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Abs t r ac t .  This paper presents a type system which guarantees that 
well-typed programs in a procedural programming language satisfy a 
noninterference security property. With all program inputs and outputs 
classified at various security levels, the property basically states that a 
program output, classified at some level, can never change as a result of 
modifying only inputs classified at higher levels. Intuitively, this means 
the program does not "leak" sensitive data. The property is similar to 
a notion introduced years ago by Goguen and Meseguer to model secu- 
rity in multi-level computer systems [7]. We also give an algorithm for 
inferring and simplifying principal types, which document the security 
requirements of programs. 

1 I n t r o d u c t i o n  

This paper  presents a type system for a procedural language that  guarantees 
tha t  well-typed programs respect the security levels of the variables they manip- 
ulate. More precisely, it guarantees tha t  well-typed programs are noninterfering, 
which basically means that  high-security inputs cannot affect low-security out- 
puts. Goguen and Meseguer introduced the idea of noninterference years ago as 
a notion of security for multi-level computing systems [7]; this papers applies 
the notion to programming languages. Our type soundness theorem is a proof  
tha t  every well-typed program has the noninterference property. The proof de- 
pends on two lemmas that ,  interestingly, turn out to be typing analogs of two 
properties known for years within the security community as the simple security 
proper ty  and the confinement property (also known as the *-property).  These 
are properties of the Bell and LaPadula  model, developed in the early 70's as a 
model for multi-level security [4]. 

In an earlier work [17], we presented a type system to guarantee noninter- 
ference in a simple imperative language. In this work, we extend the analysis to 
a language with first-order procedures, which can be used polymorphically with 
respect to security classes. Also, we address the type inference problem here. 

We begin with an overview of the type system. Then we formally present 
the system and prove its soundness relative to a s tandard natural  semantics. 

* This material is based upon activities supported by the National Science Foundation 
under Agreements No. CCR-9400592 and CCR-9414421. 
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In Section 6, we turn our at tention to type inference and type simplification. 
Finally, we sketch some related efforts and some future research directions. 

2 A n  O v e r v i e w  o f  t h e  T y p e  S y s t e m  

Noninterference was introduced as a model of security for multi-level computing 
systems [7]. The basic idea is that  a system has users, some of whom supply 
high-level inputs and others who supply low-level inputs. Low-level users are 
only allowed to see low-level system outputs.  (For the sake of simplifying the 
discussion, we shall consider only two security levels, low and high.) Such a 
system has the noninterference proper ty  if no mat te r  how the high-level inputs 
change, the low-level system outputs  remain the same. 

The idea can also be applied to programming languages. Intuitively, the 
notion is tha t  high-level program inputs can be altered without affecting any low- 
level outputs.  As a simple example, consider a procedure with just  two formal 
parameters  x and y: 

p r o c  P ( i n o u t  x : low, i n o u t  y : high); 

Here x and y are t reated as variables with security levels low and high respec- 
tively. Suppose the calls P(u : low,v : high) and P(u : low,w : high) te rminate  
with some final values for u, v, and w. The final values of v and w may differ. 
But  if P is noninterfering, the final value of u will be the same in both  cases. 
Our type system guarantees that  well-typed programs are noninterfering. 

2.1 Types 

The types of the system are stratified into three levels. There are the ~- types,  
which are the security levels, the ~r types, which are the types of expressions and 
commands,  and the p types, which are the types of phrases. The security levels 
are assumed to be partially ordered by <. For example, one might have low, 
high, trusted and untrusted such tha t  low < high and trusted < untrusted. The 
relation < is extended to a subtype relation C over the phrase types. 

Our ~ r a s e  types are similar those of Forsythe [12], except tha t  our command  
types are parameterized.  A command type has the form ~- cmd; the intuition 
behind it is tha t  a command c has this type only if every assignment in c is to a 
variable whose security level is ~- or higher. So if a command has type high cmd, 
then it does not contain any assignments to low variables. Other  phrase types are 
the types of variables, writ ten ~- var, and the types of acceptors, writ ten ~- acc. 
A variable of type ~- var stores information whose security level is ~- or lower. An 
acceptor is a write-only variable, used to type the o u t  parameters  of procedures. 
A variable is implicitly dereferenced, so there is a rule for converting ~- var to ~-. 
Likewise, there is a rule for converting a variable type to an acceptor type, which 
is necessary in the left sides of assignments and in procedure calls involving 
o u t  parameters .  The subtype relation is contravariant in both  command and 

acceptor types. 
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2.2 The Core Language and Typing Rules 

The typed language is a core imperative language with procedures; however, 
procedures are not first class values. Inspired by Denning's program certification 
rules [6], we have developed typing rules tha t  ensure noninterference. 

