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Abstract

In this paper, a type of multi-level correction scheme is proposed to solve eigenvalue
problems by the nonconforming finite element method. With this new scheme, the
accuracy of eigenpair approximations can be improved after each correction step which
only needs to solve a source problem on finer finite element space and an eigenvalue
problem on the coarsest finite element space. This correction scheme can improve the
efficiency of solving eigenvalue problems by the nonconforming finite element method.
Furthermore, as same as the direct eigenvalue solving by the nonconforming finite
element method, this multi-level correction method can also produce the lower-bound

approximations of the eigenvalues.

Keywords. Eigenvalue problem, multigrid, multi-level correction, finite element
method.
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1 Introduction

The purpose of this paper is to propose a type of multi-level correction scheme based on
the nonconforming finite element discretization to solve eigenvalue problems. The two-
grid method for solving eigenvalue problems has been proposed and analyzed by Xu and
Zhou in [24]. The idea of the two-grid comes from [22] 23] for nonsymmetric or indefinite

problems and nonlinear elliptic equations. Since then, there have existed many numerical
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methods for solving eigenvalue problems based on the idea of two-grid method (see, e.g.,
[1, [6l 10l 20} 27, 28] and the reference cited therein).

In this paper, we present a type of multi-level correction scheme for solving eigenvalue
problems by nonconforming finite element methods. With the proposed method solving
eigenvalue problem will not be much more difficult than the solution of the corresponding
source problem. The correction method for eigenvalue problems in this paper is based on
a series of finite element spaces with different approximation properties which are related
to the multilevel method (c.f. [21]).

The standard Galerkin finite element method for eigenvalue problems has been exten-
sively investigated, e.g. Babuska and Osborn [2, 3], Chatelin [5], Yang and Chen [26] and
references cited therein. Here we adopt some basic results in these papers for our anal-
ysis. The corresponding error estimates of this type of multi-level correction scheme by
nonconforming finite element methods which is introduced here will be analyzed. Based
on the analysis, the method can reduce the error of the eigenpair approximations after
each correction step. The multi-level correction procedure can be described as follows: (1)
solve the eigenvalue problem in the coarsest nonconforming finite element space; (2) solve
an additional source problem in an finer nonconforming finite element space using the pre-
vious obtained eigenvalue multiplying the corresponding eigenfunction as the load vector;
(3) solve the eigenvalue problem again on the finite element space which is constructed by
combining a very coarse conforming finite element space with the obtained eigenfunction
approximation in step (2). Then go to step (2) for the next loop.

In order to describe our method clearly, we give the multi-level correction method for
Laplace eigenvalue problem to illustrate the main idea in this paper (see section 5).

Find(\, u) such that

—Au = Au, in ),
u = 0, on 09, (1.1)
fQ u2d) 1,

where ) C R? is a bounded domain with Lipschitz boundary 9 and A denote the Laplace

operator.

Let Wg denote a very coarse conforming linear finite element space defined on the
coarsest mesh Tz. Additionally, we also need to construct a series of finite element spaces
Viis Vigs -+, Vi, which are defined on the corresponding series of nested meshes 7y, (k =
1,2,---n) such that 7, = Tg or is obtained by refining 7y with the regular way and
each Tp, , is produced from Ty, by refining in the regular way. Our multi-level correction
algorithm to obtain the approximation for the eigenpair of (II]) can be defined as follows

(see Sections 3 and 4):
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1. Solve an eigenvalue problem in the coarse space Vj,:

Find (Ap,,up,) € R x V3, such that ||up, ||o =1 and

Z /VuhIVvhldK = )\hl/uhlvhldQ, VthGVhl.
KeTy, 'K @

2. Dok=1,---,n—1

e Solve the following auxiliary source problem:

Find up, , € Vi, ,, such that

Z /VﬂthVQ}thdK = )‘hk/uhkvhkﬂdg’ VvthGthH.
KeT,, 'K Q

e Define a new finite element space Vi p,,, = Wg + span{uy, , , } and solve the

following eigenvalue problem:

Find (An, ;> un,,,) € R X Vi p,,, such that [lup,, [lo =1 and

E : / vuhk+lva7hk+ldK: )\hk+1/uhk+1’UH7hk+ldQ7 va,th S VH,th'
KeThyy "1 ?

end Do

If, for example, Ay, is the first eigenvalue of the problem (L)) at the first step and Q is a

convex domain, we can establish the following results (see Sections 3 and 4 for details)

( Z IV (u— Uhn)Hg,K)l/2 = O(Zn:th"k), and [A\p, — A\ = (’)(Zn:hz[ﬂ(nk))
k=1 k=1

KETh,

These two estimates means that we can obtain asymptotic optimal errors by taking H =
Yhn and hy = H* (k= 1,--- ,n —1). This result is different with the two-grid method
(H = v/hy, or H = /hy) (c.f. [24, 27]) and the method here dose not need to solve
almost singular linear problems. Furthermore, the final eigenvalue approximation A, is
the lower bound of the exact eigenvalue if the used nonconforming element can obtain the

lower bound of the eigenvalue by the direct eigenvalue solving.

