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Abstract

Background: Fine-scale and longitudinal geospatial analysis of health risks in challenging urban areas is often

limited by the lack of other spatial layers even if case data are available. Underlying population counts, residential

context, and associated causative factors such as standing water or trash locations are often missing unless

collected through logistically difficult, and often expensive, surveys. The lack of spatial context also hinders the

interpretation of results and designing intervention strategies structured around analytical insights. This paper offers

a ubiquitous spatial data collection approach using a spatial video that can be used to improve analysis and involve

participatory collaborations. A case study will be used to illustrate this approach with three health risks mapped at

the street scale for a coastal community in Haiti.

Methods: Spatial video was used to collect street and building scale information, including standing water, trash

accumulation, presence of dogs, cohort specific population characteristics, and other cultural phenomena. These

data were digitized into Google Earth and then coded and analyzed in a GIS using kernel density and spatial

filtering approaches. The concentrations of these risks around area schools which are sometimes sources of

diarrheal disease infection because of the high concentration of children and variable sanitary practices will show

the utility of the method. In addition schools offer potential locations for cholera education interventions.

Results: Previously unavailable fine scale health risk data vary in concentration across the town, with some schools

being proximate to greater concentrations of the mapped risks. The spatial video is also used to validate coded

data and location specific risks within these “hotspots”.

Conclusions: Spatial video is a tool that can be used in any environment to improve local area health analysis and

intervention. The process is rapid and can be repeated in study sites through time to track spatio-temporal

dynamics of the communities. Its simplicity should also be used to encourage local participatory collaborations.
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Background
A common geographic constant running though many

of the United Nations Millennium Development Goals

(MDGs) is addressing health risks associated with infor-

mal settlementsa. The scale of this problem expands

when all impoverished urban areas in developing world

countries are included because if a settlement has a

name, and politically and cartographically “exists”, it can

still share many of the telltale signs of poverty associated

with informal settlementsb. These built environment fea-

tures include temporary or poorly constructed domi-

ciles, narrow alleyways, a lack of basic infrastructure

(electricity, paved roads, water and sanitation), access

to clean water, and trash accumulations [1]. As a result

of these factors, residents of these areas suffer a dispro-

portionate disease burden especially associated with

vector and water borne sickness [2-6]. Unfortunately,

from a spatial research perspective, it is challenging to

acquire the necessary data to perform meaningful

intervention-focused analyses at a fine geographic scale.

This lack of “official” data may leave researchers with

no denominators to calculate rates, independent vari-

ables to explain spatial causation, and generally little

contextual information to associate with mortality and

morbidity [4,7]. Potential solutions include digitizing

spatial data from remotely sensed high resolution pho-

tography or satellite imagery[8,9], though these sources

can be problematic when considering the finest of

scales and for densely packed urban environments

where extracting individual building characteristics is

notoriously difficult [10,11]. Ubiquitous digital earth

software, such as Google Earth, has been used to sup-

port research in challenging data poor environments,

such as designing surveillance systems or spatial sam-

pling frames [12-15]. The creation of spatial data using

a volunteered geographic information (VGI) frame-

work, which means the use of individual or organized

groups creating spatial data, especially road networks,

has also gained considerable attention for filling in

spatial data gaps [16,17]. Though even with this latest

approach, challenges include maintaining data accuracy

and a lack of detail at the finest of scales [18,19]. Tra-

ditionally, however, the most common approach to map

or gain spatial insight is to conduct field surveys which

can be logistically challenging and expensive [1,20,21].

This field-work approach may be linked to grassroot

“participatory” mapping projects utilizing the simplest

of spatial representations such as sticks and shells, or it

can involve teams of researchers using more sophisti-

cated GPS and Smartphone apps [22,23]. This local

insight and detail can be invaluable in terms of strat-

egizing interventions, though the cost and logistic

framework tend to make these more case specific rather

than universal solutions.

This paper presents a methodology to enrich spatial

epidemiological analysis as an alternative or complement

to the above strategies. An advantage with this approach

is that these data retain enough real-world context to

allow for survey validation and the reimagining of pre-

survey research foci, such as moving from mapping

cholera to dengue risk. The simplicity and cost effective-

ness of the technique make this method transferable

across underserved locations and for multiple time pe-

riods, while also facilitating community member partici-

pation in the data collection process. As an illustration,

this paper will consider three well documented disease-

associated health risks (standing water, trash and dogs)

and relate them to area schools located in the commu-

nity. All of these spatial layers, including the school loca-

tions, were extracted from the spatial videoc.

