
Journal of Automated Reasoning 30: 271–321, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

271

A Type System for the Java Bytecode Language
and Verifier

STEPHEN N. FREUND1 and JOHN C. MITCHELL2

1Williams College
2Stanford University

Abstract. The Java Virtual Machine executes bytecode programs that may have been sent from other,
possibly untrusted, locations on the network. Since the transmitted code may be written by a mali-
cious party or corrupted during network transmission, the Java Virtual Machine contains a bytecode
verifier to check the code for type errors before it is run. As illustrated by reported attacks on Java
run-time systems, the verifier is essential for system security. However, no formal specification of
the bytecode verifier exists in the Java Virtual Machine Specification published by Sun. In this paper,
we develop such a specification in the form of a type system for a subset of the bytecode language.
The subset includes classes, interfaces, constructors, methods, exceptions, and bytecode subroutines.
We also present a type checking algorithm and prototype bytecode verifier implementation, and we
conclude by discussing other applications of this work. For example, we show how to extend our
formal system to check other program properties, such as the correct use of object locks.

Key words: Java Virtual Machine, bytecode verification, type systems.

1. Introduction

The Java bytecode language, which we refer to as JVML, is the platform indepen-
dent representation of compiled Java programs. In order to prevent devious applets
or improperly structured code from causing security problems, the Java Virtual
Machine bytecode verifier performs a number of consistency checks on bytecode
before it is executed [29]. These consistency checks reject any code that may cause
a type error when executed, thereby preventing bytecode programs from exploiting
type errors to circumvent the Java security architecture.

Several published attacks on various implementations of the Java Virtual Ma-
chine illustrate the importance of the bytecode verifier for system security. To cite
one specific example, a bug in an early version of Sun’s bytecode verifier allowed
applets to create certain system objects that they should not have been able to
create, such as ClassLoaders [11]. The problem was caused by an error in how
constructors were verified and resulted in the ability to potentially compromise the
security of the entire system. In a previous study, we identified another error in
the Sun verifier that allowed JVML code to use an object that was not properly
initialized [18]. A number of other loopholes and inconsistencies have also been

272 STEPHEN N. FREUND AND JOHN C. MITCHELL

reported (see, for example, [40, 12, 46, 6]). Problems like these demonstrate the
need for a correct and formal specification of the bytecode verifier. When we
started this work, however, the only existing specification was an informal English
description that was incomplete and incorrect in some respects.

The primary contribution of this paper is a sound type system for a large frag-
ment of JVML. We study the subset of JVML that both captures the most difficult
static analysis problems in bytecode verification and brings to light the subtle inter-
actions between features previously examined in isolation. In particular, we focus
on the following JVML features:

− classes, interfaces, and objects;
− constructors and object initialization;
− virtual and interface method invocation;
− arrays;
− exceptions and subroutines; and
− integer and float primitive types.

In an earlier study, we examined object initialization and formalized the way in
which a type system may prevent Java bytecode programs from using objects be-
fore they have been initialized [18]. In this work, we extend our formal system to
handle bytecode subroutines and the rest of the features listed above.

Subroutines are a form of local call and return that allow for space-efficient
compilation of try-finally structures in the Java language. Bytecode programs
that use subroutines are allowed to manipulate return addresses in certain ways, and
the bytecode verifier must ensure that these return addresses are used appropriately.
In addition, subroutines introduce a limited form of polymorphism into the type
system. Our treatment of subroutines is based on the semantics developed by Stata
and Abadi [43], with modifications to be closer to the original Sun specification
and to include exception handlers.

While we cover most major features of JVML, we do omit some pieces, such
as additional primitive types and control structures, final and static modifiers,
access levels, class initialization, concurrency, and packages. These omitted fea-
tures would contribute to the complexity of our system only in the sheer number
of cases that they introduce, and they do not introduce any challenging or new
problems. For example, the excluded primitive types and operations on them are
all similar to cases in our study, as are the missing control structures, such as
the tableswitch instruction. Static methods share much in common with normal
methods, and checks for proper use of final and other access modifiers are well
understood and straightforward to include.

We also present a type checking algorithm for our type system and describe our
experiences with a prototype verifier based on this algorithm. Our core algorithm
employs dataflow analysis to construct valid types for JVML programs. Unfortu-
nately, subroutines complicate matters by introducing polymorphism and making
control flow graph construction difficult. Therefore, we divide the algorithm into

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 273

three phases that compute the control flow graph, identify uses of polymorphism,
and then synthesize the type information via dataflow analysis.

Our type system and checker have several applications beyond bytecode veri-
fication. For example, we extend our system to check additional safety properties,
such as ensuring that object locks are acquired and released properly by each
method. We also augment the verifier to track more information through the type
system to determine where run-time checks, such as null pointer and array bounds
tests, may be eliminated.

Before proceeding, we summarize a few notational conventions used throughout
this paper. Function update, written f [x �→ v], is defined as

(f [x �→ v])[y] =
{
v if x = y,
f [y] otherwise

for all y ∈ Dom(f). The related operation [b/a]f changes f in the following way:

([b/a]f)[y] =
{
b if f [y] = a,
f [y] otherwise

for all y ∈ Dom(f).
We use sequences to model stacks, as well as lists of values and types. The

empty sequence is ε, and v · s places v at the front of sequence s. Appending one
sequence to another is written as s1 • s2, and the substitution [b/a]s replaces all
occurrences of a in s with b.

2. JVMLf

In this section, we informally introduce JVMLf , an idealized subset of JVML
encompassing the features listed in the introduction. A Java compiler translates
a source program into a collection of class files, one for each declared class or
interface. In addition to containing the bytecode instructions for methods, a class
file contains the symbolic name and type information for any class, interface,
method, or field mentioned in the source code. The Java Virtual Machine uses
this information to verify code and resolve references. Since the binary format of
class files is not easy to read or manipulate, we shall represent their contents in a
more manageable form closer to the declarations in the original source program.
We illustrate the compilation process and our class file representation by showing a
Java program and its translation into JVMLf declarations in Figure 1 and Figure 2,
respectively. We define JVMLf more precisely below.

The collection of declarations in Figure 2 contains the Object and Throwable
Java library classes so that all referenced classes are present. We assume that these
are the only two library classes and that they are present in all JVMLf programs.
The JVMLf declaration for each class contains the set of instance fields for objects
of that class, the interfaces declared to be implemented by the class, and all the
methods declared in the class. Each method consists of an array of instructions and

274 STEPHEN N. FREUND AND JOHN C. MITCHELL

interface Foo {
int foo(int y);

}

class A extends Object
implements Foo {

int num;
A(int x) {
num = x;

}

int foo(int y) {
A a;
try {

a = new A(y);
} catch (Throwable e) {

num = 2;
}
return 6;

}
}

class B extends A {
A array[];
B(int x) {
super(x);
num = foo(2);

}
}

Figure 1. Declaration of several Java classes.

a list of exception handlers, and all methods in the superclass of a class are copied
into the subclass unless they are overridden. Copying methods into subclasses sim-
plifies the bookkeeping for method lookup in the formal semantics, but it does not
impact the verifier requirements or specification. The special name <init> is given
to constructors.

The execution environment for JVMLf programs consists of a stack of activa-
tion records and a heap. Each activation record contains a program counter, a local
operand stack, and a set of local variables. These pieces of information are not
shared between different activation records, although different activation records
may contain references to the same objects in the heap. Most JVMLf bytecode
instructions operate on the operand stack, and the store and load instructions
are used to store and load intermediate values in the local variables. Constructing
or deleting activation records upon method invocation or return is left to the Java
Virtual Machine.

Figure 3 contains the full JVMLf instruction set, and the next few paragraphs
briefly describe the interesting aspects of these instructions. In Figure 3, v is an
integer, real number, or the special value null; x is a local variable; L is an in-
struction address; and σ and τ are a class name and valid array component type,
respectively. We refer the reader to the Java Virtual Machine specification for a
detailed discussion of these bytecode instructions [29].

Bytecode programs use method references, interface method references, and
field references to identify methods, interface methods, and fields from Java lan-
guage programs. These references contain three pieces of information about the
method or field that they describe:

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 275

class Object {
super: None
fields: { }
interfaces: { }
methods:

}

class Throwable {
super: Object
fields: { }
interfaces: { }
methods:

}

interface Foo {
interfaces: { }
methods:

{|Foo, foo, int → int|}I
}

class A {
super: Object
fields: { {|A, num, int|}F }
interfaces: { Foo }
methods:

{|A, <init>, int → void|}M {
1: load 0
2: invokespecial {|Object, <init>, ε → void|}M
3: load 0
4: load 1
5: putfield {|A, num, int|}F
6: return

}
{|A, foo, int → int|}M {
1: new A
2: store 2
3: load 2
4: load 1
5: invokespecial {|A, <init>, int → void|}M
6: goto 11
7: pop
8: load 0
9: push 2
10: putfield {|A, num, int|}F
11: push 6
12: returnval
Exception table: from to target type

1 6 7 Throwable
}

}

class B {
super: A
fields: { {|A, num, int|}F, {|B, array, (Array A)|}F }
interfaces: { Foo }
methods:

{|B, <init>, int → void|}M {
1: load 0
2: load 1
3: invokespecial {|A, <init>, int → void|}M
4: load 0
5: load 0
6: push 2
7: invokevirtual {|A, foo, int → int|}M
8: putfield {|A, num, int|}F
9: return

}
{|B, foo, int → int|}M { /* as in superclass */ }

}

Figure 2. Translation of the code from Figure 1 into JVMLf .

276 STEPHEN N. FREUND AND JOHN C. MITCHELL

Instruction ::= push v | pop | store x | load x

| add | ifeq L | goto L

| new σ

| invokevirtual Method-Ref
| invokeinterface Interface-Method-Ref
| invokespecial Method-Ref
| getfield Field-Ref
| putfield Field-Ref
| newarray τ | arraylength
| arrayload τ | arraystore τ

| throw | jsr L | ret x

| return | returnval

Figure 3. The JVMLf instruction set.

− the class or interface in which it was declared,
− the field or method name, and
− its type.

For example, the bytecode instruction putfield {|A, num, int|}F refers to the num
instance field with type int declared in class A. In contrast to simple names, refer-
ences contain enough information to

1. check uses of methods and fields without loading the class to which they
belong,

2. dynamically link class files safely, and
3. provide unique symbolic names to overloaded methods and fields (overloading

is resolved at compile time in Java).

The following grammar generates references:

Method-Ref ::= {|Class-Name, Label, Method-Type|}M
Interface-Method-Ref ::= {|Interface-Name, Label, Method-Type|}I

Field-Ref ::= {|Class-Name, Label, Field-Type|}F
A Field-Type may be int, float, any class or interface name, or an array type.
A Method-Type is a type α → γ , where α is a possibly empty sequence of
Field-Types and γ is the return type of the function (or void). Figure 4 shows the
grammar to generate these types, plus several additional types and type construc-
tors used in the static semantics but not by any JVMLf program. For example, the
type Top, the supertype of all types, will be used in the typing rules, but it cannot
be mentioned in a JVMLf program.

A JVMLf program may raise exceptions, which are objects of type Throwable,
in two ways. First, a program may use the throw instruction to raise an exception.
The throw instruction requires that the top of the stack contain an object whose
class is Throwable, or a subclass of it. Some JVMLf instructions also generate
exceptions when their arguments are not valid. For example, any instruction that
performs an operation on an object will generate a run-time exception when it is
applied to the null reference. In these cases, the virtual machine creates a new

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 277

τ ∈ Type ::= Ref | Prim | Ret | Top
Prim ::= float | int

Ref ::= Simple-Ref | Uninit | Array | Null
Simple-Ref ::= Class-Name | Interface-Name
Component ::= Simple-Ref | Prim | Array

Array ::= (Array Component)
Uninit ::= (Uninit Class-Name i)

Ret ::= (Ret L)

β ∈ Type-List ::= ε | Type · Type-List

α → γ ∈ Method-Type: ::= Arg-List → Return
Return ::= Simple-Ref | Array | Prim | void

κ ∈ Field-Type ::= Simple-Ref | Array | Prim
Arg-List ::= ε | Field-Type · Arg-List

σ, ϕ ∈ Class-Name
ω ∈ Interface-Name

Figure 4. JVMLf types.

Throwable object for the exception. Although real implementations create ob-
jects of different classes to indicate different kinds of run-time errors, the JVMLf

execution model generates Throwable objects for all cases. Generating only a sin-
gle kind of exception simplifies the JVMLf dynamic semantics, but it does not
fundamentally change program behavior or language expressiveness.

When a program raises an exception, the virtual machine searches for an appro-
priate handler in the list of handlers associated with the currently executing method.
An appropriate handler is one declared to protect the current instruction and to
handle exceptions of the class of the object that was thrown, or some superclass of
it. If the virtual machine finds an appropriate handler, execution jumps to the first
instruction of the exception handler’s code. Otherwise, the virtual machine pops
the top activation record and repeats the process on the new topmost activation
record.

3. Dynamic Semantics

This section gives an overview of the formal execution model for JVMLf pro-
grams. Section 3.1 describes the representation of programs as environments, Sec-
tion 3.2 shows how machine states are modeled, and Section 3.3 describes the
semantics of the bytecode instructions.

3.1. ENVIRONMENTS

The JVMLf semantics, as in most semantic frameworks, models the declarations
in a program as an environment. As shown in Figure 5, a JVMLf environment

278 STEPHEN N. FREUND AND JOHN C. MITCHELL

�C : Class-Name ⇀

〈 super : Class-Name ∪ {None},
interfaces : set of Interface-Name,
fields : set of Field-Ref

〉

�M : Method-Ref ⇀

〈
code : Instruction+,

handlers : Handler∗
〉

�I : Interface-Name ⇀

〈
interfaces : set of Interface-Name,
methods : set of Interface-Method-Ref

〉

� = �C ∪ �I ∪ �M

Figure 5. Format of a JVMLf program environment.

� is a partial map from class names, interface names, and Method-Ref s to their
respective definitions.

To access information about a method M declared in �, we write �[M]. Similar
notation is used to access interface and class declarations. If �[M] = 〈P, H 〉 for
some Method-Ref M, then Dom(P) is a range {1, . . . , n} of addresses from the
set ADDR, and P [i] is the ith instruction in P . The exception handler array H

is a partial map from integer indexes to exception handlers. An exception handler
〈b, e, t, σ 〉 catches exceptions of type σ that occur when the program counter is
in the range [b, e). Control transfers to address t when an exception is caught by
this handler. We use the notation M�[i] = I to indicate that �[M] = 〈P, H 〉 and
P [i] = I .

The dynamic and static semantic rules determine properties of a program by
looking up information in its environment. For example, the inference rules to
conclude that one type is a subtype of another examine the declarations in an envi-
ronment to determine the program’s class hierarchy. Thus, we write the subtyping
judgment as � � τ1 <: τ2 to indicate that τ1 is a subtype of τ2, given a specific
environment �. The subtyping rules, given in Figure 6, match the rules used to
model subtyping in the Java language [14, 44], with extensions to cover the JVMLf

specific types. The JVMLf dynamic semantics uses the subtyping judgment to
model run-time type tests. Figure 7 summarizes the subtyping judgment form, as
well as the other major judgments presented in this paper.

3.2. MACHINE STATE

The JVMLf virtual machine’s execution state is a configuration C = A;h, where
A is a stack of activation records and h is a memory heap. The activation record
stack is defined as follows:

A ::= A′ | 〈e〉exc · A′

A′ ::= 〈M, pc, f, s, z〉 ·A′ | ε

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 279

[<:C REFL]

σ ∈ Class-Name

� � σ <:C σ

[<:C SUPER]

� � σ1 <:C σ2
�[σ2].super = σ3
� � σ1 <:C σ3

[<:I REFL]

ω ∈ interface-Name

� � ω <:I ω

[<:I SUPER]

� � ω1 <:I ω2
ω2 ∈ �[ω3].interfaces

� � ω1 <:I ω3

[<:A PRIM]

τ ∈ Prim

� � τ <:A τ

[<:A REF]

� � τ1 <:R τ2

� � τ1 <:A τ2

[<:R CLASS]

� � σ1 <:C σ2

� � σ1 <:R σ2

[<:R INTERFACE]

� � ω1 <:I ω2

� � ω1 <:R ω2

[<:R CLASS INT]

� � σ1 <:C σ2
ω1 ∈ �[σ2].interfaces

� � ω1 <:I ω2
� � σ1 <:R ω2

[<:R Null]

τ ∈ Simple-Ref ∪
Array ∪ {Null}

� � Null <:R τ

[<:R ARRAY ARRAY]

� � τ <:A τ ′
� � (Array τ)<:R (Array τ ′)

[<:R INT Object]

ω ∈ Interface-Name

� � ω <:R Object

[<:R ARRAY Object]

(Array τ) ∈ Array

� � (Array τ)<:R Object

[<: REF]

� � τ1 <:R τ2

� � τ1 <: τ2

[<: REFL]

τ ∈ Uninit ∪
Prim ∪ Ret

� � τ <: τ

[<: Top]

τ ∈ Ref ∪ Prim ∪ Ret ∪ {Top}
� � τ <: Top

[<: ε]

� � ε <: ε

[<: SEQ]

� � α1 <: α2
� � τ1 <: τ2

� � τ1 · α1 <: τ2 · α2

[<: MAP]

Dom(F1) = Dom(F2)

∀y ∈ Dom(F1). � � F1[y]<: F2[y]
� � F1 <: F2

Figure 6. JVMLf subtyping rules.

