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A Typed Logic of Partial Functions

Reconstructed Classically

C�B� Jones� and C�A� Middelburg��

Late October ����

Abstract

This paper gives a comprehensive description of a typed version of the
logic known as LPF� This logic is basic to formal speci�cation and veri�
�ed design in the software development method VDM� If appropriately
extended to deal with recursively de�ned functions� the data types used
in VDM� etc�� it gives the VDM notation and its associated rules of rea�
soning� The paper provides an overview of the needed extensions and
examines some of them in detail� It is shown how this non�classical logic
� and the extensions � can be reconstructed classically by embeddings
into classical in�nitary logic�
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� Introduction

Functions speci�ed in � for example � the VDM notation are in general partial�
Thus

di� �Z�Z�Z

di� �i � j � � if i � j then 	 else di� �i � j � �� � �

is a recursive function which computes the di�erence between two integers
providing its �rst argument is greater than or equal to the second� Partial
functions can give rise to non
denoting terms in formulae �i�e� terms that do
not refer to objects of the intended type� � they are loosely referred to as
unde�ned terms� There are problems when reasoning about partial functions
in classical �rst
order logic� Consider what might appear to be a reasonable
formalization of the property above�

�i � j �Z� i � j � di� �i � j � � i � j

The truth of this plausible formula depends on implications such as

� � � � di� ��� �� � �� �

in which di� ��� �� does not denote an integer� If the equality ��� is strict
�which is the case with normal computational � or weak � equality� the right

hand side of this implication does not denote a truth value� �In fact� the
di� example is purposely chosen because there is not a convenient subtype to
use for the domain over which its application is de�ned�� There are several
ways of handling the di�culty with such a formula� One possibility is to read
logical connectives like implication as though they were de�ned by conditional
expressions which are non
strict in their second argument� Unfortunately�
with this viewpoint� one loses intuitive properties such as commutativity for
disjunctions and conjunctions� it also fails to help with examples such as

�i � j �Z� di� �i � j � � i � j � di� �j � i� � j � i

A range of approaches to this problem are reviewed in �CJ��� and �MR����
The former presents arguments for the logic which is used with VDM �see
�Jon�	��� This logic is known as the �Logic of Partial Functions� �LPF� and
uses non
classical meanings for the logical connectives and quanti�ers� Atomic
formulae that contain non
denoting terms may be logically neither
true
nor

false and the logical connectives and quanti�ers are extended to cope with
operands that are neither
true
nor
false� the only apparent disadvantage is that
one has to give up the �law of the excluded middle�� Yet� the classical truth

conditions and falsehood
conditions for logical connectives and quanti�ers are
retained� LPF provides extensions to the connectives and quanti�ers in which
the formula concerned is classi�ed as neither
true
nor
false exactly when it
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cannot be classi�ed as true or false by these conditions� An untyped version
of LPF is presented in �BCJ��� and elaborated in �Che����

Another approach to the di�culty discussed above stays within the world
of classical two
valued logics by viewing atomic formulae that contain non

denoting terms as logically false� In this way� the �law of the excluded middle�
does not have to be abandoned� When a formula cannot be classi�ed as true� it
is inexorably classi�ed as false� no further distinction is made� This approach
is attributed to Scott �Sco��� and has been followed in� for example� MPL�
�KR����

The approach followed in LPF can be explained at the same time as showing
the thrust of the description of LPF set out below� Consider the formula

di� ��� �� � � � 	 �di� ��� �� � ��

This is not a tautology in LPF� It can be translated into classical logic as
follows�

di� ��� �� 
 � �� 
 � �di� ��� �� � �
di� ��� �� 
 � �� 
 � �di� ��� �� 
 �

where � is a constant corresponding to unde�ned and is classical equality
which yields true when its operands are the same � even if unde�ned � and
false otherwise� Essentially� the equality used � � is being made to absorb the
unde�nedness�

Since it has been described elsewhere� the case for LPF is not addressed
further here� the purpose of this paper is to give a �rm foundation to a typed
version of LPF� One method employed is that indicated above� all formulae
are mapped into classical logic� The version of LPF treated in this paper is
used as the basis of formal speci�cation and veri�ed design in the software
development method VDM� In order to be usable in software development�
it has to be extended to deal with the base types and type formers used in
VDM� subtypes via type invariants� recursively de�ned types and functions�
etc� This gives essentially the VDM notation �VDM
SL� and its associated
rules of reasoning�

In addition to the usual non
logical � model
theoretic � justi�cation of the
inference rules of LPF� a logical justi�cation is given in this paper by means
of an embedding into classical logic� This shows how this non
classical logic
can be reconstructed classically� Classical logic is used meta
logically here� it
provides a classical explanation of LPF which is illuminating for those people
who use this logic but have a stronger intuition about classical logic�

Following the presentation of LPF� the above
mentioned extensions are
described� The rules given for reasoning about �some of� the base types and
type formers� subtypes and recursively de�ned types as well as the rules given
for reasoning about recursively de�ned functions are justi�ed by means of an
embedding of the extended LPF into classical in�nitary logic �Kei���� Classical
logic with countably in�nite conjunctions and disjunctions �L�� is used here
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to deal with recursion in type and function de�nitions� It would have been
possible to use classical �nitary logic extended with a minimal �xpoint operator
but this alternative was rejected because it is further from being our ultima
ratio�

The extended LPF provides essentially the VDM notation and its associ

ated rules of reasoning� Like other speci�cation languages� the VDM notation
is meant to permit formulating claims concerning speci�cations for software
systems � such as VDM proof obligations � in a mathematically precise way
and constructing formal proofs to justify these claims� These central issues are
shared with logic� but they are focused on software systems instead of abstract
structures� Because these issues have been extensively studied in logic� an
embedding into �classical� logic appears to be very useful� Besides� it makes
formal justi�cation of proof rules possible� A similar embedding of VVSL
�which is a variant of the VDM notation� into MPL� � a weak extension of L�
� can be found in �Mid����

� A Basic Logic of Partial Functions

A language of LPF is constructed with type symbols� function symbols and
predicate symbols that belong to a certain set which is called a signature� For
a given signature� say � � the language concerned is called the language of LPF
over signature � or the language of LPF�� �� The corresponding proof system
and interpretation are analogously called the proof system of LPF�� � and the
interpretation of LPF�� �� respectively�

In this section LPF is described precisely� First� the assumptions which
are made about type� function and predicate symbols are given and the no

tion of signature is introduced� Thereafter� the language� proof system and
interpretation of LPF are de�ned�

��� Signatures for LPF

We assume a set TYPE of type symbols� a set FUNC of function symbols� and
a set PRED of predicate symbols� Every f 
 FUNC and every P 
 PRED

has an arity n �n � 	�� To denote this arity� we use the notation arity�f � and
arity�P�� Function symbols of arity 	 are called constant symbols� There is a
special predicate symbol � of arity �� called weak equality�

A signature � is a �nite subset of TYPE �FUNC �PRED � We write
T�� � for � �TYPE � F�� � for � �FUNC � P�� � for � �PRED� SIG denotes
the set of all signatures for LPF�

We also assume a set VAR of variable symbols� Furthermore� it is assumed
that TYPE � FUNC � PRED� VAR and f�g are mutually disjoint sets� We
write VLPF for TYPE �FUNC �PRED �VAR� We use the notation w � w �

�w �w � 
 VLPF � to indicate that w and w � are identical symbols�
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��� Language of LPF���

Terms and Formulae

The language of LPF�� � contains terms and formulae� They are constructed
according to the formation rules given below�

The logical connectives and quanti�ers of classical logic have counterparts
in LPF� In addition� LPF has the logical connectives � and�� These additional
connectives are not needed for specifying software systems but they make LPF
an expressively complete three
valued logic �i�e�� any function on the three

valued domain of truth values can be de�ned by a formula�� The proof rules for
the connectives � and � are seldom needed for reasoning about speci�cations�
indeed� this is precisely one of the advantages claimed for LPF� The reader
is referred to �CJ��� for further discussion� False �false�� de�nedness ��� and
strong equality ����� which are de�ned below by means of � and �� are also
seldom employed in proofs using LPF� of course� they play a larger role in the
current paper which concerns the foundations of the whole of LPF�

The terms of LPF�� � are inductively de�ned by the following formation
rules�

�� variable symbols are terms�

�� if f 
 F�� �� arity�f � � n and t�� � � � � tn are terms� then f �t�� � � � � tn� is a
term�

The formulae of LPF�� � are inductively de�ned by the following formation
rules�

�� � is a formula�

�� if P 
 P�� �� arity�P� � n and t�� � � � � tn are terms� then P�t�� � � � � tn� is
a formula�

�� if t� and t� are terms� then t� � t� is a formula�

�� if t is a term and T 
 T�� �� then t �T is a formula�


� if A is a formula� then �A and 	A are formulae�

�� if A� and A� are formulae� then A� � A� is a formula�

�� if A is a formula� x is a variable symbol and T 
 T�� �� then �x �T � A
is a formula�

The string representation of formulae suggested by these formation rules can
lead to syntactic ambiguities� parentheses are used to avoid such ambiguities�

TLPF �� � and LLPF �� � denote the set of all terms of LPF�� � and the set
of all formulae of LPF�� �� respectively�

We henceforth use �with or without subscripts��

T and T � to stand for arbitrary type symbols in T�� ��
c to stand for an arbitrary constant symbol in F�� ��
f and g to stand for arbitrary function symbols in F�� ��
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P and Q to stand for arbitrary predicate symbols in P�� ��
x � y and z to stand for arbitrary variable symbols in VAR�
t and t � to stand for arbitrary terms in TLPF �� ��
A� A� and A�� to stand for arbitrary formulae in LLPF �� ��

The formula � is neither
true
nor
false� �A is true if A is either true or
false and �A is false otherwise� So � � is false� For the connectives 	 and � as
well as the quanti�er �� the classical truth
conditions and falsehood
conditions
are retained� A formula is classi�ed as neither
true
nor
false exactly when it
cannot be classi�ed as true or false by these conditions� Equality is treated
in the same way� t� � t� is neither
true
nor
false if and only if t� or t� is
non
denoting�

The formula t �T is a typing assertion� If t �T is true then t must be
denoting� which means that t � t is true as well� If t is non
denoting� then
t �T is neither
true
nor
false�

Abbreviations and Notational Conventions

Additional connectives and quanti�ers are de�ned as abbreviations�

false �� � ��

�A �� A � 	A�
A� � A� �� 	 �	A� � 	A���
A� � A� �� 	A� � A��
A� � A� �� �A� � A�� � �A� � A���
�x �T � A �� 	�x �T � 	A�

De�nedness ��� and strong equality ���� are used in Section �� They are
de�ned by the following abbreviations�

t� �� ��t � t��
t� �� t� �� �t�� � t��� � �t� � t� ���t� � t� � t� � t����

So t� is true if t is denoting and t� is false otherwise� Strong equality is very
much like equality in classical logic� t� �� t� is true if t� and t� denote the
same object or both are non
denoting and t� �� t� is false otherwise�

For convenience� non
equality is also de�ned as abbreviation�

t� 
� t� �� 	 �t� � t���

The need to use parentheses in the string representation of formulae is
reduced by ranking the precedence of the logical connectives �� �� 	 � �� ��
� � � � The enumeration presents this order from the highest precedence
to the lowest precedence� Furthermore the scope of the quanti�ers extends as
far as possible to the right and �x��T� � � � � �xn�Tn � A is usually written as
�x��T�� � � � � xn �Tn � A� Parentheses are usually omitted in terms of the form
f �t�� � � � � tn� whenever arity�f � � 	� constant symbols are used as terms�






Free Variables and Substitution

For a term or formula e of LPF�� �� free�e� denotes the set of free variables

of e� which is de�ned in the usual way� A variable symbol x is called free

in e if x 
 free�e�� We write free�� �� where � is a set of formulae� forS
ffree�A� j A 
 �g�
Substitution for variables is also de�ned in the usual way� Let x be a

variable symbol� t be a term and e be a term or formula� Then �x �� t �e is the
result of replacing the term t for the free occurrences of the variable symbol
x in e� avoiding � by means of renaming of bound variables � free variables
becoming bound in t �

��� Proof System of LPF���

Sequents

The proof system of LPF�� � is formulated as a sequent calculus for proofs
in natural deduction style�� The inference rules have formulae and sequents
amongst their hypotheses �called ordinary hypotheses and sequent hypotheses�
respectively��

A sequent is an expression of the form � � A� where � and A are a �nite
set of formulae and a formula� respectively� of LPF�� �� Instead of f g � A we
write � A� Furthermore� we write � �� � for � � � � and A for fAg�

The intended meaning of the sequent � � A is that the formula A is a
consequence of the formulae � � There are several sensible notions of con

sequence for three
valued logics� that underlying LPF is precisely de�ned in
Section ���� It corresponds to the intuitive idea that one can draw conclu

sions that are true from premises that are true �called strong conclusions and
strong premises� respectively� in �KTB����� Formulae and sequents are proved
by �natural deduction� proofs obtained by using the rules of inference given
below�

Rules of Inference

The essential point about LPF is that the law of the excludedmiddle �A � 	A�
does not hold �A might be neither
true
nor
false�� Since this is implied by

� �I
A� � A� A� � 	A�

	A�

and the rule ��
E� given below �which can be used in LPF as well as in clas

sical logic�� it follows that the rule �	 
I� � or any other rule corresponding to
the principle of proof by contradiction � cannot be used� In consequence� rules

�For a comparison of this and other proof styles as well as other kinds of proof systems�
see e�g�� �Sun��	�
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concerning the negation of negations� conjunctions and universal quanti�ca

tions are needed in the proof system of LPF� �Other distinguishing points are
discussed after the rules��

The proof system of LPF is de�ned by the following rules of inference�

� �E
A� 	A�

A�

�� �I
A

		A

�� �E
		A
A

��I
A� A�

A� � A�

��E
A� � A�

Ai

for i 
 �� �

���I
	Ai

	 �A� � A��
for i 
 �� �

���E
	 �A� � A�� 	A� � A� 	A� � A�

A�

��I
x �T � A

�x �T �A

��E
t �T �x �T �A

�x �� t �A

���I
t �T 	 �x �� t �A

	�x �T � A

���E
	�x �T � A� x �T �	A� � A�

A�
x not free in A�


�re

t �T
t � t


�sub
t� � t� �x �� t��A

�x �� t��A

�
�I
t� � t� t� � t�

��t� � t��

�



�
�E
��t� � t��

t� � t� � t� � t�

���I
t � t

��t �T �

���E
��t �T �
t � t

x �den
��x �T �

��E
�
A

���E
	 �
A

��I��
A

�A

��I��
	A

�A

��E
�A� A� � A� 	A� � A�

A�

���I
�A� � A� �A� � 	A�

	 �A�

���E
	 �A� � A� 	 �A� � 	A�

�A�

The rule of re�exivity for equality is slightly adapted from the classical case
because it does not satisfy the usual law in case of non
denoting terms� The
additional rules for equality are also needed because of the extension to the
three
valued case � t� � t� is true or false exactly when t� and t� are denoting�

Similar rules are needed for typing assertions � t �T is true or false exactly
when t is denoting�� The other rule concerning typing is needed because
variables are always denoting in LPF�

The rules for � and � are seldom used in practice� However� exactly these
rules are used to justify the derived rules of inference �false
E� and �	 false
I�
given below� Further we have the following law of the excluded fourth in LPF�
A � 	A � 	 �A�

�These rules make the rule of re
exivity for equality super
uous�
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Proofs

A natural deduction proof consists of�

�� a �nite set of formulae� called the hypotheses of the proof�

�� a non
empty �nite sequence of formulae and proofs� called the steps of the
proof� the last of which must be a formula which is called the conclusion

of the proof�

Each step that is a formula must be a hypothesis of the proof or the conclusion
of an instance of an inference rule� In the latter case� each of the ordinary
hypotheses of the rule instance concerned must be a hypothesis or preceding
step of the proof �or of an enclosing proof� and each of the sequent hypotheses
of the rule instance concerned must be established by a preceding step of the
proof �or of an enclosing proof�� A sequent � � A is established by a step
i� the step is a �sub
�proof� every hypothesis of the proof is in � and the
conclusion of the proof is A�

A sequent � � A is provable if there exists a proof with � as hypotheses
and A as conclusion� A formula A is provable if the sequent � A is provable�
To indicate this� we write LPF�� ��� � A and LPF�� ��A� respectively�

Derived Rules

The following are some derived rules� i�e� for each instance of these rules� if
the hypotheses are provable then so is the conclusion�

false�E
false

A

� false�I
	 false

�
�E
t 
� t

A


�sym
t� � t�
t� � t�

�
�sym
t� 
� t�
t� 
� t�

�
�I�
t��T� t��T�

��t� � t��

� ��I
x �T � �A

���x �T � A�

�



The following derived rules show how weak equality and strong equality
are related�


�


t� � t�
t� �� t�



�

t� �� t� t� � t�

t� � t�

The formulae and sequents of LPF are translated to formulae and sequents
of classical in�nitary logic �L�� in Section ��
� The translation concerned has
the property that what can be proved in LPF remains the same after trans

lation� This implies that the inference rules of LPF become derived rules of
L� after translation� The translation provides one justi�cation for the infer

ence rules of LPF� another justi�cation is a�orded by the interpretation given
below�

��� Interpretation of LPF�� �

The proof system of LPF is based on the interpretation of terms and formulae
presented below� the rules of inference preserve validity under this interpreta

tion�

Structures

Terms and formulae of LPF�� � are interpreted in structures which consist
of a universal domain of values and an interpretation of every symbol in the
signature � as well as the equality symbol� The universal domain of values
must be a set containing a special element �� When a term is non
denoting�

� is used as its interpretation� Analogously� when a formula is neither true
�T � nor false �F �� N is used as its interpretation�

A structure A� with signature � � consists of�

�� a set UA� the domain of A� such that � 
 UA and UA � f�g 
� f g�
�� for every T 
 T�� ��

a set TA such that TA � UA � f�g�
�� for every f 
 F�� �� arity�f � � n�

a total map f A�UA � � � � � UA

� �z �
n times

� UA�

�� for every P 
 P�� �� arity�P� � n�
a total map PA�UA � � � � � UA

� �z �
n times

� fT �F �N g�


� a total map �A�UA � UA � fT �F �N g such that for all d � d � 
 UA�
�A�d � d �� � T if d 
� � and d � 
� � and d � d ��

F if d 
� � and d � 
� � and d 
� d ��

N otherwise�

�	



Instead of wA we write w when it is clear from the context that the interpre

tation of symbol w in structure A is meant�

Assignment

An assignment in a structure A with signature � assigns to variables elements
in the domain of A� However� variables are never mapped to�� This restriction
is in accordance with the treatment of variables� both free and bound variables
always denote� The interpretation of terms and formulae of LPF�� � in A is
given with respect to an assignment � in A�

Let A be a structure with signature � � Then an assignment in A is a
function ��VAR � UA � f�g�

For every assignment � inA� variable symbol x and element d 
 UA�f�g�
we write ��x � d� for the assignment �� such that ���y� � ��y� if y 
� x and
���x � � d �

Interpretation

The interpretation of terms is given by a function mapping term t � structureA
and assignment � in A to the element of UA that is the value of t in A under
assignment �� Similarly� the interpretation of formulae is given by a function
mapping formula A� structure A and assignment � in A to the element of
fT �F �N g that is the truth value of A in A under assignment �� We write
��t ��A

�
and ��A��A

�
for these interpretations� The superscripts are omitted when it

is clear from the context which structure is meant�
The interpretation functions for terms and formulae are inductively de�ned

by

��x ��A
�

� ��x ��
��f �t�� � � � � tn���A� � f A���t���A� � � � � � ��tn��

A
�
��

�����A
�
� � N �

��P�t�� � � � � tn���A� � PA���t���A�� � � � � ��tn��
A
�
��

��t� � t���A� � �A���t���A�� ��t���
A
�
��

��t �T ��A
�

� T if ��t ��A
�

� � and ��t ��A

�

 TA�

F if ��t ��A
�

� � and ��t ��A

�
�
 TA�

N otherwise�
���A��A

�
� T if ��A��A

�
� T or ��A��A

�
� F �

F otherwise�
��	A��A

�
� T if ��A��A

�
� F �

F if ��A��A
�
� T �

N otherwise�

��



��A� � A���A� � T if ��A���A� � T and ��A���A� � T �

F if ��A���
A
�
� F or ��A���

A
�
� F �

N otherwise�
���x �T � A��A

�
� T if for all d 
 TA� ��A��A

��x�d� � T �

F if for some d 
 TA� ��A��A
��x�d� � F �

N otherwise�

We write A j� A��� for ��A��A
�
� T �

Notice that the above interpretation makes conjunction non
strict in both
of its arguments and gives the truth value F for a universally quanti�ed formula
�x �T � A in some cases where the interpretation of A is neither T nor F for
some assignments�

For a �nite set � of formulae of LPF�� � and a formula A of LPF�� �� A is
a consequence of � � written � j� A� i� for all structures A with signature � �
for all assignments � in A� if A j� A���� for all A� 
 � then A j� A����
Theorem

The proof system given above for LPF has the following soundness and com

pleteness properties�

soundness� if � � A� then � j� A�

completeness� if � j� A� then � � A�

Proof


The proof for the untyped case in �Che��� extends directly to the typed case�
�

It is a consequence of the compositional style adopted for constructing a com

pleteness proof that � in case of incompleteness � the failed proof attempt
indicates the origin�s� of the incompleteness� In fact� the rules ���
I�� ���
E��
and �x 
den�� which are needed for typing assertions� were only discovered when
we tried to construct the completeness proof�

��� Embedding LPF into L�

In this subsection� the relationship between LPF and classical in�nitary logic
is characterized� The terms� formulae and sequents of LPF are translated to
terms� formulae and sequents� respectively� of L�� The mappings concerned
provide a uniform embedding of LPF into L�� The translation has the property
that what can be proved in LPF remains the same after translation� It provides
an illuminating classical explanation of LPF and justi�es the inference rules
of LPF logically� Later� extensions of LPF concerning the base types and type
formers used in VDM� subtypes via invariants and recursively de�ned types
and functions are presented� The inference rules concerned are also justi�ed
by an embedding into L��

��



Translation

In the translation� a canonical mapping from symbols of LPF to symbols of L�
is assumed� More precisely� we assume a total mapping from VLPF to VL� � for
each w 
 VLPF � we write w for the symbol to which w is mapped� Furthermore�
the mapping is assumed to be injective and such that

each type symbol T is mapped to a predicate symbol T
with arity�T � � ��

each function symbol f is mapped to a function symbol f
with arity�f � � arity�f ��

each predicate symbol P is mapped to a function symbol P
with arity�P� � arity�P��

each variable symbol x is mapped to a variable symbol x �

We also use the notation W for the image of W �W � VLPF � under this
mapping� We write�

TLPF for
S
fTLPF �� � j � 
 SIGg�

LLPF for
S
fLLPF �� � j � 
 SIGg�

TL� for
S
fTL��� � j � 
 SIGg�

LL� for
S
fLL� �� � j � 
 SIGg�

The terms and formulae of LPF are translated by mappings�

h���i�TLPF � TL� �
h���it �LLPF � LL� �

For the translation of formulae� an auxiliary mapping is used as well�

h���if �LLPF � LL� �

For a term t of LPF� the term h�t �i is the translation of t to L�� For a formula
A of LPF� the formula h�A�it is the translation of A to L�� Intuitively� h�A�it is
a formula of L� stating that the formula A of LPF is true in LPF� Likewise�
h�A�if is a formula of L� stating that the formula A of LPF is false in LPF� In
case both h�A�it and h�A�if are false in L�� A is neither
true
nor
false in LPF�

The syntactic variables that are used in the de�nition of these mappings�
range over syntactic objects as follows �subscripts and primes are not shown��

T ranges over TYPE �
f ranges over FUNC �
P ranges over PRED�

x ranges over VAR�
t ranges over TLPF �
A ranges over LLPF �

It is assumed that t � f � � 
 FUNC � U �B 
 PRED� y� y�� � � � � yn 
 VAR�
t � f � � of arity 	 and U �B of arity ��

The symbol is used for equality in L�� This �classical� equality is ex

plained in Appendix A�

The translation mapping for terms is inductively de�ned by

��



h�x �i � x �
h�f �t�� � � � � tn��i � f �h�t��i� � � � � h�tn �i��

The translation mapping for formulae and the auxiliary mapping are si

multaneously and inductively de�ned by

h���it � false�
h�P�t�� � � � � tn��it � P�h�t��i� � � � � h�tn�i� t �
h�t� � t��it � h�t��i 
 � �h�t��i 
 � �h�t��i h�t��i�
h�t �T �it � h�t �i 
 � �T �h�t �i��
h��A�it � h�A�it � h�A�if �
h�	A�it � h�A�if �
h�A� � A��it � h�A��it � h�A��it �
h��x �T � A�it � �x � T �x � � h�A�it �

h���if � false�
h�P�t�� � � � � tn��if � P�h�t��i� � � � � h�tn�i� f �
h�t� � t��i

f � h�t��i 
 � �h�t��i 
 � �h�t��i 
 h�t��i�
h�t �T �if � h�t �i 
 � �	T �h�t �i��
h��A�if � 	 �h�A�it � h�A�if ��
h�	A�if � h�A�it �
h�A� � A��if � h�A��if � h�A��if �
h��x �T � A�if � �x � T �x � � h�A�if �

These translation rules strongly resemble the interpretation rules of LPF that
are given in Section ���� the rules for the mapping h���it correspond to the truth

conditions and the rules for the mapping h���if correspond to the falsehood

conditions�

A translation for sequents of LPF�� � can also be devised�

h�� � A�i �� Ax�� �� � fAg� � fh�A��it j A� 
 �g � h�A�it�

where

Ax�� �� �� �
fU ��� � �y � U �y� � y 
 �g�
ft 
 f � t 
 � �f 
 � ��B�b� � b t � b f � b ��g�
fT �y� � U �y� � y 
 � j T 
 T�� �g�
fU �y�� � � � � � U �yn�� U �f �y�� � � � � yn�� j f 
 F�� �� arity�f � � ng�
fU �y�� � � � � � U �yn�� B�P �y�� � � � � yn�� j P 
 P�� �� arity�P� � ng�
fU �x � � x 
 � j x 
 free�� ��g�

Ax�� �� �� contains a formula asserting that the domain of values contains at
least one value in addition to the special element used as the interpretation of
non
denoting terms and a formula asserting that the domain of truth values
contains exactly two distinct truth values in addition to the special element
used as the interpretation of non
denoting formulae� It also contains formulae
asserting that the types concerned do not contain the special element used as

��



the interpretation of non
denoting terms� It further contains formulae assert

ing that application of the functions concerned yields values from the domain
of values and formulae asserting that application of the predicates concerned
yields truth values� Finally� it contains formulae asserting that the free vari

ables are always denoting�

Note that the �nite fragment of L� su�ces for the embedding of LPF� L� is
used because its countably in�nite disjunctions are needed for the embedding
of the extensions for recursive de�nitions of functions and types in Sections �
and 
�

Reducibility

Roughly speaking� LPF can be reduced to L� in the sense that what can be
proved in LPF remains the same after translation�
Theorem

LPF can be reduced to L�� i�e�

LPF�� �� � � A i� L��� � fU �B � t � f � �g�� h�� � A�i�

Proof


� is proved by induction over the length of a proof of � � A� For �� it
su�ces to show that for some structure A of LPF with signature � that is
a counter
model for � � A� there exists a structure A� of L� with signature
� � fU �B � t � f � �g that is a counter
model for h�� � A�i� �

It is assumed that the translation of sequents is extended to inference rules
in the obvious way�
Corollary

The translation of the inference rules of LPF are derived rules in L��

� Recursively De�ned Functions

In the previous section� LPF was embedded into L�� Recursive function def

initions can be represented in L�� This permits the rules used for reasoning
about recursively de�ned functions in LPF to become derived rules of L��

In this section the extension of LPF for recursive function de�nitions is
described� First� the additional formation rules� inference rules and inter

pretation rules for recursive function de�nitions are given� Thereafter� their
embedding into L� is de�ned�

��� LPF and Recursive Function De	nitions

The logic LPF is used in VDM to reason about recursively de�ned functions�
The treatment of recursive function de�nitions in VDM is made precise below
by de�ning a conservative extension of LPF�

�




The following additional formation rule for terms is required�

�� if A is a formula and t� and t� are terms� then if A then t� else t� is a
term�

Terms of this form are called conditionals� In �BCJ���� conditionals are also
regarded as terms of an extension of LPF�

The following additional formation rule for formulae is required�

�� if f 
 F�� �� arity�f � � n� x�� � � � � xn are distinct variable symbols�
T�� � � � �Tn are �not necessarily distinct� types and t is a term with
free�t� � fx�� � � � � xng� then f �x��T�� � � � � xn �Tn�T � t is a formula�

Formulae of this form are called recursive function de�nitions� A recursive
function de�nition f �x��T�� � � � � xn �Tn�T � t de�nes f directly in terms of a
de�ning term t in which the function being de�ned may be recursively used�
It corresponds to the direct de�nition of f written in the VDM notation as

f �T� � � � � � Tn � T

f �x�� � � � � xn� � t

The following are additional inference rules for conditionals and recursive
function de�nitions��

if��
A

if A then t� else t� �� t�

if��
	A

if A then t� else t� �� t�

if��
	 �A

	 ��if A then t� else t����

Func�def
x��T� � � � xn �Tn t �T

f �x��T�� � � � � xn �Tn�T � t � f �x�� � � � � xn� � t

Func�ind

	 �u�� � �f �x�� � � � � xn� �� u�A
A � �f �x�� � � � � xn � �� t �A

f �x��T�� � � � � xn �Tn�T � t � A
t continuous in f

A admissible in f

Here �f �x�� � � � � xn� �� t �A is the result of simultaneously replacing the occur

rences of the substitution instances of f �x�� � � � � xn� in A by the correspond

ing substitution instances of t � The function de�nition hypothesis is usually
dropped when it is clear from the context which de�nition is meant�

�The �rst hypothesis of the rule �Func�ind� could be replaced by the simpler
�f �x�� � � � � xn � �
 �	A if � was also regarded as a �non�denoting� term of the extension of
LPF�

��



We say that t is continuous in f i� the mapping from functions to functions
that maps f to �the function that maps x�� � � � � xn to� t is continuous with
respect to the �less de�ned than� ordering given below� A su�cient syntactic
condition for continuity is� in every term of the form if A�

then t� else t�
occurring in t � f does not occur in A��

We say that A is admissible in f i�� for every chain of functions F� v
F� v F� v � � � �where v is the �less de�ned than� ordering� contained in
the set of all functions f satisfying A� its least upper bound is also in that
set� The following syntactic properties characterize a large class of admissible
formulae� Formulae of the forms P�t�� � � � � tn�� t� � t�� t ��T �� 	 �t ��T ��� t ��
and 	 �t ��� are admissible if in every term of the form if A�

then t� else t�
occurring in the formula concerned� f does not occur in A�� so are formulae
of the forms 	P�t�� � � � � tn� and t� 
� t� if additionally f occurs in at most
one of the terms ti �where i 
 f�� � � � �ng and i 
 f�� �g� respectively�� Also
admissible are formulae in which f does not occur� Furthermore� if A�� A� and
A� are admissible formulae� then so are A� � A�� A� � A� and �x �T � � A�� So
is �x �T � � A� if additionally T � is a �nite type� If A� is an admissible formula�
then so are all formulae obtained by replacing one or more occurrences of a
subformula A�� by 		A�� or vice versa� From these properties it follows among
other things that a formula of the form A� � A� is admissible if 	A� and
A� are admissible�

Strong equality ���� is used instead of weak equality ��� in the rules �if
��
and �if
�� for the sake of conciseness and simplicity of the collection of primitive
inference rules for conditionals� However� rules involving strong equality� which
can only be de�ned in LPF by means of the uncommon connective �� can
mostly be dispensed with when reasoning about speci�cations� The following
derived rules for conditionals are more often used in practice�

if���
t� � t� A

if A then t� else t� � t�

if���
t� � t� 	A

if A then t� else t� � t�

Moreover� the method of reasoning about recursive functions discussed below
often circumvents the need to argue about conditionals directly�

In the structures used for interpretation� a partial function is modelled
by a total map whose argument domains and result domain contain �� An
argument tuple is mapped to � if the function concerned is unde�ned for that
argument tuple� This suggests the following de�nition� which is used in the
additional interpretation rules given below�

For total maps F �G�UA � � � � � UA

� �z �
n times

� UA� where A is a given structure�

F is less de�ned than G i�

��



for all d�� � � � � dn 
 UA�
F �d�� � � � � dn� 
� � � F �d�� � � � � dn� � G�d�� � � � � dn��

The following are the additional interpretation rules for conditionals and
recursive function de�nitions�

��if A then t� else t���A� � ��t���A� if ��A��A
�
� T �

��t���A� if ��A��A
�
� F �

� otherwise�

��f �x��T�� � � � � xn �Tn�T � t ��A
�

�

T if f A is the least de�ned F �UA � � � � � UA

� �z �
n times

� UA such that

for all d� 
 TA
� � � � � � dn 
 TA

n � d 
 TA�
��t ��A

�

��x��d������xn�dn �
� d � F �d�� � � � � dn� � d �

F otherwise

where A� is the structure with signature � such that wA�

� wA if w 
� f and
f A

�

� F �w 
 � ��
Note that the interpretation of f �x��T�� � � � � xn �Tn�T � t is not a set of

models in which f corresponds to the function being de�ned� Instead it is
essentially the characteristic function of the set concerned� This interpreta

tion is taken for technical reasons� function de�nition hypotheses and other
hypotheses can thus be treated alike�

The soundness of the rules �if
��� �if
��� �if
�� and �Func
def� with respect
to this interpretation is obvious� The hypotheses of the rule �Func
ind� imply
that A holds for a countable sequence of approximations of the function f where
each approximation is less de�ned than the next one� the �rst approximation is
the totally unde�ned function and each of the following approximations relies
on the previous approximation for the recursive uses of f in t � If t is continuous
in f � then this sequence converges to the function being de�ned according to
the interpretation of recursive function de�nitions given above� If additionally
A is admissible in f � A holds for that function as well�

In �Jon�	�� it is informally explained how a recursive de�nition of a partial
function can be rendered into inference rules� The inference rules concerned
resemble the appropriate rules of an inductive de�nition of the function �for
partial functions� such rules usually need to be of a particular form�� Given the
recursive de�nition� the inference rules can also be regarded as derived rules
of this extension of LPF� For example�

fac �Z�Z

fac�n� � if n � 	 then � else n � fac�n � ��
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is a recursive de�nition of a function on integers which yields the factorial of
non
negative integers and is unde�ned otherwise� The corresponding inference
rules according to �Jon�	� are

fac�b
fac�	� � �

fac�i
t �Z t 
� 	 fac�t � �� � t �

fac�t� � t � t �

They are derived rules of LPF with the extension for recursive function de�n

itions� The rules �fac
b� and �fac
i� are allowing any �xpoint of the de�nition
instead of requiring the least �xpoint�� They do not su�ce to show that fac
is only de�ned for non
negative integers� i�e�

�x �Z� fac�x �� � x � 	

The justi�cation of this leastness result depends among other things upon the
rule �Func
ind�� Note that the uncommon connective � has to be used � at
least indirectly � to formulate leastness results� However� such results are not
often needed when reasoning about speci�cations in practice�

��� Embedding Recursive Function De	nitions into L�

Just like formulae of LPF� recursive function de�nitions can be mapped to
formulae of L�� The rules �if
��� �if
��� �if
��� �Func
def� and �Func
ind� be

come derived rules of L� after translation� So the translation justi�es these
additional rules as well� Consequently� it also justi�es the generation of rules
from recursive function de�nitions according to �Jon�	��

Recursive De�nitions in L�

In L�� a large class of recursive de�nitions can be expressed as formulae�� To
describe the formulae concerned� we use the following notation�

� de�ned predicates fx�� � � � � xn j Ag� with the meaning given by
fx�� � � � � xn j Ag�t�� � � � � tn� � �x� �� t�� � � � � xn �� tn �A�

� predicate operators �P �fx�� � � � � xn j Ag� with the meaning given by
��P �fx�� � � � � xn j Ag��D� � fx�� � � � � xn j �P ��D �Ag�

� a �xpoint operator Fix � Fix ��� is the least �xpoint of � for continuous
predicate operators � � �P �fx�� � � � � xn j Ag with arity�P� � n�

�In general� such inference rules are allowing almost any �xpoint� However this quali��
cation applies only to very pathological cases�

�The recursive de�nitions concerned are exactly the recursive function de�nitions
f �x��T�� � � � � xn �Tn�T � t for which t is continuous in f �

��



All this is precisely de�ned as abbreviations in Appendix A�
This will do to describe the formulae corresponding to recursive predicate

de�nitions� In case of recursive function de�nitions� the de�nition concerned
has �rst to be replaced by a recursive de�nition of a predicate that uniquely
determines the function concerned� The replacement is also given by the map

ping � de�ned in Appendix A�

Embedding into L�

Conditionals require that terms are translated to formulae of L� by a mapping

h���i��TLPF � � TL� � LL� �

where TLPF � denotes the set of all terms of LPF extended for recursive function
de�nitions� Intuitively� h�t �iu is a formula stating that the value of t is u� The
required adaptations of the translation rules for the terms and formulae of LPF
are trivial� e�g� the rule for the translation of function applications becomes�

h�f �t�� � � � � tn��iu �
�y�� � � � � yn � U �y�� � � � � � U �yn� �
h�t��iy� � � � � � h�tn�iyn � f �y�� � � � � yn� u�

The following rule is for the translation of conditionals to formulae of L��

h�if A then t� else t��iu �
�h�A�it � h�t��iu� � �h�	A�it � h�t��iu� � �h�	 �A�it � u ���

The following rules are for the translation of recursive function de�nitions
to formulae of L��

h�f �x��T�� � � � � xn �Tn�T � t �it �
�x�� � � � � x n� y � U �x �� � � � � � U �x n� � U �y� �

�f �x �� � � � � xn� y �
�y 
 � �D�x �� � � � � xn � y�� �
�y ��	�y � �U �y �� �D�x �� � � � � x n � y ����

where

D ��
Fix ��F �fx�� � � � � x n � y j T ��x �� � � � � � T n�xn� � T �y� � ��h�t �iy�g��

h�f �x��T�� � � � � xn �Tn�T � t �if � 	 h�f �x��T�� � � � � xn �Tn�T � t �it �

The inference rules �if
��� �if
��� �if
��� �Func
def� and �Func
ind� become
derived rules of L� after translation�

For the function fac de�ned above� the translation of the body of the
de�nition� h�t �iy� is logically equivalent to

�n 	 � y �� � �n 
 	 � y n � fac�n � ���

�	



under the assumption that n�Z� After applying the mapping �� we obtain the
following recursive de�nition of the corresponding predicate�

Fac �
fn� y j h�Z�i�n� � h�Z�i�y��

��n 	 � y �� � �n 
 	 � �z � Fac�n � �� z � � y n � z ��g�

After applying Fix to the corresponding predicate operator� we obtain a de�n

ing formula logically equivalent to

�n� y � U �n� � U �y� �
�fac�n� y �
�	 h�Z�i�n� � y �� �
�n � 	 � y �� �
�n 	 � y �� �
�n � � y n� �
�n � � y n � �n � ��� �
�n � � y n � �n � �� � �n � ��� �
���

��

� Base Types and Type Formers

In the VDM notation� one has base types such as the boolean type B � whose
elements are the truth values� and the natural type N� whose elements are
the natural numbers� Other types can be constructed from the base types by
means of type formers such as the set type former �
set and the sequence type
former ��� The elements of � 
set are the �nite sets with elements of type � and
the elements of � � are the �nite sequences with elements of type � � Another
useful type former is the union type former � j � � Its use is necessary in
recursive type de�nitions �treated in Section 
�� The elements of �� j �� are
the values that are elements of �� or ���

Instead of describing the extension of LPF for base types and type formers
fully� only the adaptations for the natural type� the sequence type former and
the union type former are described in this section� Other base types can be
treated in the same vein as the natural type and other type formers can be
treated in the same vein as the sequence type former� The union type former
is quite di�erent from the other type formers�

First� the additional formation rules� inference rules and interpretation
rules for the natural type� the sequence type former and the union type former
are given� Thereafter� their embedding into L� is de�ned� A meta
rule for the
creation of induction rules for inductively de�ned types is also given�

��



��� LPF and Types

The logic LPF is also used in VDM to reason about VDM�s base types and the
types constructed from them by means of VDM�s type formers� The treatment
of these types can be made precise by de�ning another conservative extension
of LPF� It requires the introduction of type expressions� The required adap

tations of the formation rules� inference rules� etc� of LPF and the extension
for recursive function de�nitions to the introduction of this syntactic category
are trivial� type symbols are simply identi�ed with type expressions� However�
the current extension requires more�

The following formation rules for type expressions are required�

�� type symbols are type expressions�
�� N is a type expression�
�� if � is a type expression� then � � is a type expression�
�� if �� and �� are type expressions� then �� j �� is a type expression�

The following are additional inference rules concerning the natural type
and the sequence types�

N�gen�b
	�N

N�gen�i
t �N

succ�t��N

N�ind
�x �� 	�A x �N�A � �x �� succ�x ��A

x �N � A

Seq�gen�b
� �� � �

Seq�gen�i
t�� � t�� �

�

cons�t�� t��� � �

Seq�ind
�x� ��� ��A x�� �� x�� � ��A � �x� �� cons�x�� x���A

x�� � � � A

The rules �N
ind� and �Seq
ind� are induction rules for natural numbers and
�nite sequences� respectively�

The following are additional rules of inference concerning union types�

j�I
t � �� � t � ��
t � �� j ��

j�E
t � �� j ��

t � �� � t � ��

A structure A with signature � has the following additional restrictions on
UA�

��



�a� N � UA � f�g�
�b� for every S � UA � f�g� S � � UA � f�g�

Here N denotes the set of all natural numbers�
The additional interpretation function for type expressions is inductively

de�ned by

��T ��A � TA�
��N��A � N �
��� ���A � ���� ��A���
���� j ����A � ������A � ������A�

The soundness of the inference rules concerning the natural type� the se

quence types and the union types with respect to this interpretation is obvious�

The VDM notation does not have dependent types� Therefore� the inter

pretation of any type expression remains the same under di�erent assignments�
Formulae such as � � 
� 	 are not excluded syntactically� because typing is not
decidable in the VDM notation � due to its subtyping mechanism �described
in Section 
��

��� Embedding Types into L�

Type expressions can also be embedded into L�� They can be mapped to
de�ned predicates� The inference rules concerning the various types become
derived rules of L� after translation� So the translation justi�es these rules as
well�

Inductive De�nitions in L�

In Section �� de�ned predicates� predicate operators and a �xpoint operator
were introduced as abbreviations to facilitate expressing recursive de�nitions
as formulae of L�� A large class of inductive de�nitions can also be expressed as
formulae� To describe the formulae concerned� we use the following additional
notation�

� x�� � � � � xn with the meaning given by
x�� � � � � xn � fy�� � � � � yn j y� 
 x� � � � � � yn 
 xng�

� �P	 ��D �A is the result of replacing the de�ned predicate D for the
positive occurrences of the predicate symbol P in A�

In the case of an inductive de�nition A of a predicate P � the formula A is
transformed into a continuous predicate operator � with the property that
Fix ��� is the smallest P satisfying A� Under certain mild conditions� the
predicate operator � � �P �fx�� � � � � xn j 	 �P	 �� x�� � � � � xn �Ag turns out to be
appropriate� This is described in detail in Appendix A�

��



Embedding into L�

Type expressions are translated to de�ned predicates by a mapping

h���i�XLPF � DL� �

where XLPF denotes the set of all type expressions and DL� denotes the set
of all de�ned predicates� Intuitively� h�� �i is the de�ned predicate D such that
t � � is true in LPF is stated by �y � h�t �iy � D�y�� This mapping is inductively
de�ned by

h�T �i � T �
h�N�i �
Fix ��P �fy j 	 �P	 �� y��P�	� � �y� � P�y�� � P�succ�y����g��

h�� ��i �
Fix ��Q �fy j 	 �Q	 �� y�

�Q�� �� � �y�� y� � h�� �i�y�� �Q�y�� � Q�cons�y�� y����g��
h��� j ���i � fy j h����i�y� � h����i�y�g�

Note that

P�	� � �y� � P�y�� � P�succ�y���

and

Q�� �� � �y�� y� � h�� �i�y�� �Q�y�� � Q�cons�y�� y���

are the usual inductive de�nitions of the set of all natural numbers and the set
of all �nite sequences over a given set h�� �i� respectively�
After replacing y for the positive occurrences of P and Q � respectively� in
these formulae and taking the negation of the resulting formulae� we obtain
the usual recursive de�nitions�

P � fy j y 	 � �y� � P�y�� � y succ�y��g

and

Q � fy j y � � � �y�� y� � h�� �i�y�� �Q�y�� � y cons�y�� y��g�

After applying Fix to the corresponding predicate operators� we obtain de�ned
predicates h�N�i and h�� ��i� One easily veri�es that

h�N�i�y� �
W
n y succn�	�

where succ��t� �� t and succn	��t� �� succ�succn�t��

and

h�� ��i�y� �
W
n An

where
A� �� y � ��
An	� ��
�y�� � � � � yn	� �
h�� �i�y�� � � � � � h�� �i�yn	�� � y cons�y�� � � � � cons�yn	�� � �� � � ���

��



These formulae de�ne the predicates concerned correctly� So the transfor

mation works for the inductive de�nitions of h�N�i and h�� ��i� This was to be
expected because the form of the inductive de�nitions �the Horn formulae
form� guarantees that the applicability conditions for the transformation are
met�

The above shows that the embedding in L� for other base types and types
constructed by means of other type formers can be easily obtained if we know
a way to generate any element of the type concerned�

It is easy to see that the inference rules concerning union types become
derived rules of L� after translation� A corollary from one of the justi�cations
of the meta
rule about inductive de�nitions given below is that it is also the
case for the rules concerning the natural type and the sequence types�

��� A Meta
rule about Induction Rules

All base types and types constructed by means of type formers can be de�ned
inductively in LPF by an instance of the following schema�

c�� � � � � � � cn � � �
��x �� � �

�
� � � � � � x �n� � �

�
n�
� f��x

�
� � � � � � x �n��� � �

�
���
�

��xm� � �m� � � � � � xmnm � �
m
nm

� fm�xm� � � � � � xmnm �� � ��

Fact
If the inductive de�nition of a type � is an instance of the above schema� then
the corresponding instance of the induction rule schema

�x �	 c�
A � � � �x �	 cn 
A
x�
�
� ��

�
� � � � � x�

n�
� ��

n�
� f�x �	 x�

i

A j ��

i
� �g � �x �	 f��x�� � � � � � x�

n�
�
A

���
xm
�

� �m
�

� � � � � xm
nm

� �m
nm

� f�x �	 xm
i


A j �m
i

� �g � �x �	 fm�xm
�

� � � � � xm
nm

�
A

x � � � A

is a sound rule of inference�
Proof
 After transforming the translation of the inductive de�nition as de

scribed in the previous subsection� we obtain the following de�ning formula
for h�� �i�

h�� �i�y� �
W
n An

�




where
A� �� y c� � � � � � y cn �
An	� ��
An �
��x ��� � � � � x

�
n�
��

i�fi j��
i
���g

h�� �i �i�x
�
i � �

�

i�fij��
i
��g

�y �� x �i �An � y f ��x
�
�� � � � � x

�
n�
��

�
���
�

��xm� � � � � � xmnm ��

i�fij�m
i
���g

h��m
i �i�xmi ��

�

i�fij�m
i
��g

�y �� xmi �An �y f m�x
m
� � � � � � xmnm ���

This is the construction of the inductive closure of the set fc�� � � � � cng under
the functions f�� � � � � fm expressed in L�� The induction rule follows directly
from the induction principle for inductive sets and h�x � � �it � h�� �i�x �� �

Another justi�cation can be given by showing that the induction rule be

comes a derived rule of L� after translation� After translation� we can infer

�A� � �x �� y�h�A�it� �V
n��An � �x �� y�h�A�it� � �An	� � �x �� y�h�A�it��

from the hypotheses of the rule� Then
V
n�An � �x �� y�h�A�it� follows by

transitivity of implication� h�� �i�x � � h�A�it � the translation of the conclusion
of the rule� is a direct consequence�

It follows immediately from this alternative justi�cation that the inference
rules concerning the natural type and the sequence types become derived rules
of L� after translation�

� Subtypes and Recursively De�ned Types

As well as recursive function de�nitions� recursive type de�nitions can be rep

resented in L�� So the rules used for reasoning about recursively de�ned types
in LPF become also derived rules of L�� In addition to type formers and
recursion� restriction of types to subtypes is used in VDM to de�ne types�

In this section� �rst the extension of LPF for subtypes is described and
thereafter the extension for recursive type de�nitions� For both extensions�
the additional formation rules� inference rules and interpretation rules as well
as the translation rules for the embedding into L� are given�

��� Subtypes

In the VDM notation� a type can also be a subtype of another type speci�ed
by means of an invariant � For example� sequences without repeating elements

��



are de�ned as follows�

Useq � Elem�

inv inv 
Useq�s� � is
uniques�s�

An obvious de�nition of is
uniques is

is
uniques �Elem� � B

is
uniques �s� � �i � j �N� � i � j 
 inds s � i 
� j � s�i� 
� s�j �

For a precise treatment of these subtypes in a further extension of LPF�
the following additional formation rule for type expressions is required�


� if x is a variable symbol� � is a type expression and A is a formula with
free�A� � fxg� then �x � � j A	 is a type expression�

�x � � j A	 corresponds to the subtype of � denoted in the VDM notation by
� inv inv 
T �x � � A �T is a name introduced for the subtype��

The following are additional inference rules concerning subtypes�

subtype�I
t � � � �x �� t �A
t ��x � � j A	

subtype�E
t ��x � � j A	

t � � � �x �� t �A

The following is the additional interpretation rule for subtypes�

���x � � j A	��A � fd 
 ��� ��A j ��A��A
��x�d�g

where � is an arbitrary assignment in A� The soundness of the inference rules
concerning subtypes with respect to this interpretation is obvious�

The following additional translation rule for type expressions makes these
inference rules derived rules of L� after translation�

h��x � � j A	�i � fx j h�� �i�x� � h�A�itg�

So subtypes can also be embedded into L��
Justi�cation of induction rules for subtypes by means of the inference rules

given above generally requires proofs by induction� For sequences without
repeating elements� the appropriate induction rule is�

Useq�ind

�x� ��� ��A
x��Elem� x��Useq� x� �
 elems x��A � �x� �� cons�x�� x���A

x��Useq � A

is
uniques can just as well be de�ned as follows�

��



is
uniques �Elem� � B

is
uniques �s� �

s � � � �
�hd �Elem� tl �Elem��is
uniques�tl��hd �
 elems tl�s � cons�hd � tl�

This de�nition shows the restrictions under which the generation of sequences
yields exactly the sequences without repeating elements� Such constructive

de�nitions of invariants make it easy to create induction rules for subtypes�
We can capture the creation of an induction rule for a subtype from an

associated constructively de�ned invariant in a meta
rule as well� because the
approach described for base types and type formers generalizes to types that
can be de�ned inductively in LPF by an instance of the following schema�

c�� � � � � � � cn � � �
��x �� � �

�
� � � � � � x

�
n�
� � �n� � A� � f��x �� � � � � � x

�
n�
�� � �

�
���
�

��xm� � �m� � � � � � xmnm � �
m
nm

� Am � fm�xm� � � � � � xmnm �� � �

where the formulae A�� � � � �Am do not contain � �

��� Recursive Type De	nitions

In the VDM notation� a type can also be introduced by a recursive type de�

nition T � � � For example� LISP
like lists can be de�ned by L � N j L�� The
use of the union type former is necessary in recursive type de�nitions�

For a precise treatment of recursive type de�nitions� an additional forma

tion rule for formulae is required�

�� if T 
 T�� � and � is a type expression� then T � � is a formula�

In the rules used for reasoning about recursively de�ned types� recursive type
de�nitions are used as formulae�

Additional inference rules are�


Type�def
t � �

T � � � t �T

Type�ind
�T ��f g�A A � �T �� � �A

T � � � A
� continuous in T � A admissible in T

The type de�nition hypothesis is usually dropped when it is clear from the
context which de�nition is meant�

�Here f g denotes the empty type� The use of terms that denote sets as types is described
in the next section�
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We say that � is continuous in T i� the mapping from types to types
that maps T to � is continuous with respect to the �less than� ordering given
below� A su�cient syntactic condition is� in every type expression of the form
�x � � � j A�	 occurring in � � T does not occur in A��

We say that A is admissible in T i�� for every chain of types S� � S� �
S� � � � � �where � is the �less than� ordering� contained in the set of all types T
satisfying A� its least upper bound is also in that set� The following syntactic
properties characterize a large class of admissible formulae� Formulae of the
forms t ��T �� 	 �t ��T �� and ��t ��T �� are admissible if in every term of the form
if A�

then t� else t� occurring in the formula concerned� T does not occur in
A�� Also admissible are formulae in which T does not occur� The preservation
properties are as in case of functions �treated in Section ���

For sets S �S � � U � f�g� S is less than S � i� S � S ��
The following is the additional interpretation rule for recursive type de�n


itions�

��T � � ��A
�
�

T if TA is the least S � UA � f�g such that S � ��� ��A
�

�
�

F otherwise

where A� is the structure with signature � such that wA�

� wA if w 
� T and
TA�

� S �
The soundness of the inference rules concerning recursive type de�nitions

with respect to this interpretation is seen in a similar way to recursive function
de�nitions�

The following additional translation rules make them derived rules of L�
after translation�

h�T � � �it � �y � T �y� � Fix ��T �fy j y 
 � �h�� �i�y�g��

h�T � � �if � 	 h�T � � �it�

So recursive type de�nitions can also be embedded into L��
Induction rules for recursively de�ned types can be justi�ed by means of

the rule �Type
ind�� For the LISP
like list� the induction rule

L�ind

x �N � A �x ��� ��A
x��L� x��L�� �x �� x��A� �x �� x��A � �x �� cons�x�� x���A

x �L � A

can be derived� The derivation is similar to the derivation of �structural�
induction rules from the �xpoint induction rule of PP
 in �Pau���� Note that
this result is in accordance with the meta
rule about induction rules �think of
the inductive de�nition of the type L�� One might doubt the type correctness
of substituting x� for x in A above� but x��L

� implies x��L according to the
rules �j
I� and �Type
def��
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� Miscellaneous matters

In the VDM notation� terms of type B are used as formulae and vice versa�
This requires trivial additional formation rules and interpretation rules for
terms and formulae as well as a restriction on the structures in which they are
interpreted� The following are the inference rules concerning the interchange

ability of formulae and terms of type B �

B �I
��A�
A� B

B �E
t � B

��t�

� as 

A� � A�

A� � A�

Note that formulae t � where t is a term that is not of type B � are not excluded
syntactically � because typing is not decidable in VDM� The last rule permits
derivation of the rule�

B �exh
t � B

t � true � t � false

The following additional translation rules make the inference rules concern

ing the interchangeability of formulae and terms of type B derivable in L� after
translation�

h�A�iu �
�h�A�it � u t� � �h�A�if � u f � � �	 �h�A�it � h�A�if � � u ���

h�t �it � h�t �it�
h�t �if � h�t �if �

In the right
hand side of the last two rules� h�t �it and h�t �if are applications of
the embedding function for terms�

In the VDM notation� terms of set types are used as types as well� This also
requires some simple adaptations� The following additional rules of inference
are needed�

	��
t 
 t �

t � t �

��	
t �� � 
set t � t �

t 
 t �

Note that typing assertions t � t � where t � is a term that is not of a set type
cannot be excluded syntactically� For this reason� the �rst hypothesis of the
second inference rule is needed�

�	



The following is the rule for set comprehension appropriate for set types�

Set�compr
fx � � j Ag� � 
set

t 
 fx � � j Ag � t � � � �x �� t �A

A direct consequence is the following derived rule�

Set�as�type
fx � � j Ag� � 
set

t � fx � � j Ag � t ��x � � j A	

The �common� hypothesis of these rules is needed because the set denoted by
fx � � j Ag may be in�nite�

The following additional translation rule makes the inference rules concern

ing the use of terms of set type as types derivable in L� after translation�

h�t �i � fy j �y � � h�t �iy
�

� y 
 y �g�

	 Closing Remarks

This paper gives a comprehensive description of a typed version of the logic
known as LPF �Section �� and some extensions which are used with VDM
�Sections �� � and 
�� The logical justi�cation of the inference rules concerned
� by means of an embedding into classical in�nitary logic � is new� Further
discussion of problems of �nding a proof theory for VDM can be found in
�FM���� material which shows how theories are built using the proof theory is
covered in �BFL�����

The induction rules for recursively de�ned functions �Section �� and types
�Section 
� � which are reminiscent of the �xpoint induction principle � as well
as the meta
rule about induction rules for base types and types constructed
by means of type formers �Section ��� were not presented before� They give
a �rm foundation to the way in which recursive de�nitions of functions and
types are rendered into inference rules in VDM� It is further demonstrated
that constructive de�nitions of invariants �Section 
� are useful in devising
induction rules for subtypes�

From the experience with VVSL �Mid���� we know that the extensions for
other aspects of VDM such as implicit speci�cation of functions and operations
can be treated in the same vein� The proof obligations associated with such
implicit speci�cations as well as the proof obligations associated with data
rei�cation and operation decomposition can also be given a logical justi�cation�
Hence it appears that VDM as described in �Jon�	� can be justi�ed entirely in
classical �in�nitary� logic� As a matter of course� higher
order and polymorphic
functions need heavier machinery�
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A L�

In this appendix� L� is reviewed in brief� For a comprehensive discussion of
this logic� see e�g� �Kei���� How recursive de�nitions and inductive de�nitions
can be expressed as formulae of L� is also described in this appendix� The
method concerned was worked out �for MPL�� by Renardel in �Ren����

Introduction to L�

In L�� there are no type symbols� A signature is just a set of function symbols
and predicate symbols� The formulae that contain only function symbols and
predicate symbols from a signature � constitute the language of L� over � or
the language of L��� �� The corresponding proof system is analogously called
the proof system of L��� ��

The language of L��� � contains terms and formulae� The terms of L��� �
are inductively de�ned by the following formation rules�

�� variable symbols are terms�

�� if f 
 F�� �� arity�f � � n and t�� � � � � tn are terms� then f �t�� � � � � tn� is a
term�

The formulae of L��� � are inductively de�ned by the following formation rules�

�� false is a formula�

�� if P 
 P�� �� arity�P� � n and t�� � � � � tn are terms� then P�t�� � � � � tn� is
a formula�

�� if t� and t� are terms� then t� t� is a formula�

�� if A is formula� then 	A is a formula�


� if hAnin�� � hA��A�� � � �i are formulae� then
V
n An is a formula�

�� if A is a formula and x is a variable symbol� then �x � A is a formula�

The string representation of formulae as suggested by these formation rules can
lead to syntactic ambiguities� Parentheses are used to avoid such ambiguities�

The symbol is used for equality in L�� It is classical equality� t� t�
is true if t� and t� denote the same object and t� t� is false otherwise� So
classical equality di�ers from weak equality ��� in LPF and coincides with
strong equality ���� in LPF�

��



Countable disjunctions and binary conjunctions are de�ned as abbrevia

tions as follows�

W
n An �� 	

V
n 	An �

A� � A� ��
V
n A

�
n �where A�

� � A� and A�
n � A� for 	 � n � ��

Binary disjunction� implication� equivalence and existential quanti�cation are
de�ned as abbreviations as for LPF�

The proof system of L� is formulated here as a sequent calculus for proofs
in natural deduction style� It is de�ned by the following rules of inference�

�� �E
		A

A

false�E
false

A

� �I
A� � A� A� � 	A�

	A�

� �E
A� 	A�

A�

V
�I

hAnin��V
n An

V
�E

V
n An

An

for all n

��I
A

�x � A

��E
�x � A

�x �� t �A

�re

t t

�sub
t� t� �x �� t��A

�x �� t��A

The following are some derived rules�

� �I�
A� � false

	A�

��



� �E�
A� 	A�

false

��I
A� A�

A� � A�

��E
A� � A�

Ai

for i 
 �� �

Recursive De	nitions in L�

In L�� a large class of recursive de�nitions of functions can be expressed as
formulae� To show how these formulae can be obtained� we introduce some
notation and abbreviations�

A de�ned predicate is an expression of the form fx�� � � � � xn j Ag� where
x�� � � � � xn are distinct variable symbols and A is a formula� n is called the arity
of the de�ned predicate� For terms t�� � � � � tn � fx�� � � � � xn j Ag�t�� � � � � tn� is
de�ned as an abbreviation of a formula by

fx�� � � � � xn j Ag�t�� � � � � tn� �� �x� �� t�� � � � � xn �� tn �A�

A predicate symbol P of arity n is identi�ed with the de�ned predicate

fx�� � � � � xn j P�x�� � � � � xn�g�

A recursive function de�nition f �x��T�� � � � � xn �Tn�T � t can be expressed
as a formula if there exists a de�ned predicate D that uniquely determines the
function being de�ned in the sense that the value of f at x�� � � � � xn is y i� the
formula D�x�� � � � � xn � y� is true�

The following abbreviations of de�ned predicates are used�


	n �� fx�� � � � � xn j falseg�S
m��fx�� � � � � xn j Amg �� fx�� � � � � xn j

W
m Amg�

The arity indication n as subscript of 
	 is dropped when it is clear from the
context or unimportant which arity is meant�

Inclusion and extensional equality between de�ned predicates are de�ned
as abbreviations of formulae by

fx�� � � � � xn j A�g � fx�� � � � � xn j A�g �� �x�� � � � � xn � A� � A��
fx�� � � � � xn j A�g � fx�� � � � � xn j A�g �� �x�� � � � � xn � A� � A��

Substitution for predicate symbols is de�ned as for variable symbols� Let
P be a predicate symbol� D be a de�ned predicate and A be a formula� Then
�P ��D �A is the result of replacing the de�ned predicate D for the occurrences
of the predicate symbol P in A� avoiding that free variables in D become
bound�

If a predicate is recursively de�ned� then the de�nition determines a map

ping from predicates to predicates� Its least �xpoint is considered to be the

�




predicate being de�ned� Predicate operators correspond to mappings from
predicates to predicates�

A predicate operator is an expression of the form �P �D � where P is a
predicate symbol and D � fx�� � � � � xn j Ag is a de�ned predicate� For a de�ned
predicate D � of the same arity as P � ��P �D��D �� is de�ned as an abbreviation
of a de�ned predicate by

��P �fx�� � � � � xn j Ag��D �� �� fx�� � � � � xn j �P ��D ��Ag�

For a predicate operator � � �P �D where P and D are of the same arity�
Fix ���� the �xpoint of �� is de�ned as an abbreviation of a de�ned predicate
by

Fix ��� ��
S
m�� �

m�
	��

where ���D� �� D and �m	��D� �� ���m�D���

If � is a continuous predicate operator� then one can prove that Fix ��� is
indeed the least �xpoint of ��

A predicate operator � � �P �D is continuous i�

fDm � Dm	� j m � �g � ��
S
m��Dm� �

S
m�� ��Dm�

is provable for arbitrary de�ned predicates D��D�� � � � of the same arity as P �
Fact

If the predicate operator � � �P �D is continuous and P and D are of the
same arity� then Fix ��� is the least �xpoint of �� i�e�

��Fix ���� � Fix ��� and ��P� � P � Fix ��� � P

are provable�
Proof
 Fix ��� is Kleene�s least �xpoint construction �which stops at � for a
continuous operator�� expressed in L�� �

This guarantees that a large class of recursive predicate de�nitions can be
expressed as formulae�

The following are derived rules�

Fix �

��Fix ���� � Fix ���

� continuous

Fix �ind
�P �� 
	�A A � �P ����P��A

�P ��Fix ����A
� continuous� A admissible

where � � �P �D with P and D of the same arity� The latter rule is a �xpoint

induction rule� Formula A is admissible i�

fDm � Dm	� j m � �g �
V
m �P ��Dm�A � �P ��

S
m��Dm �A

��



is provable for arbitrary de�ned predicates D��D�� � � � of the same arity as P �
In case of a recursive function de�nition� the de�nition is �rst replaced

by a recursive de�nition of a predicate that uniquely determines the function
concerned� For a function f and corresponding predicate F � the replacement
is given by the mapping � de�ned below� It is assumed that� in a formula
containing f � every occurrence of f is provided with a unique index i �to
indicate this we write fi�� For each index i � xi denotes a distinct variable
symbol not free in the transformed term or formula� The mapping � and an
auxiliary mapping � are simultaneously de�ned by the following rules�

��t� � true if f not in t �
��fi�t�� � � � � tn�� � F ���t��� � � � � ��tn�� xi�
��g�t�� � � � � tm�� � ��t�� � � � � � ��tm� if g di�erent from f �

��t� � t if f not in t �
��fi�t�� � � � � tn�� � xi
��g�t�� � � � � tm�� � g���t��� � � � � ��tm�� if g di�erent from f �
��P�t�� � � � � tm�� � P�t�� � � � � tm� if f not in t�� � � � � tm �
��P�t�� � � � � tm�� �
�x�� � � � � xl � ��t�� � � � � � ��tm� � P���t��� � � � � ��tm�� otherwise�
where x�� � � � � xl are the variables xi occurring in ��t�� � � � � � ��tm��

��t� t�� � t� t� if f not in t�� t��
��t� t�� �
�x�� � � � � xl � ��t�� � ��t�� � ��t�� ��t�� otherwise�
where x�� � � � � xl are the variables xi occurring in ��t�� � ��t���

� commutes with the logical connectives and quanti�ers�

Inductive De	nitions in L�

The previous subsection shows how recursive predicate de�nitions can be ex

pressed as formulae of L�� In case of an inductive de�nition A of a predicate P �
the idea is to transform the formula A into a continuous predicate operator �
with the property that Fix ��� is the smallest P satisfying A� To show how the
predicate operator concerned can be obtained� we introduce some additional
notation and abbreviations�

The following abbreviation of de�ned predicates is used�

x�� � � � � xn �� fy�� � � � � yn j y� 
 x� � � � � � yn 
 xng�

Let P be a predicate symbol� D be a de�ned predicate and A be a formula�
Then �P	 ��D �A and �P
 ��D �A are the results of replacing the de�ned predi

cate D for the positive occurrences and the negative occurrences� respectively�
of the predicate symbol P in A� avoiding that free variables in D become
bound�

��



For an inductive de�nition A of a predicate P �of arity n�� the predicate op

erator � � �P �fx�� � � � � xn j 	 �P	 �� x�� � � � � xn �Ag turns out to be appropriate
under certain conditions�

The formula A is complement preserving for P i�

�P ��fx�� � � � � xn j 	 �P �� x�� � � � � xn �Ag�A

is provable�
Fact

If � � �P �fx�� � � � � xn j 	 �P	 �� x�� � � � � xn �Ag is a continuous predicate op

erator and �P
 ��Q �A is complement preserving for P � then Fix ��� is the
smallest predicate P satisfying A� i�e�

�P ��Fix ����A and A � Fix ��� � P

are provable�
Proof
 This is proved almost exactly as Theorem D���
� in �Ren���� �

This guarantees that a large class of inductive predicate de�nitions can be
expressed as formulae� For example� if a predicate P is inductively de�ned by
a ��nite or in�nite� conjunction of formulae of the form

�x�� � � � � xl � A� � � � � � Am � P�t�� � � � � tn�

where every formula Ai is of the form P�t ��� � � � � t �n� or does not contain P � then
the de�nition can be expressed as a formula in L��

��




