
�

Documento de Investigación

Documento de Investigación No. 9
Facultad de Ingeniería

Universidad ORT Uruguay
9 de julio de 2010

ISSN 1688-8707

A type-theoretic framework for certified model
transformations

Calegari, Daniel
Luna, Carlos
Szasz, Nora

Tasistro, Alvaro

!""#$%&''(')*)

 A type-theoretic framework for certified model transformations

Daniel Calegari$+!,-./.0.1$23$41560.78/9,:$;<=>?@A

 Carlos Luna$+!,-./.0.1$23$41560.78/9,:$;<=>?@B$C780D.72$23$!,E3,/3FG7:

;,/H3F-/272$I@J$;F0E07KA

Nora Szasz$+C780D.72$23$!,E3,/3FG7:$;,/H3F-/272$I@J$;F0E07KA

Alvaro Tasistro$+C780D.72$23$!,E3,/3FG7:$;,/H3F-/272$I@J$;F0E07KA

<18053,.1$23$!,H3-./E78/9,$#1LM

C780D.72$23$!,E3,/3FG7

;,/H3F-/272$I@J$;F0E07K

M23N0D/1$23$O*%*

A Type-Theoretic Framework for

Certified Model Transformations

Daniel Calegari1, Carlos Luna1,2 Nora Szasz2, and Álvaro Tasistro2

1 Instituto de Computación, Universidad de la República, Uruguay
{dcalegar,cluna}@fing.edu.uy

2 Facultad de Ingenieŕıa, Universidad ORT Uruguay
{luna,szasz,tasistro}@ort.edu.uy

Abstract. We present a framework based on the Calculus of Inductive
Constructions (CIC) and its associated tool the Coq proof assistant to al-
low certification of model transformations in the context of Model-Driven
Engineering (MDE). The approached is based on a semi-automatic trans-
lation process from metamodels, models and transformations of the MDE
technical space into types, propositions and functions of the CIC techni-
cal space. We describe this translation and illustrate its use in a standard
case study.

1 Introduction

Model-Driven Engineering (MDE, [1]) is a software engineering paradigm based
on the specification of models of a system as the primary development activity.
The feasibility of the approach is based on the existence of a semi-automatic
construction process driven by model transformations, starting from abstract
models of the system and transforming them until an executable model is gener-
ated. In consequence, the quality of the whole process strongly depends on the
quality of the model transformations. The highest level of quality is achieved by
proving desired properties of the transformations. Although formal verification
techniques may be expensive, they can be helpful in guaranteeing the correctness
of critical applications where no other verification technique is acceptable. Since
the MDE approach is intended to succeed in a broad spectrum, we think it is
worth exploring how formal verification techniques could be applied within it.

As summarized in Figure 1, a model transformation takes as input a model
Ma conforming to a given source metamodel MMa and produces as output an-
other model Mb conforming to a given target metamodel MMb. The model
transformation can be defined as well as a model Mt which itself conforms to
a model transformation metamodel MMt. There are well known metamodeling
languages like the MOF [2] and KM3 [3]. In some cases, there are conditions
(called invariants) that cannot be captured by the structural rules of these lan-
guages, in which case modeling languages are supplemented with another logical
language, e.g. the Object Constraint Language (OCL) [4]. There are different
model transformation approaches, as described in [5,6]. In our case we select a

2

model-to-model relational approach, which is based on specifying a transforma-
tion as a set of relations (rules) that must hold between source and target model
elements. Languages within this approach are QVT [7] and ATL [8].

Fig. 1. An overview of model transformation

There are basically two levels at which the verification of a model transfor-
mation can be exercised: the model and the metamodel levels. Model-level veri-
fication works on specific source and target models related by a transformation.
Verification techniques within this approach are mainly based on model-checking
or simply testing. This approach is in many cases a practical and valuable aid
but it cannot ensure the zero-fault level of quality since it checks a finite num-
ber of specific cases. Furthermore, there exist well-known limitations such as
the state-explosion problem within model checking. An interesting work on the
model-level verification of properties is [9] where the language Alloy is used for
writing declarative model transformations and the Alloy Analyzer tool is used
to conduct fully automated analysis of certain properties with the limitations
mentioned above.