Spatial video and underserviced urban environments

The challenges of living in underserviced urban environ-

ments are well documented: a lack of resources and ser-

vice provision, little political voice, a high disease burden

as a result of poor environmental conditions and high

population density, and limited access to health care

[24]. Many of these environments are also prone to ha-

zards either due to conditions within (for example the

2013 fires in the informal settlements of Dhaka), pro-

ximity to known physical risks (the 2010 earthquake in

Haiti) or a combination of both, especially with regard

to flooding [25]. It is worth noting that these externa-

lities also highlight another data challenge for studying

such settlements; the temporally dynamic nature of con-

struction (and deconstruction), population shifts and

cultural activities, which in turn result in spatially vari-

able health challenges, both in terms of analyzing disease

or spatially targeting intervention.

This paper is not limited to any one disease investiga-

tion, but rather it provides an example of the means to

acquire spatial data layers needed for a variety of subse-

quent analyses. As previously mentioned, arguably the

most common approach to collecting data at fine scales

is to utilize survey teams. For example, Leptospirosis,

caused by Leptospira interrogans present in water or soil

contaminated with rodent urine, varies temporally with

precipitation fluctuations, which could result from sea-

sonality or global weather patterns. To capture this

effect, a team went to over 3,600 households to collect a

variety of environmental and social data [20]. In their

study, three time periods were mapped, with spatial risks

being identified as proximity to open refuse and open

sewers. Such studies illustrate what can be achieved if

large research teams are available. Although these data

are invaluable, they still are vulnerable to three main de-

ficiencies. Firstly, it is logistically challenging and expen-

sive. As a universally applied method, this may result in
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the need to spatially prioritize study areas. In addition,

this limits many studies to ask cross-sectional rather

than longitudinal research questions with the latter be-

ing needed considering the degree of flux in these envi-

ronments. Secondly, the survey instrumentation limits

data collected to the ideas and research questions of that

time, with little to no ability to construct different post-

survey questions or even validate coding. For example,

there may be some crossover between data collected for

an informal settlement-focused malaria study if shared

with a typhoid research team. However, it is more likely

that there will be gaps that still require additional field

work. Thirdly, there is usually no visual context to allow

researchers to fill-in spaces between the coded locations;

data may be collected for two domiciles but the gap

between, and the potential linking context is missed. In

order to gain more informal settlement-related spatial

context Paar and Rekittke [23] employed different

technological ground-based approaches to map and

visualize improvements, though conceding there was a

real need for a Google Street View-type (GSV) method.

The spatial video as described in this paper presents

such an approach that can be used for both longitudinal

and participatory research.

Spatial Video

The spatial video, which in its simplest form consists of

a global position system (GPS)-encoded video can be

used to collect high definition video for multiple angles

(depending on the number of cameras used), and can be

viewed in freeware to display both the image and collec-

tion pathway. By developing project specific coding sys-

tems, these data can be translated into a geographic

information system (GIS) for visualization and analysis,

including in combination with other (case or disease

related) data layers. Previous spatial video systems uti-

lized by the authors have included proprietary GPS units

and specialized software. The GPS receiver would be

affixed to the roof of a vehicle that would traverse the

study area, with the signal being encoded as an audio

stream onto the video. The video would be processed to

either run in association with a moving location marker

in a stand-alone GIS-lite software, or within Arc GIS 9.3

(for examples of both see [26,27]). Although beneficial

for research purposes, this type of system poses chal-

lenges in terms of the cost of the cameras, GPS unit and

software. These challenges are an impediment for ubi-

quitous data collection in challenging urban environ-

ments. As a result, an extreme sports camera was

utilized in this studyd.

There are four main advantages and one disadvantage

in adopting this type of camera as part of a spatial video

approach. Firstly, the camera is cheaper than a similar

HD camcorder and more lightweight with an inbuilt

wide angle high definition lens. This helps data collec-

tion in small spaces (such as a narrow roads or alley-

ways). Secondly, the GPS is built into the camera which

reduces the amount of equipment needed such as a

roof-mounted aerial, and generally simplifies data collec-

tion so that local collaborators can support longitudinal

projectse. Thirdly, the software available with this cam-

era (Storyteller) is freely available (though a reasonable

internet connection is needed to display the Google

Maps imagery) allowing for video data to be checked in

or close to the field site. This helps identify if any section

of the study area has been missed. Another benefit of

using freeware is that data can be disseminated and

viewed easily without any additional expense. Finally,

this particular sports-designed camera is ruggedized and

able to handle challenging data collection environments,

unlike more traditional camcorders.

A drawback of this system compared to some of the

more expensive research-focused kits such as that used

by ImageCat (http://www.imagecatinc.com/) is the preci-

sion of the GPS. Underserviced urban areas are challen-

ging for GPS signals due to line-of-sight access to

satellites in narrow streets with densely packed domi-

ciles. However, even on a wide street, the precision of

the GPS may vary in the range of 10 meters. Still, this

has not proven too problematic if coding occurs in con-

junction with high resolution aerial photography.

Data Coding

Once collected, spatial video can be displayed in the as-

sociated software as a main video image, with an accom-

panying inset map (Figure 1).

In the top image of Figure 1 a typical open water

channel or drain is full of water with considerable float-

ing trash. In the background is an open air extension to

a habitable structure with cooking taking place in the

front yard. Hazards associated with this image could be

water borne diseases such as cholera or typhoid,

vectored diseases including malaria and dengue, as well

as rodent urine in the water linked with Leptospirosis.

Previous research into typhoid in Dhaka, upon finding a

positive relationship, had suggested the need for replicat-

ing similar approaches with smaller water bodies such as

puddles because of the roles these often play in domestic

chores [28]. Salmonella typhi (S. typhi) bacteria can

remain viable for several days in water so mapping water

risk at this scale is imperative to understand ephemeral

infection risk. In one video image (not shown here) a

child is standing in a similar drain as she collects water

from an outflow pipe. In the bottom image a goat feeds

on a large trash accumulation. The metal grate at the

center of the image suggests trash has washed here dur-

ing heavy rains. A nightclub is located within fifty feet of

this location. In all these images the location of the video
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frame is shown as a yellow dot on either aerial photog-

raphy or a more traditional street map. The complete

video collection path (a yellow line) and elevation are

also displayed.

The next stage is to develop a coding system suitable

for GIS analysis. Spatial video coding is a creative

process. Some attributes are obvious; for example the

presence of water access points, or open roadside

sewers. Other attributes are vital but require some form

of categorization to assess quantity (amount of trash,

depth of flood water or the structural integrity of the

domicile). The spatial video can also be used to assess

population distribution broken by cohort; the presence

of animals, for example dogs (used as a proxy for rats in

Leptospirosis research [29]); or characteristics of the

built environment (graffiti, or security bars). A further

advantage of the spatial video is the ability to return to

the source material at a later date to recode new aspects,

possibly in association with a different health project.

As the purpose of the methodology presented in this

paper is to devise a more ubiquitous data collection

approach, Contour GPS video cameras and free display

software were utilized, and all digitizing occurred within

Google Earth. This was for three reasons. First, Google

Earth is freely available. Secondly, Storyteller software

uses the same imagery as Google Earth which makes the

comparison of spatial features easier for digitizing.

Thirdly, the digitization process within Google Earth is

more intuitive for non-specialist users as it allows for

the mixing of feature types (points, lines and polygons)

in a data table-free dialogue box. Features can easily be

added, moved, re-edited and deleted. The dialogue box

also allows the user to “describe” multiple aspects of the

video image. The ease of digitizing within Google Earth

has two additional advantages. Firstly, by sending the

output KMZ file from Google Earth to the collating re-

searcher, it is possible for non-specialist “field workers”

to contribute to what can be called a participatory GIS

Figure 1 Examples from the spatial video “Storyteller” software showing two of the health risks analyzed in this paper; standing water

(a) and trash (b).
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approach. This has the benefit of including vested par-

ties, while also adding local insight and context. This is

not too dissimilar to the participatory frame suggested

by [22] or earlier systems developed by this research

team [30]. If the coding is done by a researcher, Google

Earth still offers advantages as it allows a data strategy

to develop through watching the video and not being

constrained into populating specific attribute fields until

after the coding has been completed. The Google Earth

features are imported as points, lines and polygons into

ArcGIS 10.1 and converted into shapefiles. Attribute col-

umns are created and populated from the text dialogue

accompanying each feature. Notably, in resource limited

settings, the ArcGIS steps presented here could be

achieved in Quantum GIS, a free open source GIS with

much of the same functionality [31].

