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Abstract

In this paper, a type of multi-level correction scheme is proposed to solve eigenvalue

problems by the nonconforming finite element method. With this new scheme, the

accuracy of eigenpair approximations can be improved after each correction step which

only needs to solve a source problem on finer finite element space and an eigenvalue

problem on the coarsest finite element space. This correction scheme can improve the

efficiency of solving eigenvalue problems by the nonconforming finite element method.

Furthermore, as same as the direct eigenvalue solving by the nonconforming finite

element method, this multi-level correction method can also produce the lower-bound

approximations of the eigenvalues.

Keywords. Eigenvalue problem, multigrid, multi-level correction, finite element

method.

AMS subject classifications. 65N30, 65N25, 65L15, 65B99.

1 Introduction

The purpose of this paper is to propose a type of multi-level correction scheme based on

the nonconforming finite element discretization to solve eigenvalue problems. The two-

grid method for solving eigenvalue problems has been proposed and analyzed by Xu and

Zhou in [24]. The idea of the two-grid comes from [22, 23] for nonsymmetric or indefinite

problems and nonlinear elliptic equations. Since then, there have existed many numerical
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methods for solving eigenvalue problems based on the idea of two-grid method (see, e.g.,

[1, 6, 10, 20, 27, 28] and the reference cited therein).

In this paper, we present a type of multi-level correction scheme for solving eigenvalue

problems by nonconforming finite element methods. With the proposed method solving

eigenvalue problem will not be much more difficult than the solution of the corresponding

source problem. The correction method for eigenvalue problems in this paper is based on

a series of finite element spaces with different approximation properties which are related

to the multilevel method (c.f. [21]).

The standard Galerkin finite element method for eigenvalue problems has been exten-

sively investigated, e.g. Babuška and Osborn [2, 3], Chatelin [5], Yang and Chen [26] and

references cited therein. Here we adopt some basic results in these papers for our anal-

ysis. The corresponding error estimates of this type of multi-level correction scheme by

nonconforming finite element methods which is introduced here will be analyzed. Based

on the analysis, the method can reduce the error of the eigenpair approximations after

each correction step. The multi-level correction procedure can be described as follows: (1)

solve the eigenvalue problem in the coarsest nonconforming finite element space; (2) solve

an additional source problem in an finer nonconforming finite element space using the pre-

vious obtained eigenvalue multiplying the corresponding eigenfunction as the load vector;

(3) solve the eigenvalue problem again on the finite element space which is constructed by

combining a very coarse conforming finite element space with the obtained eigenfunction

approximation in step (2). Then go to step (2) for the next loop.

In order to describe our method clearly, we give the multi-level correction method for

Laplace eigenvalue problem to illustrate the main idea in this paper (see section 5).

Find(λ, u) such that





−∆u = λu, in Ω,

u = 0, on ∂Ω,∫
Ω u

2dΩ = 1,

(1.1)

where Ω ⊂ R2 is a bounded domain with Lipschitz boundary ∂Ω and ∆ denote the Laplace

operator.

Let WH denote a very coarse conforming linear finite element space defined on the

coarsest mesh TH . Additionally, we also need to construct a series of finite element spaces

Vh1 , Vh2 , · · · , Vhn which are defined on the corresponding series of nested meshes Thk (k =

1, 2, · · · n) such that Th1 = TH or is obtained by refining TH with the regular way and

each Thk+1
is produced from Thk by refining in the regular way. Our multi-level correction

algorithm to obtain the approximation for the eigenpair of (1.1) can be defined as follows

(see Sections 3 and 4):
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1. Solve an eigenvalue problem in the coarse space Vh1 :

Find (λh1 , uh1) ∈ R × Vh1 such that ‖uh1‖0 = 1 and

∑

K∈Th1

∫

K
∇uh1∇vh1dK = λh1

∫

Ω
uh1vh1dΩ, ∀vh1 ∈ Vh1 .

2. Do k = 1, · · · , n− 1

• Solve the following auxiliary source problem:

Find ũhk+1
∈ Vhk+1

such that

∑

K∈Thk+1

∫

K
∇ũhk+1

∇vhk+1
dK = λhk

∫

Ω
uhkvhk+1

dΩ, ∀vhk+1
∈ Vhk+1

.

• Define a new finite element space VH,hk+1
= WH + span{ũhk+1

} and solve the

following eigenvalue problem:

Find (λhk+1
, uhk+1

) ∈ R × VH,hk+1
such that ‖uhk+1

‖0 = 1 and

∑

K∈Thk+1

∫

K
∇uhk+1

∇vH,hk+1
dK = λhk+1

∫

Ω
uhk+1

vH,hk+1
dΩ, ∀vH,hk+1

∈ VH,hk+1
.

end Do

If, for example, λh1 is the first eigenvalue of the problem (1.1) at the first step and Ω is a

convex domain, we can establish the following results (see Sections 3 and 4 for details)

( ∑

K∈Thn

‖∇(u− uhn)‖20,K
)1/2

= O
( n∑

k=1

hkH
n−k

)
, and |λhn − λ| = O

( n∑

k=1

h2kH
2(n−k)

)
.

These two estimates means that we can obtain asymptotic optimal errors by taking H =
n
√
hn and hk = Hk (k = 1, · · · , n − 1). This result is different with the two-grid method

(H =
√
hn or H = 4

√
hn) (c.f. [24, 27]) and the method here dose not need to solve

almost singular linear problems. Furthermore, the final eigenvalue approximation λhn is

the lower bound of the exact eigenvalue if the used nonconforming element can obtain the

lower bound of the eigenvalue by the direct eigenvalue solving.

In this method, we replace solving eigenvalue problem in the finest nonconforming finite

element space by solving a series of boundary value problems in the corresponding series

of nonconforming finite element spaces and a series of eigenvalue problems in the coarse

conforming linear finite element space plus one dimensional eigenfunction space. As we

know, there exists efficient preconditioner for solving boundary value problems efficiently.