In contrast, metamodel-level verification ensures that a model transformation
respects certain relations between model instances conforming to the source and
target metamodels. This requires the use of formal verification techniques. Works
within this approach are [10,11]. The first one is limited to the verification of
model refinement transformations whereas the second one is used to prove only
semantic equivalence of models.

We are concerned to metamodel-level verification of model transformations,
considering any kind of transformation and properties. We expect the approach
to be helpful whenever zero-fault model transformations are required.

We propose the construction of a type-theoretic framework for the certifica-
tion of model transformations, representing the schema in Figure 1. In particular,
we explore the idea of using the Calculus of Inductive Constructions (CIC) [12]
as a technical space for dealing with provably correct model transformations.
Within this framework, metamodels MMa and MMb above are represented as
inductive types. On the other hand, each transformation rule of the model trans-
formation Mt is represented as a logical formula (called TRule) of ∀∃ form stating
that for every model element satisfying a certain (pre-)condition, there exists a

3

target model element which stands in the relation specified by the transformation
rule with the source model element.

The correctness of the model transformation is stated as the following logical
formula.

∀ Ma:MMa. (Pre(Ma) → ∀ Mb:MMb. (TRules(Ma,Mb) → Post(Ma,Mb)))

where Pre is a translation of the source invariants, TRules is the conjunction
of the transformation rules, and Post is a translation of the target invariants plus
any other desired property to be proved. A proof of this formula ensures that the
transformation rules satisfy the target invariants as well as the desired properties.
We propose a semi-automatic translation process from the MDE technical space
–used by developers– to the CIC technical space –used for formal verification.

The choice of the CIC is dictated by its very considerable expressive power
as well as by the fact that it is supported by a tool of industrial strength, namely
the Coq proof assistant [13]. As one example of its applicability, Coq has been
used for the development and formal verification of a compiler of a large subset
of the C programming language [14].

The idea of using type theory in the context of MDE has been formulated
before by Poernomo in [15,16]. He formulates a type theory of his own –a variant
of Martin-Löf’s constructive type theory– and outlines a method for representing
MOF models as types. Then, he follows the classical approach in type theory
where pre- and post-conditions are represented as types, and a program (trans-
formation) is derived as a function between those types. Our work differs in
the representation of metamodels as will be explained later. Another important
difference is that he performs program derivation to obtain a transformation
whereas we translate a given transformation as a formula and verify this trans-
lation with respect to certain pre- and post-conditions. Finally, we base our
proposal on an existent type theory with its corresponding supporting verifica-
tion tool, which allows us to put into practice the ideas presented, unlike the
works in [15,16].

As compared to previous work by the authors, the representation of model
transformations described here differs substantially from the one presented in
[17], as will be explained later.

The remainder of the paper is structured as follows. We first describe our
framework in Section 2. In Section 3 we give some details about the formal
representation of models and metamodels, and about model transformations in
Section 4. Then, in Section 5 we explain how properties are verified. Finally, in
Section 6 we present a short summary with concluding remarks and an outline
of further work.

2 Outline of the Approach

We use the Calculus of Inductive Constructions (CIC) as a technical space for
dealing with provably correct model transformations. In the following sections
the CIC is introduced and our framework is outlined, using a running example.

4

2.1 The CIC as a Technical Space

The CIC is a type theory, i.e. in brief, a higher order logic in which the individuals
are classified into a hierarchy of types. The types work very much as in strongly
typed functional programming languages which means that, to begin with, there
are basic elementary types, recursive types defined by induction like lists and
trees (called inductive types) and function types. A (dependent) record type is a
non-recursive inductive type with a single constructor and projection functions
for each field of the type. An example of inductive type is given by the following
definition of the lists of elements of (parametric) type A, which we give in Coq
notation (data types are called “Sets” in the CIC):

Inductive list : Set :=

| nil : list

| cons : A -> list -> list.

The type is defined by its constructors, in this case nil: list A and
cons : A -> list A -> list A and it is understood that its elements are ob-
tained as finite combinations of the constructors. Well-founded recursion for
these types is available via the Fixpoint operator.

