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Abstract—This work presents a small-scale Unmanned Aerial
System (UAS) capable of performing inspection tasks in enclosed
industrial environments. Vehicles with such capabilities have
the potential to reduce human involvement in hazardous tasks
and can minimize facility outage periods. The results presented
generalize to UAS exploration tasks in almost any GPS-denied
indoor environment. The contribution of this work is two-
fold. First, results from autonomous flights inside an indus-
trial boiler of a coal-fired thermal power plant are presented.
A lightweight, vision-aided inertial navigation system provides
reliable state estimates under difficult environmental conditions
typical of such sites. It relies solely on measurements from an on-
board MEMS inertial measurement unit and a pair of cameras
arranged in a classical stereo configuration. A model-predictive
controller allows for efficient trajectory following and enables
flight in close proximity with the boiler surface. As a second
contribution, we highlight ongoing developments by displaying
state estimation and structure recovery results acquired with
an integrated visual-inertial sensor that will be employed on
future aerial service robotic platforms. A tight integration
in hardware facilitates spatial and temporal calibration of the
different sensors and thus enables more accurate and robust
ego-motion estimates. Comparison with ground truth obtained
from a laser tracker shows that such a sensor can provide motion
estimates with drift rates of a only few cm over the period of a
typical flight.
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1. INTRODUCTION

Industrial sites often contain areas and facilities that are
difficult to access or hazardous to humans. The boiler unit
of a coal-fired thermal power plant constitutes one example
of that environment type. Fig. 1 shows such a unit, and
visual inspection thereof will serve as an application example
throughout this work. Whenever it is necessary to inspect
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Figure 1. Laser scan of power plant boiler unit II (side view).
With a height of almost 50m, this is a medium-sized unit. The
flight tests were conducted in the lower part of the boiler.

such areas, tremendous precautions have to be taken in or-
der to minimize the risks to human workers. Furthermore,
scaffolding often needs to be installed in order to grant
access to sections that are otherwise hard to reach. These
measures result in significant downtime of the plant and are
thus associated with vast economic costs.

Autonomous aerial systems have the potential to reduce hu-
man involvement in a variety of industrial inspection tasks
and can in turn reduce outage periods. They neither require
extensive safety measures nor supporting structures to access
elevated or confined areas. In contrast to existing and very
successfully employed robotic platforms such as e.g. magnet-
ic crawlers [1], flying inspection vehicles can access virtually
any area with ease and are not restricted to ferromagnetic
surfaces.

However, the employment of flying systems poses a number
of challenges such as very limited payload capabilities, and
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hence limited computational resources. One of the main
difficulties is reliable state or vehicle ego-motion estimation
in absence of GPS signals, high-quality inertial measurement
units (IMUs), and the like.

Section 3 describes the platform, its visual/inertial state esti-
mation and the autopilot: a model predictive control scheme
enables the vehicle to follow pre-programmed trajectories in
close vicinity of the structure efficiently. By arranging these
trajectories around an area of interest, a human operator can
automatically acquire sets of images for visual inspection. In
this respect, the autonomy of our system facilitates efficient
inspection of large structures and enables remote inspection
in areas, where occlusions or impaired radio reception had
rendered it infeasible before.

Section 4 of this work presents a custom-designed visual-
inertial sensor-head. The size of our aerial vehicle imposes
tight constraints on weight and energy consumption onto the
state perception module. At the same time, a high degree
of robustness and accuracy is required to enable autonomous
operation in poorly and repetitively textured areas. To address
these requirements, we are in the course of developing an
integrated visual/inertial sensor that allows for precise hard-
ware synchronization of multiple different sensors and on-
board estimation of motion and structure. Tight integration
of cues from a pair of cameras arranged in a front-looking
stereo configuration and a MEMS inertial measurement unit
on a hardware level allows for accurate spatial and temporal
calibration of the sensor unit and ultimately enables the
required level of robustness and accuracy.

Section 5 presents results with respect to the described hard-
ware and algorithms: the system was deployed in a shut-
down boiler, in order to assess the on-board state estimation
and control capabilities in relation to recorded ground truth
motion. Furthermore the integrated sensor performance in-
cluding a tightly coupled visual-inertial odometry approach
is evaluated again with respect to ground truth structure and
pose measurements.