For instance, suppose tha t  I and h are variables and tha t  the identifier typing 
-y gives l type low var  and gives h type high var.  Then the assignment 1 := h 
must  be rejected, since a change in the initial value of h will affect the final value 
of I. This is what Denning termed an explicit  f l ow  from h to 1. So we introduce 
the following typing rule: 

7 F- e : T acc, .y F- e~ : T 

7 F- c := e ~ : T c md  

This rule requires variables l and h in our example to agree on their security 
levels. Since they do not agree, even using subtyping, the assignment is rejected. 
On the other hand, h := l is accepted. Since low < high, we can coerce the type 
of l from low to high to get agreement,  allowing the assignment to be given type 
high cmd.  Alternatively, we can coerce the type of h from high acc to low acc 
to give the assignment type low cmd.  

I t  is worth pointing out tha t  subtyping is neither covariant nor contravari- 
ant in variable types, because a variable is both  an expression (which behaves 
covariantly) and an acceptor (which behaves contravariantly).  Hence low v a t  is 
unrelated to high va t .  

As another  example, suppose we t ry  to copy h to l indirectly as follows: 

wh i l e  h > 0 do  
l : = l + l ;  
h : = h - 1  

o d  

Again the final value of 1 is affected by the initial value of h. This is what Denning 
termed an impl ic i t  f l ow  from h to l. Thus, the typing rule for wh i l e  insists tha t  
the guard and body of the loop be typed at the same security level: 

7~- e : T, ~ / F - c : T c m d  

3' F- wh i l e  e do  c : T cmd  

Determining whether a given program is noninterfering is, of course, unde- 
cidable. As we shall see, our type system is a sound and decidable logic for 
reasoning about  the noninterference of a program. Therefore, it is necessarily 
incomple te- -some noninterfering programs are rejected by the type system. 

2.3 S e c u r i t y  T y p e  Inference 

Type  inference in this setting a t tempts  to prove that  a program is noninterfering 
and produces a pr inc ipal  type tha t  succinctly conveys how the program can be 
executed securely. A principal type is a constrained type scheme [13] with a 
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contraint set of fiat subtype inequalities among security levels. Consider, for 
instance, the following procedure that  indirectly copies x to y: 

p r o c  (in x, o u t  y) 
l e t v a r  a := x in 
l e t v a r  b := 0 in 

whi l e  a > 0 do  
b := b + 1; 
a :-- a - 1; 

y : = b  

(The construct l e t v a r  x := e in  c allocates a local variable whose scope is c.) 
One principal type for this procedure is 

Va, fl w i t h  a < ft. fl proc(a,/3 acc) 

where a and fl are type variables such that  a corresponds to the security level 
of x and fl to the security level of y. A call to this procedure can be executed se- 
curely provided tha t  the arguments have security levels that ,  when subst i tuted 
for the bound variables of the type, satisfy the inequality. The call itself will 
have type fl cmd, as conveyed by fl proc. In this sense, the procedure is poly- 
morphia The above principal type can be simplified to Vfl. fl proc(fl, fl acc) due 
to subtyping of procedure types. As a practical mat ter ,  it is very impor tan t  to 
simplify the inferred principal types by exploiting the an t i symmetry  of ~ and 
the monotonicities of the type constructors. Type  inference and simplification 

are discussed in detail in Section 6. 

3 A Formal Treatment  of the  Type  Sys tem 

The syntax of the core imperative language is given below. 

(Phrase) p ::= e I c 

(Expr) In I 
e < e  I I p r o c  ( i n x l ,  i n o u t  x2, o u t  x3) c 

(Comm) c : : = e : = e '  I c ; c '  I e(el ,e2,e3) I w h i l e e  do  c I 

i f  e t h e n  c e lse  c ~ I l e t v a r  x := e in c t 

l e t p r o c  x( in  Xl, i n o u t  x2, o u t  x3) c in c' 

Meta-variable x ranges over identifiers, n ranges over integer literals and I ranges 
over locations, which are used in our language for input and output:  the initiM 
values of any locations in a program represent inputs, and the final values of the 
locations represent outputs.  (In addition, as will be seen in the natural  semantics, 
evaluating a l e t v a r  causes a new location to be allocated, and later deallocated.) 
Also, we assume for simplicity tha t  each procedure has exactly three parameters  
(one of each kind), and we use 0 for false and 1 for true. Finally, a phrase is 

closed if it has no free identifiers. 
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The types of the core language are stratified as follows: 

T : : =  8 

7c: :=T i Tproc ( f l ,  f 2 v a r ,  T3 acc) $ T c m d  
p ::=Tr I T v a r  ] Tacc  

Meta-variable s ranges over a set of security levels, which is partially ordered 
by ~.  The rules of the type system are given in Figure 1. We omit  typing rules 
for some compound expressions since they are similar to rule (SUM). Notice tha t  
rule (INT) allows an integer literal to be given every security level. Intuitively, 
a value is never intrinsically sensit ive--i t  is sensitive only if it comes from a 
sensitive location. Note also tha t  rule (LETPROC) allows procedures to be used 
polymorphically. The remaining rules of the type system constitute the subtyping 
logic and are given in Figure 2. 

In the typing judgment  )~; 7 F p : p, meta-variable 7 ranges over identifier 
typings and A over location typings. An identifier typing is a finite function 
mapping  identifiers to types of the form T, ~- var or ~- acc; 7(x) is the type 
assigned to x by 7, and 7Ix : p] is a modified identifier typing tha t  assigns type p 
to x and assigns type 7(x ' )  to any identifier x '  other than x. A location typing is a 
finite function mapping locations to ~- types with similar notat ional  conventions. 

To facilitate the soundness proof, we introduce a syntax-directed set of typing 
rules. The rules of this system are just the rules of Figure 1 with rules (IDENT), 
(R-VAL), (ASSIGN), (If), and (WHILE) replaced by their syntax-directed coun- 
terpar ts  in Figure 3. The subtyping rules in Figure 2 are not included in the 
syntax-directed system. We write judgments in the syntax-directed system as 
)~; 7 Fs p : p. The benefit of the syntax-directed system is that  the last rule used 
in the derivation of a typing A; 9' ~-~ P : P is uniquely determined by the form of 
p and of p. It  is also helpful in determining where coercions are needed during 
type inference. 

Next we establish that  the syntax-directed system is actually equivalent to 
our original system with respect to the ~r types. First we need two lemmas: 

L e m m a  1. I f  A; V[x: p'] ks p :  7r and F p C_ p', then A; 7[x :  p] ~-s p :  7r. 

L e m m a  2. I f  A; 7 Fs p : v and F- ~ C 7r ~, then A; V I-s p : ~r t. 

Equivalence is now expressed by the following theorem: 

T h e o r e m 3 .  A;7 F p  : ~r i f fA ;V~- sp  : 7r. 

From now on, we shall assume tha t  all typing derivations are done in the 
syntax-directed type system, and therefore shall take F- to mean ~-~. 

4 A N a t u r a l  S e m a n t i c s  

We give a natural semantics for closed phrases. A closed phrase is evaluated 
relative to a memory it, which is a finite function from locations to integers. The 
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([DENT) 

(VAR) 

(AOCEPTOR) 

(VARLOC) 

0NT) 
(~-VAL) 

(L-VAL) 

(SUM) 

(coMPos~) 

(LETVAR) 

(ASSIGN) 

(IF) 

(WHILE) 

(PROCEDURE) 

(APPLY) 

(LETPROC) 

A; y ~ z : ~- 3"(x) = T 

)`; 3" }- X : 7" v a t  7(x) = r var  

,k; 7 }- x : T acc 7(x)  = r a c c  

A;'T i- l : T var  A(1) = T 

A ; 3 ' ~ - n :  v 

A; 7 }- e : ~- v a r  

A ; 3 " F  e : T  

A;"T F e : 7" var  

A; 7 b e : T a c c  

A ; 3 " l - e : T ,  A ; 3 ' t - e  t : T  
A;7 }-e-F e' : T  

A; T t- c : T c m d ,  ) ` ;7  }- c' : T c m d  

)`; ~/ ~- c;  c' : T c m d  

) ` ;3"~-e :v ,  ) ` ; 7 [ x : 7 " v a r ] ~ - e : r '  c m d  

)`; 7 }- l e t v a r  x :---- e i n  c : ~-' c m d  

A ; 7 } - e : T a e c ,  1 ; 7 [ -  e' : v 
A--;3' 1- e : :  e' : v c m d  

)`; 3' F e : ~-, )`; 3" ~ c : T c m d ,  )`; 3' }- c' : ~- c m d ,  

)̀ ---~, 7 F i f  e t h e n  c e l se  e' : 7 e m d  

A;~/F e :% A ; y ~ - c : T c m d  

A ; 3 ' b w h i l e  e do  C : T c m d  

A; 7[xl : ~ ' l , x2  : 72 v a r , x s  : T3 ace] }- c : T c m d  

-k;3' t- p r o c  ( in  x~, i n o u t  x2~ o u t  xa) c :  
T pr0C(T1, 7"2 var ,  73 acc)  

A;3' }- e : -r proc(71 ,  v2 v a t ,  ~'3 acc) ,  
A;~f  ~- e l  : T1, )~;~/ ~- e2 : T2 var ,  k;3" }- e3 : T3 a C ~  

A--;, 3" i- e ( e l , e 2 , e a )  : "r crag 

),;3' t- p r o c  ( in  x l ,  i n o u t  x2, o u t  x3) e : lr, 
A; 7 F [proc  ( in  x l ,  i n o u t  x2, o u t  x3) c / x ] c '  : "r c m d  

k;---7 b l e t p r o c  x ( in  x t ,  i n o u t  x2, o u t  x3) c i n  e' : 7 c m d  

Fig .  1. t tules of the Type  System 

c o n t e n t s  of a l o c a t i o n  l E d o r a ( # )  is t h e  in teger  i t(I) ,  a n d  we w r i t e  it[1 : =  n] 
for t h e  m e m o r y  t h a t  ass igns  n to  l o c a t i o n  l, a n d  # ( l ' )  to  a l o c a t i o n  l '  ~ l; t h u s  
#[1 : =  n] is a n  u p d a t e  of  it if  I e d o m ( i t )  a n d  a n  e x t e n s i o n  of i t  i f  I ~ d o r a ( i t ) .  