Analysis

Once coding is complete, including entry into a GIS,

different forms of spatial analysis can be performed. For

example, kernel density surface heat maps can be used

to develop a general impression of the spatial pattern for

any coded variable. Another analytical approach modi-

fied from spatial epidemiology is the use of a spatial

filter to calculate overlapping rate surfaces where video

extracted codes act as both numerators (a health risk)

and denominators (all buildings). In previous analyses

this approach has been used both as an analysis in itself

(a difference of proportions t test can be used to assess

variations in rates around events being investigated), or

the resulting rate layer can be used as input into other

spatial models such as Geographically Weighted Regres-

sion [32] used to analyze typhoid fever in the Dhaka

informal settlements [28].

Study area

This paper provides an example of one urban environ-

ment in Haiti. This urban area, is characterized by shel-

ters made of both solid and temporary walls and roofing

systems, open drainage and sewage channels, large trash

accumulations, narrow alleyways leading to interior high

density housing, spatially variable access to piped water,

toilets, and electricity. This coastal town also suffered

building collapses during the earthquake of 2010 with a

subsequent aftershock being almost directly centered

under the town[33]. The lack of earthquake-resilient

construction standards coupled with a preponderance of

poorly-reinforced concrete resulted in a high number of

impact mortalities and morbidities, resulting in lasting

effects on housing in the area, as most continue to live

in temporary structures provided by NGOs following the

earthquake. The town has also suffered hundreds to

thousands of cases of cholera since the 2010 epidemic

[34], which is unsurprising given the limited access to an

improved water source, and the large number of open

water drains and trenches[35-38]. Although novel popu-

lation estimates have been developed for Haiti based on

cell phone use [39,40] the post-earthquake population of

the town is debatable with estimates ranging from

120,000f to 30,000g. Spatial data for the town is also

sparse being limited to the road network, a few key

buildings (including medical facilities), or other some-

what random places, such as an occasional store loca-

tion, deemed relevant for a particular projecth.

The methodology presented here in lieu of a research

question is: can the spatial video approach (collection,

coding, analysis) provide a more comprehensive fine

scale data input layer suitable for inclusion in other

modeling frames? More specifically, can it be used to

produce a spatial risk assessment for traditional disease

related variables around the schools in the community

being mappedi?

Results and discussion

Spatial video data collected in June 2012 were digitized

into Google Earth. Of four car-mounted cameras, the

two angled downwards provided the primary video

source because they captured street level water and

trash, though for areas with high walls close to the road

the horizontal cameras were used to assess building

characteristics. A total of 2591 points were digitized in

Google Earth, with each location containing multiple

attributes (See Table 1). The total number of buildings

(ranging from compounds to tents) was 1178. This is ap-

proximately 22% of the number of urban houses identi-

fied by MINUSTAH j. The variation can be explained by

the roads not covered by the spatial video, the amount

of building within the interior of city blocks, and

Table 1 A selection of coded data extracted from the

spatial video

All digitized points 2591

All Buildings (1 to 4) 1178

Building quality (1 or less) 138

Standing water 827

Water Access 9q

All people 2170

Adult males 424

Adult females 340

Children (under 15) 407

Children (under5) 54

Dogs 40

Trash 534

Bars/cafes/restaurants 43

Schools 22
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structures hidden by roadside barriers such as high

walls. A total of 2170 people were digitized along the

spatial video path. Only static individuals were coded in

order to minimize double counting. This number was

further split by age and cohort, with adult males exceed-

ing females, and 53% of the age identified population be-

ing children (under 15k). Figure 2a displays the GPS

path exported from Storyteller, overlaid onto a road layer

in ArcGIS 10.1. The yellow dots show locations of all

coded points, while the schools have been emphasized

in size and colored pink. Linear water hazards (open

drainage trenches) are also displayed. The figure also

shows the grid output associated with the spatial filter

analysis, and a kernel density surface of all people coded.