Despite the fact that our flight and sensor tests were conduct-
ed inside an industrial boiler, we believe that the significance
of our results extend to a much broader class of scenarios.
With our system, we successfully demonstrate that path fol-
lowing, the predominant prerequisite for all indoor navigation
tasks, is possible in almost any GPS-denied, unstructured
environment providing a minimum of visible texture.

2. RELATED WORK

Autonomous navigation of aerial vehicles in GPS-denied
environments has recently gained attention in the robotics
community. Using a laser range sensor, Shen et al. demon-
strated indoor navigation of a quadrotor [2]. However, the
requirements, imposed onto the system by a localization
based on scan matching along with altitude measured by a
deflected portion of the scan, are not met in most industrial
environments. Approaches using an RGB-D sensor instead
of a laser scanner [3] do not share the same constraints on
the structure of the environment, but are only applicable to
indoor operations. While this would suffice to conduct the
experiment presented in this work, it would fail in the case of
an outdoor inspection task. Weiss et al. [4] demonstrated vi-
sual/inertial enabled outdoor flights of a small aerial vehicle.
In contrast to their approach based on a monocular camera,
we employ a stereo setup; we believe that the additional

information introduced by measurements from synchronized
cameras displaced by a known transformation adds necessary
robustness.

Most similar projects use either PID or LQR controllers to
keep the UAV at a desired position. The main advantage of a
PID controller [3] and [5] is the simple design. Furthermore,
those controllers do not suffer from offsets in presence of
disturbances. However, the control performance achievable
with such a basic control schemes is often not satisfying. The
second approach is motivated by the theory of optimal control
and is used in [2], [6] and [7]. An optimal feedback strategy
is calculated that minimizes a quadratic cost function, using
a linear model of the quadrotor. The following two require-
ments are necessary for the solution to be optimal: actuator
saturation must not occur and the reference position has to
be constant. Both preconditions are typically not fulfilled;
in order to overcome these requirements, a model predictive
controller is proposed.

There exist several FPGA based stereo vision platforms such
as [8][9]. Unlike these systems, the sensor presented in this
work also incorporates an inertial measurement unit (IMU),
as its application domain is more geared towards motion
estimation rather than dense 3D reconstruction. We believe
that what sets our integrated system apart from solutions
comprised of individual sensors is its precise calibration for
inter-sensor spatial transformations and time delays. Com-
monly, the transformation between a camera and inertial
sensors is estimated recursively [10][11], while time delays
are determined in a separate process [12]. In contrast, we es-
timate these quantities in a unified, batch optimal framework,
achieving sub-millisecond accuracy in the synchronization of
the different sensors [13].

In the computer vision and robotics literature, the Visual
Odometry (VO), or visual Simultaneous Localization and
Mapping (SLAM) problem is well studied: it is formulated
as estimation of both structure, typically in the form of
sparse landmarks, and camera poses observing those as two-
dimensional projections. Recently, it has been shown that
sparse nonlinear optimization over a selection of key-frames
is computationally more efficient and provides more accurate
results than filtering approaches [14]. Since the optimization
problem becomes inherently intractable over time when con-
stantly adding observations, various approaches have been
suggested to keep the algorithms limited in complexity and
real-time capable: a common procedure, employed e.g. in the
monocular real-time SLAM algorithm PTAM [15], is keeping
the optimized frames bounded, yielding some form of a
sliding-window optimization. PTAM has been adapted [4]
to operate on-board MAVs and providing a six-dimensional
pose input to an Extended Kalman Filter (EKF) for loosely-
coupled IMU-vision integration. In terms of tightly coupling
such vision algorithms with inertial sensing, we base our
approach on [16], where a nonlinear batch optimization is
suggested that jointly optimizes over reprojection error of
landmarks as well as deviation of the motion from the pre-
diction based on inertial measurements.

3. AERIAL SYSTEM DESIGN AND CONTROL

This section describes the platform that was used during the
experiments in boiler unit II. First, the aerial vehicle proto-
type is described, and modelling, identification and control
are presented. The next section then provides an overview
over the on-board vision-aided inertial navigation subsystem
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that provides real-time motion estimates during flight and
allows the controller to stabilize the vehicle.

Modelling and Control

The base of the aerial platform are the AscTec Hummingbird
attitude controller and brushless motor controllers. In other
words, roll, pitch and yaw velocity are controlled by the base
platform, relying on the attitude controllers integrated IMU.
A custom airframe protects the propellers during wanted or
unwanted contacts with the environment. The platform is
lightweight enough in order to survive most crashes, easy to
use and generally save for humans to operate.

Figure 2. Protoype aerial vehicle used for the experiments
in boiler unit II. The sensorhead consists of a pair of cameras
arranged in a classical, front-looking stereo configuration.
An on-board active illumination module provides sufficient
illumination to operate inside the boiler. The IMU is mounted
on the back side.

The commands to the attitude controller are the two angles

φ∗ and θ∗, the total thrust T ∗ and the yaw rate ψ̇∗. To
find a relation between those commands and the response
of the quadrotor a simple point mass model as described in
[6] is used. Fig. 3 provides an overview of this approach.
The unknown response of the attitude controller to reference
commands was identified with a blackbox modelling ap-
proach (prediction error method, PEM). Models of first order
followed by time delays were found to be accurate enough
for the task at hand. The interested reader is referred to [17]
for additional details regarding modelling and identification
of the vehicle.
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Figure 3. Complete model of the quadrotor using a simple
point mass and four transfer functions representing the be-
haviour of the on-board attitude controller to the commands
(φ∗, θ∗, ψ̇∗, T ∗).

Different approaches for trajectory following were evaluated.
A model predictive control strategy is conceptually simple
and offers a number of benefits in practice, and was therefore
selected. The key idea is to take the current state x, use the
model to predict a fixed numberN of future states and find an
optimal sequence of commands that minimizes the quadratic
cost function shown in Eq. 1. Only the first command u0 is
then applied to the vehicle and the problem is solved again in
the next time step.

J∗

N
(x) := min

1

2
xT
N
PxN +

1

2

N−1
∑

k=0

xT
k
Qxk + uT

k
Ruk (1)

s.t. xk+1=Axk +Buk, ∀k = 0, . . . , N − 1
uk∈U, ∀k = 0, . . . , N − 1
x0=x

The cost function can be extended to include any desired
trajectory, which allows the controller to react to reference
changes in advance, reducing the needed control actions, but
still following the trajectory in an optimal sense. This leads
to less aggressive flight maneuvers, which reduces motion
blur in the camera images, an important aspect for the visual
navigation subsystem. In addition the cost function can be
adapted to punish fast attitude changes to further smoothen
the behaviour of the quadrotor. The weighting matrices Q =
QT ≥ 0 and R = RT > 0 are therefore chosen to track the
position and avoid fast changes in attitude. A terminal penalty
matrix P is necessary to guarantee stability.

Vision-Aided Inertial Navigation System

The following subsection provides an overview of the system
that was developed for motion estimation of the aerial vehicle.
The vehicle state consists of the following variables

x = (pI qIB vI ba bω)
T

(2)

where pI denotes the position of the sensorhead, qIB the
attitude quaternion, vI the velocity and ba, bω the accelerom-
eter and gyroscope biases, respectively. Fusion of visual and
inertial cues is, strictly speaking, implemented in a loosely
coupled fashion following the stochastic cloning approach
outlined in [18]. Only an overview of the processing pipeline
is provided here, and the interested reader is referred to [19]
for further details.

In the first stage, a FAST [20] keypoint detector in con-
junction with an adaptive thresholding scheme provides well
distributed image features that are then tracked in-between
camera frames using a hamming matcher based on BRIEF
[21] descriptors. A motion hypothesis is provided by the
inertial measurements and then refined in a bundle adjustment
step over the current and the most recent image pairs. This
refined estimate is the used in an update step following a
stochastic cloning approach. Gyroscope and accelerometer
biases, modelled as random walks, are estimated within the
same framework.

Having an IMU in the loop which is time-synchronized
with the camera shutters allows the estimation of confidence
intervals, in the image plane, of where tracked features must
re-appear in subsequent camera frames. Hence, once inertial
sensor biases are tracked accurately, one can guide feature
matching and gain robustness when operating in poorly or
repetitively textured scenes. Also, we are able to continuous-
ly estimate the vehicle state even when visual tracking fails
completely, but only for a short period of time.

4. INTEGRATED SENSOR DESIGN AND STATE

ESTIMATION

The following section presents the prototype design of a
SLAM in a Box system, a general-purpose module able to
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provide synchronized and calibrated raw-data. Alternatively,
it directly provides reliable motion estimates capabilities to
different types of robotic platforms, and in a large variety of
environments. The hope is that such a module will be helpful
for engineers that simply need a sensor that can provide pose
estimates in GPS-denied environments, and to researchers in
need of high-quality raw data alike.

Sensor Design

The core of the visual/inertial sensor is a Xilinx Spartan 6 FP-
GA that implements interfaces to up to four Aptina MT9V034
global shutter CMOS image sensors and an Analog Devices
ADIS16488 factory-calibrated MEMS IMU. Additionally, a
set of low- and medium cost MEMS gyroscopes and ac-
celerometers are mounted for applications where weight or
cost are crucial. The FPGA connects through a Gigabit Ether-
net interface to a host computer. By routing all sensor streams
through the FPGA, it is possible to accurately timestamp all
measurements with the same clock source. Fig. 4 shows the
sensor hardware.

Figure 4. The integrated visual-inertial SLAM sensor. Only
the two cameras mounted in a fronto-parallel stereo setup
were used in this study. Like the aerial vehicle, the sensor
is equipped with a camera exposure synchronous LED flash
(not illustrated) to enable operation in the boiler. The FPGA
is on the bottom side of the PCB, in the center-top is the
commercially available Intel ATOM module.

In order to fuse measurements from a set of sensors con-
tributing towards a motion estimate, the spatial transforma-
tion between the sensors has to be known accurately. In
addition—and despite our efforts to synchronize the sensors
in hardware—there still exists a deterministic time delay
between the cameras and inertial sensors, caused by commu-
nication delays as well as filter delays in the inertial sensor
that have not been accounted for in the time-stamping. Hence,
a calibration for these fixed delays is required to achieve
optimal estimation results.

In order to calibrate for these inter-sensor transformations
and time delays, we employed a unified framework based on
continuous-time batch estimation as proposed by Furgale et
al. [22] (see [13] for details).

The sensor unit can then either provide synchronized, intrinsi-
cally and extrinsically calibrated visual and inertial measure-
ments, a map of features such as e.g. Harris scores, computed
in the FPGA, or directly motion estimates computed on the
CPU.

Tightly Coupled Visual-Inertial Odometry

We applied a loosely-coupled approach for visual-inertial
state estimation [19] running on-board the aerial vehicle:
this algorithm serves as the basis for the model-predictive
controller described above. As a complementary method, we
also experimented with tight integration of inertial sensing
and visual odometry. Keypoint observations and associations
with map landmarks are created using the BRISK detector
[23] and binary descriptor extractor. Inertial error terms are
formulated using accelerometer and gyro readings integrated
between camera frames using standard IMU kinematics fol-
lowing largely the method described in [16]. Knowledge on
the statistical properties of the inertial sensors on the one hand
and keypoint detection accuracy on the other hand allow for s-
tatistically near-optimal fusion. Inspired by the recent success
of key-frame based visual odometry algorithms we applied
some generalization of the aforementioned batch fusion to
handle a constant size sliding window of key-frames. We
select key-frames by field-of-view overlap. Consequently,
no key-frames are inserted to the optimization when keeping
the pose, which results in almost non-existent drift in this
relevant case.

5. EXPERIMENTS AND RESULTS

All experiments presented in this section were conducted in
a boiler unit of a thermal power plant in northern Spain.
This particular unit was temporarily shut down, and could
be safely accessed through a man-hole at the bottom. Fig. 1
shows a side-view of the boiler.

First, results on the flight experiments are discussed, and
results obtained with the integrated sensor introduced in
Section 4 are presented subsequently.