So this correction method can improve the efficiency of solving eigenvalue problems by

nonconforming finite element methods.
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An outline of the paper goes as follows. In Section 2, we introduce the nonconforming

finite element method for the eigenvalue problem and the corresponding error estimates.

A type of one correction step is given in Section 3. In Section 4, we propose a type of

multi-level correction algorithm for solving the eigenvalue problem by the nonconforming

finite element method. A lower-bound analysis of the eigenvalue approximations is given

in Section 5. In Section 6, two numerical examples are presented to validate our theoretical

analysis and some concluding remarks are given in the last section.

2 Discretization by nonconforming finite element method

In this section, we introduce some notation and error estimates of the nonconforming

finite element approximation for eigenvalue problems. In this paper, the letter C (with or

without subscripts) denotes a generic positive constant which may be different at different

occurrences. For convenience, the symbols ., & and ≈ will be used in this paper. That

x1 . y1, x2 & y2 and x3 ≈ y3, mean that x1 ≤ C1y1, x2 ≥ c2y2 and c3x3 ≤ y3 ≤ C3x3

for some constants C1, c2, c3 and C3 that are independent of mesh sizes (c.f. [21]). In this

paper, we set V := H1
0 (Ω) and W := L2(Ω).

In our methodology description, we are concerned with the following Laplace eigenvalue

problem:

Find (λ, u) ∈ R× V such that b(u, u) = 1 and

a(u, v) = λb(u, v), ∀v ∈ V, (2.1)

where a(·, ·) and b(·, ·) are bilinear forms defined by

a(u, v) =

∫

Ω
∇u∇vdΩ, b(u, v) =

∫

Ω
uvdΩ.

For the eigenvalue λ, there exists the following Rayleigh quotient expression (see, e.g.,

[2, 3, 24])

λ =
a(u, u)

b(u, u)
. (2.2)

From [3, 5], we know the eigenvalue problem (2.1) has an eigenvalue sequence {λj} :

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · , lim
k→∞

λk = ∞,

and the associated eigenfunctions

u1, u2, · · · , uk, · · · ,



ICMSEC-RR 2012-10 Multi-level Correction Method for Nonconforming Element 5

where b(ui, uj) = δij . In the sequence {λj}, the λj are repeated according to their geomet-

ric multiplicity. In this paper, we assume the eigenfunction u of (2.1) has the regularity

u ∈ H1+γ(Ω), where 0 < γ ≤ 1 depends on the maximum interior angle of ∂Ω (c.f. [9]).

Let Th be a quasi-uniform decomposition of Ω into triangles (c.f. [4, 7]). The diameter

of a cell K ∈ Th is denoted by hK . The mesh diameter h describes the maximum diameter

of all cells K ∈ Th. Let Eh denote the edge set of Th and Eh = E ih ∪ Ebh, where E ih denotes

the interior edge set and Ebh denotes the edge set lying on the boundary ∂Ω. The finite

element space Vh is the corresponding nonconforming finite element space on the partition,

i.e. Vh * V .

In the rest of this paper, we are concerned with two types of nonconforming finite

elements: Crouzeix-Raviart (CR) (c.f. [8]) and Enriched Crouzeix-Raviart (ECR) (c.f.

[11, 14]), for triangular partitions, respectively.

• CR element is defined on the triangular partition and

Vh :=
{
v ∈ L2(Ω) : v|K ∈ span{1, x, y},

∫

ℓ
v|K1

ds =

∫

ℓ
v|K2

ds,

when K1 ∩K2 = ℓ ∈ E ih and

∫

ℓ
v|Kds = 0, if ℓ ∈ Ebh

}
, (2.3)

where K, K1, K2 ∈ Th.

• ECR element is defined on the triangular partition and

Vh :=
{
v ∈ L2(Ω) : v|K ∈ span{1, x, y, x2 + y2},

∫

ℓ
v|K1

ds =

∫

ℓ
v|K2

ds,

when K1 ∩K2 = ℓ ∈ E ih, and
∫

ℓ
v|Kds = 0, if ℓ ∈ Ebh

}
, (2.4)

where K, K1, K2 ∈ Th.

Both the above nonconforming elements possess the following common properties:

1. The space of shape functions contains the complete polynomials of degree 1;

2. v ∈ Vh is integrally continuous at the common edge F between the neighboring

elements K1 and K2, i.e.,

∫

ℓ
v|K1

ds =

∫

ℓ
v|K2

ds if K1 ∩K2 = ℓ ∈ E ih;

3. V h 6⊂ H1
0 (Ω) and V

h ⊂ L2(Ω).

The nonconforming finite element approximation for (2.1) is defined as follows:
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Find (λh, uh) ∈ R × Vh such that b(uh, uh) = 1 and

ah(uh, vh) = λhb(uh, vh), ∀vh ∈ Vh, (2.5)

where the bilinear forms ah(·, ·) and b(·, ·) are defined as

ah(uh, vh) =
∑

K∈Th

∫

K
∇uh∇vhdK, b(uh, vh) =

∫

Ω
uhvhdΩ.

The bilinear form ah(·, ·) is Vh-elliptic on V + Vh. Thus we define the norms ‖ · ‖a,h and

‖ · ‖b on Vh + V by

‖v‖2a,h = ah(v, v), ‖v‖2b = b(v, v) for v ∈ V + Vh.

For the eigenvalue problem (2.5), the Rayleigh quotient holds for the eigenvalue λh

λh =
ah(vh, vh)

b(vh, vh)
. (2.6)

Similarly, the discrete eigenvalue problem (2.5) has also an eigenvalue sequence {λj,h} with

0 < λ1,h ≤ λ2,h ≤ · · · ≤ λNh,h,

and the corresponding discrete eigenfunction sequence {uj,h}

u1,h, u2,h, · · · , uk,h, · · · , uNh,h

with the property b(ui,h, uj,h) = δij , 1 ≤ i, j ≤ Nh (Nh is the dimension of Vh).