Since  express ions  a n d  c o m m a n d s  a re  pu re ,  ou r  s e m a n t i c s  uses  it }- e ~ n for 
t h e  e v a l u a t i o n  of a n  express ion  a n d  # t- c =~ it '  for t h e  e v a l u a t i o n  of a c o m m a n d .  
C o m m a n d s  are  n o n e x p a n s i v e  in  t h a t  d o r a ( i t )  = d o r a ( i t ' ) .  We let  it - l s t a n d  for 

it w i t h  l o c a t i o n  l r e m o v e d  f rom i ts  d o m a i n .  
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(BASE) T < T ~ 
FTCr' 

(REFLEX) I- p C_ p 

(TRANS) ]-- p C_ p', ~- pt C ptl 
[- p C p" 

(ACe-) F T C_ r'  
t- T I a c c  (=~ T O, CC 

(CMD-)  �9 T C T' 
1- T' cmd C_ T cmd 

(PROC) I - f lU_n ,  ~-~-ac~-~, ~-~-'g~- 
f- r proc(T1, "1"2 vat ,  73 ace) C r' proc(r[ ,  "1-2 var, T~ ace) 

(SUBTYPE) )~; .7 ~- p : p, ~- p C p' 
A;~/t-p : p' 

Fig. 2. Subtyping rules 

(IDENT') ~(x) = ~, ~ _< ~' 
A;'y F- x : 7' 

(R-VAL I) ,~; ~/ [- e : T var, W <_ V' 
A; ")' t- e : T' 

(ASSIGN t) ,~; ~ [- e : T ae(], A; ~ ~- e '  : T, T ! __~ T 

A;TF-e: - - - -e ' :T '  cmd 

(IF') A ; T i - e : %  A ; T F c : r c m d ,  A ; T F - c ' : ~ ' c m d ,  T '<_T  
A; 7 }- if e t h e n  c e l se  c' : T' cmd 

(WHILE') )1;7 t- e : T, A; 7 F- c : T cmd,  7' < r 
A;7 t- while  e do e : T' cmd 

Fig. 3. Syntax-directed typing rules 

The  evaluat ion rules are given in Figure 4. We write [e ' / x ]e  to  denote  the  
capture-avoiding subst i tu t ion of  e' for all free occurrences of x in e. Note  the  
use of subst i tu t ion in rules (CALL),  (BINDVAR) and (BINDPROC);  this allows us 
to avoid environments  and closures in the semantics.  

5 T y p e  S o u n d n e s s  a s  N o n i n t e r f e r e n c e  

In this section, we establish the semantic  soundness of our type  sys tem by proving 
a noninterference theorem. Before proving soundness, we require some lemmas 
t h a t  establish useful propert ies of the type  sys tem and semantics.  

L e m m a 4  ( E x p r e s s i o n  S u b s t i t u t i o n ) .  / f  l;~/[x : 7] F p : p, t h e n  A;O' F 

[ n / x ] p  : p,  a n d  i f  I ;  ~/ t- l :  p a n d  A;-),[x : p] }- p :  p' ,  t h e n  A; ~/ f- [1/x]p : p ' .  
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(VAL) 

(CONTENTS) 

(ADD) 

(SEQUENCE) 

(BRANCH) 

(CALL) 

(UPDATE) 

(BINDVAR) 

(LOOP) 

"(mNOPROC) 

it }- n ~ n 

it }- t ~ it(t) l e do~(i t )  

it }- e ~ n, it }- e~ ~ n ' 
it }- e + e ' :::~ n + n' 

it }- c ~ it', Iz' }- c' ~ It" 
it }- c ; d ~ It" 

i t k e ~  1, it b c ~ it' 
it b i f  e t h e n  c e lse  c' ~ it' 

it }- e ~ 0, i t } - d ~ i t '  
it }- i f  e t h e n  c e lse  d ~ it '  

it }- e =~ n, it }- [n, l, l ' / x l ,  x2, x3]c ~ it' 
it }- ( p r o c  ( in  xl ,  i n o u t  x2, o u t  x3) c)(e, 1, l') ~ it' 

it }- e ~ n, I E dora(it) 
i t } - l  :=  e ~ it'[l := n] 

it }- e ~ n, l is the first location not  in dom(it) ,  

it[1 := n] }- [1/x]c ~ it '  
it }- l e t v a r  x :=  e i n  c ~ it~ - l 

i t } - e ~ 0  
# } - w h i l e  e do  c ~ i t  

i t } - e ~ l ,  # } - c ~ i t ' ,  i t ' } - w h i l e  e do  c ~ i t "  
it }- w h i l e  e do  c ~ it" 

it }- [proc  ( in  x l ,  i n o u t  x2, o u t  x3) c/x]c' ~ it' 
it }- l e t p r o c  x ( i n  x l ,  i n o u t  x2, o u t  x3) c i n  c' ~ it' 

Fig .  4. The Evaluat ion Rules 

L e m m a  5 ( S i m p l e  S e c u r i t y ) .  I f  A; ~/ ~- e : "r, t hen  f o r  every  l in  e, A(1) < "r, 

and f o r  every  x free  in  e, ~/(x) < T. 

