' [
~ 0' 5 < zl, 7 = n, P <--7, n = A, 7 <--n, 13 = ~, o < /3, 5 <~ ~ J

�9 u proc(c~, /~ acc)

Such a complex principal type obviously cannot serve as useful documentat ion to
a programmer. For this reason, it is necessary, as a practical mat ter , to simplify
the principal types produced by W.

6.2 T y p e Simplification

There is a natural notion of equivalence on type schemes: two type schemes are
equivalent if[they have the same set of instances�9 The idea of type simplification
is to replace a type scheme with a simpler, yet equivalent, type scheme. The type
simplifications considered in [13] can be applied directly here.

Often we can make deductions about how a type scheme V~ with C. ~ can
be instantiated. For instance, suppose that C contains the inequalities c~ _~

as well as/~ < a. Since _< is a partial order, any instantiation that satisfies C
must instantiate a and ~ to the same type. Thus we can unify a and ~. In

620

general, we can collapse the strongly-connected components of C. Performing
this simplification on the type scheme above yields the simpler principal type

Va, o, 5,)~, ~ w i t h {5 < ~, o < ~, ~ < 5, a < A}. o proc(c~, ~ acc)

We can further simplify type schemes by exploiting the monotonicities of
types. For example, o proc(a, ~ acc) is antimonotonic in a; that is, boosting a
produces a smaller type. Since the only constraint on a is that a _< s we can in-
stantiate c~ to $, yielding a simpler principal type. Performing such monotonicity-
based instantiations repeatedly, we finally obtain the principal type

proc(, acc)

which has no constraints at all. With type simplification, principal types become
useful documentation of the security requirements of programs.

7 R e l a t e d W o r k a n d F u t u r e D i r e c t i o n s

One of the earliest efforts in the area is Denning's lattice model of secure in-
formation flow [5, 6]. Denning extended the work of Bell and LaPadula [4]
by giving a secure-flow certification algorithm for programs. This early work
has been followed by a variety of efforts dealing with secure information flow

[2, 8, 3, 10, 11, 17].
Some of these efforts [8, 10] have been aimed at proving the soundness of

Denning's analysis. These efforts, however, prove soundness relative to an in-
strumented semantics whose validity is open to question. In contrast, we show
the soundness of our analysis with respect to a standard natural semantics.

The work of Ban&tre et al. [3] is similar in spirit to our work. They give a
compile-time algorithm for detecting information flow in sequential programs,
and they justify their algorithm in terms of a noninterference property. Their
algorithm works by building a final accessibility graph indicating whether the
contents of one variable at some point in the program can flow into an instance of
a variable at some other point. The drawback here is that the number of vertices
in the final accessibility graph is at least linear in the size of the program.
This means that, unlike simplified principal types, final graphs cannot serve as
practical program documentation.

Palsberg and 0rbmk [11] give a type system for trust analysis in the simply-
typed A calculus with a t r u s t coercion. This (unsafe) coercion permits untrusted
values to be explicitly coerced to trusted values. However, subject reduction is
the only soundness property shown for their type system. It is unclear what one
can say about the soundness of their system in terms of secure information flow.
The t r u s t coercion certainly rules out our noninterference theorem.

Another recent type-based approach is Abadi's work on a version of the pi
calculus, called spi, extended to express cryptographic protocols [1]. Also related
is Necula and Lee's recent work on proof-carrying code [9].

In the future, it would be desirable to extend the core language considered
here with a number of important features, including concurrency, networking,

621

and exception handling. The impact of such features on the noninterference
property needs to be investigated.

R e f e r e n c e s

1. Abadi, M., Secrecy by Typing in Cryptographic Protocols (Draft), unpublished
manuscript, DEC Systems Research Center, December 1996.

2. Andrews, G. and Reitman, R., An Axiomatic Approach to Information Flow in
Programs, ACM Trans. on Programming Languages and Systems, 2, 1, pp. 56-76,
1980.

3. Ban&tre, J., Bryce, C., and Le M@tayer, D., Compile-time Detection of Information
Flow in Sequential Programs, Proe. 3rd ESORICS~ LNCS 875, pp. 55-73, 1994.

4. Bell, D. and LaPadula, L., Secure Computer System: Mathematical Foundations
and Model, MITRE Corp. Tech Report M74-244, 1973.

5. Denning, D., A Lattice Model of Secure Information Flow, Comm of the ACM,
19, 5, pp. 236-242, 1976.

6. Denning, D. and Denning, P., Certification of Programs for Secure Information
Flow, Comm of the ACM, 20, 7, pp. 504-513, 1977.

7. Goguen, J. and Meseguer, J., Security Policies and Security Models, Proc. 1982
IEEE Symposium on Security and Privacy, pp. 11-20, 1982.

8. Mizuno, M. and Schmidt, D., A Security Flow Control Algorithm and its Deno-
tational Semantics Correctness Proof, Formal Aspects of Computing, 4:6A, pp.
722-754, 1992.

9. Necula, G., Proof-Carrying Code, to appear in Proe. 2~th Symp. on Principles of
Programming Languages, January 1997.

10. Orbmk, P., Can You Trust Your Data?, Proe. 1995 TAPSOFT, LNCS 915, pp.
575-589, 1995.

11. Palsberg, J. and Orbmk, P., Trust in the A-calculus, Proe. 1995 Static Analysis
Symposium, LNCS 983, pp. 314-329, 1995.

12. Reynolds, J. Preliminary Design of the Programming Language Forsythe, Technical
Report CMU-CS-88-159, Carnegie Mellon University, June 1988.

13. S mi~ , G., Principal Type Schemes for Functional Programs with Overloading and
Subtyp~h~, Science of Computer Programming, 23, pp. 197-226, 1994.

14. Smith, G. and Volpano, D., Polymorphic Typing of Variables and References, ACM
Trans. on Programming Languages and Systems, 18, 3, pp. 254-267, 1996.

15. Tiuryn, J., Subtype Inequalities, Proc. 1992 IEEE Symp. on Logic in Computer
Science, pp. 308-315, 1992.

16. Tofte, M., Type Inference for Polymorphic References, Information and Computa-
tion, 89, pp. 1-34, 1990.

17. Volpano, D., Smith, G. and Irvine, C., A Sound Type System for Secure Flow
Analysis, J. Computer Security, 4, 3, pp. 1-21, 1996.

18. Wand, M. and O'Keefe, P., On the Complexity of Type Inference with Coercion,
Proc. A CM Conf. on Functional Programming Languages and Computer Arehitec-
ture, pp. 293-298, 1989.

19. Wright, A., Simple Imperative Polymorphism, Journal of Lisp and Symbolic Com-
puting, 8, 4, pp. 343-356, 1995.