The interpolation operator Πh : V 7−→ Vh corresponding to CR element can be defined

in the same way (c.f. [8]):

∫

ℓ
(u−Πhu)ds = 0, ∀ℓ ∈ Eh. (2.7)

The interpolation operator Πh : V 7−→ Vh corresponding to ECR element can be defined

as follows (c.f. [11, 14]):

∫

ℓ
(u−Πhu)ds = 0, ∀ℓ ∈ Eh, (2.8)

∫

K
(u−Πhu)dK = 0, ∀K ∈ Th. (2.9)

Lemma 2.1. ([17]) For any u ∈ V , the interpolation defined in (2.7) or (2.8)-(2.9) has

the following results

ah(u−Πhu, vh) = 0 , ∀vh ∈ Vh , (2.10)

‖Πhu‖a,h ≤ ‖u‖a. (2.11)
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Furthermore, the interpolation operator has error estimates

‖u−Πhu‖b + h‖u−Πhu‖a,h ≤ Ch1+γ‖u‖1+γ , (2.12)

for any u ∈ H1+γ(Ω).

In order to give the error estimates of the eigenpair approximation by finite element

methods, we define the operator T : W 7−→ V by

a(Tf, v) = b(f, v), ∀v ∈ V, (2.13)

for any f ∈ W . As we know, the operator T is compact. Then the eigenvalue problem

(2.1) can be written as

λTu = u. (2.14)

We also define the corresponding discrete operator Th : W 7−→ Vh by

ah(Thf, vh) = b(f, vh), ∀vh ∈ Vh, (2.15)

for any f ∈W . Similarly the discrete eigenvalue problem (2.5) can be written as

λhThuh = uh. (2.16)

Let M(λj) denote the eigenfunction set corresponding to the eigenvalue λj which is

defined by

M(λj) =
{
w ∈ V : w is an eigenfunction of (2.1) corresponding to

λj and ‖w‖b = 1
}
. (2.17)

Now we state the convergence result of the eigenvalue problem by nonconforming finite

element methods. For this aim, we define the following notation

εh(λj) = ‖(T − Th)|M(λj)‖a,h, (2.18)

ρh(λj) = ‖(T − Th)|M(λj )‖b. (2.19)

Lemma 2.2. ([18, 19, 26]) Suppose that ‖Th−T‖b → 0 (h→ 0). Let (λj,h, uj,h) ∈ R×Vh
be the j-th nonconforming finite element eigenpair approximation satisfying (2.5). Then

λj,h → λj and there exist uj ∈M(λj) such that

‖uj − uj,h‖a,h ≤ Cj
(
εh(λj) + ρh(λj)

)
, (2.20)

‖uj − uj,h‖b ≤ Cjρh(λj), (2.21)

|λj − λj,h| ≤ Cjρh(λj), (2.22)
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where the constants Cj depending on the j-th eigenvalue λj.

Furthermore, for any wh ∈ Vh with ‖wh‖b 6= 0, the following expansion holds

ah(wh, wh)

b(wh, wh)
− λ =

ah(wh − u,wh − u)

b(wh, wh)
− λ

b(wh − u,wh − u)

b(wh, wh)
+ 2

Eh(u,wh)

b(wh, wh)
, (2.23)

where Eh(u,wh) = ah(u,wh)− b(λu,wh).

Now we state a lower bound of the convergence rate for the eigenfunction approximation

by finite element methods which will be used in the analysis for the error estimates.

Lemma 2.3. ([15, Section 3]) If we solve the eigenvalue problem (2.1) by CR element or

ECR element, the following lower bound of the convergence rate holds

‖(T − Th)|M(λj)‖a,h ≥ Cjh, (2.24)

where the constants Cj depending on the j-th eigenvalue λj.

For the aim of analyzing the error estimates, we need to get the result of the estimate

‖(T − Th)|M(λ)‖b is a higher order term corresponding to ‖(T − Th)|M(λ)‖a,h.

Theorem 2.1. ([13]) Assume the nonconforming finite element owns a type of interpo-

lation operator Πh satisfying the orthogonal property (2.10). We have the following error

estimate

‖(T − Th)|M(λ)‖b . hγ‖(T − Th)|M(λ)‖a,h. (2.25)

Proof. For any f ∈M(λ), let u = Tf and uh = Thf . For any ψ ∈W , we have

‖u− uh‖b = b(u− uh, ψ)

= ah(u, ϕψ)− ah(uh, ϕh)

= ah(u− uh, ϕψ − ϕh) + ah(uh, ϕψ − ϕh) + ah(u− uh, ϕh)

= ah(u− uh, ϕψ − ϕh)− [ah(u− uh, ϕψ)− b(u− uh, ψ)]

−[ah(u, ϕψ − ϕh)− b(f, ϕψ − ϕh)], (2.26)

where ϕψ = Tψ, ϕh = Thψ and (c.f. [9])

‖ϕψ‖1+γ . ‖ψ‖b. (2.27)

For the first term in the right hand side of (2.26), we have the estimate

∣∣a(u− uh, ϕψ − ϕh)
∣∣ . hγ‖u− uh‖a,h. (2.28)
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From the standard error estimate theory of the nonconforming finite element method, the

following estimate holds

∣∣ah(u− uh, ϕψ)− b(u− uh, ψ)
∣∣

=
∣∣∣
∑

K∈Th

∫

K
∇(u− uh)∇ϕψdK −

∫

Ω
(u− uh)ψdΩ

∣∣∣

=
∣∣∣
∑

K∈Th

∫

∂K
(u− uh)∂νϕψds

∣∣∣

. hγ‖u− uh‖a,h‖ϕψ‖1+γ . (2.29)

From the orthogonal property (2.10), we have the estimate for the third term in the right

hand side of (2.26)