Figure 2 Spatial patterns of coded variables from the video. Kernel density of population, water risks, and school locations (a) and a

comparison of spatial video population with alternative pre-earthquake census estimates (b).
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As a comparison, Figure 2b displays the only previously

available fine scale (100 meter resolution raster) popula-

tion estimates taken from the 2003 Haitian census extra-

polated using remotely sensed imagery available from

the US Census Bureau (http://www.census.gov/popula-

tion/international/data/mapping/demobase.html). Over-

laid on these estimates are the contours of the spatial

video coded population kernel density surface.

Several decisions on coding were made after the trans-

fer of Google Earth points to ArcGIS. For example, one

attribute column included all bars/cafes/restaurants but

did not include stores selling food and water, or vendors

cooking and selling food on the street (including walking

the street or with blankets on the ground). The column

for education (and reported in Table 1) included all

places of education, ranging from preschool to second-

ary/high school, and also places of after school learning

such as professional schoolsl. However for this paper,

only preschools to high schools were analyzed.

After coding into ArcGis 10.1, a series of kernel dens-

ity maps were generated using the quadratic function in

the Spatial Analyst Extension. Different bandwidths were

chosen, with the results displayed in Figure 3 being 100

m. The justification for this spatial smoothing approach

is that coded data does not capture the entire spatial set-

ting of the community, but is rather a sampling of the

underlying spatial characteristics; the population distri-

bution rather than a population countm. Kernel Density

extrapolates based on spatial trends in data rather than

simply filling in as would be the case with an inter-

polation method such as inverse distance weighting.

Figure 3 displays kernel density maps for trash

(weighted by amount), flood depth (weighted by depth)

and dogs. Five concentrations of trash can be seen in

Figure 3a, with two of these also coinciding with the

highest weighted standing water concentrations. Inter-

estingly, two of these hotspots also coincide with the

highest number of observed dogs. Area 1 and 2 on

Figure 3c might be worth further exploration in terms of

combined risks, with both containing schools in their

highest concentrations.

The second analysis involved creating a spatial filter

grid of the total number of risk locations over a measure

of spatial video “effort” (the number of buildings coded).

The resulting grid (at 0.16 km as shown in Figure 2a)

was joined in ArcGIS 10.1 with different rate output cal-

culations. The nodes displayed in Figure 4 include water

weighted by depth (filter size 0.4 km), high water coded

above (filter size 0.4 km), dogs (filter size 0.4 km), trash

coded above 3 (0.4 km), and all trash (0.8 km). These

different permutations are displayed to show spatial

consistency across models. In this graphic only the top

50% of all nodes with a rate for that value are displayed

(in other words, there was enough of the coded hazard

around the node to generate a rate, and the node has a

rate higher than 50% of all nodes with such a rate). This

is for comparison purposes only and allows the reader to

see overlapping concentrations of points as a multiple

risk indicator. The area previously identified as “1” in

Figure 3 contains risks for all three variables at different

filter sizes and data input permutations. In this way the

graphic replicates the utility of these grids in the GIS. In-

deed, by adding risks together for each node, a measure

for total risk can be generated. In this way single or mul-

tiple risks can be added to other health investigations,

for example, linking the closest node to every cholera

location mapped, or to positive pools of mosquitoes, or

to serological or water samples taken across the town, or

to vaccination locations. Likewise, these methods can be

applied to a wider set of zoonoses for the island. For

example, Haiti has a well-documented history of human

anthrax cases [41,42]. The disease, caused by the zoo-

notic bacterium Bacillus anthracis, is commonly trans-

mitted to humans through contact with infected

livestock, particularly goats in Haiti [43]. As illustrated

in Figure 1, this methodology can be used to capture

and define the human/livestock interface.

Figure 4a to e display the different hazards (high rate

nodes and linear water hazards) overlaid onto 40, 80 and

120 m buffers around the schools. These help reveal the

fine scale risks surrounding each building or complex.