Each part of the activation record 〈M, pc, f, s, z〉 has the following meaning:

M: the Method-Ref of the method.

pc: the address of the next instruction to be executed in the method’s code array.

f : a map from VAR, the set of local variables, to values.

s: the operand stack.

z: initialization information for the object being initialized in a constructor, as
described below.

Records of the form 〈e〉exc are for exception handling. When a program throws an
exception, the virtual machine places an activation record of the form 〈e〉exc onto
the stack, where e is a reference to a Throwable object.

280 STEPHEN N. FREUND AND JOHN C. MITCHELL

� � τ1 <: τ2 τ1 is a subtype of τ2.
� � C0 → C1 A program in configuration C0 evaluates to C1 in a

single step.
� � wt � is well-formed.
� � d ty The definition of d only refers to names of classes

or interfaces defined in �.
� � d K The declaration of d is a valid K, where

K ∈ {class, interface, method}.
�,F , S � P,H : M The method body 〈P, H 〉 conforms to Method-Ref

M given �, F , and S.
�,F , S, i � P : M Instruction i of P is well-typed given �, F , and S.
�,F , S � h handles P Handler h is well-typed given �, F , and S.
� � h wt h is a well-typed heap.
�, h � v : τ The value v has type τ given environment � and heap h.
� � C wt The configuration C is well-typed in environment �.

Figure 7. Summary of the main JVMLf logical judgments.

The heap contains all objects and arrays allocated by the program, and we model
the heap as a function h mapping locations to records. Records for objects and
arrays have different forms, but all records contain tags to support run-time type
tests and method dispatch. Objects of class σ have the following form:

〈〈{|σ1, l1, κ1|}F = v1, . . . , {|σn, ln, κn|}F = vn〉〉σ
An object’s fields will always be indexed by a Field-Ref . We often abbreviate this
type of record as 〈〈{|σi, li , κi|}F = vi〉〉i∈Iσ where the subscript i ∈ I refers to the ith
field in the record. Arrays are stored in a similar type of record:

[[vi]]i∈[0..n−1]
(Array τ)

With these definitions, a program’s heap h is a partial map from locations drawn
from the set LOC to records:

h : LOC →
〈〈{|σi, li , κi|}F = vi〉〉i∈Iσ (object)

| 〈〈{|σi, li , κi|}F = vi〉〉i∈Iϕ♦(Uninit σ j) (uninit. object)

| [[vi]]i∈[0..n−1]
(Array τ) (array)

The middle form is for uninitialized objects, and it is described in Section 3.3.1. We
shall use the notation h[a].{|σ, l, κ|}F to access the value of field {|σ, l, κ|}F from
the instance at location a in heap h, and we create a new heap with a modified value
for that field using the notation h[a.{|ϕ, l, κ|}F �→ v]. The function Tag returns the
tag of a heap record, or any other run-time value:

Tag(h, v) =



int if v is an integer,
float if v is a float,
Null if v = null,
τ if v ∈ LOC and h[v] = 〈〈. . .〉〉τ or h[v] = [[. . .]]τ .

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 281

The semantics use the Blank function to create new records. The function is
defined separately for each of the three kinds of records:

Blank(σ) = 〈〈{|σi, li , κi|}F = Zero(κi)〉〉i∈I
σ ,

Blank(σ♦(Uninit σ ′ j)) = 〈〈{|σi, li , κi|}F = Zero(κi)〉〉i∈I
σ♦(Uninit σ ′ j)

,

Blank((Array τ), n) = [[vi = Zero(τ)]]i∈[0..n−1]
(Array τ),

where �[σ].fields = {{|σi, li , κi|}F}i∈I . The Zero function computes default val-
ues for each type:

Zero(τ) =
{ 0 if τ = int,

0.0 if τ = float,
null if τ ∈ Ref.

3.3. OPERATIONAL SEMANTICS

We model the behavior of JVMLf instructions as transitions on machine states in
the standard framework of operational semantics. The semantic rules capture all
possible behaviors of JVMLf programs, and we present the rules in Figures 8–10.
Each row in these tables describes the conditions under which a program repre-
sented by � can move from configuration C0 to configuration C1. The first column
indicates the instruction form captured by the rule. If the instruction about to be
executed matches that form and all conditions in the second column are satisfied,
then a step may be made from a configuration matching the pattern in the third
column to a configuration matching the pattern in the last column.

For example, Figure 8 contains the rule for the getfield instruction, which
pops an object reference off the stack and pushes the value stored in the specified
field of that object. The rule indicates that the program represented by � may move
from configuration C0 to C1 in a single step if M�[pc] = getfield{|ϕ, l, κ|}F, and
C0 and C1 match the patterns in the table. In this rule, and all others, if we apply a
function f to an argument x, we have the implicit requirement that x ∈ Dom(f).
We describe several other representative rules from these tables.

The rule for arraystore verifies that the array reference is valid, that the index
is in bounds, and that the type of the value being stored is a subtype of the type of
elements stored in the array. This last check is required because of a potential type
loophole caused by the covariant subtyping of arrays.

The rule for invokevirtual uses the run-time tag of the receiver to construct
the Method-Ref for the new activation record when a method is called. The notation
f [1..n �→ vn · vn−1 · · · v1 · ε] is an abbreviation for

f [1 �→ v1][2 �→ v2] · · · [n �→ vn].
The function f0 maps the local variables to arbitrary values. In contrast to the
Java Virtual Machine Specification, the receiver and arguments are left on the

282 STEPHEN N. FREUND AND JOHN C. MITCHELL

�
�

C
0
→

C
1

M
�
[pc

]
C

on
d

C
0

C
1

pu
sh

v
〈M

,
pc

,
f
,
s,

z
〉·

A
;h

〈M
,

pc
+

1,
f
,
v
·s

,
z
〉·

A
;h

po
p

〈M
,

pc
,
f
,
v
·s

,
z
〉·

A
;h

〈M
,

pc
+

1,
f
,
s,

z
〉·

A
;h

ad
d

Ta
g(
h
,
v

1
)
=

Ta
g(
h
,
v

2
)
=

τ
〈M

,
pc

,
f
,
v

1
·v

2
·s

,
z
〉·

A
;h

〈M
,

pc
+

1,
f
,
(v

1
+ τ

v
2
)
·s

,
z
〉·

A
;h

lo
ad

x
〈M

,
pc

,
f
,
s,

z
〉·

A
;h

〈M
,

pc
+

1,
f
,
f
[x]

·s
,
z
〉·

A
;h

st
or
e

x
〈M

,
pc

,
f
,
v
·s

,
z
〉·

A
;h

〈M
,

pc
+

1,
f
[x

�→
v
],

s,
z
〉·

A
;h

if
eq

L
v

1
�=

v
2

〈M
,

pc
,
f
,
v

1
·v

2
·s

,
z
〉·

A
;h

〈M
,

pc
+

1,
f
,
s,

z
〉·

A
;h

if
eq

L
v

1
=

v
2

〈M
,

pc
,
f
,
v

1
·v

2
·s

,
z
〉·

A
;h

〈M
,
L
,
f
,
s,

z
〉·

A
;h

go
to

L
〈M

,
pc

,
f
,
s,

z
〉·

A
;h

〈M
,
L
,
f
,
s,

z
〉·

A
;h

ge
tf
ie
ld

{|ϕ
,
l,

κ
|} F

�
�

Ta
g(
h
,
b
)
<
:ϕ

〈M
,

pc
,
f
,
b
·s

,
z
〉·

A
;h

〈M
,

pc
+

1,
f
,
h
[b]

.{|ϕ
,
l,

κ
|} F

·s
,
z
〉·

A
;h

pu
tf
ie
ld

{|ϕ
,
l,

κ
|} F

�
�

Ta
g(
h
,
b
)
<
:ϕ

�
�

Ta
g(
h
,
v
)
<
:κ

〈M
,

pc
,
f
,
v
·b

·s
,
z
〉·

A
;h

〈M
,

pc
+

1,
f
,
s,

z
〉·

A
;h

[b.
{|ϕ

,
l,

κ
|} F

�→
v
]

ne
wa
rr
ay

τ
b
�∈D

om
(h

)
〈M

,
pc

,
f
,
n
·s

,
z
〉·

A
;h

〈M
,

pc
+

1,
f
,
b
·s

,
z
〉·

A
;

h
[b

�→
B

la
nk

((
Ar
ra
y

τ
),

n)
]

ar
ra
yl
en
gt
h

h
[b]

=
[[v

0
,
..

.,
v
n
−1

]] (
Ar
ra
y

τ
)

〈M
,

pc
,
f
,
b
·s

,
z
〉·

A
;h

〈M
,

pc
+

1,
f
,
n
·s

,
z
〉·

A
;h

ar
ra
yl
oa
d

τ
h
[b]

=
[[v

0
,
.
..
,
v
n
−1

]] (
Ar
ra
y

τ
′)

�
�

τ
′ <

:τ
0
≤

k
<

n
〈M

,
pc

,
f
,
k
·b

·s
,
z
〉·

A
;h

〈M
,

pc
+

1,
f
,
v
k
·s

,
z
〉·

A
;h

ar
ra
ys
to
re

τ

h
[b]

=
[[v

0
,
.
..
,
v
n
−1

]] (
Ar
ra
y

τ
′)

�
�

τ
′ <

:τ
�
�

Ta
g(
h
,
v
′)

<
:τ

′
0
≤

k
<

n

〈M
,

pc
,
f
,
v
′ ·

k
·b

·s
,
z
〉·

A
;h

〈M
,

pc
+

1,
f
,
s,

z
〉·

A
;h

[b
�→

[[v
0
,
.
..
,
v
k
−1

,
v
′ ,

v
k
+1

,
.
..
,
v
n
−1

]] (
Ar
ra
y

τ
′)
]

js
r

L
〈M

,
pc

,
f
,
s,

z
〉·

A
;h

〈M
,
L
,
f
,
(p

c
+

1)
·s

,
z
〉·

A
;h

re
t

x
〈M

,
pc

,
f
,
s,

z
〉·

A
;h

〈M
,
f
[x]

,
f
,
s,

z
〉·

A
;h

ne
w

σ
b
�∈D

om
(h

)
〈M

,
pc

,
f
,
s,

z
〉·

A
;h

〈M
,

pc
+

1,
f
,
a
·s

,
z
〉·

A
;

h
[b

�→
B

la
nk

(σ
♦(

Un
in
it

σ
pc
))
]

in
vo
ke
sp
ec
ia
l

N

N
=

{|O
bj
ec
t,

<i
ni
t>

,
ε
→

vo
id
|} M

Ta
g(
h
,
b
)
=

ϕ
♦(

Un
in
it

σ
0)

c
�∈D

om
(h

)

�
[σ

].s
up
er

=
Ob
je
ct

〈M
,

pc
,
f
,
b
·s

,
〈b,

nu
ll

〉〉
·A

;h
〈M

,
pc

+
1,

[c/
b
]f,

[c/
b
]s,

〈b,
c
〉〉
·A

;
h
[c

�→
B

la
nk

(ϕ
)]

in
vo
ke
sp
ec
ia
l

N

N
=

{|O
bj
ec
t,

<i
ni
t>

,
ε
→

vo
id
|} M

Ta
g(
h
,
b
)
=

Ob
je
ct

♦(
Un
in
it

Ob
je
ct

j
)

c
�∈D

om
(h

)
j
�=

0
〈M

,
pc

,
f
,
b
·s

,
z
〉·

A
;h

〈M
,

pc
+

1,
[c/

b
]f,

[c/
b
]s,

z
〉·

A
;

h
[c

�→
B

la
nk

(O
bj
ec
t)
]

F
ig

ur
e

8.
O

pe
ra

ti
on

al
se

m
an

ti
cs

,p
ar

t1
.

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 283

�
�

C
0
→

C
1

M
�
[pc

]
C

on
d

C
0

C
1

in
vo
ke
vi
rt
ua
l

{|ϕ
,
m
′ ,

α
→

γ
|} M

Ta
g(
h
,
b
)
=

σ
|α|

=
|s 1

|
�
�

σ
<
:ϕ

N
=

{|σ
,
m
′ ,

α
→

γ
|} M

〈M
,

pc
,
f
,
s 1

•(
b
·s

),
z
〉·

A
;h

〈N
,

1,
f

0
[0

�→
b
,

1.
.|α

|�→
s 1
],

ε
,
∅〉·

〈M
,

pc
,
f
,
s 1

•(
b
·s

),
z
〉·

A
;h

in
vo
ke
in
te
rf
ac
e

{|ω
,
m
′ ,

α
→

γ
|} I

Ta
g(
h
,
b
)
=

σ
|α|

=
|s 1

|
�
�

σ
<
:ϕ

N
=

{|σ
,
m
′ ,

α
→

γ
|} M

〈M
,

pc
,
f
,
s 1

•(
b
·s

),
z
〉·

A
;h

〈N
,

1,
f

0
[0

�→
b
,

1.
.|α

|�→
s 1
],

ε
,
∅〉·

〈M
,

pc
,
f
,
s 1

•(
b
·s

),
z
〉·

A
;h

in
vo
ke
sp
ec
ia
l

{|ϕ
,
<i
ni
t>

,
α
→

vo
id
|} M

ϕ
�=

Ob
je
ct

Ta
g(
h
,
a
)
=

ϕ
0
♦(

Un
in
it

ϕ
′
j
)

b
�∈D

om
(h

)
|α|

=
|s 1

|
ϕ
=

ϕ
′ ∨

(�
[ϕ

′].
su
pe
r
=

ϕ
∧j

=
0)

〈M
,

pc
,
f
,
s 1

•(
a
·s

),
z
〉·

A
;h

〈N
,

1,
f

0
[0

�→
b
,
1.
.|α

|�→
s 1
],

ε
,
〈b,

nu
ll

〉〉·
〈M

,
pc

,
f
,
s 1

•(
a
·s

),
z
〉·

A
;

h
[b

�→
B

la
nk

(ϕ
0
♦(

Un
in
it

ϕ
0)

)]

re
tu
rn

m
�=

<i
ni
t>

|α m
|=

|s 1
|

M
=

{|σ
m
,
m
,
α
m

→
vo
id
|} M

〈M
,

pc
,
f
,
s,

z
〉·

〈M
′ ,

pc
′ ,

f
′ ,

s 1
•(

b
·s

′),
z
′ 〉·

A
;h

〈M
′ ,

pc
′ +

1,
f
′ ,

s
′ ,

z
′ 〉·

A
;h

re
tu
rn

m
�=

<i
ni
t>

M
=

{|σ
m
,
m
,
ε
→

vo
id
|} M

〈M
,

pc
,
f
,
s,

z
〉·

ε
;h

ε
;h

re
tu
rn
va
l

m
�=

<i
ni
t>

|α m
|=

|s 1
|

M
=

{|σ
m
,
m
,
α
m

→
γ
m
|} M

γ
m

�=
vo
id

〈M
,

pc
,
f
,
v
·s

,
z
〉·

〈M
′ ,

pc
′ ,

f
′ ,

s 1
•(

b
·s

′),
z
′ 〉·

A
;h

〈M
′ ,

pc
′ +

1,
f
′ ,

v
·s

′ ,
z
′ 〉·

A
;h

re
tu
rn

M
=

{|σ
,
<i
ni
t>

,
α
→

vo
id
|} M

|α|
=

|s 1
|

c
�=

nu
ll

〈M
,

pc
,
f
,
s,

〈b,
c
〉〉
·〈M

′ ,
pc

′ ,
f
′ ,

s 1
•(

a
·s

′),
〈a,

nu
ll

〉〉
·A

;h
〈M

′ ,
pc

′ +
1,

[c/
a
]f

′ ,
[c/

a
]s′

,
〈a,

c
〉〉·

A
;h

re
tu
rn

M
=

{|σ
,
<i
ni
t>

,
α
→

vo
id
|} M

|α|
=

|s 1
|

c
�=

nu
ll

z
′ �=

〈a,
nu
ll

〉
〈M

,
pc

,
f
,
s,

〈b,
c
〉〉·

〈M
′ ,

pc
′ ,

f
′ ,

s 1
•(

a
·s

′),
z
′ 〉·

A
;h

〈M
′ ,

pc
′ +

1,
[c/

a
]f

′ ,
[c/

a
]s′

,
z
′ 〉·

A
;h

th
ro
w

�
�

Ta
g(
h
,
b
)
<
:T
hr
ow
ab
le

〈M
,

pc
,
f
,
b
·s

,
z
〉·

A
;h

〈b〉
ex

c
·〈M

,
pc

,
f
,
b
·s

,
z
〉·

A
;h

�
�

C
0
→

C
1

C
on

d
C

0
C

1

Ta
g(
h
,
b
)
=

σ

C
or

re
ct

H
an

dl
er
(�

,
M

,
pc

,
σ
)
=

0
〈b〉

ex
c
·〈M

,
pc

,
f
,
s,

z
〉·

A
;h

〈b〉
ex

c
·A

;h
Ta

g(
h
,
b
)
=

σ

C
or

re
ct

H
an

dl
er
(�

,
M

,
pc

,
σ
)
=

t

t
�=

0
〈b〉

ex
c
·〈M

,
pc

,
f
,
s,

z
〉·

A
;h

〈M
,
t,

f
,
b
·ε

,
z
〉·

A
;h

〈b〉
ex

c
·ε

;h
ε
;h

F
ig

ur
e

9.
O

pe
ra

ti
on

al
se

m
an

ti
cs

,p
ar

t2
.