In this method, we replace solving eigenvalue problem in the finest nonconforming finite
element space by solving a series of boundary value problems in the corresponding series
of nonconforming finite element spaces and a series of eigenvalue problems in the coarse
conforming linear finite element space plus one dimensional eigenfunction space. As we
know, there exists efficient preconditioner for solving boundary value problems efficiently.
So this correction method can improve the efficiency of solving eigenvalue problems by

nonconforming finite element methods.
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An outline of the paper goes as follows. In Section 2, we introduce the nonconforming
finite element method for the eigenvalue problem and the corresponding error estimates.
A type of one correction step is given in Section 3. In Section 4, we propose a type of
multi-level correction algorithm for solving the eigenvalue problem by the nonconforming
finite element method. A lower-bound analysis of the eigenvalue approximations is given
in Section 5. In Section 6, two numerical examples are presented to validate our theoretical

analysis and some concluding remarks are given in the last section.

2 Discretization by nonconforming finite element method

In this section, we introduce some notation and error estimates of the nonconforming
finite element approximation for eigenvalue problems. In this paper, the letter C' (with or
without subscripts) denotes a generic positive constant which may be different at different
occurrences. For convenience, the symbols <, 2 and & will be used in this paper. That
1 S y1,22 2 Y2 and x3 & y3, mean that 1 < Cryp, 2o > coys and czxs < y3 < Cszs
for some constants C1, ca, 3 and C3 that are independent of mesh sizes (c.f. [21]). In this
paper, we set V := H}(Q) and W := L%(Q).

In our methodology description, we are concerned with the following Laplace eigenvalue

problem:

Find (A\,u) € R x V such that b(u,u) =1 and
a(u,v) = Ab(u,v), YveV, (2.1)
where a(-,-) and b(-,-) are bilinear forms defined by
a(u,v) = / VuVodQ,  b(u,v) = / uvdS.
Q Q
For the eigenvalue A\, there exists the following Rayleigh quotient expression (see, e.g.,
[2, 3 24])

a(u,u)

A= b(u,u)’

(2.2)

From [3} 5], we know the eigenvalue problem (2.I]) has an eigenvalue sequence {\;} :
0<A <A< <A <---, lim Ay =00,
k—o0

and the associated eigenfunctions

ULy Uy =y Uky "y
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where b(u;, u;) = d;;. In the sequence {);}, the A; are repeated according to their geomet-
ric multiplicity. In this paper, we assume the eigenfunction w of (21 has the regularity
u € H'(Q), where 0 < v < 1 depends on the maximum interior angle of 99 (c.f. [9]).

Let Ty, be a quasi-uniform decomposition of  into triangles (c.f. [4, [7]). The diameter
of a cell K € Ty, is denoted by hx. The mesh diameter h describes the maximum diameter
of all cells K € T;,. Let &, denote the edge set of T, and &, = 5}; U 5}’;, where 5}; denotes
the interior edge set and EZ denotes the edge set lying on the boundary 0f2. The finite

element space V}, is the corresponding nonconforming finite element space on the partition,
i.e. Vh g V.

In the rest of this paper, we are concerned with two types of nonconforming finite
elements: Crouzeix-Raviart (CR) (c.f. [8]) and Enriched Crouzeix-Raviart (ECR) (c.f.

[11] [14]), for triangular partitions, respectively.
e CR element is defined on the triangular partition and
Vi ::{v € L*(2):v|k € span{l,x,y},/glelds = /gvh@ds,
when K1 N Ky =/{ € & and /gleds:O, if 6652}, (2.3)
where K, Ky, Ky € T},
e ECR element is defined on the triangular partition and
Vi ::{v € L2(Q) (v|g € span{l,az,y,az2 + yZ}, /€v|Klds = /€U|K2d8,
when K1 N Ky =¢ € &), and /gleds:O, if Eeé’z}, (2.4)
where K, Ky, Ky € T},
Both the above nonconforming elements possess the following common properties:

1. The space of shape functions contains the complete polynomials of degree 1;

2. v € Vy is integrally continuous at the common edge F' between the neighboring

elements K; and Ko, i.e.,

/’U|K1d8 = /U|K2d8 if KiNKy=10¢E&};
)4 l

3. Vi HYQ) and VI C L2(Q).

The nonconforming finite element approximation for (2.I]) is defined as follows:
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Find (Ap,up) € R x V4, such that b(up,up) = 1 and
ah(uh,vh) = )\hb(uh,vh), Vvh c Vh, (2.5)

where the bilinear forms ay(-,-) and b(-,-) are defined as

ah(uh,vh) = Z / Vuthth, b(uh,vh) Z/’U,h?)th.
KeT;, K Q

The bilinear form ay(-,-) is Vp-elliptic on V' + V},. Thus we define the norms || - ||, and
|- 1lp on Vi +V by

Hszh = ap(v,v), Hng =b(v,v) forveV+V,.