L e m m a 6  ( C o n f i n e m e n t ) .  I f  A t- c :  T c m d ,  It t- c ~ Itl, dom(A)  = dora(I t) ,  

and l is a location ass igned to in c, t hen  A(1) > T or  Itt(1) = I t( l ) .  

Now we are  r e a d y  to  prove  t h e  s o u n d n e s s  t h e o r e m .  

T h e o r e m 7  ( N o n i n t e r f e r e n c e ) .  Suppose  

(a) ) ~ - c : ~ ,  
(b) I t } - c ~  It ' ,  
(c) y ~ - c ~ # ,  
(d) dora(#)  = d o m ( ~ )  = dora(A),  and 
(e) u( l )  --- It(1) f o r  all 1 such  tha t  A(1) < T. 

T h e n  # ( 1 )  - -  I t ' ( l)  f o r  all 1 such  tha t  A(l) < 7.  
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In the absence of procedures, this theorem can be proved directly [17]. Here, 
however, we prove the Noninterference Theorem as a corollary to the following 
theorem, whose proof is omitted due to space restrictions. 

T h e o r e m  8. Suppose 

(a) ~; Ix1 : r l , . . . ,  xk : rk] ~- c :  r~, 
(b) # ~- [ n , , . . . , n k / X l , . . . , X k ] e  ~ Iz', 
(c) , ~- [ n l , . . . , n ' J x ~ , . . . ,  xk]c ~ ~', 
(d) dora(#) = dora(v) = dom()~), 
(e) ~(l) = #(l) for aU l such that A(l) < r, and 
( f )  V Ti < r, for all i such that 1 < i < k. 

Then z/(1) = #'(l) for all l such that A(1) <_ r. 

It is well known that  polymorphic variables can easily break traditional forms 
of type soundness [16]. The same is true of a security type system. Giving a 
variable polymorphic type opens the door to "laundering". It would be possible 
to store high information and retrieve it as something low. But soundness can also 
break in more subtle ways due to mutable objects, like variables and first-class 
references, coupled with higher-order polymorphic procedures. It is interesting 
to note that  if the core language were extended with these features, then existing 
techniques such as weak types [14] or limiting polymorphism to values [19] could 
be used to preserve soundness. 

6 T y p e  I n f e r e n c e  

For the sake of describing type inference in this setting, we need to introduce 
extended types that  can contain type variables (~, /3,... ) in place of security 
levels. We use metavariables ?, ~, and ~ to range over extended types. Also, we 
use ~ to range over extended identifier typings that  map identifiers to extended 
types; FTV(~)  gives the set of free type variables of ~. 

A type inference algorithm W, defined by cases on the phrases of the lan- 
guage, is given in Figures 5 and 6. It takes as input a location typing ~, an 
extended identifier typing ~, a program phrase p, and a set V of type variables, 
which represents the set of "stale" type variables; this allows W to choose "fresh" 
type variables as necessary. If it succeeds, then it returns a set of flat subtype 
inequalities C, an extended type ~, and an updated set V' of stale type vari- 
ables. Note that  the constraint ? = ?'  abbreviates the two inequalities ~ < ?P 
and ~' _%< ~. 

We now establish the correctness of algorithm W. An instantiation I is a 
mapping from type variables to (ordinary) r types. It can be applied, in the usual 
way, to extended types, to extended identifier typings, and to sets of inequalities 
among extended types. 

L e m m a 9 .  / ]  FTV(.~) C_ V and (C ,~ ,V ' )  -- W ( A , ~ , p , V )  succeeds, then V' 
contains all type variables in C, ~, and V. 
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W ( ~ , ~ , p ,  v )  = case ~ of 

x : case ~(x) of 
~:({~<~},~,vu{~}) a c e  
? va~ : ({? < a} ,  ~, v u {a})  a r v 
default : fail 

n : ({ } , ~ , V U  {a}) a c e  

~: ({~(0 < ~ } , ~ , V  U {~}) ~ r V 

el Jr e2 : 

let ( C l , ~ l , V ' )  = W ( ) ~ , ~ , ~ l ,  V)  

let (C~,'~, V") = W()h'~,e2, V' ) 
in (Ci U C2 V {?, = ~2},~].,V") 

p r o c  (in Xl, i n o u t  x2, o u t  x ~ )  e : 

let (C, ~ cmd, V') = W(A, ~[xl : a, x2 : fl ear, x~ : 5 ace], c, V U {a,/~, 5}) 
in (C, ~ proc(o~, fl ear, 5 ace), V') ol, fl and 5 • V 

el; e~ : let (C,,~1 c ~ d , V ' )  = W ( ~ , ~ , c l , Y )  
let (C2, ~2 cmd, V") = W()h'~, c2, V')  
in (c1 0 c2 u {~1 = ~2}, ~ ~md,y") 

i f  e t h e n  cl e l se  c2 : 
let (C,'T, V') = W(~,'~,e, V) 
let (Cl,'T1 cmd, V") = W(A,~ ,c l ,  V') 
let (C2, ~2 cmd, V'") = W(A,'~, c2, V") 
in (C U C1 U C~ U {? = ~1 = ~2, a <__ ~}, a cmd, Y'" 0 {a}) a r V'"  

w h i l e  e do  c :  
let ( C, ~, V') = W ( ~,, ~, e, V) 
let ( C ' , ~  ~ cmd, V") : W(A, ~,c, V') 
in (C U C'  U {~ = ~ ,  a <_ ~}, ~ crag, V" U {a}) a ~ V" 

el : ~  e2 : 
let (C,~ ' ,  V')  = W(,k,'~,e2,V) 
case et of 

x : i f~ (x )  = ~ ear or ~(x) = ~ acc then 
(C U {~ = ~ ,  a <_ "~'}, a cmd, V' U {a}) cz r V'  

else fail 
I :  (CU {~(Z) = ~ ' , ~  < ~ ' } , a  cmd,Y '  U {a}) a r V' 

default : fail 

l e t v a r  x := e in  c : 

let (C,'T, V') = W()h ~,e, V) 
let (c ' ,~  ~md,V") = W(~ ,~ [~  : ~ ~ d , ~ , V ' )  
in (CU C ' , ~  cmd, V ' )  

l e t p r o e  x ( in  xl ,  i n o u t  x2, o u t  xs) c in  d : 
let (C,~ ,V ' )  = W ( A , ~ , p r o c  (in xz, ixaout x2, o u t  xa) c,V) 
let ( C ' , ~  cmd,Y")  = W ( A , ? , [ p r o c  (irl xt ,  i n o u t  x~, o u t  x3) c/x]c' ,V')  
in (C U C ' , ~  cmd,V")  

Fig .  5. Algorithm W 
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~(~1, ~2, ~3) : 
let (C,~ proc(~l, ~2 var, ~3 acc), V') = W(A,~, e, V) 
let (C', ~', -- y") w(~,~,~l,V') 
let C" = case e2 of 

x : if ~(x) = ~" vat then C U C' U {~' ---- ~1,~" -- ~2} else fail 
l: c u c ' u { ~ '  =~,~( l )=%} 
default : fail 

in case e3 of 
x :  if ~(x) = ~ '  vat or ~(x) ---- ~ '  acc then (C" U {~" = ~3},~ cmd, V") 

else fail 
l : (C" U {A(I) -- ~3},~ cmd, V") 
default : fail 

Fig.  6. Algorithm W, continued 

T h e o r e m 1 0  ( S o u n d n e s s ) .  Suppose ( C , ~ , V ' )  = W(A, '~ ,p ,V)  succeeds, and 
I is an instantiation such that I (C)  is true, and I(~) and I(~)  contain no type 
variables. Then ~; X(~) ~ p: • 

Proof. By induct ion on the s t ructure  of  p. We show the mos t  interesting case; 
the  other  cases are similar and follow s t ra ightforwardly by induction.  

Suppose (C, ~ cmd, Y" )  = W(A, '~ , le tvar  x :=  e i n  c, V),  I (C)  is t rue  and  
I (~ )  and I (~)  are closed. From W, we have C = Cz U C2 where 

(c1, ~', v') = w(~, ~, e, v) 

and 

(C2, ~ cmd, V") = W(A, ~ [ x :  ? '  var] , c, Y ' )  . 

Let I '  extend I so tha t  I ' ( ? ' )  is closed. Clearly, I '( '~) = I(-~) and I ' ( ? )  = I ( ? )  
since I '  extends I and I (~ )  and I (~)  are closed. Further ,  I ' (C1)  is t rue since 
I (C)  is true. So by induction,  A; I ' (~ )  F e : I ' ( ? ' ) ,  or A; I (~ )  k- e : I '(~').  Also, 
I '(~[x : ~' var]) is closed and I ' (C2)  is true, since I (C)  is true. So by a second 
use of  induction,  A;I ' ( '~[x : ? '  var]) F c : I ' ( ? )  cmd. But  I '(~[x : ~' var]) = 
/ ' (~ ) [x  : I ' ( ? ' )  var], so we have A; I( '~)[x : I '(~')  vat] k- c: I(?)  cmd. Therefore,  
by rule (LETVAR),)~; I(~) ~- l e t v a r  x : ~ e  in  c : I (~)  cmd. [] 

T h e o r e m  11 ( C o m p l e t e n e s s ) .  Suppose A;I(~)  k- p : ~r and FTV('~)  C Y.  
Then (C, "~, V ' )  = W(A, ~,p, V) succeeds and there exists an instantiation I '  such 
that I '  extends I, except on variables in V '  - V, I ' ( C )  is true, a n d / ' ( ~ )  = ~r. 
Moreover, if W(A, ~,p, V) does not succeed, then it halts with fail.  

Proof. By induct ion on the s t ructure  of p. We show two of the more  interest ing 
cases, w h i l e  and p r o c ;  the others are similar. 

Suppose A; I (~ )  t- w h i l e  e d o  c : W' cmd and F T V ( ~ )  C V. Then,  by rule 
(WHILE'), there is a type  ~- such tha t  A;I(-~) F e : T, A;I('~) F C : T cmd, and 
T' < w. So, by  induction,  (C, ~1, V')  = W(A,  ~, e, V) succeeds, V C V' ,  and there 
exists an ins tant ia t ion  I i  such tha t  I1 extends I ,  except on variables in V '  - V, 
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I I (C)  is true and i [1(~1)  ---- T. So ~-1 has the form ~1 and/1(71)  = T. And so ~i 
does not cause the first pat tern match to fail. 

Now F T V ( ~ )  C V',  a n d / 1  and I agree on all variables in ~ since no type 
variable in V' - V is a member of ~. So A;/1 (~) F c : ~- cmd. By induction again, 
(C', ~2, V ' )  = W(A, ~, e, V') succeeds, V' C V ' ,  and there is an instant ia t ion/2 
such t h a t / 2  e x t e nds / i ,  except on type variables in V "  - V' ,  I2(C') is true and 
I2(~2) = ~- cmd. So ~2 has the form ~2 cmd and I2(~.2) = ~-. Thus, the second 
pat tern  match succeeds and so does W(A, ~, whi le  e do  c, V), returning 

(C U C' U {~1 = 72, ot S 71}, oL cmd, V H U {oL}) 

where a r V ' .  Now/2  extends I,  except on variables in (V" - V') U (V t - V) 
which is V" - V since V C_ V' C V" by Lemma 9. Let I '  = / 2  [a := 7-']. Then F 
extends I except on variables in (V" - V) U {a}, or (V" U {a}) - V since a r V. 

Finally, we establish that  I '  (C U C'U {71 = ~2, a _< 71 }) is true. By Lemma 9, 
V' contains all type variables in C and in ~1, so neither a nor any variable in 
V" - V' is a member of C or ~1. Thus I '  and /1  agree on all type variables in C 
and ~1- So F(C)  is true and F(71) = 7. Likewise, by Lemma 9, V" contains all 
type variables in C' and ~2. Since a r V", I ~ a n d / 2  agree on all type variables 
in C' and ~2. So I ' (C ' )  is true and I'(72) = ~-. By the third hypothesis of rule 
(WHILE'), I ' (a)  <_ I'(71) and we're done. 

Now suppose that  

A; I(~) ~- p r o c  (in Xl,  i n o u t  x2, ou t  x3) c : ~- proc(T1, 7-2 var, T3 acc) 

and F T V ( ~ )  C_ V. Then by rule (PROCEDUI~E), we have 

A;I(~)[Xl : 71,x2 : 72 var, xu : ~-3 acc] F c: ~- cmd . 

Let /1 = I[a :-~ ~'l,fl := ~'2,5 : =  "/-3] where a, fl,5 ~ V. Since F T V ( ~ )  C V,  
then a, fl, and 6 do not occur in ~. So A;/1 (~[xl : a ,  x2 : fl vat, x3 : 6 acc]) F 
c : 7" cmd. Hence, by induction, W(A,~[xl : a, xe : fl var,x3 : 6 acc],c,V tJ 
{a, fl, 6}) succeeds, returning (C, ~, V'), V U {a, fl, 6} C__ V', and there exists an 
instantiation I '  such that  F extends I1, except on variables in V ' - ( V U  {a, fl, 5}), 
I ' (C)  is true, and I ' (~)  = ~- cmd. So ~ has the form 7 cmd and I ' (~) = T. Thus 
the pat tern match succeeds and so does 

W(A; ~, p r o c  (in xl ,  i n o u t  x2, o u t  x3) c, V) 

returning (C, ~ proc(a, fl vat, 6 acc), V') .  Now/1 extends I except on variables 
a, ,~ and 6. So I ~ extends I except on variables in ( V ' - ( V U  {a, fl, 5}))U {a, fl, 5} 
which is V' - V since a,  fl, and 6 are in V' but not V. [] 

It  follows from these theorems that  we can check whether p is typable with 
respect to A and V by first running W()~, 7,P, 0), and, if it succeeds with (C, ~, V), 
then checking whether C is satisfiable with respect to the partial ordering of 
security levels. Checking the satisfiability of a fiat set of subtyping inequalities 
with respect to a partiM order has been studied previously [15, 18]. It is NP- 
complete, in general, but  can sometimes be done efficiently, for example, if the 
partial order is a disjoint union of lattices. 
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6.1 P r i n c i p a l  Types 

In addition to checking typability, type inference gives us the ability to com- 
pute  principal types, tha t  document all possible types of a program. We use 
constrained quantification [13] for our principal types: 

a ::= V~ with C. 

In such a type scheme, the type variables ~ can be instantiated only in ways 
tha t  satisfy the subtype inequalities in C. 