284 STEPHEN N. FREUND AND JOHN C. MITCHELL

�
�

C
0
→

C
1

M
�
[pc

]
C

on
d

C
0

C
1

ge
tf
ie
ld

{|ϕ
,
l,

κ
|} F

b
=

nu
ll

e
�∈D

om
(h

)
〈M

,
pc

,
f
,
b
·s

,
z
〉·

A
;h

〈e〉
ex

c
·〈M

,
pc

,
f
,
b
·s

,
z
〉·

A
;h

[e
�→

B
la

nk
(T
hr
ow
ab
le

)]
pu
tf
ie
ld

{|ϕ
,
l,

τ
|} F

b
=

nu
ll

e
�∈D

om
(h

)
〈M

,
pc

,
f
,
v
·b

·s
,
z
〉·

A
;h

〈e〉
ex

c
·〈M

,
pc

,
f
,
v
·b

·s
,
z
〉·

A
;h

[e
�→

B
la

nk
(T
hr
ow
ab
le

)]
ne
wa
rr
ay

τ
n
<

0
e
�∈D

om
(h

)
〈M

,
pc

,
f
,
n
·s

,
z
〉·

A
;h

〈e〉
ex

c
·〈M

,
pc

,
f
,
n
·s

,
z
〉·

A
;h

[e
�→

B
la

nk
(T
hr
ow
ab
le

)]
ar
ra
yl
en
gt
h

b
=

nu
ll

e
�∈D

om
(h

)
〈M

,
pc

,
f
,
b
·s

,
z
〉·

A
;h

〈e〉
ex

c
·〈M

,
pc

,
f
,
b
·s

,
z
〉·

A
;h

[e
�→

B
la

nk
(T
hr
ow
ab
le

)]
ar
ra
yl
oa
d

τ
b
=

nu
ll

e
�∈D

om
(h

)
〈M

,
pc

,
f
,
k
·b

·s
,
z
〉·

A
;h

〈e〉
ex

c
·〈M

,
pc

,
f
,
k
·b

·s
,
z
〉·

A
;h

[e
�→

B
la

nk
(T
hr
ow
ab
le

)]
ar
ra
yl
oa
d

τ
h
[b]

=
[[v

0
,
..

.,
v
n
−1

]] (
Ar
ra
y

τ
′)

k
<

0
∨k

>
n
−

1
e
�∈D

om
(h

)
〈M

,
pc

,
f
,
k
·b

·s
,
z
〉·

A
;h

〈e〉
ex

c
·〈M

,
pc

,
f
,
k
·b

·s
,
z
〉·

A
;h

[e
�→

B
la

nk
(T
hr
ow
ab
le

)]
ar
ra
ys
to
re

τ
b
=

nu
ll

e
�∈D

om
(h

)
〈M

,
pc

,
f
,
v
′ ·

k
·b

·s
,
z
〉·

A
;h

〈e〉
ex

c
·〈M

,
pc

,
f
,
v
′ ·

k
·b

·s
,
z
〉·

A
;h

[e
�→

B
la

nk
(T
hr
ow
ab
le

)]
ar
ra
ys
to
re

τ
h
[b]

=
[[v

0
,
..

.,
v
n
−1

]] (
Ar
ra
y

τ
′)

�
��

Ta
g(
h
,
v
′)

<
:τ

′
e
�∈D

om
(h

)
〈M

,
pc

,
f
,
v
′ ·

k
·b

·s
,
z
〉·

A
;h

〈e〉
ex

c
·〈M

,
pc

,
f
,
v
′ ·

k
·b

·s
,
z
〉·

A
;h

[e
�→

B
la

nk
(T
hr
ow
ab
le

)]
ar
ra
ys
to
re

τ
h
[b]

=
[[v

0
,
..

.,
v
n
−1

]] (
Ar
ra
y

τ
′)

k
<

0
∨k

>
n
−

1
e
�∈D

om
(h

)
〈M

,
pc

,
f
,
v
′ ·

k
·b

·s
,
z
〉·

A
;h

〈e〉
ex

c
·〈M

,
pc

,
f
,
v
′ ·

k
·b

·s
,
z
〉·

A
;h

[e
�→

B
la

nk
(T
hr
ow
ab
le

)]
in
vo
ke
vi
rt
ua
l

{|ϕ
,
m
′ ,

α
→

γ
|} M

b
=

nu
ll

e
�∈D

om
(h

)

|α|
=

|s 1
|

〈M
,

pc
,
f
,
s 1

•(
b
·s

),
z
〉·

A
;h

〈e〉
ex

c
·〈M

,
pc

,
f
,
s 1

•(
b
·s

),
z
〉·

A
;h

[e
�→

B
la

nk
(T
hr
ow
ab
le

)]
in
vo
ke
in
te
rf
ac
e

{|ω
,
m
′ ,

α
→

γ
|} I

b
=

nu
ll

e
�∈D

om
(h

)

|α|
=

|s 1
|

〈M
,

pc
,
f
,
s 1

•(
b
·s

),
z
〉·

A
;h

〈e〉
ex

c
·〈M

,
pc

,
f
,
s 1

•(
b
·s

),
z
〉·

A
;h

[e
�→

B
la

nk
(T
hr
ow
ab
le

)]
in
vo
ke
sp
ec
ia
l

{|ϕ
,
m
′ ,

α
→

γ
|} M

b
=

nu
ll

e
�∈D

om
(h

)

|α|
=

|s 1
|

〈M
,

pc
,
f
,
s 1

•(
b
·s

),
z
〉·

A
;h

〈e〉
ex

c
·〈M

,
pc

,
f
,
s 1

•(
b
·s

),
z
〉·

A
;h

[e
�→

B
la

nk
(T
hr
ow
ab
le

)]
th
ro
w

b
=

nu
ll

e
�∈D

om
(h

)
〈M

,
pc

,
f
,
b
·s

,
z
〉·

A
;h

〈e〉
ex

c
·〈M

,
pc

,
f
,
b
·s

,
z
〉·

A
;h

[e
�→

B
la

nk
(T
hr
ow
ab
le

)]

F
ig

ur
e

10
.

O
pe

ra
ti

on
al

se
m

an
ti

cs
,p

ar
t3

.

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 285

[CH 0]

�[M] = 〈P, H 〉
¬∃i ∈ Dom(H). GoodHandler(�, pc, σ, H [i])

CorrectHandler(�,M, pc, σ) = 0

[CH 1]

�[M] = 〈P, H 〉
GoodHandler(�, pc, σ, H [j])

H [j] = 〈s, e, t, σ ′〉
¬∃i ∈ Dom(H). i < j ∧ GoodHandler(�, pc, σ, H [i])

CorrectHandler(�,M, pc, σ) = t

[GH]

s ≤ pc < e

� � σ <: σ ′
GoodHandler(�, pc, σ, 〈s, e, t, σ ′〉)

Figure 11. Judgments to identify exception handler for an exception.

caller’s stack during the method invocation to simplify a few aspects of our formal
development.

The throw instruction raises an exception by taking a Throwable argument off
the top of the stack and pushing a new activation record containing that reference.

The second table in Figure 9 shows how exceptions are handled. If a valid han-
dler is found in the topmost activation record, control is transferred to the target of
that handler. Otherwise, the topmost activation record is popped off the stack, and
we try again in the next activation record. Figure 11 defines the rules to determine
the appropriate handler for an exception, if one exists.

Figure 10 contains rules that generate exceptions when run-time tests in the
virtual machine fail, such as when getfield is passed a null pointer, an array is
accessed out of bounds, and so on. These rules create a new Throwable object
without calling its constructor, which enables us to treat the process of generating
an exception for a run-time error as an atomic operation. Real Java Virtual Ma-
chines do call a constructor on the exception object, but this deviation allows us
to model all instructions in a small-step operational semantics easily and does not
impact the static semantics in any way.

3.3.1. Object Initialization

The JVMLf new instruction (defined in Figure 8) allocates memory for a new class
instance, but it does not initialize the object. The object is considered initialized
only after successfully completing a constructor invocation on the new object.
Moreover, the constructor must invoke either another constructor from the same
class or from the superclass on the object being initialized before exiting and before
using the object in any way. This requirement must be satisfied by all constructors,
and it ensures that a constructor for each class in the inheritance chain is called,

286 STEPHEN N. FREUND AND JOHN C. MITCHELL

in order from the new object’s class up to Object, during object initialization.
A program calls a constructor with the invokespecial instruction.

To capture these and other rules for initialization, the JVMLf semantics do not
allow a program to

1. use an object before it has been properly initialized,
2. invoke a constructor on an initialized object,
3. invoke a constructor from the wrong class on an object, or
4. return from a constructor without invoking another constructor from an appro-

priate class on the object being initialized.

For simplicity, our treatment of object initialization differs from the Java Virtual
Machine Specification in two ways. First, we do not permit assignments to instance
fields prior to the superclass constructor invocation. Second, our semantic rules do
not resolve references to constructors named in Method-Ref s in the same way as
method invocations, which is implied by the specification.

To identify and prevent the illegal operations listed above, the JVMLf vir-
tual machine stores the initialization status of an object in its tag. An initialized
object of class σ has the tag σ , and it may be the operand of any instruction
expecting an initialized object of that type. Uninitialized object tags have the form
σ♦(Uninit σ ′ j), and objects with tags of this form are not valid operands for
most instructions. As we shall see, the format of these tags makes it easy to map
dynamic values to statically computed type information for a program. We explain
the intuition behind uninitialized object tags first and then relate them back to the
operational semantics rules.

When a new σ instruction is executed, the tag on the newly allocated object is
σ♦(Uninit σ pc), where pc is the program counter for the currently executing
method. The first part of such a tag, σ , indicates that the object was originally
allocated by a new σ instruction. The second half, (Uninit σ pc), indicates that
the program allocated the object on line pc of the method and that it must call a
constructor from class σ on that object before it can do anything else to it. We
store the specific value of pc for use in the soundness proof for the alias tracking
uninitialized objects in the static semantics.

Inside a constructor for class σ ′, the object being initialized will have a tag of the
form σ♦(Uninit σ ′ 0). In this situation, the next step toward properly initializing
such an object is to invoke either another constructor for σ ′ or a constructor from
the super class of σ ′. Any other operation on the object is not defined.

Invoking a constructor changes the tag of the receiving object to reflect which
operations are allowed to be performed on the object next. For example, if a con-
structor of type σ were called on an object with tag σ♦(Uninit σ pc), the tag
would become σ♦(Uninit σ 0). If a constructor of σ ′, the super class of σ , were
then invoked on the object, the tag would become σ♦(Uninit σ ′ 0), and so on.
Invoking the Object constructor on the object changes its tag to σ . Constructors
may exit only when the object being initialized has an initialized object tag.

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 287

To simplify our soundness proofs, we actually model object initialization in a
different way, as demonstrated by the rules for new, invokespecial, and return.
In order to avoid changing tags of existing objects in constructors, which compli-
cates proving several key monotonicity properties of JVMLf heaps, we create new
objects at constructor call sites. More specifically, calling a constructor creates a
new object with a new tag, and returning from a constructor performs a substitution
of the initialized object for the old, uninitialized object in the caller’s activation
record. The z component in activation records tracks these substitutions. If an
activation record is for a normal method, z is ∅. Otherwise, it is a tuple 〈a, b〉,
where a is the object passed into the constructor as the this argument, and b is the
properly initialized object to take its place, or null if it has not been initialized by
the superclass constructor yet.

These substitutions are similar to those in the JVMLi semantics from [18], and
we are able to leverage the proof development in that paper with little change. The
accuracy of this model is acceptable because no operations are performed on the
intermediate objects, and the standard execution behavior can be considered an
optimization of our semantics.

3.3.2. Subroutines

Bytecode subroutines are a form of local call and return that provide space-efficient
compilation of try-finally statements in Java programs. Without subroutines,
the code for a finally block would have to be duplicated at every exit from the
corresponding try block. Subroutines are easy to model in the dynamic semantics,
and the rules for them appear in Figure 8. However, they are difficult to analyze in
the static semantics.

4. Static Semantics

The static semantics determine whether a JVMLf program can be assigned a valid
type. If a program can be assigned a type, it will not cause a type error when
executed. Thus, the static semantics form the core of a bytecode verifier for JVMLf

programs.
The static semantics place two key requirements on a program modeled by the

environment �: (1) the declarations in � must be consistent, and (2) each method
body must not cause a type error when executed. We describe each requirement in
this section.

4.1. WELL-FORMED ENVIRONMENTS

Well-formed environments are environments satisfying certain constraints, includ-
ing the requirements that

− the class hierarchy contains no cycles,

288 STEPHEN N. FREUND AND JOHN C. MITCHELL

[WT ENV]

Object, Throwable ∈ Dom(�)

∀d ∈ Dom(�). � � d ty
∀d ∈ Dom(�). ∃K ∈ {class, interface, method}. � � d K

� � wt

[WT METH]

�[M] = 〈P, H 〉
�,F , S � P,H : M

� � M method

[WT OBJ]

�[Object] = 〈None, ∅, ∅〉
� � Object class

[WT THROWABLE]

�[Throwable] = 〈Object, ∅, ∅〉
� � Throwable class

[WT CLASS]

�[σ] = 〈σs , {ωi}i∈I , {{|σj , lj , κj |}F}j∈J 〉
� �� σs <: σ no cycles

�[σs].interfaces ⊆ {ωi}i∈I inherit all interfaces
�[σs].fields ⊆ {{|σj , lj , κj |}F}j∈J inherit all fields

∀j ∈ J. � � σ <: σj fields only from class or ancestor
∀i ∈ I. ∀m,α, γ. {|ωi, m, α → γ |}I ∈ �[ωi].methods

⇒ {|σ, m, α → γ |}M ∈ Dom(�)
implement all interfaces

∀m,α, γ.




({|σs, m, α → γ |}M ∈ Dom(�)

∧ m �= <init>

)
⇒ {|σ, m, α → γ |}M ∈ Dom(�)


 inherit / override all methods

� � σ class

[WT INT]

�[ω] = 〈{ωi}i∈I , {{|ω, mj , αj → γj |}I}j∈J 〉
� �� ωi <: ω i∈I no cycles

∀j ∈ J. mj �= <init> no constructors
∀i ∈ I. ∀m,α, γ. {|ωi, m, α → γ |}I ∈ �[ωi].methods

⇒ {|ω, m, α → γ |}I ∈ {{|ω, mj , αj → γj |}I}j∈J include all methods

� � ω interface

Figure 12. Rules for well-formed environments.

− each class implements its declared interfaces by defining all methods listed in
them, and

− each class inherits all field and interface declarations from its superclass and
inherits or overrides all methods.

Basically, an environment is well formed if all declarations conform to the proper-
ties described in the Sun Java Virtual Machine Specification [29] that do not depend
on the bodies of methods.

Figure 12 contains the inference rule [WT ENV], which shows that a JVMLf

environment � is well formed. The rule requires that (1) Object and Throwable
are present in �, (2) all declarations refer only to classes and interfaces defined in
the environment (see Figure 13), and (3) each declaration in � is well formed. The
statement that declaration d is well formed is written � � d K, where K is the
kind of declaration.