For the eigenvalue problem (Z3]), the Rayleigh quotient holds for the eigenvalue A,

ap (v, vh)

Ay = .
"7 Tb(up, vn)

(2.6)
Similarly, the discrete eigenvalue problem (ZT) has also an eigenvalue sequence {\;;} with
0<Atp < Aon <o < AN, by
and the corresponding discrete eigenfunction sequence {u;p}

ULhy U2, by """ 5 Uk,hy* " 5 UN), b

with the property b(u; p,ujn) = 65,1 < 4,5 < Np, (N}, is the dimension of V},).
The interpolation operator II;, : V —— V}, corresponding to CR element can be defined

in the same way (c.f. [§]):

/(u —Ipu)ds = 0, V€&, (2.7)
l

The interpolation operator Il : V —— V}, corresponding to ECR. element can be defined
as follows (c.f. [11, 14]):

/(u —Ipu)ds = 0, V€&, (2.8)

l

/ (u—TIpu)dK = 0, VK €T, (2.9)
K

Lemma 2.1. ([17]) For any u € V, the interpolation defined in (2.7) or (2:8)-(2.9) has
the following results
ap(u —Hpu,vp) = 0, Vo, € Vy, (2.10)
ITpuflan < lulla- (2.11)
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Furthermore, the interpolation operator has error estimates
lu = Myl + Alla — Dyullap < OB ullvss, (2.12)
for any uw € H'(Q).

In order to give the error estimates of the eigenpair approximation by finite element
methods, we define the operator T': W —— V by

a(Tf,v) = b(f,v), YvelV, (2.13)

for any f € W. As we know, the operator T' is compact. Then the eigenvalue problem
(ZJ) can be written as

MMy = wu. (2.14)
We also define the corresponding discrete operator T, : W —— Vj by
ap(Thf,vn) = b(f,vn), Von € Vh, (2.15)
for any f € W. Similarly the discrete eigenvalue problem (2.1]) can be written as
MThun = up,. (2.16)

Let M(\;) denote the eigenfunction set corresponding to the eigenvalue \; which is
defined by

M();) = {w€V :wisan eigenfunction of ZI) corresponding to
Aj and |Jwll, = 1}. (2.17)

Now we state the convergence result of the eigenvalue problem by nonconforming finite

element methods. For this aim, we define the following notation

en(Aj)
Pr(Aj)

(T = Th)lar(az) lashs (2.18)
(T = Th)[ar(x) llo- (2.19)

Lemma 2.2. ([18,[19,(26]) Suppose that || T, —=T||y — 0 (h = 0). Let (A\jn,ujpn) € RxV,
be the j-th nonconforming finite element eigenpair approzimation satisfying (2.3). Then
Ajn = Aj and there exist u; € M(\;) such that

A

luj = wjnllap < Cjlen(y) + pu(Ny), (2.20)
[ = 1 nlo Cipn(Aj), (2.21)
A=Al < Clipn(Ag), (2.22)

IN
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where the constants C; depending on the j-th eigenvalue \;.

Furthermore, for any wy, € Vi, with ||jwy||p # 0, the following expansion holds

ap(Wh, wp) 5= ap(wp —u,wp —u) )\b(wh — U, wp, — u) n 2Eh(u,wh)

b(wp,wp) b(wp, wp) b(wn, wp,) b(wn, wn)’ (2.23)

where Ep(u,wy) = ap(u, wy) — b(Au, wy).

Now we state a lower bound of the convergence rate for the eigenfunction approximation

by finite element methods which will be used in the analysis for the error estimates.

Lemma 2.3. ([15, Section 3]) If we solve the eigenvalue problem (21) by CR element or

ECR element, the following lower bound of the convergence rate holds

(T = Th)lveayllan > Cih, (2.24)

where the constants C; depending on the j-th eigenvalue \;.

For the aim of analyzing the error estimates, we need to get the result of the estimate

(T = Th)| sy llo is @ higher order term corresponding to [|(T" — Th)|ar(x)lla,h-

Theorem 2.1. ([13]) Assume the nonconforming finite element owns a type of interpo-
lation operator 11y, satisfying the orthogonal property (Z10). We have the following error

estimate

(T =Th)lmeylls < R = Th)lae oy lan- (2.25)
Proof. For any f € M(\), let u=Tf and u, = T f. For any ) € W, we have

lu—unlly = b(u—up,)
= ap(u,pyp) — an(un, ¢n)
= ap(u —up, oy — ¢n) + an(un, Py — on) + an(u — up, op)
= ap(u —up, oy — on) — [an(u — up, y) — b(u — up, Y)]
—lan(u, oy — @n) — b(f. Py — ¢n)], (2.26)

where ¢y, =T, ¢, = Ty and (c.f. [9])

leplliey S l9lls- (2.27)

For the first term in the right hand side of (Z.28]), we have the estimate

|a(u —un, 0y —n)| < hVllw— unlan (2.28)
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From the standard error estimate theory of the nonconforming finite element method, the

following estimate holds

|ah(u — Up, ) — bu — uh,¢)‘
= ‘ Z /I(V(u—uh)Vg0¢dK—/§2(u—uh)¢dQ

KeTy
— ‘Z/ (u—uh)aytpwds‘
KeT;, 79K
S P u = unllanlleplliz, (2.29)

From the orthogonal property (Z.10]), we have the estimate for the third term in the right
hand side of (2.26])

|lan(u, oy — ©n) = b(f, 0y — ©n)]

lan(u, Mpoy — @) — b(f, Mapy — on)| + |an(u, oy — Hppy)|

+]o(f, 0y — Mnpy)|

= Jan(u — up, ooy — @n)| + |an(u — un, oy — Hppy)|

+[o(f, oy — Taepy)|

Cllu = unllan (IMhpy = nllan + ley — Tneyllan)

1 fllollow — Hrey o

Wl @plleylle = wnllan + 2| Fllollow 14+

WY legll1sq 1w = unllan + B fllo- (2.30)

Combining (2.26]), (228), (229) and ([2.30]), we have

b(u — up,
lu—unlly = sup 2 unt)
ozpew ¥l

AN

A

AR

< KT sup H‘PT/JHLF’YHu_uhHa,h +h1+’y||f||b
0FpEW 141l
S R —upllan + CR b, (2.31)

The desired inequality (Z25]) can be obtained by combining (Z24)), (Z31)) and ||f|, = 1
and we complete the proof. O

3 One correction step

In this section, we present a type of correction step to improve the accuracy of the
current eigenvalue and eigenfunction approximations. This correction method contains

solving some auxiliary source problems in the finer nonconforming finite element space
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and an eigenvalue problem on an coarse finite element space. For generality, we set

the multiplicity of our desired eigenvalue is ¢. It means \; = --- = Ajj4—1. We use
(Nihs i)y 5 (Nigg—1,h> Uitq—1,n) to denote the eigenpair approximations for the eigen-
values \; = --- = A\jy4—1 and their corresponding eigenfunction space M (\). Let

Mp(N\i) = span{u@h, e ,ui+q,17h}. (3.1)

For two linear spaces A and B, we define

6(A,B)=  sup  inf[w—v]en, ®AB)= sup inf w—uls.
weA,|wla n=1vEB weA,|wlly=1EB

We define the gaps between M (\;) and My (A;) in || - [|q,n as

O(M (), My(Ai)) = max {O(M(A;), My (M), O(My(N;), M(M:))}, (3.2)
and in || - ||, as
®(M (), My (X)) = max {B(M(N;), My, (M), B(Mp (i), M(Ni)}. (3.3)

Assume we have obtained the eigenpair approximations (Ajs,,ujn,) € R x Vj, for
j=1,,i+qg—1. Now we introduce a type of correction step to improve the accuracy of

the current eigenpair approximation {()\jyhk,ujyhk)};izfl. Let Vp, ., ¢ V be the noncon-

forming finite element space based on the finer mesh 7j, ., which is produced by refining
Th, in the regular way. In order to do the correction step, we also define the conforming
linear finite element space W on the coarsest mesh Ty and Iy denote the corresponding

Lagrange type interpolation operator. Now we define the following correction step.
Algorithm 3.1. One Correction Step
1. Forj=1,---,i+q—1 Do
Define the following auziliary source problem:
Find ujp, ., € Vp, ., such that
ahk+1(ajahk+1’vhk+1) = )\jahkb(uj:hk’vhk+l)’ vvhk-H € th+1' (3-4)
Solve this equation to obtain a new eigenfunction approzimation ujp, ., € Vp, -

2. Define a new finite element space Vi, . = Wg + span{t;n, , - Uitq—1,hp, )

and solve the following eigenvalue problem.:

Find (Njhy 1> Wihge) € R X Ve p, ., such that b(ujp, s ujn,,,) =1 and

ah(uj7hk+17vH,hk+1) - )\jvhk+1b(uj7hk+1’Uthk+1)7 va,thrl € VH,th' (3'5)
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o _ S
Define {)‘j,hkﬂvuj,hkﬂ};g — Correctzon(WH,{)\j7hk,uj7hk};i% Vhir)-

Lemma 3.1. ([13]) Assume Ty, ., denotes the discrete operator defined by (Z.13) on the
finite element space Vi p, ., = Wha+span{t;p, " »Uitq—1,hy., - We have the following

error estimates

H(T - TH,hk+1)Ha,h S H7, (3'6)
1T =T noollen S swp _nf  fw—vlos+hly,  (37)
weM(\;) VEVH by i

(T = T Dloolle S HYT = Tapge ) o llas- (3.8)

Proof. For the simplicity of notation, we set h := hyy1 and A := \; in this proof. First we
prove ([B.6). For any f € W and ||f||s = 1, by the standard nonconforming finite element

error estimate theory, we have

1T = Tl S i0f TS =il

vH,hEVH R
b —ap(T
4+ sup b(f, wirn) — an(Tf, wr )|
07£wH,heVH,h ||wH,h||a,h
‘ZKET faK (T flwp nds
S HTflhiey+  sup -
07£wH,heVH,h HwH,hHa,h
< (H + )T flhasy
S (HY ARl (3.9)

This is the desired result (3.6). Similarly, (8.7) can be obtained by (3.9) and the following

estimates
(T — Tan) vy llan = sup (T =Ty ,n) fllan
FeEMA), N flla,n=1

< sup ( inf ”Tf_UH,hHa,h
FEMON), | flla,p=1 \VHREVH

|b(f’ wH,h) - CLh(Tf, wH,h)|)

+ sup
0£wH hE€VH R HwH,hHa,h
and
sup inf  ||Tf —vanllanr S sup inf  |Jw—vlgh-
fEM(/\)vllf”a,hzl UH’hEVH’h UJGM()\) veVHyhk_;,_l

Now, let us prove (B.8)). For any f € M(\), let w=Tf and ugp = Ty pf. Similarly to
[224), for any ¢ € W, we have

lu—umplly = an(u—ugn, ey — ean) — [an(u — wpp, @p) — b(u — wp p, V)]
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—lan(u, oy — omn) = b(f, 09 — @rn)l; (3.10)
where ¢y, =TY, oy p = Ty py and
leplliey S lells- (3.11)
For the first term in the right hand side of (BI0]), we have the estimate from (B.6])
la(u —upp, o0 —omn)| S H'|lu—ugpllon (3.12)

From the standard error estimate theory of the nonconforming finite element method, the

following estimate holds

lan(u —up p, o) — b(u — ugp, )|

DS / V(- ) VipydK — /u—uthcm

KeTy,
= ‘Z/ U —UHp) Oy pyds
KeTy,
SR lw = umpllanllepllisy (3.13)

From B.6) and ||¢y — Tnpllan S HY||@ylli4, we have the following estimates for the
third term in the right hand side of (310

|an(u, oy — @) — b(fs o — rn)|
< Nan(u, Inpy — omp) — b(f, Iney — emp)|
+|an(u, oy — Iney) — b(f, Iney — oy)|

lan(u = ugp, Iaoy — omp)|

S v —ugpllanllaey — emnllan
S H'epllhiyllu = winllap, (3.14)

where we used ap(u, oy — Irey) — b(f, Inpy — @y) = 0.

Combining B.10), BI1), BI12), BI3) and B.I4]), we have

b(u_uH,ha¢)
lu—ugplly = sup ———F—>
0L pEW (KA

HY sup loy 14~y 1w — wm pllan
0ApEW 11l
S H'lu—wugplan- (3.15)

AN

The is the desired inequality (3.8]) and we complete the proof. O
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i+q—1

j=i i One Correction Step

Theorem 3.1. Assume the given eigenpairs {\jn,,u;jn,}

[Z1 have the following error estimates

O(M(Ai), My, (X)) S en (M), (3.16)

O(M(Ai), Mp, (Ai)) S H'O(M(Xi), My, (X)), (3.17)

A=Al S HOMIA), Mi, (M), (3.18)

for j =1i,---,14+q— 1. Then after one correction step, the resultant eigenpair approxi-
mation {)\hkﬂ,uhk“}?g*l have the following error estimates

OMAi), Mpy (X)) S Enpyr (M), (3.19)

(I)(M()‘i)athH()‘i)) S HWG(M()‘i)thkH()‘i))’ (3'20)

M= Al £ HIOMIA), My, (V). (321)

where ep, | (N) 1= HVep, (\) +h), and j =i, - i+q—1.

Proof. From ([B.16]) and (BI7), we know there exist an orthogonal basis {u; };-J;%_l of M(\;)
such that

lwj — wjnllap < eny (i), (3.22)
luj —wjnllo S Huj —ujngllan, (3.23)
Ni = Ninl S H |Jug — wjpgllan (3.24)

From problems (2.1]) and (3.4), and ([2.12)), (3:22]), (3:23)), and (3:24]), the following estimate
holds for j =4,--- ,i+qg—1

1% hsr = Wl S @@y = Mgy s Wiy — Wiy 05)
= b(NjryUjhy, — N, Wjp, o — g, uj) — Z /ayu(ﬂjﬁkﬂ — Iy, uj)ds
Legl ¢
S UNmwsng, = Niwgllo 4+ 2 gy 1m0 — Ty wllan
S (P = Ailllwgmglls + Aillwgllies g, = wills + By llujllie,)

X[, hyyy — Whg g i lla,n

AN

(Hen, (M) + By gl 1 g — Ty -
Then we have

Hﬁjyhk+1 - Hhk+1ujHa7h S H'thk ()‘Z) + hZ+17 J=t,,i+q—1 (3'25)
Combining (3.25]) and the error estimate of the finite element interpolation

Huj_ﬂhkﬂujua,h S hZ+1’
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we have

H’ljjyhk+1 —umeh S Hvahk()\i)—i-h}érl, j :’i,--- ,i—i—q— 1. (3.26)

. . . . ) ) i+q71
Now we come to estimate the error of the eigenpair solutions {)‘J,hk+1auj,hk+1}j:z‘ of