On top of this, a higher-order logic is available which serves to predicate on
the various data types. The interpretation of the propositions is constructive, i.e.
a proposition is defined by specifying what a proof of it is and a proposition is true
if and only if a proof of it has been constructed. As a consequence, elementary
predicates are also defined as inductive types, by giving the corresponding proof
constructors. The type of propositions is called Prop.

We refer to [18,12] for further details on the CIC and Coq, respectively.

2.2 The Framework at a Glance

Although our approach is language independent, we are working with the ATL
technical space. ATL (Atlas Transformation Language, [8]) is a hybrid of declar-
ative and imperative transformation language. Since we are concerned with a
model-to-model relational approach, we focused on the declarative part of ATL.
In this context, an ATL transformation specification is composed of rules that
define the correspondence between source and target model elements. In this
technical space, source and target metamodels are specified using KM3 (Kernel
MetaMetaModel, [3]) which provides a textual concrete syntax that eases the
coding of metamodels.

During software construction a developer specifies the input and output
metamodels and the transformation between them. We propose that at this
point a separation of duties is implemented for performing formal verification.
We conceive the participation of a (human, expert) verifier, who will carry out
a semi-automatic translation process from the ATL to the CIC technical space,
as outlined in Figure 2.

5

Fig. 2. An outline of our approach

The first step of the process is the formalization of the KM3 source and target
metamodels as inductive types (MMa and MMb). Then, every ATL transformation
rule is transformed into a logical proposition involving both the source and target
metamodels (TRules). The third step is the translation of every OCL invariant
into a logical proposition. Source invariants are taken as pre-conditions (Pre)
of the model transformation. Target invariants and the desired properties of the
transformation are taken as post-conditions (Post), which will be our proof goals.
Finally, the verification is interactively performed in Coq by proving the post-
conditions assuming that both the pre-conditions and the transformation rules
hold. Additionally, the verifier can use the full expressiveness of Coq in order to
include post-conditions that cannot be, or are not suitable to be, expressed in
OCL.

2.3 A Running Example

We will illustrate our proposal by using an example based on a simplified ver-
sion of the well-known Class to Relational model transformation [19]. Figure 3
shows both metamodels of this transformation. An UML class diagram consists
of classes which contain one or more attributes. Each attribute has a type that
is a primitive datatype. Every class, attribute and primitive data type is gene-
ralized into an abstract UML model element which contains a name and a kind
(persistent or not persistent). On the other side, a RDBMS model consists of
tables which contains one or more columns. Each column has a type, and every
RDBMS model element is generalized into an abstract RDBMS model element.

The transformation describes how persistent classes of a simple UML class
diagram are mapped to tables of a RDBMS model with the same name and
kind. Attributes of the persistent class map to columns of the table. The type
of the column is a string representation of the primitive data type associated to
the attribute.

This example is clearly not a critical application where our approach is par-
ticularly helpful. However, it is complete and simple enough to exemplify out

6

Fig. 3. UML metamodel and RDBMS metamodel

approach, and has been used as a standard test case for various transformation
languages. For this reason, it will be used in the following sections in order to
exemplify the verification process steps.

3 Formalization of Metamodels and Models

In this section we show how to represent metamodels and models in the CIC.
For metamodels we show how every KM3 construction is translated into Coq no-
tation, using the UML metamodel of the example mentioned in Figure 3 above.
The whole translation has been defined and implemented as an ATL transfor-
mation. For space reasons we cannot include it here but it can be found in [20].

Data Types and Enumerations Coq supports primitive data types like
strings, booleans and natural numbers, among others, via libraries equipped
with many useful functions. This is enough to represent ATL primitive types.
In ATL it is also possible to define enumeration types and use them to define
class attributes. Enumeration types are directly represented in Coq as inductive
types with one constructor for each enumeration literal.

Classes and Attributes A class has attributes. An attribute has a name, a
multiplicity and a type. We represent classes using inductive types. For each
class its attributes are represented as components of the corresponding type by

7

means of a constructor which has its attributes as parameters. A class can be
abstract, meaning that there are no direct instances of it. This impacts on the
representation of models as explained below, but not on the inductive represen-
tation of the class. In the example above, the class UMLModelElement is defined in
Coq as follows.