Figure 12 also presents rules to conclude that a declaration is a well-formed
interface, class, or method. In [WT METH], F is a map from ADDR to functions

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 289

[TY OBJ]

� � Object ty

[TY CLASS]

�[σ] = 〈σs , {ωi}i∈I , {{|σj , lj , τj |}F}j∈J 〉
� � σs ok

∀i ∈ I. � � ωi ok
∀j ∈ J. � � {|σj , lj , τj |}F ok

� � σ ty

[TY INT]

�[ω] = 〈{ωi}i∈I , {{|ω, mj , αj → γj |}I}j∈J 〉
∀i ∈ I. � � ωi ok

∀j ∈ J. � � {|ω, mj , αj → γj |}I ok

� � ω ty

[TY METH]

� � {|ϕ, m, α → γ |}M ok

� � {|ϕ, m, α → γ |}M ty

[OK BASE]

τ ∈ {int, float}
� � τ ok

[OK CLASS]

σ ∈ Dom(�)

� � σ ok

[OK INT]

ω ∈ Dom(�)

� � ω ok

[OK ARRAY]

� � τ ok

� � (Array τ) ok

[OK ε]

� � ε ok

[OK SEQ]

� � τ ok
� � α ok

� � τ · α ok

[OK FREF]

� � ϕ ok
� � τ ok

� � {|ϕ, l, τ|}F ok

[OK MREF]

� � ϕ ok
� � α ok

� � γ ok ∨ γ = void

� � {|ϕ, m, α → γ |}M ok

[OK IREF]

� � ω ok
� � α ok

� � γ ok ∨ γ = void

� � {|ω, m, α → γ |}I ok

Figure 13. Rules to ensure that declarations refer only to defined types.

mapping local variables to types such that F i[y] is the type of local variable y

at line i. The function S is a map from ADDR to stack types where Si is the
type of the operand stack at location i of the program. Finding F and S such that
�,F , S � P,H : M is analogous to the verifier accepting the code of method M.
Figure 14 shows the valid type information for a method, and Section 4.2 develops
this judgment.

The rules for environments, partially based on the work of Syme [44] and
Drossopoulou and Eisenbach [14], do not show how to build a well-formed en-
vironment incrementally. Incremental construction is necessary to handle dynamic
class loading in the Java Virtual Machine, and this problem has been studied else-
where. Building an environment for a complete program is straightforward, and we
assume an environment has been built in this way because it is adequate to describe
how to type check bytecode methods.

4.2. METHODS

Figure 15 contains the typing rule to check the body of a method. The judgment
�,F , S � P,H : M means that, given the environment � and type information

290 STEPHEN N. FREUND AND JOHN C. MITCHELL

i P [i] Si Fi [0] Fi [1] Fi [2]
1 : new A ε A int Top
2 : store 2 (Uninit A 1) · ε A int Top
3 : load 2 ε A int (Uninit A 1)
4 : load 1 (Uninit A 1) · ε A int (Uninit A 1)
5 : invokespecial

{|A, <init>, int → void|}M int · (Uninit A 1) · ε A int (Uninit A 1)
6 : goto 11 ε A int A
7 : pop Throwable · ε A int Top
8 : load 0 ε A int Top
9 : push 2 A · ε A int Top

10 : putfield {|A, num, int|}F int · A · ε A int Top
11 : push 6 ε A int Top
12 : returnval int · ε A int Top
Exception table:

from to target type
1 6 7 Throwable

Figure 14. The type information for method {|A, foo, int → int|}M in Figure 2.

[METH CODE]

m �= <init>
� � FTOP [0 �→ σ, 1..|α| �→ α]<: F 1

S1 = ε

G1 = {ε}
∀i ∈ Dom(P). �, F , S, i � P : {|σ, m, α → γ |}M instructions well-typed

∀i ∈ Dom(H). �,F , S � H [i] handles P handlers well-typed
∀i ∈ Dom(P). G, i � P labeled labeling exists for instructions

∀i ∈ Dom(H). G,H [i] � P labeled and handlers
�,F , S � P,H : {|σ, m, α → γ |}M

[CSTR CODE]

� � FTOP [0 �→ (Uninit σ 0), 1..|α| �→ α]<: F 1
S1 = ε

G1 = {ε}
Z1 = false

∀i ∈ Dom(P). �,F , S, i � P : {|σ, m, α → γ |}M
∀i ∈ Dom(H). �, F , S � H [i] handles P

∀i ∈ Dom(P). P, i � G labeled
∀i ∈ Dom(H). G,H [i] � P labeled

∀i ∈ Dom(P). �,Z, S, i � P constructs σ all paths call superclass constructor,
∀i ∈ Dom(H). �,Z, S,H [i] � P constructs σ including exception paths

�,F , S � P,H : {|σ, <init>, α → γ |}M
Figure 15. Rules for well-typed methods and constructors.

F and S, executing the instruction array P with handlers H does not cause a type
error and is consistent with the method type expressed in the Method-Ref M. In
that rule, FTOP maps all variables in VAR to Top. The map F1 matches the types of
the values stored in f during the creation of a new activation record for a call to
this method.

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 291

The fourth line requires that each instruction in the program be well typed
according to the local judgments described in the next section, and the fifth line
requires that each handler be well typed. Our rules do not identify dead code and re-
quire valid type information for every line, including lines after calls to subroutines
that never return.

The final two lines ensure that the subroutines within a method are
well structured. We elaborate on these judgments and those regarding object ini-
tialization in [CSTR CODE] below.

4.2.1. Instructions

Figures 16–18 present the instruction typing rules. These typing rules describe a set
of constraints between the types of variables and stack slots at different locations
in the program. The horizontal lines in those judgments break the constraints into
logical groups. The format is as follows:

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = instruction form

constraints on line i

constraints on successor of i

The basic intuition behind these rules is that type information flows along exe-
cution paths. The types of variables and stack locations touched by an instruction
change the type information for all successor instructions, and the types of un-
touched locations are the same or more general in the successor instructions. As an
example, consider the rule for getfield {|ϕ, l, κ|}F in Figure 16, which concludes
that �,F , S, i � P : M if all conditions listed in the box are satisfied. Given the
requirements on well-formed environments, we know that as long as the object on
top of the stack is a subclass of ϕ, a field named {|ϕ, l, κ|}F will be present in the
object’s record.

4.2.2. Object Initialization

The static semantics must guarantee that no well-typed program uses an object be-
fore it has been initialized. Since references to uninitialized objects may be stored
in local variables or duplicated on the stack between allocation and initialization,
a simple form of alias analysis is used to track all references to each uninitialized
object.

The type of a variable or stack slot containing an uninitialized object reference
is a type of the form (Uninit σ pc), which represents an uninitialized object of
class σ allocated on line pc of the method. All references with the same uninitial-
ized object type are assumed to be aliases, and when any of those references are
initialized, the types of all references to the object are changed to an initialized
object type. This analysis is sound because the same uninitialized object type is
never assigned to two different objects during program execution.

292 STEPHEN N. FREUND AND JOHN C. MITCHELL

[PUSH]

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = push v

v ∈ values of type τ

τ ∈ Prim ∪ {Null}
� � τ · Si <: Si+1
� � F i <: F i+1
i + 1 ∈ Dom(P)

[POP]

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = pop

Si = τ · β
� � β <: Si+1
� � F i <: F i+1
i + 1 ∈ Dom(P)

[IF]

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = ifeq L

τ ∈ Simple-Ref ∪ Prim ∪ Array
� � Si <: τ · τ · β
� � β <: Si+1
� � F i <: F i+1
i + 1 ∈ Dom(P)

� � β <: SL

� � F i <: FL

L ∈ Dom(P)

[ADD]

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = add

τ ∈ Prim
� � Si <: τ · τ · β
� � τ · β <: Si+1
� � F i <: F i+1
i + 1 ∈ Dom(P)

[LOAD]

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = load x

x ∈ Dom(F i)

� � F i [x] · Si <: Si+1
� � F i <: F i+1
i + 1 ∈ Dom(P)

[STORE]

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = store x

x ∈ Dom(F i)

Si = τ · β
� � β <: Si+1

� � F i [x �→ τ]<: F i+1
i + 1 ∈ Dom(P)

[GET FIELD]

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = getfield {|ϕ, l, κ|}F

� � Si <: ϕ · β
{|ϕ, l, κ|}F ∈ �[ϕ].fields

� � κ · β <: Si+1
� � F i <: F i+1
i + 1 ∈ Dom(P)

[PUT FIELD]

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = putfield {|ϕ, l, κ|}F

� � Si <: κ · ϕ · β
{|ϕ, l, κ|}F ∈ �[ϕ].fields

� � β <: Si+1
� � F i <: F i+1
i + 1 ∈ Dom(P)

[GOTO]

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = goto L

� � Si <: SL

� � F i <: FL

L ∈ Dom(P)

[THROW]

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = throw

� � Si <: Throwable · β

Figure 16. Instruction typing rules, part 1.

The constraints in [NEW] eliminate this possibility by removing any old occur-
rences of the type (Uninit σ i) in the type information for successor instructions.
This requirement (and similar requirements in [JSR] and [RET]) is phrased differ-

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 293

[NEW ARRAY]

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = newarray τ

� � Si <: int · β
� � (Array τ) · β <: Si+1

� � F i <: F i+1
i + 1 ∈ Dom(P)

[ARRAY LEN]

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = arraylength

� � Si <: (Array τ) · β
� � int · β <: Si+1
� � F i <: F i+1
i + 1 ∈ Dom(P)

[ARRAY LOAD]

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = arrayload τ

� � Si <: int · (Array τ) · β
� � τ · β <: Si+1
� � F i <: F i+1
i + 1 ∈ Dom(P)

[ARRAY STORE]

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = arraystore τ

� � Si <: τ · int · (Array τ) · β
� � β <: Si+1
� � F i <: F i+1
i + 1 ∈ Dom(P)

[INV VIRT]

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = invokevirtual N

N = {|ϕ, m′, α → γ |}M
m′ �= <init>

� � Si <: α • (ϕ · β)
N ∈ Dom(�)

γ �= void ⇒ � � γ · β <: Si+1
γ = void ⇒ � � β <: Si+1

� � F i <: F i+1
i + 1 ∈ Dom(P)

[INV INT]

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = invokeinterface N

N = {|ω, m′, α → γ |}I
� � Si <: α • (ω · β)
N ∈ �[ω].methods

γ �= void ⇒ � � γ · β <: Si+1
γ = void ⇒ � � β <: Si+1

� � F i <: F i+1
i + 1 ∈ Dom(P)

[RETURN]

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = return

γm = void

[RETURN VAL]

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = returnval

γm �= void
� � Si <: γm · β

Figure 17. Instruction typing rules, part 2.

ently from that in our previous work [16]. Our earlier formulation, which matches
the Sun verifier specification, asserted that (Uninit σ i) did not occur in the type
information for the new instruction being checked. However, this restriction leads
to a monotonicity problem in the dataflow algorithm derived from these rules that
we describe in Section 6. The new versions avoid this problem and use checks
similar to those in other frameworks [41, 25].

Constructor bodies require additional checks to ensure that they apply either
a different constructor of the same class or a constructor from the parent class to
the object that is being initialized (which is passed into the constructor in local
variable 0) before they exit. The only deviation from this requirement is for con-
structors of class Object. Since Object has no superclass, constructors for Object
need not call any other constructor.

294 STEPHEN N. FREUND AND JOHN C. MITCHELL

[NEW]

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = new σ

σ ∈ Dom(�)

β = [Top/(Uninit σ i)]Si
� � (Uninit σ i) · β <: Si+1

� � [Top/(Uninit σ i)]F i <: F i+1
i + 1 ∈ Dom(P)

[INV SPEC 1]

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = invokespecial N

N = {|ϕ, <init>, α → void|}M
N ∈ Dom(�)

� � Si <: α • ((Uninit σm 0) · β)
σm = ϕ ∨ �[σm].super = ϕ

� � [σm/(Uninit σm 0)]β <: Si+1
� � [σm/(Uninit σm 0)]F i <: F i+1

i + 1 ∈ Dom(P)

[INV SPEC 2]

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = invokespecial N

N = {|ϕ, <init>, α → void|}M
N ∈ Dom(�)

� � Si <: α • ((Uninit ϕ j) · β)
j �= 0

� � [ϕ/(Uninit ϕ j)]β <: Si+1
� � [ϕ/(Uninit ϕ j)]F i <: F i+1

i + 1 ∈ Dom(P)

[JSR]

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = jsr L

F ′ = F [i �→
[Top/(Ret L)]HideUninit(Fi)]

β = [Top/(Ret L)]HideUninit(Si)
Dom(FL) ⊆ Dom(F i)

� � (Ret L) · β <: SL

∀y ∈ Dom(FL). � � F ′
i
[y] <: FL[y]

L ∈ Dom(P)

Dom(F i) = Dom(F i+1)

∀y ∈ Dom(F i) \ Dom(FL).

� � F ′
i [y]<: F i+1[y]

i + 1 ∈ Dom(P)

[RET]

�,F , S, i � P : {|σm, m, αm → γm|}M
P [i] = ret x

x ∈ Dom(F i)

F i [x] = (Ret L)
F ′ = F [i �→ HideUninit(Fi)]

β = HideUninit(Si)
∀ρ ∈ GP,i . ∃p, ρ1, ρ2.

ρ = ρ1 • (p · ρ2)

∧ P [p − 1] = jsr L

∧ � � H(P, β, ρ2) <: Sp

∧ ∀y ∈ VAR. ∀τ, τ ′.(
F (F ′, i, ρ)[y] = τ

∧ F (F ′, p, ρ2)[y] = τ ′
)

⇒ � � H(P, τ, ρ2) <: τ ′

Figure 18. Instruction typing rules, part 3.

Our treatment of constructors uses additional uninitialized object types, and we
add the following to the type system:

− special types of the form (Uninit σ 0), which are assigned to the uninitial-
ized objects passed into constructors,

− a variant of [INV SPEC] to check the usage of these types, and
− a set of rules to examine the structure of a constructor and determine whether

all paths through the code call an appropriate superclass constructor.

The structural rules label each line of the constructor’s body with true if a su-
perclass constructor has been called on all paths to that line, and false otherwise.
Figure 19 contains these rules, and Figure 20 shows the type and superclass con-
structor information (Zi) for a constructor. The first rule in Figure 19 matches a

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 295

[CSTR LABEL INV SPEC1]

P [i] = invokespecial {|ϕ, <init>, α → void|}M
� � Si <: α • ((Uninit σm 0) · β)

Zi = false
Zi+1 = true

�, S,Z, i � P constructs σm

[CSTR LABEL INV SPEC2]

P [i] = invokespecial {|ϕ, <init>, α → void|}M
∀β. � �� Si <: α • ((Uninit σm 0) · β)

Zi+1 = Zi

�, S, Z, i � P constructs σm

[CSTR LABEL IFEQ]

P [i] = ifeq L

ZL = Zi = Zi+1
�,S,Z, i � P constructs σm

[CSTR LABEL GOTO]

P [i] = goto L

ZL = Zi

�, S, Z, i � P constructs σm

[CSTR LABEL JSR]

P [i] = jsr L

ZL = Zi = Zi+1
�,S,Z, i � P constructs σm

[CSTR LABEL RET-THROW]

P [i] ∈ {ret x, throw}
�, S,Z, i � P constructs σm

[CSTR LABEL RETURN]

P [i] = return
Zi = true

�,S,Z, i � P constructs σm

[CSTR LABEL REST]

∀x,L,M. P [i] �∈ {invokespecial M, ifeq L,

goto L, jsr L, ret x, throw, return}
Zi+1 = Zi

�, S, Z, i � P constructs σm

[CSTR LABEL HANDLER]

∀i ∈ [b, e). Zi = Zt

�, S, Z, 〈b, e, t, σ 〉 � P constructs σm

Figure 19. Structural rules to determine initialization status in a constructor.

i P [i] Zi Si Fi [0] Fi [1]
1 : load 0 false ε (Uninit B 0) int
2 : load 1 false (Uninit B 0) · ε (Uninit B 0) int
3 : invokespecial

{|B, <init>, int → void|}M false int · (Uninit B 0) · ε (Uninit B 0) int
4 : load 0 true ε B int
5 : load 0 true B · ε B int
6 : push 2 true B · B · ε B int
7 : invokevirtual

{|B, foo, int → int|}M true int · B · B · ε B int
8 : putfield {|B, num, int|}F true int · B · ε B int
9 : return true ε B int

Figure 20. The type information for constructor {|B, <init>, int → void|}M in Figure 2.

296 STEPHEN N. FREUND AND JOHN C. MITCHELL

valid call to a superclass constructor, and the rest simply preserve the initialization
status of the object being constructed. Since all instructions guarded by a handler
must agree with the target on initialization status, an exception handler may not
guard the call to the superclass constructor.

4.2.3. Subroutines

Checking programs with subroutines is difficult for the following reasons:

1. Subroutine calls and returns occur in a stack-like manner. In some cases, how-
ever, a subroutine return, exception, or branch instruction may cause a jump to
a return address other than that of the most recently called subroutine’s caller.

2. A specific form of local variable polymorphism introduced by subroutines
must be used correctly. Local variables not touched by a subroutine may con-
tain values of conflicting types at different calls to the subroutine. The types
of these variables are preserved across the subroutine call so that they may be
used again once the subroutine exits.

Our mechanism for checking subroutines uses information about the subroutine
call graph, and, in particular, the set of all valid subroutine call stacks for each
instruction i. A call stack is a sequence of return addresses representing the stack
of subroutines that have been called in a method but that have not yet returned. We
capture the set of all possible call stacks for line i, Gi , by examining the structure
of the code array and exception handlers.

Figure 21 presents the rules to specify G, and Figure 22 shows a sample JVMLf

program with subroutines and its labeling and type information. The dominator set
DP,[b,e) is the set of all subroutines that dominate every path to each instruction in
the range [b, e). The set is defined by the following equations:

DP,i
def= {L | ∀ρ ∈ Gi. ∃p ∈ ρ. P [p − 1] = jsr L},

DP,[b,e)
def= {L | ∀i ∈ [b, e). L ∈ DP,i}.

In essence, these labeling rules ensure that all instructions considered part of sub-
routine L are associated with the same set of subroutine call stacks. The rule for
jsr also rules out cycles in the subroutine call graph. One or more subroutines
may be implicitly popped off the subroutine call stack if an exception causes a
jump to a handler located outside of the currently executing subroutine. To be
able to type check such situations, the labeling rules require that the target of an
exception handler belong to a subroutine dominating every instruction protected
by the handler.

More than one valid labeling may exist for a method body P . To simplify the
static semantics, we shall refer to a canonical labeling for a method body, GP . We
define GP to be the labeling that conforms to all rules above and also contains
no extra call stacks. In other words, no extraneous subroutine call stacks are in-
corporated into GP,L at the beginning of each subroutine L. Also, we assume that

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 297

[LAB JSR]

P [i] = jsr L

∀ρ ∈ Gi. ∀p ∈ ρ. P [p − 1] �= jsr L

{(i + 1) · ρ | ρ ∈ Gi } ⊆ GL

Gi+1 = Gi

G, i � P labeled

[LAB IFEQ]

P [i] = ifeq L

GL = Gi = Gi+1
G, i � P labeled

[LAB GOTO]

P [i] = goto L

GL = Gi

G, i � P labeled

[LAB RET THROW]

P [i] ∈ {ret x, return,
returnval, throw}

G, i � P labeled

[LAB NORMAL]

∀x, L. P [i] �∈ {jsr L, ifeq L, goto L, ret x,

return, returnval, throw}
Gi = Gi+1

G, i � P labeled

[LAB HANDLER 0]

Gt = {ε}
G, 〈b, e, t, σ 〉 � P labeled

[LAB HANDLER 1]

Gt = GL

L ∈ DP,[b,e)
G, 〈b, e, t, σ 〉 � P labeled

Figure 21. JVMLf labeling rules.

i P [i] GP,i Si Fi [1] Fi [2] Fi [3]
1 : jsr 3 ε ε Top Top Top
2 : return ε ε Top Top Top
3 : store 1 2 · ε (Ret 3) · ε Top Top Top
4 : jsr 7 2 · ε ε (Ret 3) Top Top
5 : jsr 10 2 · ε ε (Ret 3) Top Top
6 : ret 1 2 · ε ε (Ret 3) Top Top
7 : store 2 5 · 2 · ε (Ret 7) · ε Top Top
8 : jsr 10 5 · 2 · ε ε (Ret 7) Top
9 : ret 2 5 · 2 · ε ε (Ret 7) Top

10 : store 3 6 · 2 · ε, 9 · 5 · 2 · ε (Ret 10) · ε Top
11 : ret 3 6 · 2 · ε, 9 · 5 · 2 · ε ε (Ret 10)

Figure 22. The type information computed for a method using subroutines.

the labeling rules for exception handlers always match the most recently called
dominator in GP . While this assumption prevents a small set of programs with
valid labels from being assigned a canonical labeling, we have not encountered
these programs in practice.

The typing rules for subroutine call and return appear in Figure 17. In those
rules, the domains of the local variable maps are restricted inside subroutines, and
the type (Ret L) is assigned to the return address generated by a jsrL instruction.
The types of local variables over which the current instruction is polymorphic
depends on execution history. The auxiliary function F , defined in Figure 23,
recovers these types: F (F , pc, ρ)[y] = τ only if local variable y can be assigned
type τ at line pc of the program given subroutine call stack ρ implicit in the
execution history. In addition, the hiding function H(P, τ, ρ) equals Top if τ is
a return address type inconsistent with all return addresses is in ρ. If τ is the type

298 STEPHEN N. FREUND AND JOHN C. MITCHELL

[TT 0]

x ∈ Dom(F pc)

F (F , pc, ρ)[x] = F pc[x]

[TT 1]

x �∈ Dom(F pc)

F (F , p, ρ)[x] = τ

F (F , pc, p · ρ)[x] = τ

[HT 0]

τ �∈ Ret

H(P, τ, ρ) = τ

[HT 1]

∀p ∈ ρ. P [p − 1] �= jsr L

H(P, (Ret L), ρ) = Top

[HT 2]

P [p − 1] = jsr L

H(P, (Ret L), ρ • (p · ρ′)) = (Ret L)

[HT ε]

H(P, ε, ρ) = ε

[HT SEQ]

H(P, τ, ρ) = τ ′
H(P, β, ρ) = β′

H(P, τ · β, ρ) = τ ′ · β′

[HT <:]
H(P, τ, ρ) = τ ′′
� � τ ′′ <: τ ′

� � H(P, τ, ρ) <: τ ′

Figure 23. Auxiliary rules for jsr and ret.

of a return address appearing in ρ, or any type other than a return address type,
then H(P, τ, ρ) = τ .

We prohibit uninitialized object types from propagating to the type information
for successors of jsr and ret instructions to prevent an error that we found in
the original Sun verifier [18]. To do this, we compute the type information for
successor instructions based on stack and local variable type information in which
uninitialized object types present at line i have been converted to Top. For any
type τ , the function HideUninit(τ) is defined as follows:

HideUninit(τ) =
{
τ if τ �∈ Uninit,
Top if τ ∈ Uninit.

We extend the definition to cover sequence and map types in the obvious way. We
discuss the typing rules for exception handlers in Section 4.2.5.

Soundness of these rules depends on invariants showing that the implicit sub-
routine call stack is always contained in the sets of statically computed call stacks
and that a return address type (Ret L) is assigned only to a valid return address
for L present in the implicit call stack.

Our labeling strategy is based on the labeling technique of Stata and Abadi [43]
and offers several improvements over their system. Stata and Abadi labeled each
instruction with a linearization of all subroutine calling sequences leading to it,
but this linearization contains too little information to check multilevel returns and
exceptions handlers.

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 299

4.2.4. Limitations of the Labeling Rules

One limitation of our labeling technique is the treatment of branch-and-jump state-
ments, such as goto. These instructions may implicitly pop subroutines off the
subroutine call stack when they are executed. Figure 24 demonstrates such a pro-
gram. The goto at line 16 implicitly leaves the subroutine starting at line 10. We
cannot assign a valid labeling to the program because the labeling rules require that
the goto instruction and its target belong to the same subroutine. Compilation of
break statements within finally clauses can cause similar situations.

To partially address this limitation, we could relax the labeling rule for the goto
instruction to require only that the target belong to a subroutine dominating the
goto instruction, as we did in the labeling rule for exception handler targets. How-
ever, this approach would lead to complex typing rules for all branch instructions,
and we have not fully explored the implications of such rules for our checking
algorithm.

void f() {
int i = 0;
while (true) {
try {
...

} finally {
if (i == 0) continue;
...

}
}

}

1 : push 0
2 : store 1 ; set i to 0
3 : ... ; code from try block
4 : jsr 10 ; jump to subroutine
5 : goto 3 ; goto top of loop
6 : store 2 ; store exception value
7 : jsr 10 ; jump to subroutine
8 : load 2 ; load exception value
9 : throw ; re-throw exception

10 : store 3 ; store return address
11 : load 1 ; load i
12 : push 0 ; push 0
13 : ifeq 16 ; branch if i == 0
14 : ... ;
15 : ret 3 ; return from subroutine
16 : goto 3 ; jump out of subroutine with goto
Exception table:

from to target type
3 4 6 Throwable

Figure 24. A Java program whose translation into JVML is rejected by our type system.

300 STEPHEN N. FREUND AND JOHN C. MITCHELL

Several recent approaches to bytecode verification handle programs like the one
in Figure 24 more effectively. They forego labeling in favor of analysis techniques
that enforce less stringent structure on code with subroutines [41, 27, 5]. We discuss
them in detail in Section 9.

4.2.5. Exception Handler Typing Rules

Exception handlers place additional typing requirements on F and S. Given F , S,
and P , an exception handler 〈b, e, t, σ 〉 is well typed if

− [b, e) is a valid interval in Dom(P), and t ∈ Dom(P),
− σ is a subclass of Throwable,
− St is a valid type for a stack containing only a single reference to a σ object,

and
− F t assigns types to local variables that are at least as general as the types of

those local variables at all program points protected by the handler.

We show the typing rules to capture these requirements in Figure 25. The
GoodTarget judgment verifies that the domain of the local variable map at the in-
struction to which the handler jumps is the same as it is in the rest of the subroutine.
The GoodExceptionJump judgment verifies local variable types at the target, given
a particular subroutine call stack. It employs checks similar to rule [RET] because
the process of catching an exception may change the implicit subroutine call stack
in a way similar to a multilevel return.

[WT HANDLER]

� � σ <: Throwable
1 ≤ b < e

b, e − 1, t ∈ Dom(P)

GoodTarget(P, F , t)

∀i ∈ [b, e). ∀ρ ∈ GP,i . GoodExceptionJump(�,P, F , i, ρ, t)

� � σ · ε <: St

�,F , S � 〈b, e, t, σ 〉 handles P

[GT 0]

GP,t = {ε}
Dom(F t) = VAR

GoodTarget(P, F , t)

GT 1

p · ρ ∈ GP,t

P [p − 1] = jsr L

Dom(F t) = Dom(FL)

GoodTarget(P, F , t)

[EXC JUMP]

ρ′ ∈ GP,t

∀y ∈ VAR. ∀τ, τ ′.
(

F (F , i, ρ • ρ′)[y] = τ

∧ F (F , t, ρ′)[y] = τ ′
)
⇒ � � H(P, τ, ρ′) <: τ ′

GoodExceptionJump(�,P, F , i, ρ • ρ′, t)

Figure 25. Exception handler typing rules.

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 301

5. Soundness

In our machine model, a program that attempts to perform an operation causing
a type error gets stuck because those operations are not defined. By proving that
well-typed programs do not get stuck, we know that well-typed programs will not
attempt to perform illegal operations when executed. The rest of this section gives
a high-level overview of the formal statement and proof of this soundness property.

We first present in Figure 26 rules to map run-time values to types. We start with
rules for primitive values and lead up to a rule that types an entire heap, which is
well typed if every record in the heap is well typed. The function TagToType con-
verts a tag to a type, erasing the extra information kept in the tag of uninitialized ob-
jects. Thus, TagToType(ϕ♦(Uninit σ j)) = (Uninit σ j), and TagToType(τ)
= τ if τ is any other kind of tag.

Execution steps preserve invariants relating the run-time state to the static type
information, and each step maintains a well-typed heap.

THEOREM 1 (JVMLf One-Step Soundness). Given � � wt:

∀A,A′, h, h′.
� � h wt
∧ GoodStack(�,A, h)

∧ � � A;h → A′;h′
⇒ � � h′ wt

∧ GoodStack(�,A′, h′)

[CONST]

v ∈ values of type τ

τ ∈ Prim ∪ {Null}
�, h � v : τ

[ADDR]

K,L ∈ ADDR

�,h � K : (Ret L)

[OBJ]

h[a] = 〈〈{|σi , li , κi|}F = vi 〉〉i∈Iσ
�[σ].fields = {{|σi, li , κi|}F}i∈I

∀i ∈ I. � � Tag(h, vi) <: κi
�, h � a : σ

[UNINIT OBJ]

h[a] = 〈〈{|σi , li , κi|}F = vi 〉〉i∈Iϕ♦(Uninit σ j)
�[ϕ].fields = {{|σi , li , κi|}F}i∈I

� � ϕ <:C σ

∀i ∈ I. � � Tag(h, vi) <: κi
�, h � a : (Uninit σ j)

[ARRAY]

h[a] = [[vi]]i∈[0..n−1]
(Array τ)

∀i ∈ [0..n − 1].� � Tag(h, vi) <: τ
�, h � a : (Array τ)

[ε VAL]

�,h � ε : ε

[SEQ VAL]

�, h � v : τ
�, h � s : β

�, h � v · s : τ · β

[SUBSUMPTION]

�, h � v : τ1
� � τ1 <: τ2
�, h � v : τ2

[WT HEAP]

∀a ∈ Dom(h). �, h � a : TagToType(Tag(h, a))

� � h wt

Figure 26. Typing rules for values.

302 STEPHEN N. FREUND AND JOHN C. MITCHELL

[GS 0]

GoodStack(�, ε, h)

[GS 1]

M = {|σm, m, ε → void|}M
m �= <init>

∃ρ. GoodFrame(�, F , S, P, pc, f, s, ρ, h)

GoodStack(�, 〈M, pc, f, s, ∅〉 · ε, h)

[GS METH]

M = {|σm, m, αm → γm|}M
m �= <init>

�[M] = 〈P, H, F, S〉
A′ = 〈M ′, pc′, f ′, s′, z′〉 ·A1
M ′

�
[pc′] = invokevirtual

{|ϕm, m, αm → γm|}M
� � σm <: ϕm

GoodStack(�,A′, h)
∃ρ.GoodFrame(�, F , S, P, pc, f, s, ρ, h)

GoodStack(�, 〈M, pc, f, s, ∅〉 · A′, h)

[GS INT]

M = {|σm, m, αm → γm|}M
m �= <init>

�[M] = 〈P, H, F, S〉
A′ = 〈M ′, pc′, f ′, s′, z′〉 ·A1

M ′
�
[pc′] = invokeinterface

{|ωm, m, αm → γm|}I
� � σm <: ωm

GoodStack(�,A′, h)
∃ρ.GoodFrame(�, F , S, P, pc, f, s, ρ, h)

GoodStack(�, 〈M, pc, f, s, ∅〉 · A′, h)

[GS CSTR]

M = {|σm, <init>, αm → void|}M
�[M] = 〈P, H, F, S〉

A′ = 〈M ′, pc′, f ′, s1 • (a · s′), z′〉 · A1
M ′

� [pc′] = invokespecial M

|αm| = |s1|
GoodStack(�,A′, h)

∃ρ. GoodFrame(�, F , S, P, pc, f, s, ρ, h)
GoodConstructor(P, pc, σm, h, a, 〈b, c〉)

Corresponds(�,F pc, Spc, f, s, h, b, (Uninit σm 0))
GoodStack(�, 〈M, pc, f, s, 〈b, c〉〉 ·A′, h)

[GS EXC]

Tag(h, a) = σ

� � σ <: Throwable
GoodStack(�,A′, h)

GoodStack(�, 〈a〉exc ·A′, h)

GoodFrame(�, F , S, P, pc, f, s, ρ, h)
def=

pc ∈ Dom(P)

∧ �, h � s : Spc
∧ ∀y ∈ VAR. ∃τ. F (F , pc, ρ)[y] = τ ∧ �, h � f [y] : τ
∧ ConsistentInit(�, F pc, Spc, f, s, h)

∧ ConsistentSub(F , S, P, pc, f, s, ρ)

Figure 27. GoodStack and GoodFrame.

The GoodStack judgment, defined in Figure 27, requires that the state of the
machine be consistent with the static type information for the program. There is
one rule for each of the six possible stack configurations. The stack may

− be empty,
− have exactly one activation record,
− have an activation record on the top that was created by either an

invokevirtual, invokeinterface, or invokespecial instruction, or
− have an exception activation record on the top.