Flight Experiments

The results presented here aim to demonstrate that the meth-
ods presented in Section 3 work in this particular environ-
ment. They give an indication of the performance that can
be achieved using only on-board sensors, and no external
tracking devices or infrastructure.

Figure 5. Actual flight path executed by the aerial vehicle,
tasked to follow a pre-programmed trajectory with a forward
velocity of 0.8m/s.

The task of the aerial vehicle was to follow a pre-defined
trajectory at a distance of about one meter to the boiler
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surface. For the first run, the desired forward velocity was
set to 0.25m/s, and then increased to 0.8m/s for the second
run, to test the dynamic capabilities of the vehicle and the
visual-inertial motion estimation system to the limit. Fig. 5
shows an overlay of the path the vehicle followed. Fig. 6
shows the vehicle during the flight.

Figure 6. Aerial vehicle during a flight test. At a distance
of approximately one meter to the boiler wall, the MAV
passes an area where the surface is insulated with an non-
ferromagnetic, slightly eroded heat shield. The scene is illu-
minated by high-power LEDs carried on-board, synchronized
with the camera shutter to save power and avoid over-heating.

The MPC loop was closed at a frequency of 50Hz, with
a prediction horizon of N = 30 steps. Image processing
was performed off-board, and the vehicle was provided with
power over a tether cable from the ground station.
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Figure 7. Aerial vehicle following a predefined trajectory
with a velocity reference of 0.25 m/s. During the second run
(highlighted), the forward velocity was increased to 0.8m/s.

Fig. 7 indicates that the vehicle was able to follow the desired
trajectory accurately for both demanded forward velocities. It
is important to note that the reference is compared to the pose
estimates provided by the on-board sensors, and not against
an externally measured ground-truth. This is justified by the
fact that these estimates are accurate, as demonstrated in the
following section, but strictly speaking, not correct.

Compared to alternative control strategies evaluated, the con-
trol actions of the MPC controller are smooth, which in turn
supports the vision-based motion estimation module. Also,
there is virtually no overshoot, an important requirement
when flying in close proximity with the environment.

Table 1 lists the RMS tracking errors for the two different

forward velocities. Keeping a constant distance to the wall
in direction x was not and issue for the controller. However,
especially in the vertical (z), external disturbances caused by
the tether cable negatively affect the tracking error.

Axis RMS value for 0.25m/s RMS value for 0.8m/s
x 3.68 cm 3.88 cm
y 5.25 cm 10.55 cm
z 7.32 cm 11.30 cm

Table 1. Measured position error (RMS) in world
coordinates, following the trajectory shown in Fig. 7.

Sensor Evaluation

In order to evaluate the performance of the tightly integrated
visual/inertial sensor and motion estimation framework (Sec-
tion 4), the sensor unit was mounted on an aluminum beam
and had to undergo movements that resemble the motion
experienced during a typical flight.

For quantitative evaluations, a Leica Total Station TS15 was
used to track a reflective prism mounted on the sensor, with
sub-millimeter precision. In addition, a visual calibration
target (a checkerboard) was attached onto the boiler wall,
and visited at the beginning of every dataset. The purpose
of this target was two-fold. First, it was used to align the
coordinate frame of the Total Station with the somewhat
arbitrarily chosen coordinate frame of the motion estima-
tion framework. The alignment was realized by measuring
a sufficient amount of corners using the laser tracker and
thus determining the rigid-body transformation between the
coordinate frame of the tracker and the pattern. Subsequently,
about 200 observations of the calibration pattern were used to
determine camera poses in the coordinate frame of the tracker
by means of a perspective N-point (PnP) algorithm using
the implementation of [24]. Associating these poses to the
motion estimation by timestamps, the tracker frame was then
aligned with the estimation frame in a least square fashion
over all 200 pose estimates. The other purpose of visiting
the visual target as part of every dataset was to determine
the unknown time offset between laser tracker and sensor
timestamps. Again, this was implemented as a least square
optimization over the position estimates provided by the PnP
algorithm and the laser tracker.