Inductive UMLModelElement : Set :=

| Build_UMLModelElement (oid : nat) (name : string) (kind : string)

Notice the presence of the component named oid in the representation of the
UMLModelElement. This provides a means for identifying the actual objects that
are to be instances of the various classes, i.e. the oids implement object identity,
beyond the constructor identity provided by the CIC.

In order to manipulate the components of the classes we define projections for
each attribute. They are trivially defined using pattern matching. As an example
we show just the projection of the attribute name of the UMLModelElement class.

Definition UMLModelElement_name (o : UMLModelElement) : string :=

match o with

| (Build_UMLModelElement _ n _) => n

end.

References A reference represents an association between classes. It has a
name, a multiplicity and a type (of the element been referenced), and it may
have an opposite reference (bidirectional association). The natural choice for
representing associations is by lists of pairs of related elements. In order to opti-
mize navigability, the references of each class can be considered as components
of the corresponding type, in the same way as attributes. This results in using
mutually inductive types for representing related classes.

In the example below, the references from a Class to its Attributes is repre-
sented as a component within the constructor of the Class type.

Inductive Class : Set :=

| Build_Class ...

(attribute : list Attribute)

Now, if for a given class and reference an opposite reference exists, the ele-
ments of the source class must form part of those of the target class and viceversa,
i.e. the objects of both classes are not well-founded. In general, this situation
might arise whenever several classes are mutually related through cycling as-
sociations and we can characterize it as the admissibility of circularity in the
actual construction of (thereby infinite) objects. In these cases we seem to need
co-inductive types, as pointed out in [15,17]. However, taking such an approach
forces us in the general case to introduce all the mutually connected classes as
mutually defined co-inductive types. And then some disadvantages arise, con-
cerning both the correctness of the representation and its ease of use. The main
problem is that there will in general be cycles of references of classes of the

8

model for which no actual cycle at the level of object formation is intended to
occur, even when some other reference cycles in the same model allow the cir-
cularity of object formation. Hence, we have in general that some of the classes
involved in the represented metamodel will not be intended to actually contain
infinite structures, namely those participating in references in which no actual
cycle at the level of objects is admissible. But even in such cases, the definition
of the classes as co-inductive allows them to contain infinite structures. This
compromises the correctness of the representation in at least two respects: first,
circularity at the level of objects cannot be prevented at syntax (type) level and
secondly, the termination of functions on these types cannot be enforced. Al-
though these restrictions could be imposed on the co-inductive definition of the
model, that would lead to a representation too awkward to manage in practice.

We therefore decide to use only inductive types. This is enough for the cases
in which no circularity at the level of objects is to be allowed, since the well-
foundedness of the latter is imposed by construction. More precisely, we represent
directly only unidirectional references, using mutually inductive types whenever
circularity at the level of the objects is not allowed in the metamodel. If, on the
contrary, we should have to allow for such circularity then we use the first repre-
sentation mentioned above, i.e. associations as list of pairs of related elements.
This procedure has as a particular case that of the bi-directional associations.

Deciding which references are represented in either way in an optimal way
depends on how the model elements are used in the transformation. This is a
point in which, although possible, the automation of the representation of the
metamodel might not be desirable. In the implemented translation of [20] the
references of each class are represented as components of the corresponding type,
and circularity must be manually “cut” by the human verifier.

Multiplicities Attributes and references have multiplicities. Each multiplicity
has a lower and an upper value and multiplicity 1 is assumed if none is declared.

When representing references as components, multiplicity reflects itself in the
type of the component. This is the same as in the case of attributes. Multiplicity
0..1 is represented with the option type constructor, which has constructors
None representing no element and Some x for elements x in the original type. If
the upper multiplicity value is greater than 1, the multiplicity is represented
with a (possibly ordered) list type. Multiplicity 1 corresponds just to the type
of the component.

In the example we have the following multiplicities.

[1-1] -- name : string

[0-*] -- attribute : list Attribute

When representing associations as list of pairs of related elements, multipli-
city is enforced by explicit constraints on the number of pairs allowed for each
element of the participant classes.

9

Generalization and Abstract Classes In ATL it is also possible to define
generalization relations between classes. The CIC does not have a notion of
subtyping between types, unlike [15]. We represent this notion as references
from the subtypes to it(s) supertype(s). With this representation we can easily
navigate from a subclass to a property of it superclass. Notice that when a
generalization exists, the oids are located only at the topmost supertype.

In the example, the PrimitiveDataType class has a reference to its supertype
UMLModelElement.

PrimitiveDataType : Set :=

| Build_PrimitiveDataType (super : UMLModelElement)

The whole UML metamodel in Figure 3 is defined in Coq as follows.

Inductive UMLModelElement : Set :=

| Build_UMLModelElement (oid : nat) (name : string) (kind : string).

Inductive Class : Set :=

| Build_Class (super : UMLModelElement)

(attribute : list Attribute)

with

Attribute : Set :=

| Build_Attribute (super : UMLModelElement)

(type : PrimitiveDataType)

with

PrimitiveDataType : Set :=

| Build_PrimitiveDataType (super : UMLModelElement).

Finally, a model that conforms to a metamodel is represented as a record
containing the lists of instances of each non-abstract metamodel element, as
suggested in [21]. In the example a model conforming to the UML metamodel
would be a record of the following type.

Record SimpleUML : Set :=

mkSimpleUML {classAllInstances : list Class;

primitiveDataTypeAllInstances : list PrimitiveDataType;

attributeAllInstances : list Attribute

}.

In the example every element in the model is reachable from the Class in-
stances, so the record can in fact be reduced to just a list of classes.

4 Translation of the Model Transformation

We show next how ATL constructs can be translated into Coq notation, using
the example transformation in Section 2.3. Briefly, every ATL declarative trans-
formation rule is transformed into a logical proposition, and helper (auxiliary)
functions are translated into Coq functions. Not every ATL construct is consid-
ered since some of them (e.g. modules) are not relevant for our study. The whole
transformation of the example can be found in [20].

10

Data Types ATL’s data types are based on the OCL. They include primitive
types (boolean, integer, real, string), tuples, enumerates, collections (set, ordered
set, bag, sequence), among others. All these types can be represented in Coq as
described in section 3.

OCL Declarative Expressions ATL uses additional OCL declarative expre-
ssions in order to structure the code. ATL’s If-Then-Else, Let (which enables
the definition of variables) and constant expressions (constant values of any sup-
ported data type) are natively supported in Coq. Finally, the collection iterative
expressions are supported in Coq with recursion operators on lists.

Helpers and Attributes Helper/attribute call expressions as well as operation
call expressions are OCL-based expressions. ATL helpers factorize code that can
be called from different points of an ATL transformation. An ATL helper is
defined by the following elements: a name, a context type, a return value type,
an ATL expression that represents the code of the ATL helper, and an optional
set of parameters, in which a parameter is identified by a pair (parameter name,
parameter type). From a functional point of view an attribute is a helper that
accepts no parameters. Both helpers and attributes are represented as functions
in the richly-typed functional programming language provided by Coq. The main
issue in this translation is that Coq imposes the condition that every recursion
be well-founded, which has to be proven in each case.

In the example there is the following helper function that transforms a
PrimitiveDataType into a string which represents the type of a column in the
database.

helper context SimpleUML!PrimitiveDataType def :

primitiveTypeToStringType : String =

if (self.name = ’INTEGER’)

then ’NUMBER’

else if (self.name = ’BOOLEAN’)

then ’BOOLEAN’

else ’VARCHAR’

endif

endif;

The Coq function resulting from its translation is as follows. Notice that the
comparison between strings (=) is performed by an auxiliary function
string_eq_bool which returns a boolean value.

Definition primitiveTypeToStringType (primitiveType : string) : string :=

match (string_eq_bool primitiveType "INTEGER") with

| true => "NUMBER"

| false => match (string_eq_bool primitiveType "BOOLEAN") with

| true => "BOOLEAN"

| false => "VARCHAR"

end

end.

11

Matched Rules The matched rules constitute the core of an ATL declarative
transformation since they make it possible to specify the kind of source elements
for which target elements must be generated, and the way the generated target
elements have to be initialized. A matched rule is introduced by the following
construction.

rule rule_name {

from in_var : in_type [(condition)]

[using { var1 : var_type1 = init_exp1;

... }]

to out_var1 : out_type1 (bindings1),

...

}

The source pattern is defined after the keyword from. It enables to specify
a model element variable that corresponds to the type of source elements that
the rule has to match. When defined, the local variable section is introduced
by the keyword using. The target pattern of a matched rule is introduced by
the keyword to. It serves to specify the elements to be generated when the
source pattern of the rule is matched, and how these generated elements are
initialized (bindings). An optional condition (expressed as an ATL expression)
within the rule source pattern is used to select the subset of the source elements
that conform to the matching type.

Matched rules are generally translated into propositions of the form

∀ a:A. (a ∈ InstA ∧ Cond(a) → ∃ b:B. (b ∈ InstB ∧ Rel(a,b)))

expressing that for every object a of the type A (of the source model element
in the matched rule) in the set InstA of all instances of type A which satisfies
certain condition Cond, there exists an object b of the type B (of the target
model element in the matched rule) in the set InstB of all instances of type B,
for whom the relation Rel holds. The relation Rel is a conjunction of the bindings
defined in the matched rule. If there are no other matched rules that define the
existence of a target model element for whom the same relation Rel holds, then
the proposition must state the unique existence of the target model element.
There are also propositions describing the relation in the reverse direction (i.e.
from the target to the source elements).

The formulæ thus obtained amount to (basic) specifications of the transfor-
mation rules at a propositional level. This stands in contrast to the approach
in [17] where transformations were represented as functions about which the
relevant properties had to be proven, leading to lengthy work that can now be
avoided.

In the example we have the following matched rule that transforms an
Attribute of a class diagram into a Column of the database. The name of the
column will be the name of the attribute, and the type of the column will be the
name of the PrimitiveDataType associated to the attribute (the helper already
introduced is used in this case).

12

rule AttributeToColumn{

from a : SimpleUML!Attribute ()

to c : SimpleRDBMS!Column (

name <- a.name,

type <- a.type.primitiveTypeToStringType

)

}

We represent this matched rule as follows:

Definition AttributeToColumn (c : Class) (t : Table) : Prop :=

(forall atr:Attribute, In atr (Class_attribute c) ->

exists! col:Column, In col (Table_column t) /\

RModelElement_name (Column_super col) = Attribute_name atr /\

Column_type col = primitiveTypeToStringType

(PrimitiveDataType_name (Attribute_type atr)))

/\

(forall col:Column, In col (Table_column t) ->

exists! atr:Attribute, In atr (Class_attribute c) /\

RModelElement_name (Column_super col) = Attribute_name atr /\

Column_type col = primitiveTypeToStringType

(PrimitiveDataType_name (Attribute_type atr))).

Notice that the relation is described in both directions, and also that there
is only one source and target elements for which the proposition holds.

For the sake of completeness we present the other matched rule that trans-
forms every persistent Class into a Table of the database. The name of the table
must be the same as the class, and the columns of the table will be the trans-
formation of the attributes of the class which is performed by the matched rule
AttributeToColumn.

rule ClassToTable{

from c : SimpleUML!Class (c.kind = ’Persistent’)

to t : SimpleRDBMS!Table (

name <- c.name,

cols <- c.attribute

)

}

This matched rule is represented in Coq as follows.

Definition ClassToTable (ma : SimpleUML) (mb : SimpleRDBMS) : Prop :=

(forall c:Class, In c (MClass_classAllInstances ma) /\

Class_kind c = "Persistent" ->

exists! t:Table, In t (MRelational_tableAllInstances mb) /\

Class_name c = Table_name t /\

AttributeToColumn c t)

/\

13

(forall t:Table, In t (MRelational_tableAllInstances mb) ->

exists! c:Class, In c (MClass_classAllInstances ma) /\

Class_kind c = "Persistent" /\

Class_name c = Table_name t /\

AttributeToColumn c t).

5 Verification of Properties

OCL invariants of both source and target metamodels are translated into propo-
sitions in the CIC. This, at a large measure, can be done automatically follow-
ing the ideas presented in [22]. The desired properties of the transformation are
specified in the CIC by the verifier using the full potential of the logic. These pro-
perties will in general establish relations between (any instances of) the source
and target metamodel connected by the transformation.

A simple property of the example transformation is that the length of the
Columns within a Table must be grater than zero. This can be written in OCL as
follows.

context Table inv:

self.column->length() > 0

In Coq, this property can be expressed as follows.