The instances of a type scheme are defined as follows: 

D e f i n i t i o n  12 ( I n s t a n c e ) .  V~ w i t h  C .  ~ ~- ~ if there exists an instantiation 
I whose domain is ~ such tha t  I ( C )  is true and ~- I (~)  C ~r. In this case we say 
tha t  7r is an instance of V~ w i t h  C .  ~. 

D e f i n i t i o n  13 ( P r i n c i p a l  T y p e ) .  a is a principal type for p with respect to )~ 
and 7 if for all ~, )~; 7 F p : ~r iff a ~- ~. 

By the Soundness and Completeness theorems above, we can compute a 
principal type for p with respect to )~ and ~/by running (C, ~, V) = W(A, %p,  0), 
verifying tha t  C is satisfiable, and forming the type scheme F~ w i t h  C .  ~, where 

contains all type variables free in C or ~. (Note tha t  the definition of the 
instance relation could in fact have required tha t  I (~)  = ~r; the weaker definition 
was adopted to allow for more type simplification, as we discuss below.) 

Here is an example of type inference. Calling W on the procedure given in 
Section 2.3 produces the principal type 

Vc~, % u, o, e, L, (, #, 5, 71, 8, n, ~,/~, ~ w i t h  

{ ~ <  7, u = o , e = t , u < e , c = r  7 < c, t = #, 5 = , ,  t < 5 , ' [  
~ 0' 5 < zl, 7 = n, P <--7, n = A, 7 <--n, 13 = ~, o < /3, 5 <~ ~ J 

�9 u proc(c~, /~ acc) 

Such a complex principal type obviously cannot serve as useful documentat ion to 
a programmer.  For this reason, it is necessary, as a practical mat ter ,  to simplify 
the principal types produced by W. 

6.2 T y p e  Simplification 

There is a natural notion of equivalence on type schemes: two type schemes are 
equivalent if[ they have the same set of instances�9 The idea of type simplification 
is to replace a type scheme with a simpler, yet equivalent, type scheme. The type 
simplifications considered in [13] can be applied directly here. 

Often we can make deductions about how a type scheme V~ with C. ~ can 
be instantiated. For instance, suppose that C contains the inequalities c~ _~ 

as well as/~ < a. Since _< is a partial order, any instantiation that satisfies C 
must instantiate a and ~ to the same type. Thus we can unify a and ~. In 
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general, we can collapse the strongly-connected components of C. Performing 
this simplification on the type scheme above yields the simpler principal type 

Va, o, 5, )~, ~ w i t h  {5 < ~, o < ~, ~ < 5, a < A}. o proc(c~, ~ acc) 

We can further simplify type schemes by exploiting the monotonicities of 
types. For example, o proc(a, ~ acc) is antimonotonic in a; that  is, boosting a 
produces a smaller type. Since the only constraint on a is that  a _< s we can in- 
stantiate c~ to $, yielding a simpler principal type. Performing such monotonicity- 
based instantiations repeatedly, we finally obtain the principal type 

proc( , acc) 

which has no constraints at all. With type simplification, principal types become 
useful documentation of the security requirements of programs. 

7 R e l a t e d  W o r k  a n d  F u t u r e  D i r e c t i o n s  

One of the earliest efforts in the area is Denning's lattice model of secure in- 
formation flow [5, 6]. Denning extended the work of Bell and LaPadula [4] 
by giving a secure-flow certification algorithm for programs. This early work 
has been followed by a variety of efforts dealing with secure information flow 

[2, 8, 3, 10, 11, 17]. 
Some of these efforts [8, 10] have been aimed at proving the soundness of 

Denning's analysis. These efforts, however, prove soundness relative to an in- 
strumented semantics whose validity is open to question. In contrast, we show 
the soundness of our analysis with respect to a standard natural semantics. 

The work of Ban&tre et al. [3] is similar in spirit to our work. They give a 
compile-time algorithm for detecting information flow in sequential programs, 
and they justify their algorithm in terms of a noninterference property. Their 
algorithm works by building a final accessibility graph indicating whether the 
contents of one variable at some point in the program can flow into an instance of 
a variable at some other point. The drawback here is that  the number of vertices 
in the final accessibility graph is at least linear in the size of the program. 
This means that,  unlike simplified principal types, final graphs cannot serve as 
practical program documentation. 

Palsberg and 0rbmk [11] give a type system for trust analysis in the simply- 
typed A calculus with a t r u s t  coercion. This (unsafe) coercion permits untrusted 
values to be explicitly coerced to trusted values. However, subject reduction is 
the only soundness property shown for their type system. It is unclear what one 
can say about the soundness of their system in terms of secure information flow. 
The t r u s t  coercion certainly rules out our noninterference theorem. 

Another recent type-based approach is Abadi's work on a version of the pi 
calculus, called spi, extended to express cryptographic protocols [1]. Also related 
is Necula and Lee's recent work on proof-carrying code [9]. 

In the future, it would be desirable to extend the core language considered 
here with a number of important features, including concurrency, networking, 
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and exception handling. The impact of such features on the noninterference 
property needs to be investigated. 
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