∣∣ah(u, ϕψ − ϕh)− b(f, ϕψ − ϕh)
∣∣

.
∣∣ah(u,Πhϕψ − ϕh)− b(f,Πhϕψ − ϕh)

∣∣+
∣∣ah(u, ϕψ −Πhϕψ)

∣∣

+
∣∣b(f, ϕψ −Πhϕψ)

∣∣

=
∣∣ah(u− uh,Πhϕψ − ϕh)

∣∣+
∣∣ah(u− uh, ϕψ −Πhϕψ)

∣∣

+
∣∣b(f, ϕψ −Πhϕψ)

∣∣

. C‖u− uh‖a,h
(
‖Πhϕψ − ϕh‖a,h + ‖ϕψ −Πhϕψ‖a,h

)

+‖f‖b‖ϕψ −Πhϕψ‖b
. hγ‖ϕψ‖1+γ‖u− uh‖a,h + h1+γ‖f‖b‖ϕψ‖1+γ
. hγ‖ϕψ‖1+γ‖u− uh‖a,h + h1+γ‖f‖b. (2.30)

Combining (2.26), (2.28), (2.29) and (2.30), we have

‖u− uh‖b = sup
06=ψ∈W

b(u− uh, ψ)

‖ψ‖b

. hγ sup
06=ψ∈W

‖ϕψ‖1+γ‖u− uh‖a,h
‖ψ‖b

+ h1+γ‖f‖b

. hγ‖u− uh‖a,h + Ch1+γ‖f‖b. (2.31)

The desired inequality (2.25) can be obtained by combining (2.24), (2.31) and ‖f‖b = 1

and we complete the proof.

3 One correction step

In this section, we present a type of correction step to improve the accuracy of the

current eigenvalue and eigenfunction approximations. This correction method contains

solving some auxiliary source problems in the finer nonconforming finite element space
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and an eigenvalue problem on an coarse finite element space. For generality, we set

the multiplicity of our desired eigenvalue is q. It means λi = · · · = λi+q−1. We use

(λi,h, ui,h), · · · , (λi+q−1,h, ui+q−1,h) to denote the eigenpair approximations for the eigen-

values λi = · · · = λi+q−1 and their corresponding eigenfunction space M(λ). Let

Mh(λi) = span
{
ui,h, · · · , ui+q−1,h

}
. (3.1)

For two linear spaces A and B, we define

Θ̂(A,B) = sup
w∈A,‖w‖a,h=1

inf
v∈B

‖w − v‖a,h, Φ̂(A,B) = sup
w∈A,‖w‖b=1

inf
v∈B

‖w − v‖b.

We define the gaps between M(λi) and Mh(λi) in ‖ · ‖a,h as

Θ(M(λi),Mh(λi)) = max
{
Θ̂(M(λi),Mh(λi)), Θ̂(Mh(λi),M(λi))

}
, (3.2)

and in ‖ · ‖b as

Φ(M(λi),Mh(λi)) = max
{
Φ̂(M(λi),Mh(λi)), Φ̂(Mh(λi),M(λi))

}
. (3.3)

Assume we have obtained the eigenpair approximations (λj,hk , uj,hk) ∈ R × Vhk for

j = i, · · · , i+ q−1. Now we introduce a type of correction step to improve the accuracy of

the current eigenpair approximation {(λj,hk , uj,hk)}
i+q−1
j=i . Let Vhk+1

6⊂ V be the noncon-

forming finite element space based on the finer mesh Thk+1
which is produced by refining

Thk in the regular way. In order to do the correction step, we also define the conforming

linear finite element space WH on the coarsest mesh TH and IH denote the corresponding

Lagrange type interpolation operator. Now we define the following correction step.

Algorithm 3.1. One Correction Step

1. For j = i, · · · , i+ q − 1 Do

Define the following auxiliary source problem:

Find ũj,hk+1
∈ Vhk+1

such that

ahk+1
(ũj,hk+1

, vhk+1
) = λj,hkb(uj,hk , vhk+1

), ∀vhk+1
∈ Vhk+1

. (3.4)

Solve this equation to obtain a new eigenfunction approximation ũj,hk+1
∈ Vhk+1

.

2. Define a new finite element space VH,hk+1
= WH + span{ũi,hk+1

, · · · , ũi+q−1,hk+1
}

and solve the following eigenvalue problem:

Find (λj,hk+1
, uj,hk+1

) ∈ R× VH,hk+1
such that b(uj,hk+1

, uj,hk+1
) = 1 and

ah(uj,hk+1
, vH,hk+1

) = λj,hk+1
b(uj,hk+1

, vH,hk+1
), ∀vH,hk+1

∈ VH,hk+1
. (3.5)
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Define {λj,hk+1
, uj,hk+1

}i+q−1
j=i = Correction(WH , {λj,hk , uj,hk}

i+q−1
j=i , Vhk+1

).

Lemma 3.1. ([13]) Assume TH,hk+1
denotes the discrete operator defined by (2.15) on the

finite element space VH,hk+1
=WH+span{ũi,hk+1

, · · · , ũi+q−1,hk+1
}. We have the following

error estimates

‖(T − TH,hk+1
)‖a,h . Hγ , (3.6)

‖(T − TH,hk+1
)|M(λi)‖a,h . sup

w∈M(λi)
inf

v∈VH,hk+1

‖w − v‖a,h + hγk+1, (3.7)

‖(T − TH,hk+1
)|M(λi)‖b . Hγ‖(T − TH,hk+1

)|M(λi)‖a,h. (3.8)