Definition TableAtLeastOneCol (model : SimpleRDBMS) : Prop :=

forall t:Table, (In t (MRelational_tableAllInstances model)) ->

length (Table_column t) > 0.

This property holds by the fact that every Attribute is transformed into a
Column and that every Class has at least one Attribute. This information is given
in the transformation rules and in the source invariants, respectively.

The invariants of the target metamodel and any other desired properties of
the transformation (Post) are interactively verified in Coq by assuming that the
invariants of the source metamodel (Pre), and the transformation rules (TRules)
hold. In this way, the correctness proposition becomes:

∀ Ma:MMa. (Pre(Ma) → ∀ Mb:MMb. (TRules(Ma,Mb) → Post(Ma,Mb)))

In the example, the Coq lemma to prove is as follows.

Definition Post (ma : SimpleUML) (mb : SimpleRDBMS) : Prop :=

TableAtLeastOneCol mb.

Definition TRules (ma : SimpleUML) (mb : SimpleRDBMS) : Prop :=

ClassToTable ma mb.

Lemma Cert_Class2Relational:

forall ma:SimpleUML, Pre ma -> forall mb:SimpleRDBMS, TRules ma mb

-> Post ma mb.

14

Notice that in this case the transformations rules are only the satisfaction of
the ClassToTable rule, since every source model element involved in the trans-
formation is reached from the class elements. The postcondition is the property
TableAtLeastOneCol, defined above.

The Coq proof assistant helps building proofs using tactics (inference rules).
We refer to the Coq documentation [13] for further details. The proof of this
property can be found in [20].

There are other properties which can be proved for this transformation, for
example the following OCL invariants.

context Table inv:

Table.allInstances()->isUnique(name)

context Table inv:

self.cols->isUnique(name)

The first one states that the name of a Table is unique. This holds because
every Class is transformed into a Table and because the name of a Class is
unique. The second property states that the name of a Column is unique within a
Table, which holds because the name of an Attribute is unique within a Class.

The framework allows stating and proving more interesting properties which
involve both the source and target metamodels. In these cases the properties
cannot be expressed in OCL but can be expressed in Coq. For example, we
proved that the number of tables is equal to the number of persistent classes, in
Coq notation:

Definition ClassTableEqLen (ma : SimpleUML)

(mb : SimpleRDBMS) : Prop :=

length (filter isPersistent (MClass_classAllInstances ma)) =

length (MRelational_tableAllInstances mb).

The proof of this property is done by induction on both
MClass_classAllInstances and MRelational_tableAllInstances which are the lists
of all the instances of type Class and Table, respectively. This proof can also be
found in [20]. In a similar way, we can prove that the number of Columns within
any Table is equal to the number of Attributes of the corresponding Class.

6 Conclusions and Further Work

We have described a type-theoretic framework that allows the full formal ve-
rification of model transformations, at a metamodel level, and considering any
kind of transformations and properties. We have proposed a separation of duties
between developers and verifiers, based on a semi-automatic translation pro-
cess switching from the ATL to the CIC (Calculus of Inductive Constructions)
technical space as implemented on Coq. Within this framework, source and tar-
get metamodels (MMa and MMb) are represented as inductive types, and each
transformation rule of the model transformation Mt is represented as a logical

15

formula of ∀∃ form stating that for every model element satisfying a certain
(pre-)condition, there exists a target model element which stands in the relation
specified by the transformation rule with the source model element (TRule).
The correctness of the model transformation is stated by a formula.

∀ Ma:MMa. (Pre(Ma) → ∀ Mb:MMb. (TRules(Ma,Mb) → Post(Ma,Mb)))

where Pre is a translation of the source invariants, TRules is the conjunction
of the transformation rules, and Post is a translation of the target invariants
plus any other desired property to be proved. A proof of this formula ensures
that the transformation rules satisfy the target invariants as well as the desired
properties.

The translation into Coq of the KM3 metamodels can be performed fully
automatically. On the other hand, at the moment the verifiers have to deal
with: references in the metamodels that must be “cut” to avoid circularity in
an optimal way, the translation of the OCL invariants –which can at a large
measure be done automatically– and the translation of the ATL transformation
rules and helpers. Then he can proceed to perform the formal verification.

As a proof of concepts, we have applied our approach to a simplified version
of the well-known Class to Relational model transformation broadly studied in
the literature [19]. The resulting Coq code can be found in [20].

With this approach we lose full automation to gain in return strength of the
achieved results. We think the approach could be particularly helpful in proving
the existence of zero-fault model transformations within the development of
critical systems.

So far the non-automatic parts of the process of translation involved in our
proposal can in general be carried out directly enough to indeed provide increased
confidence in the outcome.

We are currently working on setting up a semantics of transformation lan-
guages in type theory which will lead to a greater automatical capability at the
level of the framework, particularly concerning the outlined method for trans-
lating transformations.

Our medium-term goals are the full development of the framework and its
integration with ATL and Coq. In the long-term we will work on simplifying
the proof process. In this direction we aim at generating auxiliary libraries with
proofs of basic properties and also work on proof patterns detection in order to
improve the facility of use of the proof assistant.

Acknowledgement

This work has been partially funded by the National Research and Innovation
Agency (ANII) of Uruguay through the “Verification of UML Based Behavioral
Model Transformations” project [20].

16

References

1. Kent, S.: Model-Driven Engineering. LNCS 2335, Springer (2002) 286–298
2. OMG: Meta Object Facility (MOF) 2.0 Core Specification. Object Management

Group, Specification Version 2.0, 2003.
3. ATLAS Group: Kernel MetaMetaModel. LINA & INRIA. Manual v0.3 (2005)
4. OMG: UML 2.0 Object Constraint Language. Object Management Group, Speci-

fication Version 2.0, 2006.
5. Mens, P., V. Gorp, P.: A Taxonomy of Model Transformation. ENTCS 152,

Springer (2006) 125–142.
6. Czarnecki, K., Helsen, S.: Feature-Based Survey of Model Transformation Ap-

proaches IBM Systems Journal 45-3 (2006) 621–645.
7. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation. Object Man-

agement Group, Specification Version 1.0, 2008.
8. ATLAS Group: Atlas Transformation Language. LINA & INRIA. User Guide.

(2009)
9. Anastasakis, K., Bordbar, B., Küster, J.M.: Analysis of Model Transformations via

Alloy. 4th Workshop on Model-Driven Engineering, Verification and Validation.
(2007) 47–56

10. Pons, C., Garćıa, D.: A Lightweight Approach for the Semantic Validation of
Model Refinements. ENTCS 220, Springer (2008) 43–61

11. Giese, H., et al.: Towards Verified Model Transformations. 3rd International
Workshop on Model Development, Validation and Verification. (2006) 78–93

12. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Springer-Verlag (2004)

13. The Coq Development Team: The Coq Proof Assistant: Reference Manual. (2009).
14. Leroy, X.: Formal Verification of a Realistic Compiler. Commun. ACM 52 (2009)

107–115
15. Poernomo, I.: A Type Theoretic Framework for Formal Metamodelling LNCS

3938, Springer (2004) 262–298
16. Poernomo, I.: Proofs-as-Model Transformations. 1st International Conference on

Theory and Practice of Model Transformations. (2008) 214–228
17. Calegari, D., Luna, C., Szasz, N., Tasistro, A.: Experiment with a Type-Theoretic

Approach to the Verification of Model Transformations. 2nd Chilean Workshop
on Formal Methods. (2009)

18. Coquand, T., Paulin, C.: Inductively Defined Types Proc. Intl. Conf. on Computer
Logic, Springer (1990) 50–66.

19. Bézivin, J., Rumpe,B., Schürr, A., Tratt, L.: Model Transformations in Practice
Workshop” in MoDELS Satellite Events LNCS 3844, Springer (2005) 120–127

20. Verification of UML-Based Behavioral Model Transformations Project,
http://www.fing.edu.uy/inco/grupos/coal/field.php/Proyectos/ANII09

21. Steel, J., Jézéquel, J.M.: On Model Typing. SoSyM 6, Springer (2007) 401–413
22. Beckert, B., Keller, U., Schmitt, P.: Translating the Object Constraint Language

into First-Order Predicate Logic. Workshop at Federated Logic Conferences. (2002)