Although the Leica Total Station provided measurements
at sub-millimeter accuracy, the precision of the quantitative
evaluations is limited by the uncertainty in the calibrated
chain of transformations from the inertial measurement unit
to the reflective prism, as well as jitter in recording of the
laser tracker measurements, which amounts to a degradation
in accuracy to about a few millimeters.

In addition to accurate position ground truth, full three di-
mensional structure scans of the boiler were recorded using
a static Faro laser scanner, although comparisons to our
structure reconstruction will remain qualitative in nature here.

Fig. 8 depicts results of our visual-inertial motion estimation
framework for an experiment of approximately 8 minutes
length. The camera frame rate had been set to 20 Hz and
the IMU returned readings at a rate of 200 Hz. In the figure,
the estimated sensor path is marked as a solid blue line, while
the dashed black line shows ground truth obtained from laser
tracker readings. The red curve shows a section of about 200
frames during which the calibration target was visible in the
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video frames and that was used for path alignment and time
offset calibration. In this experiment, the time offset was de-
termined to be about 0.2 seconds, which would significantly
distort the ground truth comparison when not accounted for.
The results show that the estimation framework is in general
capable of recovering the motion. However, it also highlights
that the estimate diverges from ground truth over the course of
the experiment due to accumulation of errors. Fig. 10 depicts
this divergence quantitatively. The motion estimation exhibits
comparatively low drift, which results in a displacement from
ground truth of about 10 cm over the dataset.

Fig. 9 shows a qualitative comparison of the structure as
recovered visually and by a laser scanner. For the laser
scan only every thousandth measurement is displayed. The
visual reconstruction is significantly more sparse and scarcely
corrupted by outliers. Nevertheless, the reconstruction of the
lateral walls of the boiler aligns accurately with the laser scan.

Figure 9. Overlay of a sparse, visual reconstruction of a
section of the boiler onto a laser scan. The visually recon-
structed point cloud aligns accurately with the laser scan,
which becomes particularly apparent for the lateral walls of
the boiler.
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Figure 10. Visualization of the position error of the visu-
al/inertial motion estimation framework. The vertical, dotted
lines frame a section of roughly 10 seconds, which was used
for aligning the sensor path with the tracker measurements.
The results exhibit a low level of drift, amounting to less than
10 cm over a dataset of roughly 9000 frames spanning 500 s.

Fig. 11 illustrates a comparison between a video frame from
the dataset and a synthetic view rendered from a laser scan
of the structure and the estimated pose of the camera at the
moment the video frame was recorded. The rendering is

based on camera intrinsics and distortion parameters identi-
cal to the ones calibrated for the setup used in conducting
the experiments. Although purely qualitatively, this result
highlights the orientation component of pose estimation, a
quantity that is not accounted for by position ground truth.
Camera image and synthetic view exhibit great resemblance,
suggesting that not only the camera position but also its
orientation has been recovered accurately.

(a) (b)

Figure 11. Comparison of a camera frame from the dataset
(11(a)) and a synthetic view (11(b)) using the estimated
camera pose and reflectance measurements from a structure
scan of the boiler. The rendering applies the camera intrinsics
and distortion parameters calibrated for the camera used in
the experiments. The figures exhibit great resemblance,
suggesting that not only the position of the camera but also
its orientation has been estimated to sufficient accuracy.

6. CONCLUSION

This work presented an unmanned aerial system with ap-
plication to industrial inspection tasks. To the best of our
knowledge, the autonomous flight experiments conducted
inside an industrial boiler are unprecedented. As such, the
results convey an idea of how autonomous aerial systems
could facilitate visual inspection in enclosed industrial envi-
ronments. By commanding scanning trajectories, we were
able to take sets of overlapping, fronto-parallel photographs
of the boiler walls at close range, enabling detection of larger
structural damages. Quantitative results for our visual-inertial
state estimation framework show a small drift in position
in the order of around 10 cm over more than 8 minutes.
This suggests that following large trajectories is feasible even
without external navigation aids.
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Figure 8. Comparison of ground truth positions and estimated sensor path. The red curve marks the PnP pose estimation used
to align the coordinate frames of the motion estimation and the laser tracker. The motion estimation depicted in blue resembles
the ground truth shown in black well. Nevertheless, drift becomes apparent over the course of the dataset.
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