Proof. For the simplicity of notation, we set h := hk+1 and λ := λi in this proof. First we

prove (3.6). For any f ∈ W and ‖f‖b = 1, by the standard nonconforming finite element

error estimate theory, we have

‖(T − TH,h)f‖a,h . inf
vH,h∈VH,h

‖Tf − vH,h‖a,h

+ sup
06=wH,h∈VH,h

|b(f,wH,h)− ah(Tf,wH,h)|
‖wH,h‖a,h

. Hγ‖Tf‖1+γ + sup
06=wH,h∈VH,h

∣∣∣
∑

K∈Th

∫
∂K ∂ν(Tf)wH,hds

∣∣∣
‖wH,h‖a,h

.
(
Hγ + hγ

)
‖Tf‖1+γ

.
(
Hγ + hγ

)
‖f‖b. (3.9)

This is the desired result (3.6). Similarly, (3.7) can be obtained by (3.9) and the following

estimates

‖(T − TH,h)|M(λ)‖a,h = sup
f∈M(λ),‖f‖a,h=1

‖(T − TH,h)f‖a,h

. sup
f∈M(λ),‖f‖a,h=1

(
inf

vH,h∈VH,h

‖Tf − vH,h‖a,h

+ sup
06=wH,h∈VH,h

|b(f,wH,h)− ah(Tf,wH,h)|
‖wH,h‖a,h

)
,

and

sup
f∈M(λ),‖f‖a,h=1

inf
vH,h∈VH,h

‖Tf − vH,h‖a,h . sup
w∈M(λ)

inf
v∈VH,hk+1

‖w − v‖a,h.

Now, let us prove (3.8). For any f ∈ M(λ), let u = Tf and uH,h = TH,hf . Similarly to

(2.26), for any ψ ∈W , we have

‖u− uH,h‖b = ah(u− uH,h, ϕψ − ϕH,h)− [ah(u− uH,h, ϕψ)− b(u− uH,h, ψ)]
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−[ah(u, ϕψ − ϕH,h)− b(f, ϕψ − ϕH,h)], (3.10)

where ϕψ = Tψ, ϕH,h = TH,hψ and

‖ϕψ‖1+γ . ‖ψ‖b. (3.11)

For the first term in the right hand side of (3.10), we have the estimate from (3.6)

∣∣a(u− uH,h, ϕψ − ϕH,h)
∣∣ . Hγ‖u− uH,h‖a,h. (3.12)

From the standard error estimate theory of the nonconforming finite element method, the

following estimate holds

∣∣ah(u− uH,h, ϕψ)− b(u− uH,h, ψ)
∣∣

=
∣∣∣
∑

K∈Th

∫

K
∇(u− uH,h)∇ϕψdK −

∫

Ω
(u− uH,h)ψdΩ

∣∣∣

=
∣∣∣
∑

K∈Th

∫

∂K
(u− uH,h)∂νϕψds

∣∣∣

. hγ‖u− uH,h‖a,h‖ϕψ‖1+γ . (3.13)

From (3.6) and ‖ϕψ − IHϕψ‖a,h . Hγ‖ϕψ‖1+γ , we have the following estimates for the

third term in the right hand side of (3.10)

∣∣ah(u, ϕψ − ϕH,h)− b(f, ϕψ − ϕH,h)
∣∣

≤
∣∣ah(u, IHϕψ − ϕH,h)− b(f, IHϕψ − ϕH,h)

∣∣

+
∣∣ah(u, ϕψ − IHϕψ)− b(f, IHϕψ − ϕψ)

∣∣

=
∣∣ah(u− uH,h, IHϕψ − ϕH,h)

∣∣

. ‖u− uH,h‖a,h‖IHϕψ − ϕH,h‖a,h

. Hγ‖ϕψ‖1+γ‖u− uH,h‖a,h, (3.14)

where we used ah(u, ϕψ − IHϕψ)− b(f, IHϕψ − ϕψ) = 0.

Combining (3.10), (3.11), (3.12), (3.13) and (3.14), we have

‖u− uH,h‖b = sup
06=ψ∈W

b(u− uH,h, ψ)

‖ψ‖b

. Hγ sup
06=ψ∈W

‖ϕψ‖1+γ‖u− uH,h‖a,h
‖ψ‖b

. Hγ‖u− uH,h‖a,h. (3.15)

The is the desired inequality (3.8) and we complete the proof.
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Theorem 3.1. Assume the given eigenpairs {λj,hk , uj,hk}
i+q−1
j=i in One Correction Step

3.1 have the following error estimates

Θ(M(λi),Mhk(λi)) . εhk(λi), (3.16)

Φ(M(λi),Mhk(λi)) . HγΘ(M(λi),Mhk(λi)), (3.17)

|λi − λj,hk | . HγΘ(M(λi),Mhk(λi)), (3.18)

for j = i, · · · , i + q − 1. Then after one correction step, the resultant eigenpair approxi-

mation {λhk+1
, uhk+1

}i+q−1
j=i have the following error estimates

Θ(M(λi),Mhk+1
(λi)) . εhk+1

(λi), (3.19)

Φ(M(λi),Mhk+1
(λi)) . HγΘ(M(λi),Mhk+1

(λi)), (3.20)

|λi − λj,hk+1
| . HγΘ(M(λi),Mhk+1

(λi)), (3.21)

where εhk+1
(λ) := Hγεhk(λ) + hγk+1 and j = i, · · · , i+ q − 1.

Proof. From (3.16) and (3.17), we know there exist an orthogonal basis {uj}i+q−1
j=i ofM(λi)

such that

‖uj − uj,hk‖a,h . εhk(λi), (3.22)

‖uj − uj,hk‖b . Hγ‖uj − uj,hk‖a,h, (3.23)

|λi − λj,hk | . Hγ‖uj − uj,hk‖a,h. (3.24)

From problems (2.1) and (3.4), and (2.12), (3.22), (3.23), and (3.24), the following estimate

holds for j = i, · · · , i+ q − 1

‖ũj,hk+1
−Πhk+1

uj‖2a,h . a(ũj,hk+1
−Πhk+1

uj, ũj,hk+1
−Πhk+1

uj)

= b(λj,hkuj,hk − λiuj, ũj,hk+1
−Πhk+1

uj)−
∑

ℓ∈Ei
h

∫

ℓ
∂νu(ũj,hk+1

−Πhk+1
uj)ds

.
(
‖λj,hkuj,hk − λiuj‖b + hγk+1‖uj‖1+γ

)
‖ũj,hk+1

−Πhk+1
uj‖a,h

.
(
|λj,hk − λi|‖uj,hk‖b + λi‖uj‖1+γ‖uj,hk − uj‖b + hγk+1‖uj‖1+γ

)

×‖ũj,hk+1
−Πhk+1

uj‖a,h
.