B3). Based on Lemma 221 ([3.6)-(3.8) and (3:26), the following estimates hold

O(M(N), th+1 (\) = (T - TH,hk+1)‘M()\i)HCL,h + (T - TthkH)‘M()\i)Hb
S o N o T
wEM (X;) VH hyy 1 EVH by 4y k+1lla k+1
S Hen ) + I, (3.27)

and

O(M(Ai), My (M) S (T = T pgy ) arallo
< HYO(M(N), M., (\). (3.28)

From [3.20), (3:27), and ([B.28)), we can obtain (3:19) and (3.20]). The estimate (3.21]) can
be derived by Lemma 2.2 and (3:20). O

4 Multi-level correction scheme

In this section, we introduce a type of multi-level correction scheme based on the One
Correction Step Bl This type of correction method can improve the accuracy after each
correction step which is different from the two-grid methods in [24] [10] 27]. As described
in Section 3, we are willing to obtain the approximations of the eigenpairs corresponding

to the eigenvalue A; which has multiplicity of ¢.

Algorithm 4.1. Multi-level Correction Scheme

1. Construct a coarse nonconforming finite element space Vi, on Ty, and solve the

following eigenvalue problem:

Find (Apy,up,) € R x Vi, such that b(up,,up,) =1 and

ap, (uhl,vhl) = )\hlb(uhl,?)hl), V’Uhl < Vhl- (4.1)

i+q—1
Jj=t
and its eigenspace to do the following correction steps.

Choose q eigenpairs {\j ny,ujn, } which approximate the desired eigenvalue \;

2. Construct a series of finer finite element spaces Vy,,--- ,Vy, on the sequence of

n*

nested meshes Tpy, -+, T,
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3. Dok=1,-,n—1

Obtain new eigenpair approrimations {)\th , uhkﬂ}ég_l € RxVp,_, by a correction
step
A a1 — Correction(W, {\ ol y, 4.2
{ hk+1 ) uhk+1 }j:z - orrec ZOTL( H, { ) uhk }]:Z ? hk+1 ) ( . )
end Do
Finally, we obtain eigenpair approximations (N p,,Ujh,) € RxVy, forj=i,--- i+q—1.

Theorem 4.1. The resultant eigenpair approzimations {jp,, uj,hn}ég_l obtained by Al-

gorithm [{.1] have the following error estimates

O(M(\), My, (X)) S Y hyH M), (4.3)
k=1

O(M(N), My, (N)) <> hHITRD, (4.4)
k=1

Mo — Xl S RTHPOTR) Ry (4.5)
k=1

where j =1, --- ;i +q— 1.

Proof. From Theorem [B.I] we have

8hk+1()\i) S I—Ivghk()‘i)"i_h’y

S pyrs for 1<k <n-—1 (4.6)

Then by recursive relation, we can obtain

en,(Ni) S Hep,_,(Ni) + R,

< ffz’yeth2 (\i) + Hw5hn,1 (Mi) + R,
< ZHW(n*k)hZ. (4.7)
k=1

This is the estimate (£3]) and we can obtain (£.4]) similarly by Theorem Bl From (223

and the property of the conforming linear interpolation I, we have

A (U s U o)
b(tj s i)

llwj = wjn, o n + | En (g, win,))|

[Njhn — Ai] = ‘ -\

iy = wjin, o n + | En (s ujn, — In,ug)l

= wgin g + Nl g, = I, usllan

luj = wjn N + Bollugllies (lwgn, = wllan + lu; = In,ujllan)

lltj = wjn, 2. + R s 174, (4.8)
where we used Ej,(uj, I, u;) = 0. Then the desired estimate (d5]) can be derived by (4.3),
#4) and (£3). O

AR VAR VAN VAR AN
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5 lower-bound analysis

In the numerical implementation, we find the multi-level correction method can also obtain
the lower bounds of the exact eigenvalues (see Section [B). This pheonmena comes from
that the eigenfunction approximations by the multi-level correction and the one by direct
eigenvalue solving have some type of “superclose” property. In this section, we give the
lower-bound analysis of the multi-level correction method. For the simplicity, we only
consider the simple eigenvalue cases and the results also hold for the multiple eigenvalue

cases.
Let (Ap, uyp,) denote the eigenpair approximation by the direct eigenvalue solving which
is defined as follows:

Find (A, dp) € R x Vj, such that b(ug, %) = 1 and

ah(ﬁh,vh) = )\hb(ﬂ,h,vh), Yoy, € V3. (5.1)
Lemma 5.1. For the eigenvalue approzimations N, and Ay, the following expansion holds

3 ah(ah — Up, Up, — Uh) )\hb( Up — Up, Up — uh)
AL — A = . 5.2
b b(un, up) (52)

Proof. First from ([2.35]), (51)) and up, € V},, the following equalities hold

ap (@, — up, @y — up) — Mpb(an — up, @, — up)
= ap(tn, ap) + an(un, up) = 2ap (@, up) — And(tn, ap)
—Anb(un, up) 4+ 22b(an, up)
= Apb(tp, ) + an(un, un) — 2A6b(Tn, up) — Apb(dn, Up,)
—Anb(un, up) + 22b(an, up)
= ap(un,un) — )\hb(uh,uh)~ (5.3)

From (2.5) and (5.3]), we have

an(un, up) — Apb(up, up)

M=y =
h h b(uh, uh)
_ an(Un — up, Up — up) = Apb(an — up, ty — up) (5.4)
b(un, up)
This is the desired result (5.2) and we complete the proof. O

Theorem 5.1. Let (\p,,, 1y, ) denote the eigenpair approvimation of (5.1]). Then we have
the following superclose properties

n

un, = Tn,llae S D H O (||an,_, = an,llo + [An,_, = An, D), (5.5)
k=2
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v, — tn, || H|up,, — tn, |la.0; (5.6)

S
A=Al S

[, — tn, l7.0- (5.7)

Assume the series of the meshes satisfies the following estimates

~

ZHW(n—k)hZ < h,, (5.8)
k=1

and the eigenvalue approxzimation N, has the lower-bound property: A\, < X. Then the

etgenvalue A\, also has the lower-bound property:
A <A (5.9)

Proof. We prove (B.5)-(5.7) by induction. Since we solve the eigenvalue problem directly

by the nonconforming element, the following equalities hold
Up, = TUpy, Ay = Ay

So ([B.5)-(E1) holds for n = 1. Assume the results (B.5)-(5.71) hold for n = k. Now we come
to prove (B.5)-(0.7) also hold for n =k + 1. From (3.4]) and (5.1]), the following estimates
hold

ah(ﬂhkﬂ - ahk-s—l’ﬂhk-s-l - ﬂhk+1)
= )\hkb(uhk’ ahk+1 - ’U’hk+1) - S‘hk+1b(ahk+17ﬂhk+1 - ’U’hk+1)
= )\hkb(uhk - ’U’hk+17ﬂhk+1 - ﬁhk+1) + ()\hk - j\hk+1)b(ahk+1’ahk+l - ahk+1)
= )\hkb(uhk - ahk+17ﬂhk+1 - ﬁhk+1) + )\hkb(ﬂ’thrl - ath’ath - ahk+1)

+()\hk - j\hk)b(ﬂhk-kl’ﬂhk-kl - ﬂhkﬂ) + (j\hk - j‘hk+1)b(ahk+1’ﬂhk+1 - ahk+l)

A

(H Jup, = tnglla,e + Nny, = gy, 1 + Ang = Moy DIy, — g llagh-

This means we have

Hahk+1 - ahk+1Ha7h N H’YHuhk - atha,Q + H’H’hk - ’H’thrle + ’xhk - S\hk+1’
k+1 ‘ - -
S S H (= o+ Py =Ml (5:10)
m=2

Since Vi n, +1 C Vi, we can regard the discrete eigenvalue problem B3 as a conforming
finite element discretization of the discrete eigenvalue problem (G.1)) in the space Vj, 1
So we can use the standard error estimate results of the conforming finite element method
for the eigenvalue problem. So the following estimates hold

Wy — Uhgyr lan S o 1161{'/“ 8nyy0 = VE R o S Nhyy — Thgy llagn
e hi1
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S HMun, = tnflag + lln, - athHb + ‘j\hk - j‘hk+1’
k+1 ) )

S Z H = (ag, = i, b 4 Ay — M |)s (5.11)
m=2

and

Huhk-H - ﬂhk-ﬂ ”b

S sup inf 1 Thyir | = vE Ry ab Ry — Ty lagh
fEW,Hbe:l ’UH’hk+1eVH7hk+1

S s = Bhusalon (5.12)

From Lemma 5.1 we have the following estimate for the eigenvalue approximations

|)‘hk+1 - j‘hk+1| 5 Hﬂhk.u - ﬂhk-u ||62l,h' (513)

These three estimates (5.11])-(5.13) means the results (5.5)-(0.7) also hold for n = k + 1.
So we obtain the results (B.5)-(5.7) hold for any integer n.

The assumption of the eigenfunction by the multi-correction method owning the optimal
error estimate (0.8)) leads to that ||up — @pllep is higher order term corresponding to

|lu — tpl|q,n- So Ap and A\, have the same lower-bound property and the desired result
(59) has been obtained. O

Remark 5.1. From (2.21) and ({523)-(57), we have the following estimates

n
lun, = tn,llog S Y H PR, (5.14)
k=2
n
lun, = tn,llag S Y HOHIRD (5.15)
k=2
_ n
o=l S HPORRD (5.16)
k=2

Compared with ({.3)-(4-3), (5-14)-(216) are higher-order terms. Always, we call this
phenomena as “superclose” property (see [16]).