In these rules, it is convenient to assume that there is a canonical F and S for each
method, and we let �[M] now return a record 〈P,H,F, S〉 containing the code
array, exception handlers, and canonical type information for method M.

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 303

The basic format for each rule is the same. If there is a preceding activation
record below the top one, the rules ensure that the proper relationship between that
activation record and the topmost one is met. For example, if the topmost activation
record were created by a virtual method invocation, rule [GS METH] ensures that
the method called to create it was properly dispatched. In addition, the GoodFrame
invariant must be satisfied by each activation record on the stack.

The five conjuncts of GoodFrame have the following meaning:

pc ∈ Dom(P): The program counter is within the code array for the method.

�, h � s : Spc: The stack has values of the expected types for the current line of
execution.

∀y ∈ VAR. ∃τ. F (F , pc, ρ)[y] = τ ∧ �, h � f [y] : τ : The local variables contain
values of the expected types for the current line of execution and subroutine
call history captured in ρ.

ConsistentInit(�, F pc, Spc, f, s, h): The invariants ensuring the correctness of the
alias analysis for tracking uninitialized object references are satisfied by the
current state of the machine. This judgment is defined in Figure 28, and it
shows that each uninitialized object type maps to a unique run-time value.

[CONS INIT]

∀σ, j. ∃b. � � b : (Uninit σ j) ∧ Corresponds(�, F i , Si, f, s, h, b, (Uninit σ j))

ConsistentInit(�,F i , Si , f, s, h)

[CORR]

∀x ∈ Dom(F i). F i [x] = (Uninit σ j) !⇒
(

f [x] = b

∧ �, h � b : (Uninit σ j)

)
StackCorresponds(�, Si , s, h, b, (Uninit σ j))

Corresponds(�,F i , Si , f, s, h, b, (Uninit σ j))

[SC 0]

StackCorresponds(�, ε, ε, h, b, (Uninit σ j))

[SC 1]

�, h � b : (Uninit σ j)
StackCorresponds(�, Si , s, h, b, (Uninit σ j))

StackCorresponds(�, (Uninit σ j) · Si , b · s, h, b, (Uninit σ j))

[SC 2]

τ �= (Uninit σ j)
StackCorresponds(�, Si , s, h, b, (Uninit σ j))

StackCorresponds(�, τ · Si , v · s, h, b, (Uninit σ j))

Figure 28. Invariants for object initialization.

304 STEPHEN N. FREUND AND JOHN C. MITCHELL

[RET CORR]

∀y ∈ VAR. ∀L. F (F , pc, ρ)[y] = (Ret L) !⇒
(

f [y] ∈ ρ

∧ P [f [y] − 1] = jsr L

)
StackRetCorresponds(P, Spc, s, ρ)

RetCorresponds(P, F , S, pc, f, s, ρ)

[RSC 0]

StackRetCorresponds(P, ε, ε, ρ)

[RSC 1]

p ∈ ρ

P [p − 1] = jsr L

StackRetCorresponds(P, Si , s, ρ)

StackRetCorresponds(P, (Ret L) · Si , p · s, ρ)

[RSC 2]

τ �∈ Ret
StackRetCorresponds(P, Si, s, ρ)

StackRetCorresponds(P, τ · Si , v · s, ρ)

[WF 1]

Dom(F pc) = VAR

GP,pc = {ε}
WFCallStack(P, F , pc, ε)

[WF 2]

p · ρ ∈ GP,pc
P [p − 1] = jsr L

GP,pc = GP,L

Dom(F pc) = Dom(FL)

WFCallStack(P, F , p, ρ)

WFCallStack(P, F , pc, p · ρ)

[NHU]

∀y ∈ VAR \ Dom(F pc). ∀τ. F (F , pc, ρ)[y] = τ ⇒ τ �∈ Uninit

NoHiddenUninit(F , pc, ρ)

Figure 29. Subroutine call stack invariants.

ConsistentSub(F , S, P, pc, f, s, ρ): The subroutine return address stack ρ is con-
sistent with the program state and type information.

The ConsistentSub predicate is defined as follows:

ConsistentSub(F , S, P, pc, f, s, ρ)
def=

WFCallStack(P, F , pc, ρ)
∧ RetCorresponds(F , S, P, pc, f, s, ρ)
∧ NoHiddenUninit(F , pc, ρ)

The inference rules for these three statements appear in Figure 29. If the judgment
RetCorresponds(F , S, P, pc, f, s, ρ) is derivable, the return addresses stored in
the local variables and stack correspond to return addresses appearing in ρ. The
WFCallStack judgment ensures that the local variable map domain and set of pos-
sible subroutine call stacks is constant for the duration of a subroutine call. Finally,
the last rule in the figure enforces the requirement that no uninitialized object types
appear in local variables not visible to the current subroutine.

Constructors require one additional execution invariant to track which object is
being constructed and where the initialized form is stored (recall that constructors

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 305

[GCSTR 0]

ZP,pc = false
Tag(h, a) = ϕ♦(Uninit σ ′ j)
Tag(h, b) = ϕ♦(Uninit σ 0)

GoodConstructor(P, pc, σ, h, a, 〈b, null〉)

[GCSTR 1]
ZP,pc = true

Tag(h, a) = ϕ♦(Uninit σ ′ j)
Tag(h, b) = ϕ♦(Uninit σ 0)

Tag(h, c) = ϕ

GoodConstructor(P, pc, σ, h, a, 〈b, c〉)
Figure 30. Constructor invariants.

create new objects to preserve a heap monotonicity property). The GoodConstructor
judgment in Figure 30 captures this information, and it is used in the [METH CSTR]
rule.

We prove Theorem 1 by case analysis on the operational semantics rule used by
the execution step. The proof leverages the soundness proofs for JVML0 [43] and
JVMLi [18]; but adding heaps, object references, arrays, and exceptions introduces
many additional cases. We sketch the proof for store x to motivate the structure
of the invariants we have presented, but we refer the reader to Freund’s thesis for a
more thorough treatment [15].

We shall explore two key properties about the execution of store. First, we
show that execution of a store instruction in a virtual machine configuration A;h,
where � � h wt and GoodStack(�,A, h), yields a new well-typed heap. In gen-
eral, we prove this statement for any instruction by noting that all heap updates
respect three properties: (1) the types of records themselves never change, (2) val-
ues written into heap records have the same types as the overwritten values, and (3)
any new records introduced by allocation are well-typed records. If an instruction
changes a heap h into heap h′ according to these three rules, then h′ will be a well-
typed heap. For store, this is trivial to show since h is not modified. A related
property guaranteed by all instructions is that if GoodStack(�,A, h) is derivable,
then GoodStack(�,A, h′) will also be derivable, as shown by induction over the
derivation of GoodStack(�,A, h). This observation is important for proving the
second key property of instruction execution.

The second property is that executing a store instruction preserves all invari-
ants listed in GoodFrame. Suppose a store instruction moves the virtual machine
from configuration 〈M, pc, f, v · s, z〉 · A;h to 〈M, pc + 1, f [x �→ v], s, z〉 ·
A;h. Further suppose that P is the method body for M and that F and S com-
prise the type information used to show that �,F, S, pc � P : M. We pro-
ceed by showing that if GoodFrame(�, F , S, P, pc, f, v · s, ρ, h) holds for some
ρ, then GoodFrame(�, F , S, P, pc + 1, f [x �→ v], s, ρ, h) will also hold. We
consider each conjunct of GoodFrame(�, F , S, P, pc + 1, f [x �→ v], s, ρ, h)
separately:

pc + 1 ∈ Dom(P): The conclusion �,F, S, pc � P : M could only be derived by
rule [STORE]. As a requirement of that rule, pc + 1 ∈ Dom(P).

306 STEPHEN N. FREUND AND JOHN C. MITCHELL

�, h � s : Spc+1: As a requirement of rule [STORE], we know that � � Spc <:
τ · Spc+1 for some τ . Since �, h � v · s : Spc, we can conclude that �, h � v · s : τ ·
Spc+1 by [SUBSUMPTION]. Thus, �, h � s : Spc+1.

∀y ∈ VAR. ∃τ ′. F (F , pc + 1, ρ)[y] = τ ′ ∧ �, h � f ([x �→ v])[y] : τ ′: The only
variable of interest is x. The static semantics for [STORE] require that x be in
Dom(Fpc) and, therefore, in Dom(Fpc+1). (We know that Dom(F pc) = Dom(F pc+1)

because F pc[x �→ v] is a subtype of F pc+1, and a map can only be a subtype of
another map with the same domain.) Thus, F (F , pc + 1, ρ)[x] = Fpc+1[x]. Pick τ

such that � � Spc <: τ ·Spc+1, as required by rule [STORE]. Since �, h � v · s : Spc,
we know that �, h � v : τ . After the instruction executes, (f [x �→ v])[x] = v,
and according to rule [STORE], � � τ <: Fpc+1[x]. Thus, �, h � (f [x �→ v])[x] :
Fpc+1[x] by [SUBSUMPTION].

ConsistentInit(�, F pc+1, Spc+1, f [x �→ v], s, h): If v is not originally assigned an
uninitialized object type when it is on top of the stack, then Fpc+1[x] will not
have an uninitialized object type, and we may show that ConsistentInit(�, F pc+1,

Spc+1, f [x �→ v], s, h), given the assumption ConsistentInit(�, F pc, Spc, f, v ·
s, h). On the other hand, suppose v is an uninitialized object reference and is
assigned type (Uninit σ j) for some σ and j . If Fpc+1[x] is also assigned the
type (Uninit σ j), we must show that all occurrences of
(Uninit σ j) in F pc+1 and Spc+1 map to v in f [x �→ v] and s. Since v was
previously on the stack, ConsistentInit(�, F pc, Spc, f, v · s, h) will guarantee that
all occurrences of (Uninit σ j) in Spc and Fpc will correspond to the run-time
value v in f and v ·s, and we may show this property for the post-state as well. The
correspondences between all other uninitialized object types and unique run-time
values that held in the prestate will still hold after the store instruction executes.

ConsistentSub(F , S, P, pc + 1, f [x �→ v], s, ρ): By the structural labeling rules
for P , Gpc+1 = Gpc, and we know that Dom(Fpc) = Dom(Fpc+1). These two facts
are sufficient to prove that WFCallStack(P, F , pc + 1, ρ). The statement
NoHiddenUninit(F , pc + 1, ρ) is also trivial to prove, given that
NoHiddenUninit(F , pc, ρ) and � � Fpc[x �→ τ] <: Fpc+1. Proving that Ret-
Corresponds(F , S, P, pc + 1, f [x �→ v], s, ρ) is similar to proving that the alias
analysis for object initialization works correctly. In essence, either the value v does
not originally have a return address type, or it has type (Ret L) and v is in ρ. In the
latter case, all occurrences of (Ret L) in the static type information for pc match
occurrences of v in v · s and f because RetCorresponds(F , S, P, pc, f, v · s, ρ).
Given the inference rules for RetCorresponds, we know that the same correspon-
dence holds between the type information for pc + 1 and f [x �→ v] and s.

Once we have shown that executing a store instruction preserves the
GoodFrame invariants, it is routine to show that GoodStack is also preserved.
The same general proof outline may be used to show that all instructions affecting

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 307

only the topmost activation record preserve the GoodStack invariant. The remain
instructions, such as invokevirtual, throw, and return, change more than one
activation record, but the design of the JVMLf semantics ensure that the invariants
are all preserved. For example, the initial state of a newly created activation record
matches the initial conditions for the method type information specified in rule
[METH CODE], and the rules for returnval ensure that values of the appropriate
type are always returned to the caller of a method.

We now state multistep soundness and progress theorems for JVMLf .

THEOREM 2 (JVMLf Multistep Soundness). Given � � wt:

∀A0, A
′, h0, h

′.
� � h wt
∧ GoodStack(�,A, h)

∧ � � A0;h0 →∗ A′;h′
⇒ � � h′ wt

∧ GoodStack(�,A′, h′)

Proof is by induction on the number of steps taken by the virtual machine, and
it is routine once Theorem 1 is established.

THEOREM 3 (JVMLf Progress). Given � � wt:

∀A, h.

� � h wt
∧ GoodStack(�,A, h)

⇒ ∃A′, h′. � � A;h → A′;h′

We prove Theorem 3 by showing that if � � h wt and GoodStack(�,A, h),
then the hypotheses for at least one rule of the operational semantics will be satis-
fied.

We now state the main soundness theorem for JVMLf . In the Java Virtual Ma-
chine, execution begins by invoking a static method main for some class. Since
we have not included static methods, JVMLf programs start in a different way.
A program begins by executing a method that takes no arguments and returns no
value on an object with no fields. In addition, that object is the only object in the
heap. The following theorem states that if a program begins in this way, it will not
halt unless the activation record stack becomes empty.

THEOREM 4 (JVMLf Soundness). If � � wt, M = {|σ, m, ε → void|}M, M ∈
�, �[σ].fields = ∅, a ∈ LOC, and Dom(h0) = ∅, then

∀A, h.

� � 〈M, 1, f0, a · ε〉 · ε;h0[a �→ 〈〈〉〉σ] →∗ A;h
∧ ¬∃A′, h′. � � A;h → A′;h′

⇒ A = ε

308 STEPHEN N. FREUND AND JOHN C. MITCHELL

The proof is a direct application of Theorem 2 and Theorem 3.

6. Verifier Algorithm

A Java Virtual Machine must check the two major properties captured by the static
semantics: (1) the program environment is well formed, and (2) the code of each
method body is well typed. The first property has been extensively studied by
others, especially in the presence of dynamic class loading and name resolution
(see, for example, [10, 20, 22, 46, 38, 13]). Many of these mechanisms could be
merged with our framework. We are primarily interested in how a bytecode verifier
can check the second property for the JVMLf type system presented in this paper,
and we give an overview of a checking algorithm proven to accept only well-typed
method bodies. Given a method body P and the environment for the program, our
algorithm computes type information consistent with the rules of the type system
in the following order:

1. GP , the function to map an address to the set of possible subroutine calls stacks
for that line of code.

2. The domain of the local variable type map F i , for each address i.
3. F and S, the functions to map an address to the local variable type map and

stack type for that line of code.

We separate the algorithm into these three steps so that all edges in the flow graph
and local variable uses are known before beginning the dataflow analysis to com-
pute F and S. If this information is not precomputed, it becomes more difficult to
compute F and S efficiently and to prove that the dataflow analysis algorithm is
correct, as discussed in Section 9 where we compare our algorithm to some of the
other proposed algorithms.

We begin by computing GP with an iterative algorithm that uses the transfer
function shown in Figure 31. We order sets of possible subroutine call stacks in a
lattice by subset inclusion. The lattice is finite for any program because we do not
permit call stacks to contain multiple return addresses for the same subroutine. The
join operation Gi "G G′

i equals Gi ∪G′
i , provided that Gi ∪G′

i is consistent. A set
is consistent if all of its call stacks end with calls to the same subroutine. In other
words, Gi ∪ G′

i is consistent if it is ∅, {ε}, or {p1 · ρ1, . . . , pn · ρn} such that, for
some L, P [pi − 1] = jsr L for all i. If Gi ∪G′

i is not consistent, then it contains
call stacks created while entering two different subroutines, and Gi "G G′

i results
in a special error element in the lattice. We define G "G G′ to be the join of the
subroutine call stack sets at each address.

Without exception handlers, we can find GP by setting each GP,i to ∅ and
repeatedly computing GP = GP "GCG(P,GP , i), picking i from Dom(P) on each
iteration, until quiescence is reached or an error occurs. Errors occur when either an
assertion in CG fails or when the join operation sets some Gi to the error element.
We use a slightly different approach to deal with exception handlers. Assigning

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 309

CG(P ,G,i) {

case P [i] of

ifeq L:

Gi+1 := Gi

GL := Gi

jsr L:

Gi+1 := Gi

assert ∀ρ ∈ Gi. ∀p ∈ ρ. P [p − 1] �= jsr L

GL := GL ∪ {(i + 1) · ρ | ρ ∈ Gi }
ret x:

...
return G

}

Figure 31. The transfer function for computing G.

a label to the target of a handler requires finding the dominating subroutines for
it, but the set of dominators for an instruction is not a monotonic property of the
lattice described above. Therefore, we fix the order in which our algorithm picks i

so that (1) an instruction is visited only after at least one predecessor, (2) all calls
to subroutine L are visited before instruction L, and (3) the target of an exception
handler is visited only after all instructions protected by the handler. This ordering
ensures that the full set GL for a subroutine L is computed before propagating
that information inside subroutine L, and that the set of dominators for a target
is known exactly before visiting the target. When visiting a target t , CG can then
identify the most recently called dominator and set Gt accordingly. An ordering of
this form will exist for any well-typed JVMLf program generated by a reasonable
Java compiler (the second and third requirements are satisfied because the type
system requires that the subroutine call graph be acyclic and because the target of
an exception handler will never be protected by the handler).