For example, the school in 4A is proximate to both

linear water hazards and high risk water nodes within

40 m. Within 120 m several high rate trash nodes are

also found. In 4B the school is also proximate to water

risks (both linear and high rate nodes). High rate nodes

for trash and dogs are also within 120 m. The reader can

interpret the remaining maps in a similar way; for ex-

ample the dominant number of high rate trash nodes

around two schools in 4D. What these maps reveal is

the specific fine scale risks surrounding each school en-

vironment, for example Reis et al. (2008) found a risk of

Leptospirosis within 20 m of trash accumulations and

open sewers. Not only might these risks threaten the

students within (and around) the school, but may also

be conduits of infection diffusing outwards. Unfortu-

nately the high concentration of children and variable

sanitary practices make schools potential sources of diar-

rheal disease infection, and proximity to open water

should be a concern.

This paper presents a methodology that can be used

to build fine-scale spatial data layers for multiple time

periods in the most challenging data-poor urban envi-

ronments. Spatial video offers benefits over more trad-

itional approaches. For example, in this paper as an

illustration of how spatial video can be used in an ana-

lysis for an underserviced area, three accepted health

risks were mapped in association with school locations.
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A similar analysis might have been performed using data

generated from other sources, such as ground surveys.

However, the researcher probably could not have

returned to the original data to validate key locations,

such as the schools. Had each been coded correctly?

What type of school (grade level) was itn? Were there

signs of an active student population? The spatial video

allows for such re-interrogating. Indeed, inset images for

each school shown on Figures 4a to e were extracted

after the analysis. These helped validate buildings that

might not be correctly coded or the school is not active,

three schools full of students, and others that are for

preschoolers. This is a unique advantage of this particu-

lar data collection approach, to not only validate key

locations but also being able to return to the streets to

experience the cultural context or specific risk locations

within each hotspot. For example, in the combined mul-

tiple risk node hotspot areas identified in this paper,

children were playing in and around the drains, people

were washing (clothes and pots), and the selling of food

was happening either on wooden boards above the

drainage trench, or on blankets beside the drain. Activity

was also taking place around trash accumulations. Fur-

ther, it is possible to use this added visual approach as a

focal point for brainstorming, either in-person or

through multi-site conference using freeware such as

Dropbox (www.dropbox.com) and Storyteller. Even

intervention strategies, such as where to place public in-

formation messageso or vaccination strategies can be

planned using this approach.

Conclusion

In summary, this paper has shown the relative ease at

which fine scale street-level data can be collected, coded

and analyzed in a GIS for challenging urban environ-

ments. This opens the possibility for more complex local

area spatial analysis and for more longitudinal studies.

Repeated transects of communities at fixed temporal in-

tervals can provide insights into the spatio-temporal dy-

namics of neighborhood infrastructure [44,45]. Apart

from collecting otherwise unavailable data, the spatial

video also allows researchers to reinvestigate what was

Figure 3 Kernel density maps of three variables related to health risks extracted from the spatial video. (a) trash; (b) standing water; (c) dogs.

Curtis et al. International Journal of Health Geographics 2013, 12:21 Page 8 of 14

http://www.ij-healthgeographics.com/content/12/1/21

http://www.dropbox.com


collected in the field with more context than previously

available. This facilitates brainstorming sessions with

academicians who have not visited the site and who

may not be aware of local nuances, not just in terms

of rephrasing research ideas, but also strategizing

interventions such as where to focus education initia-

tives. This preservation of spatial context also makes

these data transferable between research groups who can

virtually drive the same streets from a different perspec-

tive. It is also possible to imagine the creation of spatial

Figure 4 Health risks coded from the spatial video and mapped as smoothed rates. Five detail maps (a to e) show health risk rates (trash,

standing water, dogs) as rate nodes within three distance bands (40 80, 120 m) around each school.
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video data warehouses where data are stored, to facilitate

research activities at a global level. This would benefit

studies focused on the same area, possibly for different

time periods, while also allowing cross-site comparisons.

These warehouses would also allow future research to

return to the archive at a much later date for either

comparison purposes or to mine previously un-extracted

information from the video.

In order to make comparisons between research areas,

data standardization and consistency across non special-

ist coders is needed [18,19]. Currently efforts are under-

way by the authors to investigate these issues in terms of

using university students to provide a viable means of

map making for otherwise data-poor environments. The

simplicity of the technology, in combination with ubiqui-

tous geospatial software like Google Earth, also opens the

possibilities for on-the-ground collaborators working at

distance with academic institutionsp. This has the quadru-

ple benefit of including vested interests in the project,

adding more local insight, initiating research partnerships

even without substantial funding. The most labor inten-

sive component of the method described here is the cod-

ing, though advances in crowd sourcing strategies may

offer opportunities to create near-real time maps.