6 Numerical results

In this section, we give two numerical examples to illustrate the efficiency of the multi-level
correction algorithm proposed in this paper. For simplicity, we only give the numerical
results by the CR element.
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6.1 Model eigenvalue problem

In this example, we solve the model eigenvalue problem (II) on the unit square Q =
(0,1) x (0,1) with v = 1. Here, we adopt the meshes which are produced by regular
refinement from the initial mesh generated by Delaunay method to investigate the conver-
gence behaviors. We checked the numerical results for two regular refinement ways with
hi+1 = hi/2 and hgyq = hg/4 (k= 1,--- ,n — 1), respectively. Furthermore, we choose
T = Tp, with H = 1/4. From Theorem 1] we have the following error estimates for

these two refinement ways
[un = ullap S s Nun, —ulls S Hhoy  An, = Al S By,

which means the multi-levle correction method also obtained the optimal convergence

order.

Figure [I] shows the initial mesh. Figure [2 and [ gives the corresponding numerical
results for the first eigenvalue A\; = 272 and the corresponding eigenfunction. Figure

gives the numerical results for the first 6 eigenvalues: 272, 572, 572,872, 10w? and 1072.

0.9f
0.8f
0.7f
0.6f
0.5
0.4f
0.3f
0.2}

0.1}

0 0.2 0.4 0.6 0.8 1

Figure 1: Initial mesh for Example [6.1]

In order to show the efficiency more clearly, we compare the results by the multi-level
correction method with those obtained by the direct eigenvalue solving. From Figures
and Bl the multi-level correction method can obtain almost the same results as the
direct eigenvalue solving method but with smaller computational work. Furthermore,
from Figures 2] and [3, the multi-level correction method can also obtain the lower-bound

approximations of the eigenvalues and have the superclose property.
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Eigenvalue errors Eigenfunction errors
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Number of elements Number of elements

Figure 2: The errors for the eigenpair approximations by the multi-level correction algo-
rithm for the first eigenvalue 272 and the corresponding eigenfunction with hy1 = hy/2,
where (A, up) is produced by the multi-level correction method and (A{F, udir) by the

direct eigenvalue solving method

6.2 Eigenvalue problem on L-shape domain

In the second example, we consider the model eigenvalue problem on the L-shape domain
Q= (-1,1) x (=1,1)\[0,1) x (—1,0]. Since 2 has a reentrant corner, eigenfunctions with
singularities are expected. The convergence order for eigenvalue approximation is less
than 2 by the linear finite element method which is the order predicted by the theory for

regular eigenfunctions.

We investigate the numerical results for the first eigenvalue. Since the exact eigenvalue
is not known, we choose an adequately accurate approximation A = 9.6397238440219 as
the exact first eigenvalue for our numerical tests. We give the numerical results of the

multi-level correction in which the sequence of meshes 7y,, Th,, -+ ,7Tn, is produced by

n

the adaptive refinement with the a posteriori error estimator given by the ZZ recovery
method (see [29]). Also we choose Ty = Tp, with H = 1/4.

Figure [B] shows the initial mesh and the one after 12 adaptive iterations. Figure
gives the corresponding numerical results for the adaptive iterations. In order to show the
accuracy of multi-level correction method more clearly, we compare the results with those

obtained by the direct adaptive finite element method.

From Figure 6, we can find the multi-level correction method can also work on the
adaptive family of meshes and obtain the optimal accuracy. Furthermore, the initial mesh
is nothing to do with the finest one which is different from the two-gird method [24, 27].

We can also find the multi-level correction method can obtain the lower-bounds of the
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Eigenvalue errors Eigenfunction errors

10° : 10° ‘ :
+)\_)\h B g +”u_uh”a‘h
. n
107 ©- 1A " ©-llu-uil, ,
3
’ / B B 11yl
» . G, 1= = slope=-1 = ~ ‘== slope=-1/2
107 - 4 == slope=-2| ] 10 * '=='slope=-1_ |1
.
[4 0 ‘/\
S 107, S
1} 1}
107 1077
107k
-6 -3
10 ‘ ‘ ‘ ‘ 10 ‘ ‘ ‘ ‘
10" 10° 10° 10" 10° 10° 10" 10° 10° 10" 10° 10°
Number of elements Number of elements

Figure 3: The errors for the eigenpair approximations by the multi-level correction algo-
rithm for the first eigenvalue 272 and the corresponding eigenfunction with hy,1 = hy /4,
where (A, up) is produced by the multi-level correction method and (A{F, udir) by the

direct eigenvalue solving method

eigenvalues and have the superclose property.

7 Concluding remarks

In this paper, we give a type of multi-level correction scheme to solve the Laplace eigenalue
problem by the nonconforming finite element method. In this scheme, the eigenvalue
problem solving can be transformed to a series of boundary value problem solving and the
eigenvalue problem solving in the very coarse space. We also derive a type of superclose
property of the eigenpair approximations and the lower-bound results of the eigenvalue

approximations by the multi-level correction algorithm.

Furthermore, our multi-level correction scheme can be coupled with the multigrid
method to construct a type of multigrid and parallel method for eigenvalue problems
by the nonconforming finite element method (see Example 5.1). It can also be combined

with the adaptive refinement technique for the singular eigenfunction cases (see Example
5.2).
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