The next step is to compute the set of local variables in the domain of local
variable maps for the instructions in each subroutine. The domain of the local
variable map for an instruction in subroutine L contains any variable accessed
by the code of L, plus the variables accessed by code belonging to subroutines
transitively called from inside L. A simple depth-first traversal of the subroutine
call graph computes the information needed to construct these sets.

The final step, constructing F and S, uses dataflow analysis to find a least fixed
point in the lattice of potential types for P . We translate the JVMLf instruction
typing rules into a transfer function, part of which is presented in Figure 32. We
assume a fixed environment � and Method-Ref M = {|ϕ, m, α → γ |}M in the rest
of this section. Constraints in the typing rules become assertions and transforma-
tions on F and S. The function First(Si) returns the top element of stack Si , and
Rest(Si) returns stack Si without the top element.

Verify uses Transfer to find a valid type for the method if it exists. The
initial values F 0 and S0 are the least types consistent with the domains of the

310 STEPHEN N. FREUND AND JOHN C. MITCHELL

Transfer(P ,G,i,〈F , S〉) {

case P [i] of

store x:

assert x ∈ Dom(Fi)

Si+1 := Rest(Si)

Fi+1 := Fi[x �→ First(Si)]

new σ:

Si+1 := (Uninit σ i) · [Top/(Uninit σ i)]Si
Fi+1 := [Top/(Uninit σ i)]Fi

...
return 〈F , S〉

}

Verify(P ,G) {

〈F, S〉 := 〈F 0, S0〉
repeat

〈F , S〉 := 〈F , S〉 " Transfer(P ,G,i,〈F , S〉) for i ∈ Dom(P)

until ∀i ∈ Dom(P). Transfer(P ,G,i,〈F , S〉) = 〈F , S〉
}

Figure 32. Verify algorithm.

local variable maps and initial conditions on method entry. The type information
for F and S is merged with the join operator. The join of two types, written τ1 " τ2,
is the least upper bound of τ1 and τ2 in the type lattice induced by the JVMLf

subtyping relation, augmented with the least type Bottom. The join operation is
also extended in the obvious way to F and S. For simplicity, we do not present the
transfer function for exception handlers, but it is constructed from the typing rules
in a similar fashion, and when processing line i, Transfer would also apply the
exception handler transfer function for each handler protecting line i.

Given GP and the domain of each local variable map, the Verify algorithm
for F and S will accept only method bodies to which rule [METH CODE] may be
successfully applied and will accept all method bodies typeable by that rule. The
proof of these properties is straightforward, but tedious, because of the size of the
type system. Therefore, we state the key theorems and provide a brief sketch of the
proofs.

To prove that Verify is sound, we show any fixed point 〈F , S〉 computed
by Transfer is consistent with all instructions in the code array, that is, ∀i ∈
Dom(P). �, F , S, i � P : M. Demonstrating that the algorithm satisfies the other
hypotheses of rule [METH CODE] is straightforward once this property has been
established. We first present a theorem stating that Transfer(P,G,i,〈F , S〉)
returns a type consistent with the typing rule for instruction i.

THEOREM 5 (Transfer Soundness). Given code array P with labeling G and
i ∈ Dom(P), for all F , S, F ′, and S ′:

Transfer(P,G,i,〈F , S〉) = 〈F ′, S ′〉 !⇒ �,F ′, S ′, i � P : M

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 311

Consider the store instruction. If P [i] = store x, then S ′
i+1 = Rest(Si) and

F ′
i+1 = F i[x �→ First(Si)], where x ∈ Dom(F ′

i). In addition, i + 1 ∈ Dom(P),
or else we could not have assigned types to F ′

i+1 and S ′
i+1. We shall use rule

[STORE] to derive �,F ′, S ′, i � P : M, and we dispatch the remaining hypotheses
of that rule. First, if S ′

i+1 = Rest(Si) and S ′
i = Si , then � � Rest(S ′

i) <: S ′
i+1.

We may show that � � F ′
i[x �→ First(Si)] <: F ′

i+1 in a similar fashion. All
other cases are similar.

During the computation of F and S, Transfer is repeatedly applied to in-
structions in P until either (1) an error occurs or (2) quiescence is reached. In
the latter case, any additional calls to the function Transfer(P,G,i,〈F , S〉)
for any i yields 〈F, S〉. Therefore, we can use Theorem 5 to conclude that ∀i ∈
Dom(P). �, F , S, i � P : M.

We rely on standard proof techniques for dataflow analysis problems to show
that Verify is complete (see, for example, [24, 45]). In essence, any valid type
〈F, S〉 for P will be a fixed point for Transfer, and we show that the algorithm
will find a fixed point in the type lattice if any such 〈F , S〉 exists. Showing the
following monotonicity property for the transfer function is sufficient.

THEOREM 6 (Transfer Monotone). Given code array P with labeling G and
i ∈ Dom(P), for all F , S, F ′, and S ′:

�,F ′, S ′ � P : M
∧ � � 〈F , S〉 <: 〈F ′, S ′〉

⇒ � � Transfer(P,G,i,〈F , S〉) <: Transfer(P,G,i,〈F ′, S ′〉)
Suppose that P [i] = store x. Since �,F ′, S ′, i � P : M must be derivable by

rule [STORE], x is in the domain of F ′
i . In addition, the hypothesis that � � F <: F ′

implies that � � Fi <: F ′
i , which means Dom(Fi) = Dom(F ′

i). Therefore,
x ∈ Dom(Fi). Thus, the assert succeeds in both Transfer(P,G,i,〈F , S〉)
and Transfer(P,G,i,〈F ′, S ′〉), and neither computation results in an error. Let
Transfer(P,G,i,〈F , S〉) return 〈F̄ , S̄〉 and Transfer(P,G,i,〈F ′, S ′〉) return
〈F̄ ′, S̄ ′〉. Given the transfer function, 〈F̄ , S̄〉 and 〈F̄ ′, S̄ ′〉 will differ from 〈F, S〉
and 〈F ′, S ′〉 only at index i+ 1. Therefore, to show the conclusion of the theorem,
it is sufficient to prove that � � S̄i+1 <: S̄ ′

i+1 and � � F̄i+1 <: F̄ ′
i+1. In order to

have concluded � � 〈F, S〉 <: 〈F ′, S ′〉, it must be the case that � � Si <: S ′
i and

� � Fi+1 <: F ′
i+1. Given the definition of Transfer, the following two equations

hold for some τ and τ ′: Si = τ · S̄i+1 and S ′
i = τ ′ · S̄ ′

i+1, where � � τ <: τ ′ and
� � S̄i+1 <: S̄ ′

i+1. Moreover, this implies that � � Fi+1[x �→ τ] <: F ′
i+1[x �→ τ ′].

Thus, � � F̄i+1 <: F̄ ′
i+1. The cases for all other instructions are similar.

7. Implementation

We have implemented a prototype JVML verifier that uses the three-phase type
checker from the preceding section. Our verifier actually translates each JVML

312 STEPHEN N. FREUND AND JOHN C. MITCHELL

method body into a slightly modified subset of the JVMLf instruction set in or-
der to handle all of JVML. The translation preserves the structure of the origi-
nal method body but utilizes a small core verifier to perform the type synthesis.
This approach removes as many details as possible from the dataflow analysis
implementation. For example, the instruction

invokevirtual {|Vector, indexOf, Object → int|}M
is replaced by

pop<Object> ; pop argument
pop<Vector> ; pop receiver
push<int> ; push integer as return value

where an instruction like pop<Vector> indicates that a value of type Vector should
be popped from the top of the stack.

To capture those requirements not checked by this core verifier, such as the
requirement that Vector.indexOf actually exists and has the correct type, our
translator also generates a set of assertions that may be checked separately, either
before or after the type checking has been performed. The one constraint generated
by the above instruction is

{|Vector, indexOf, Object → int|}M ∈ Dom(�)

Goldberg has described the form of these assertions and demonstrates how they
may be used to construct a typing environment for bytecode verification in the
presence of dynamic loading [20].

Our checker has verified a large fraction of the JDK libraries, as well as many
examples of Java programs using common idioms for exception handling and the
other features of JVMLf . The behavior of our algorithm differs slightly from the
Sun reference implementation. The most notable deviation is due to the issues
described in Section 4.2.4.

The idea of translating a bytecode program into a “micro”-instruction set has
been explored by others [49] and seems to be a promising way to keep the size and
complexity of the core verifier small.

8. Applications

In this section, we explore applications of this work that are both within and outside
of the current role of the bytecode verifier.

8.1. FORMALLY SPECIFYING THE VERIFIER

The first and most obvious direct application of this type system is to use it as a
formal specification of the bytecode verifier. The original informal specification is
insufficient to describe a correct implementation, and we have described several

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 313

situations in which verifiers incorrectly accepted bad programs in this paper. These
errors were caused in part because the verifiers were implemented without a clear
specification.

8.2. TESTING EXISTING IMPLEMENTATIONS

Another avenue in which to apply this work is to follow the direction of the Kimera
project [40]. That project built on traditional software engineering techniques to
test bytecode verifiers by automatically generating a large number of faulty class
files and looking for inconsistencies in behavior between different bytecode verifier
implementations when checking those programs.

Even without automated testing, we have identified several flaws and incon-
sistencies in existing implementations. In one case, a version of the Sun verifier
accepted a program that used an uninitialized object. Another example is that the
set of operations allowed on null references differed between some early commer-
cial implementations. These issues were uncovered by translating difficult cases
from our soundness proofs into sample test programs.

8.3. CHECKING ADDITIONAL SAFETY PROPERTIES

We can also check additional safety properties for bytecode programs. One ex-
ample of this is to check that monitorenter and monitorexit, the instructions
to acquire and release object locks, are used correctly. Correct use may simply
mean that every lock acquired in a method is released prior to exit, or it may
entail a stronger property, such as requiring that locks are acquired and released
according to a specific locking policy. These checks may be added to our type
system by first introducing a simple form of alias analysis for object references
and then constructing the set of locks held at each line in the program. The alias
information is needed to track multiple references to the same object within an
activation record. In the time since we initially suggested this approach for check-
ing monitors [16], Bigliardi and Laneve have developed an extension to our type
system to model lock acquisition and release, as well as thread synchronization via
wait and notify [3].

A second example is checking that class initializers are called at the appropriate
time. According to the language specification, class initializers must be called only
once and prior to any direct use of an object of that class. Determining where these
calls should be made is left to the Java Virtual Machine implementor currently,
and run-time tests are often employed to detect whether the necessary initializers
have been called. By modifying the verifier slightly, however, we can specify and
determine more precisely where initializers need to be called within a method.
For example, the JVM could forego the class initialization test for any instruction
reachable only by paths already including the appropriate test.

314 STEPHEN N. FREUND AND JOHN C. MITCHELL

8.4. ELIMINATING UNNECESSARY RUN-TIME CHECKS

One final application of our type system is to extend the role of the verifier to
identify locations where run-time checks may be eliminated. The type of analysis
used to identify various unnecessary run-time checks may be phrased as a dataflow
analysis problem, and given the style of our typing rules, it is fairly straightforward
to embed dataflow problems into our system. We have extended our type system
and prototype implementation to determine locations where the following run-time
checks will always succeed:

− null pointer tests
− array bounds tests
− type checks for dynamic casts
− tests required because of the covariant subtyping of arrays

To perform this analysis, we incorporate additional type constructors to identify
references known not to be null and dependent types to represent integer values
falling within a specified range. Since array lengths are not known until run time,
range types use alias information to refer to the lengths of arrays stored in local
variables.

Figure 34 shows the type information computed for a program in this extended
system. In that figure, the type (Array+ τ) is a subtype of (Array τ) that is
assigned to τ -array references known not to be null. The type (Range v1 v2)
is assigned to integer values that fall into the range [v1, v2]. The terms v1 and v2

may be numbers, expressions like l(x) to indicate the length of the array stored in
local variable x, or an arithmetic expression containing limited uses of addition or
subtraction. The subscript x on a stack element indicates that the stack slot will
always contain the same value as local variable x. Given the type information, it is
clear that the run-time tests for the arraystore operation will always succeed. To
be useful in a general setting, it is necessary to expand the expression language for
these dependent types to a more expressive fragment of arithmetic, possibly similar
to what is used in the work of Xi and Pfenning [48].

This information may be applied in two ways. First, the verifier may pass it on to
the interpreter or just-in-time compiler, which can then omit the unnecessary tests.
Second, compilers can take advantage of the new verifier by performing optimiza-
tions with the knowledge that unneeded checks will not be performed. Eliminating

void f(int a[]) {
int i;
int n = a.length;
for (i = 0; i < n; i++) {
a[i] = 3;

}
}

Figure 33. A simple method with array accesses that always succeed.

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 315

i
P
[i]

S
i

F
i[1

]
F
i[2

]
F
i[3

]
1
:

lo
ad

1
ε

(A
rr
ay

in
t)

To
p

To
p

2
:

ar
ra
yl
en
gt
h

(A
rr
ay

in
t)

1
·ε

(A
rr
ay

in
t)

To
p

To
p

3
:

st
or
e

3
(R
an
ge

l(
1)

l(
1)
)
·ε

(A
rr
ay
+

in
t)

To
p

To
p

4
:

pu
sh

0
ε

(A
rr
ay
+

in
t)

To
p

(R
an
ge

l(
1)

l(
1)
)

5
:

st
or
e

2
(R
an
ge

0
0)

·ε
(A
rr
ay
+

in
t)

To
p

(R
an
ge

l(
1)

l(
1)
)

6
:

go
to

15
ε

(A
rr
ay
+

in
t)

(R
an
ge

0
0)

(R
an
ge

l(
1)

l(
1)
)

7
:

lo
ad

1
ε

(A
rr
ay
+

in
t)

(R
an
ge

0
l(

1)
-1
)

(R
an
ge

l(
1)

l(
1)
)

8
:

lo
ad

2
(A
rr
ay
+

in
t)

1
·ε

(A
rr
ay
+

in
t)

(R
an
ge

0
l(

1)
-1
)

(R
an
ge

l(
1)

l(
1)
)

9
:

pu
sh

3
(R
an
ge

0
l(

1)
-1
) 2

·(
Ar
ra
y+

in
t)

1
·ε

(A
rr
ay
+

in
t)

(R
an
ge

0
l(

1)
-1
)

(R
an
ge

l(
1)

l(
1)
)

10
:

ar
ra
ys
to
re

in
t

(R
an
ge

3
3)

·(
Ra
ng
e

0
l(

1)
-1
) 2

·(
Ar
ra
y+

in
t)

1
·ε

(A
rr
ay
+

in
t)

(R
an
ge

0
l(

1)
-1
)

(R
an
ge

l(
1)

l(
1)
)

11
:

lo
ad

2
ε

(A
rr
ay
+

in
t)

(R
an
ge

0
l(

1)
-1
)

(R
an
ge

l(
1)

l(
1)
)

12
:

pu
sh

1
(R
an
ge

0
l(

1)
-1
) 2

·ε
(A
rr
ay
+

in
t)

(R
an
ge

0
l(

1)
-1
)

(R
an
ge

l(
1)

l(
1)
)

13
:

ad
d

(R
an
ge

1
1)

·(
Ra
ng
e

0
l(

1)
-1
) 2

·ε
(A
rr
ay
+

in
t)

(R
an
ge

0
l(

1)
-1
)

(R
an
ge

l(
1)

l(
1)
)

14
:

st
or
e

2
(R
an
ge

1
l(

1)
)
·ε

(A
rr
ay
+

in
t)

(R
an
ge

0
l(

1)
-1
)

(R
an
ge

l(
1)

l(
1)
)

15
:

lo
ad

2
ε

(A
rr
ay
+

in
t)

(R
an
ge

0
l(

1)
)

(R
an
ge

l(
1)

l(
1)
)

16
:

lo
ad

3
(R
an
ge

0
l(

1)
) 2

·ε
(A
rr
ay
+

in
t)

(R
an
ge

0
l(

1)
)

(R
an
ge

l(
1)

l(
1)
)

17
:

if
lt

7
(R
an
ge

l(
1)

l(
1)
) 3

·(
Ra
ng
e

0
l(

1)
) 2

·ε
(A
rr
ay
+

in
t)

(R
an
ge

0
l(

1)
)

(R
an
ge

l(
1)

l(
1)
)

18
:

re
tu
rn

ε
(A
rr
ay
+

in
t)

(R
an
ge

l(
1)

l(
1)
)

(R
an
ge

l(
1)

l(
1)
)

F
ig

ur
e

34
.