(
Hγεhk(λi) + hγk+1‖uj‖1+γ

)
‖ũj,hk+1

−Πhk+1
uj‖a,h.

Then we have

‖ũj,hk+1
−Πhk+1

uj‖a,h . Hγεhk(λi) + hγk+1, j = i, · · · , i+ q − 1. (3.25)

Combining (3.25) and the error estimate of the finite element interpolation

‖uj −Πhk+1
uj‖a,h . hγk+1,
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we have

‖ũj,hk+1
− uj‖a,h . Hγεhk(λi) + hγk+1, j = i, · · · , i+ q − 1. (3.26)

Now we come to estimate the error of the eigenpair solutions {λj,hk+1
, uj,hk+1

}i+q−1
j=i of

(3.5). Based on Lemma 2.2, (3.6)-(3.8) and (3.26), the following estimates hold

Θ(M(λi),Mhk+1
(λi)) . ‖(T − TH,hk+1

)|M(λi)‖a,h + ‖(T − TH,hk+1
)|M(λi)‖b

. sup
w∈M(λi)

inf
vH,hk+1

∈VH,hk+1

‖w − vH,hk+1
‖a,h + hγk+1

. Hγεhk(λi) + hγk+1, (3.27)

and

Φ(M(λi),Mhk+1
(λi)) . ‖(T − TH,hk+1

)|M(λi)‖b
. HγΘ(M(λi),Mhk+1

(λi)). (3.28)

From (3.26), (3.27), and (3.28), we can obtain (3.19) and (3.20). The estimate (3.21) can

be derived by Lemma 2.2 and (3.20).

4 Multi-level correction scheme

In this section, we introduce a type of multi-level correction scheme based on the One

Correction Step 3.1. This type of correction method can improve the accuracy after each

correction step which is different from the two-grid methods in [24, 10, 27]. As described

in Section 3, we are willing to obtain the approximations of the eigenpairs corresponding

to the eigenvalue λi which has multiplicity of q.

Algorithm 4.1. Multi-level Correction Scheme

1. Construct a coarse nonconforming finite element space Vh1 on Th1 and solve the

following eigenvalue problem:

Find (λh1 , uh1) ∈ R× Vh1 such that b(uh1 , uh1) = 1 and

ah1(uh1 , vh1) = λh1b(uh1 , vh1), ∀vh1 ∈ Vh1 . (4.1)

Choose q eigenpairs {λj,h1 , uj,hj}
i+q−1
j=i which approximate the desired eigenvalue λi

and its eigenspace to do the following correction steps.

2. Construct a series of finer finite element spaces Vh2 , · · · , Vhn on the sequence of

nested meshes Th2 , · · · ,Thn.
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3. Do k = 1, · · · , n− 1

Obtain new eigenpair approximations {λhk+1
, uhk+1

}i+q−1
j=i ∈ R×Vhk+1

by a correction

step

{λhk+1
, uhk+1

}i+q−1
j=i = Correction(WH , {λhk , uhk}

i+q−1
j=i , Vhk+1

). (4.2)

end Do

Finally, we obtain eigenpair approximations (λj,hn , uj,hn) ∈ R×Vhn for j = i, · · · , i+q−1.

Theorem 4.1. The resultant eigenpair approximations {λj,hn , uj,hn}i+q−1
j=i obtained by Al-

gorithm 4.1 have the following error estimates

Θ(M(λi),Mhn(λi)) .

n∑

k=1

hγkH
γ(n−k), (4.3)

Φ(M(λi),Mhn(λi)) .

n∑

k=1

hγkH
γ(n−k+1), (4.4)

|λj,hn − λi| .

n∑

k=1

h2γk H
2γ(n−k) + h2γn , (4.5)

where j = i, · · · , i+ q − 1.

Proof. From Theorem 3.1, we have

εhk+1
(λi) . Hγεhk(λi) + hγk+1, for 1 ≤ k ≤ n− 1. (4.6)

Then by recursive relation, we can obtain

εhn(λi) . Hγεhn−1
(λi) + hγn

. H2γεhn−2
(λi) +Hγεhn−1

(λi) + hγn

.

n∑

k=1

Hγ(n−k)hγk . (4.7)

This is the estimate (4.3) and we can obtain (4.4) similarly by Theorem 3.1. From (2.23)

and the property of the conforming linear interpolation Ihn , we have

|λj,hn − λi| =
∣∣∣
ah(uj,hn , uj,hn)

b(uj,hn , uj,hn)
− λi

∣∣∣

. ‖uj − uj,hn‖2a,h +
∣∣Eh(uj , uj,hn)

∣∣

. ‖uj − uj,hn‖2a,h +
∣∣Eh(uj , uj,hn − Ihnuj)

∣∣

. ‖uj − uj,hn‖2a,h + hγn‖uj‖1+γ‖uj,hn − Ihnuj‖a,h

. ‖uj − uj,hn‖2a,h + hγn‖uj‖1+γ
(
‖uj,hn − u‖a,h + ‖uj − Ihnuj‖a,h

)

. ‖uj − uj,hn‖2a,h + h2γn ‖uj‖21+γ , (4.8)

where we used Eh(uj, Ihnuj) = 0. Then the desired estimate (4.5) can be derived by (4.3),

(4.4) and (4.8).
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5 lower-bound analysis

In the numerical implementation, we find the multi-level correction method can also obtain

the lower bounds of the exact eigenvalues (see Section 6). This pheonmena comes from

that the eigenfunction approximations by the multi-level correction and the one by direct

eigenvalue solving have some type of “superclose” property. In this section, we give the

lower-bound analysis of the multi-level correction method. For the simplicity, we only

consider the simple eigenvalue cases and the results also hold for the multiple eigenvalue

cases.

Let (λ̄h, ūh) denote the eigenpair approximation by the direct eigenvalue solving which

is defined as follows:

Find (λ̄h, ūh) ∈ R × Vh such that b(ūh, ūh) = 1 and

ah(ūh, vh) = λ̄hb(ūh, vh), ∀vh ∈ Vh. (5.1)

Lemma 5.1. For the eigenvalue approximations λh and λ̄h, the following expansion holds

λh − λ̄h =
ah(ūh − uh, ūh − uh)− λ̄hb(ūh − uh, ūh − uh)

b(uh, uh)
. (5.2)

Proof. First from (2.5), (5.1) and uh ∈ Vh, the following equalities hold

ah(ūh − uh, ūh − uh)− λ̄hb(ūh − uh, ūh − uh)

= ah(ūh, ūh) + ah(uh, uh)− 2ah(ūh, uh)− λ̄hb(ūh, ūh)

−λ̄hb(uh, uh) + 2λ̄hb(ūh, uh)

= λ̄hb(ūh, ūh) + ah(uh, uh)− 2λ̄hb(ūh, uh)− λ̄hb(ūh, ūh)

−λ̄hb(uh, uh) + 2λ̄hb(ūh, uh)

= ah(uh, uh)− λ̄hb(uh, uh). (5.3)

From (2.5) and (5.3), we have

λh − λ̄h =
ah(uh, uh)− λ̄hb(uh, uh)

b(uh, uh)

=
ah(ūh − uh, ūh − uh)− λ̄hb(ūh − uh, ūh − uh)

b(uh, uh)
. (5.4)

This is the desired result (5.2) and we complete the proof.

Theorem 5.1. Let (λ̄hn , ūhn) denote the eigenpair approximation of (5.1). Then we have

the following superclose properties

‖uhn − ūhn‖a,Ω .

n∑

k=2

Hγ(n−k)(‖ūhk−1
− ūhk‖b + |λ̄hk−1

− λ̄hk |), (5.5)
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‖uhn − ūhn‖b . Hγ‖uhn − ūhn‖a,Ω, (5.6)

|λh − λ̄h| . ‖uhn − ūhn‖2a,Ω. (5.7)

Assume the series of the meshes satisfies the following estimates

n∑

k=1

Hγ(n−k)hγk . hn, (5.8)

and the eigenvalue approximation λ̄h has the lower-bound property: λ̄h < λ. Then the

eigenvalue λh also has the lower-bound property:

λh < λ. (5.9)

Proof. We prove (5.5)-(5.7) by induction. Since we solve the eigenvalue problem directly

by the nonconforming element, the following equalities hold

uh1 = ūh1 , λh1 = λ̄h1 .

So (5.5)-(5.7) holds for n = 1. Assume the results (5.5)-(5.7) hold for n = k. Now we come

to prove (5.5)-(5.7) also hold for n = k + 1. From (3.4) and (5.1), the following estimates

hold

ah(ũhk+1
− ūhk+1

, ũhk+1
− ūhk+1

)

= λhkb(uhk , ũhk+1
− ūhk+1

)− λ̄hk+1
b(ūhk+1

, ũhk+1
− ūhk+1

)

= λhkb(uhk − ūhk+1
, ũhk+1

− ūhk+1
) + (λhk − λ̄hk+1

)b(ūhk+1
, ũhk+1

− ūhk+1
)

= λhkb(uhk − ūhk+1
, ũhk+1

− ūhk+1
) + λhkb(ūhk+1

− ūhk+1
, ũhk+1

− ūhk+1
)

+(λhk − λ̄hk)b(ūhk+1
, ũhk+1

− ūhk+1
) + (λ̄hk − λ̄hk+1

)b(ūhk+1
, ũhk+1

− ūhk+1
)

. (Hγ‖uhk − ūhk‖a,Ω + ‖ūhk − ūhk+1
‖b + |λ̄hk − λ̄hk+1

|)‖ũhk+1
− ūhk+1

‖a,h.

This means we have

‖ũhk+1
− ūhk+1

‖a,h . Hγ‖uhk − ūhk‖a,Ω + ‖ūhk − ūhk+1
‖b + |λ̄hk − λ̄hk+1

|

.

k+1∑

m=2

Hk−j(‖ūhm−1
− ūhm‖b + |λ̄hm−1

− λ̄hm |). (5.10)

Since VH,hk+1
⊂ Vhk+1

, we can regard the discrete eigenvalue problem (3.5) as a conforming

finite element discretization of the discrete eigenvalue problem (5.1) in the space Vhk+1
.

So we can use the standard error estimate results of the conforming finite element method

for the eigenvalue problem. So the following estimates hold

‖uhk+1
− ūhk+1

‖a,h . inf
vH,hk+1

∈VH,hk+1

‖ūhk+a
− vH,hk+1

‖a,h . ‖ūhk+1
− ũhk+1

‖a,h
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. Hγ‖uhk − ūhk‖a,Ω + ‖ūhk − ūhk+1
‖b + |λ̄hk − λ̄hk+1

|

.

k+1∑

m=2

Hk+1−m(‖ūhm−1
− ūhm‖b + |λ̄hm−1

− λ̄hm|), (5.11)

and

‖uhk+1
− ūhk+1

‖b
. sup

f∈W,‖f‖b=1
inf

vH,hk+1
∈VH,hk+1

‖Thk+1
f − vH,hk+1

‖a,h‖uhk+1
− ūhk+1

‖a,h

. Hγ‖ūhk+1
− ũhk+1

‖a,h. (5.12)

From Lemma 5.1, we have the following estimate for the eigenvalue approximations

|λhk+1
− λ̄hk+1

| . ‖ūhk+1
− ũhk+1

‖2a,h. (5.13)

These three estimates (5.11)-(5.13) means the results (5.5)-(5.7) also hold for n = k + 1.

So we obtain the results (5.5)-(5.7) hold for any integer n.

The assumption of the eigenfunction by the multi-correction method owning the optimal

error estimate (5.8) leads to that ‖uh − ūh‖a,h is higher order term corresponding to

‖u − ūh‖a,h. So λh and λ̄h have the same lower-bound property and the desired result

(5.9) has been obtained.

Remark 5.1. From (2.21) and (5.5)-(5.7), we have the following estimates

‖uhn − ūhn‖a,Ω .

n∑

k=2

Hγ(n−k)h2γk−1, (5.14)

‖uhn − ūhn‖a,Ω .

n∑

k=2

Hγ(n−k+1)h2γk−1, (5.15)

|λh − λ̄h| .

n∑

k=2

H2γ(n−k)h4γk−1. (5.16)

Compared with (4.3)-(4.5), (5.14)-(5.16) are higher-order terms. Always, we call this

phenomena as “superclose” property (see [16]).

6 Numerical results

In this section, we give two numerical examples to illustrate the efficiency of the multi-level

correction algorithm proposed in this paper. For simplicity, we only give the numerical

results by the CR element.
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6.1 Model eigenvalue problem

In this example, we solve the model eigenvalue problem (1.1) on the unit square Ω =

(0, 1) × (0, 1) with γ = 1. Here, we adopt the meshes which are produced by regular

refinement from the initial mesh generated by Delaunay method to investigate the conver-

gence behaviors. We checked the numerical results for two regular refinement ways with

hk+1 = hk/2 and hk+1 = hk/4 (k = 1, · · · , n − 1), respectively. Furthermore, we choose

TH = Th1 with H = 1/4. From Theorem 4.1, we have the following error estimates for

these two refinement ways

‖uhn − u‖a,h . hn, ‖uhn − u‖b . Hhn, |λhn − λ| . h2n,

which means the multi-levle correction method also obtained the optimal convergence

order.

Figure 1 shows the initial mesh. Figure 2 and 3 gives the corresponding numerical

results for the first eigenvalue λ1 = 2π2 and the corresponding eigenfunction. Figure 3

gives the numerical results for the first 6 eigenvalues: 2π2, 5π2, 5π2, 8π2, 10π2 and 10π2.
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0
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1

Figure 1: Initial mesh for Example 6.1

In order to show the efficiency more clearly, we compare the results by the multi-level

correction method with those obtained by the direct eigenvalue solving. From Figures

2 and 3, the multi-level correction method can obtain almost the same results as the

direct eigenvalue solving method but with smaller computational work. Furthermore,

from Figures 2 and 3, the multi-level correction method can also obtain the lower-bound

approximations of the eigenvalues and have the superclose property.
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Figure 2: The errors for the eigenpair approximations by the multi-level correction algo-

rithm for the first eigenvalue 2π2 and the corresponding eigenfunction with hk+1 = hk/2,

where (λh, uh) is produced by the multi-level correction method and (λdirh , udirh ) by the

direct eigenvalue solving method

6.2 Eigenvalue problem on L-shape domain

In the second example, we consider the model eigenvalue problem on the L-shape domain

Ω = (−1, 1)× (−1, 1)\[0, 1) × (−1, 0]. Since Ω has a reentrant corner, eigenfunctions with

singularities are expected. The convergence order for eigenvalue approximation is less

than 2 by the linear finite element method which is the order predicted by the theory for

regular eigenfunctions.

We investigate the numerical results for the first eigenvalue. Since the exact eigenvalue

is not known, we choose an adequately accurate approximation λ = 9.6397238440219 as

the exact first eigenvalue for our numerical tests. We give the numerical results of the

multi-level correction in which the sequence of meshes Th1, Th2 , · · · ,Thn is produced by

the adaptive refinement with the a posteriori error estimator given by the ZZ recovery

method (see [29]). Also we choose TH = Th1 with H = 1/4.

Figure 5 shows the initial mesh and the one after 12 adaptive iterations. Figure 6

gives the corresponding numerical results for the adaptive iterations. In order to show the

accuracy of multi-level correction method more clearly, we compare the results with those

obtained by the direct adaptive finite element method.

From Figure 6, we can find the multi-level correction method can also work on the

adaptive family of meshes and obtain the optimal accuracy. Furthermore, the initial mesh

is nothing to do with the finest one which is different from the two-gird method [24, 27].

We can also find the multi-level correction method can obtain the lower-bounds of the
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Figure 3: The errors for the eigenpair approximations by the multi-level correction algo-

rithm for the first eigenvalue 2π2 and the corresponding eigenfunction with hk+1 = hk/4,

where (λh, uh) is produced by the multi-level correction method and (λdirh , udirh ) by the

direct eigenvalue solving method

eigenvalues and have the superclose property.

7 Concluding remarks

In this paper, we give a type of multi-level correction scheme to solve the Laplace eigenalue

problem by the nonconforming finite element method. In this scheme, the eigenvalue

problem solving can be transformed to a series of boundary value problem solving and the

eigenvalue problem solving in the very coarse space. We also derive a type of superclose

property of the eigenpair approximations and the lower-bound results of the eigenvalue

approximations by the multi-level correction algorithm.

Furthermore, our multi-level correction scheme can be coupled with the multigrid

method to construct a type of multigrid and parallel method for eigenvalue problems

by the nonconforming finite element method (see Example 5.1). It can also be combined

with the adaptive refinement technique for the singular eigenfunction cases (see Example

5.2).
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