E
xt

en
de

d
ty

pe
in

fo
rm

at
io

n
fo

r
th

e
m

et
ho

d
in

F
ig

ur
e

33
.

316 STEPHEN N. FREUND AND JOHN C. MITCHELL

these checks can significantly improve performance in some situations. For exam-
ple, execution speed of the method in Figure 33 running on the srcjava virtual
machine [19] improves by approximately 20% when the array bounds check is
removed. A more modest, but still nontrivial, performance increase can be obtained
for larger programs.

One possible avenue for future work is to explore the relationship between static
and dynamic checks further. For example, we may be able to improve resource
management techniques [9] by incorporating some resource tracking into our static
analysis. Bytecode analysis may also allow some security checks to be eliminated
or moved to more optimal locations [47].

A current limitation of our system is that the bytecode verification process was
designed to examine only one method at a time. Therefore, we have not included
interprocedural analysis or global information in our framework. This limits the
precision of our analysis and what additional properties we can check. Dynamic
loading makes global analysis difficult because a newly loaded class may invalidate
program invariants that previously held.

9. Related Work

Several projects have been established to develop a static type system for the Java
programming language, the earliest of which include the work of Drossopoulou
and Eisenbach [14], Syme [44], and Nipkow and von Oheimb [31]. Our definition
of environments and the rules for describing well-formed environments are based
on this body of work, but the overlap between Java and JVML does not extend
much past the basic structure of declarations.

Our framework for type checking instructions is based on the type system orig-
inally developed by Stata and Abadi to study bytecode subroutines [43]. In our
previous work, we first extended their system to study object initialization [18],
and we made their semantics for subroutines more similar to the original Sun vir-
tual machine specification in this paper [17]. This paper combines these previous
projects to construct what we feel is a sufficiently large subset of JVML to cover all
the interesting analysis problems. The rest of this section describes related studies
of bytecode verification, focusing primarily on attempts to formalize Sun’s original
verification technique.

Hagiya and Tozawa present a type system for subroutines that has a similar
technique for labeling and checking subroutines [21]. However, the types assigned
to return addresses are dependent on the subroutine call stack height and must
change upon entry or exit from a subroutine. In addition, special types are assigned
to polymorphic variables instead of removing them from the local variable maps.
Their paper also provides a brief overview of a dataflow algorithm to type check
simple bytecode programs with subroutines. In contrast to the three steps in ours,
their algorithm computes all information in one phase. Since they do not compute
which variables are used in subroutines before starting the dataflow analysis, their

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 317

algorithm must guess whether each variable is used by a subroutine when it is first
encountered. If an error occurs, the algorithm must back up and revise the guess
before continuing. We are able to avoid backtracking because we precompute the
variable usage information.

Qian [37] also presents an algorithm to verify subroutines based on a type sys-
tem he developed for a subset of JVML similar to the subset studied here [36]. Our
fixed-point computation in Verify follows the form of his algorithm, but Qian, like
Hagiya and Tozawa, incorporates computation of control flow and local variable
usage information into the iterative algorithm. As a result, it is more difficult to
prove properties of the algorithm because special techniques are needed to show
that the transfer function behaves monotonically. As demonstrated in Qian’s paper,
our system may overestimate the set of variables accessed in a subroutine because
of the inability to identify dead code introduced by multilevel returns while con-
structing GP (when we have no type information). Although the cases in which this
matters seem unlikely to become an issue, we could extend our system to handle
them by either tracking return address types during the first phase of our checker
or merging the second and third phase so that variable usage is discovered during
dataflow analysis. We believe either approach would be straightforward to adopt if
necessary.

A number of bytecode verification studies have departed more drastically from
the original Sun specification. The Trusted Logic verifier for Java Card off-card
verification, as described in [27], uses a polyvariant analysis in which subroutine
bodies are checked multiple times, once for each calling context. A polyvariant
analysis eliminates the need to construct the subroutine call graph before perform-
ing dataflow analysis but, since it analyzes each subroutine for each calling context,
may be more computationally expensive. Leroy provides a thorough comparison of
polyvariant analyses to other techniques in [28].

Coglio [5] uses a simple dataflow analysis algorithm for subroutines that does
not merge the types of local variables on subroutine entry. Instead, multiple types
are kept for each local variable while analyzing a subroutine. This allows a suf-
ficient degree of context sensitivity to check several classes of programs not ac-
cepted by verifiers based on context-insensitive analysis of subroutines, such as the
JVMLf verifier presented in this paper.

The static semantics of Stärk, Schmid, and Börger [41, 42], which does not
use subroutine call stacks, demonstrate the primary advantages of less restrictive
approaches to subroutines. First, their more relaxed requirements on subroutines
in the typing rules enable their system to accept programs with jumps that cause
implicit returns from subroutines. In addition, the program invariants used to prove
type soundness are simpler because they do not have to match the subroutine
call stack implicit in the program execution history to a statically computed call
stack.

Jones and Yelland independently developed ways of type checking bytecode
programs using aspects of the Haskell type checker [49, 23], but these check-

318 STEPHEN N. FREUND AND JOHN C. MITCHELL

ers are not easily realizable in a JVM implementation. A type system for Java
bytecode subroutines based on the framework developed to study typed assembly
language [30] has also been developed [32].

A number of studies have attempted to construct machine-verified proofs of
correctness for bytecode verifier specifications and implementations. Pusch proves
the soundness of a fragment of Qian’s work automatically [35], and Bertot [2]
validated the correctness of our soundness proofs for the fragment of JVMLf con-
cerned with object initialization [18]. Recently, Klein and Nipkow characterized
dataflow-based type inference algorithms for low-level languages and proved in
Isabelle/HOL that the standard iterative implementation of these algorithms yields
a correct verifier [25]. They then constructed a Java bytecode verifier for a subset of
JVMLf as an instance of this general framework. They extended this approach to
cover subroutines in [26]. Coglio et al. proposed building a complete JVML spec-
ification in the Specware system [7]. Specware could translate such a specification
directly into an executable verifier. Pursuing an automatic translation of our typing
rules into an executable verifier would be a useful extension to this work because
it would reduce the possibility of introducing implementation errors.

Other work has focused more on developing verification techniques for byte-
code programs under specific circumstances. For example, Rose and Rose dis-
cussed bytecode verification for Java Cards, which have limited resources available
to the type checker [39]. By extending class files to contain stack and variable type
information for branch targets, they were able to eliminate the need for the verifier
to infer types. Instead, the verifier just checks the consistency of the provided type
information. Posegga and Vogt also focused their attention on Java Cards, using
model checking as the general framework for verification [34].

Precise specifications of the dynamic behavior of JVML programs have also
been developed. Cohen’s system is based on an ACL2 specification of the bytecode
instruction set [8]. Bertelson presented a detailed dynamic semantics, although no
formal properties of the system are shown [1]. Another dynamic semantics based
on abstract state machines is presented in [4]. These systems, which cover various
subsets of JVML, identify how programs should be compiled and executed, but
they do not immediately produce a sound static semantics.

Stärk, Schmid, and Börger [41] have recently extended the work on abstract
state machines for Java and the Java Virtual Machine to model not only the com-
pilation process, but also bytecode verification for a subset of Java. This work
demonstrates the potential of the abstract state machine methodology for proving
the correctness of the whole compilation and verification process for nontrivial
languages, such as Java and JVML.

10. Conclusions

Devious programs can circumvent the security checks built into run-time archi-
tectures like the Java Virtual Machine and Microsoft .NET platform [33] if they

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 319

can exploit run-time type errors. Thus, ensuring type-safe execution of low-level
code is necessary for the security of such systems. In the case of the Java Virtual
Machine, the component responsible for checking code, the bytecode verifier, was
originally underspecified by the language designers and not fully understood by
virtual machine implementors.

In this work, we have designed a static type system for a relatively complete
subset of JVML that includes classes, interfaces, and methods, as well as a rich set
of bytecode instructions that capture all difficult type checking problems. We have
also shown that a bytecode verifier based on our type checker rejects all unsafe
programs.

Our type system serves as the foundation for complete specification of the
bytecode verifier. In addition, formalizing the JVML type system provides a set-
ting in which other bytecode analysis problems can be explored, including both
enforcement of stronger safety properties and identification of optimization op-
portunities. One clear avenue for future work is to develop a richer type system
that enables interprocedural analysis techniques to analyze global properties of
bytecode programs. The most significant challenge will be to model global analysis
in the presence of dynamic loading effectively.

References

1. Bertelsen, P.: Dynamic semantics of Java bytecode, in Workshop on Principles of Abstract
Machines, 1998.

2. Bertot, Y.: Formalizing a JVML verifier for initialization in a theorem prover, in CAV 01:
Computer Aided Verification, 2001, pp. 14–24.

3. Bigliardi, G. and Laneve, C.: A type system for JVM threads, in Workshop on Types in
Compilation, 2000.

4. Börger, E. and Schulte, W.: Programmer friendly modular definition of the semantics of Java,
in J. Alves-Foss (ed.), Formal Syntax and Semantics of Java, Lecture Notes in Comput. Sci.
1523, Springer-Verlag, 1999, pp. 353–404.

5. Coglio, A.: Simple verification technique for complex Java bytecode subroutines, in Proc. 4th
ECOOP Workshop on Formal Techniques for Java-like Programs, 2002.

6. Coglio, A. and Goldberg, A.: Type safety in the JVM: Some problems in the Java 2 SDK
1.2 and proposed solutions, Concurrency and Computation: Practice and Experience 13(13)
(2001), 1153–1171.

7. Coglio, A., Goldberg, A. and Qian, Z.: Toward a provably-correct implementation of the JVM
bytecode verifier, in Workshop on the Formal Underpinnings of the Java Paradigm, 1998.

8. Cohen, R.: Defensive Java Virtual Machine version 0.5 alpha release, available from
http://www.cli.com/software/djvm/index.html, 1997.

9. Czajkowski, G. and von Eicken, T.: JRes: A resource accounting interface for Java, in
Proceedings of the ACM Conference on Object Oriented Languages and Systems, 1998,
pp. 21–35.

10. Dean, D.: The security of static typing with dynamic linking, in Proceedings of the Fourth ACM
Conference on Computer and Communications Security, 1997, pp. 18–27.

11. Dean, D., Felten, E. W. and Wallach, D. S.: Java security: From HotJava to Netscape and
beyond, in Proceedings of the IEEE Computer Society Symposium on Research in Security and
Privacy, 1996, pp. 190–200.

320 STEPHEN N. FREUND AND JOHN C. MITCHELL

12. Dean, R. D.: Formal aspects of mobile code security, Ph.D. thesis, Princeton University, 1999.
13. Drossopoulou, S.: An abstract model of Java dynamic linking, loading and verification, in

R. Harper (ed.), Workshop on Types in Compilation, Lecture Notes in Comput. Sci. 2071, 2001,
pp. 53–84.

14. Drossopoulou, S. and Eisenbach, S.: Java is type safe – probably, in European Conference On
Object Oriented Programming, 1997, pp. 389–418.

15. Freund, S. N.: Type systems for object-oriented intermediate languages, Ph.D. thesis, Stanford
University, 2000.

16. Freund, S. N. and Mitchell, J. C.: A formal framework for the Java bytecode language and
verifier, in Proceedings of the ACM Conference on Object-Oriented Programming: Languages,
Systems, and Applications, 1999.

17. Freund, S. N. and Mitchell, J. C.: Specification and verification of Java bytecode subroutines
and exceptions, Stanford Computer Science Technical Note STAN-CS-TN-99-91, 1999.

18. Freund, S. N. and Mitchell, J. C.: A type system for object initialization in the Java byte-
code language, ACM Transactions on Programming Languages and Systems 21(6) (1999),
1196–1250.

19. Ghemawat, S.: Srcjava implementation, 1999. Available from http://www.research.
digital.com/SRC/java.

20. Goldberg, A.: A specification of Java loading and bytecode verification, in ACM Conference on
Computer and Communication Security, 1998, pp. 49–58.

21. Hagiya, M. and Tozawa, A.: On a new method for dataflow analysis of Java virtual machine
subroutines, in Static Analysis Symposium, 1998, pp. 17–32.

22. Jensen, T., Metayer, D. L. and Thorn, T.: Security and dynamic class loading in Java: A for-
malisation, in Proceedings of the International Conference on Computer Languages, 1998, pp.
4–15.

23. Jones, M.: The functions of Java bytecode, in Workshop on the Formal Underpinnings of the
Java Paradigm, 1998.

24. Kildall, G. A.: A unified approach to global program optimization, in Proceedings of ACM
Symposium on Principles of Programming Languages, 1973, pp. 194–206.

25. Klein, G. and Nipkow, T.: Verified bytecode verifiers, Theoret. Comput. Sci. (2002). To appear.
26. Klein, G. and Wildmoser, M.: Verified bytecode subroutines, J. Automated Reasoning (2003).

To appear.
27. Leroy, X.: Java bytecode verification: An overview, in CAV 01: Computer Aided Verification,

2001, pp. 265–285.
28. Leroy, X.: Java bytecode verification: Algorithms and formalizations, J. Automated Reasoning

(2003). To appear.
29. Lindholm, T. and Yellin, F.: The Java Virtual Machine Specification, 2nd edn, Addison-Wesley,

1999.
30. Morrisett, G., Crary, K., Glew, N. and Walker, D.: From system F to typed assembly language,

in Proceedings of the ACM Symposium on Principles of Programming Languages, 1998, pp.
85–97.

31. Nipkow, T. and von Oheimb, D.: Javalight is type-safe – definitely, in Proceedings of the ACM
Symposium on Principles of Programming Languages, 1998, pp. 161–170.

32. O’Callahan, R.: A simple, comprehensive type system for Java bytecode subroutines, in
Proceedings of the ACM Symposium on Principles of Programming Languages, 1999,
pp. 70–78.

33. Platt, D.: Introduducing Microsoft .NET, Microsoft Press, 2001.
34. Posegga, J. and Vogt, H.: Byte code verification for Java smart cards based on model checking,

in 5th European Symposium on Research in Computer Security (ESORICS), 1998, pp. 175–190.

A TYPE SYSTEM FOR THE JAVA BYTECODE LANGUAGE 321

35. Pusch, C.: Proving the soundness of a Java bytecode verifier specification in Isabelle/HOL, in
Proceedings of the Conference on Tools and Algorithms for the Construction and Analysis of
Systems, 1999, pp. 89–103.

36. Qian, Z.: A formal specification of Java Virtual Machine instructions for objects, methods and
subrountines, in J. Alves-Foss (ed.), Formal Syntax and Semantics of Java, Lecture Notes in
Comput. Sci. 1523, Springer-Verlag, 1999, pp. 271–312.

37. Qian, Z.: Standard fixpoint iteration for Java bytecode verification, ACM Transactions on
Programming Languages and Systems 22(4) (2000), 638–672.

38. Qian, Z., Goldberg, A. and Coglio, A.: A formal specification of Java class loading, in
Proc. 15th ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications, 2000, pp. 325–336.

39. Rose, E. and Rose, K. H.: Toward a provably-correct implementation of the JVM bytecode
verifier, in Workshop on the Formal Underpinnings of the Java Paradigm, 1998.

40. Sirer, E. G., McDirmid, S. and Bershad, B.: Kimera: A Java system architecture, 1997.
Available from http://kimera.cs.washington.edu.

41. Stärk, R., Schmid, J. and Börger, E.: Java and the Java Virtual Machine – Definition,
Verification, Validation, Springer-Verlag, 2001.

42. Stärk, R. F. and Schmid, J.: Completeness of a bytecode verifier and a certifying Java-to-JVM
compiler, J. Automated Reasoning (2003). To appear.

43. Stata, R. and Abadi, M.: A type system for Java bytecode subroutines, ACM Transactions on
Programming Languages and Systems 21(1) (1999), 90–137.

44. Syme, D.: Proving Java type soundness, Technical Report 427, University of Cambridge, 1997.
45. Tarjan, R. E.: A unified approach to path problems, J. ACM 28 (1981), 577–593.
46. Tozawa, A. and Hagiya, M.: Careful analysis of type spoofing, in Java-Informations-Tage,

1999, pp. 290–296.
47. Wallach, D. S. and Felten, E. W.: Understanding Java stack inspection, in Proceedings of IEEE

Symposium on Security and Privacy, 1998, pp. 52–63.
48. Xi, H. and Pfenning, F.: Dependent types in practical programming, in Proceedings of the ACM

Symposium on Principles of Programming Languages, 1999, pp. 214–227.
49. Yelland, P.: A compositional account of the Java Virtual Machine, in Proceedings of the ACM

Symposium on Principles of Programming Languages, 1999, pp. 57–69.