Another evolution of the approach described here is

near-real time access to spatial video by researchers,

NGOs or even government departments. The simplicity

of the technology and software means that technologic-

ally the main impediment to this being the next step is

the connection reliability and speed of Internet access.

In Haiti a research station associated with the University

of Florida provided the necessary Internet link for the

data collection described in this paper, permitting imme-

diate data download and quality assessment. The tech-

nology also exists for field-based data upload, either

using satellite uplink or intelligent sensing of available

Wi-Fi. However, the costs of the former and the general

lack of Wi-Fi in resource-poor settings such as Haiti

limit the utility of these options.

Finally, it is important to discuss the issue of spatial

confidentiality and cultural sensitivity. In the United

States the type of spatial video recording described in

this paper probably would not concern Institutional Re-

view Boards (IRB), especially if these video were not for

mass consumption. For other countries and cultures the

photography of any facial image is far more sensitive. To

address privacy concerns such as these it may be neces-

sary to clearly point cameras to the ground during

filming. Arguably the most important data to be cap-

tured is at ground-level; trash, standing water etc. Local

concerns about privacy may also be alleviated with pre-

filming discussions with local officials and community

leaders, and, potentially, with use of a vehicle for data

collection that is well marked with a statement of

purpose. Our data clearly show the potential value of

such techniques in development of public health pro-

grams and interventions in resource-poor settings; at the

same time, it is important that those of us who intro-

duce new geospatial approaches are also the ones that

lead this conversation on privacy and ethics.

Methods

On 26 June 2012 four high definition cameras with in-

ternal GPS were mounted on the windows of a field ve-

hicle: two cameras on either side, one with a horizontal

field of view, the other pointing downwards to capture

curbside data. In approximately two hours most of the

Haitian community had been surveyed. Unlike other

previous North American projects conducted by the

team, hard copy road maps were not available of the

town so printed sections from Google Earth were used

for navigation along with a hand-held Garmin Oregon

device. Only “main” roads on the established grid pat-

tern (though many of these were still unpaved) were

chosen, and smaller alleyways avoided. After the day’s

data collection, approximately twelve hours of video

were downloaded in the University of Florida field sta-

tion located at the Christianville compound near

Gressier. The coordinate path was extracted from the

Storyteller software and displayed in Google Earth to

check for complete spatial coverage of the town. Three

versions of the video data (approximately 3GB data per

hour of video) were stored on two ruggedized external

hard drives and the original micro SD disk, for transport

back to the United States.

The coding process began with an initial viewing of

the video to familiarize with the environment before

digitizing into Google Earth. Although there was flexibil-

ity in what was coded, several elements were captured

based on the prior work of the authors, similar literature

such as typhoid risk in Dhaka [28], or what was expected

for this environment [1,46]. For example, building occu-

pancy and condition ranged from 1 to 4 based on previ-

ous recovery metrics [26,45]. This was expanded to also

include building robustness which ranged from 0.5 (a

temporary structure such as a tent or mix of materials)

to 4 (a permanent well-constructed home). Standing

water depth and trash (measured on a scale of 1 to 4),

along with open sewers or drains were captured because

of previously identified associations with disease. For ex-

ample Dewan et al had found an association between ty-

phoid risk and proximity to water bodies (rivers)[28].

Dogs were also coded because of their previous use as a

proxy for rats in Leptospirosis studies [29]. A population

count, broken by age (adult, less than 15 years of age,

less than 10, less than 5) and sex were recorded partly

because of the lack of any post-earthquake population

data and because of their analysis in other studies [28].

Curtis et al. International Journal of Health Geographics 2013, 12:21 Page 10 of 14

http://www.ij-healthgeographics.com/content/12/1/21



Other aspects of the built environment were coded ei-

ther to improve the spatial richness of the social and cul-

tural landscape, to identify potential third spaces (social

gathering points which might be useful for vaccination

intervention), or locations that could be important in

disease spread; these included bars, cafes, restaurants,

street vendors, stores, medical facilities and importantly

for diarrheal disease spread, schools. At the same time,

schools commonly serve as intervention points or to de-

fine cohorts for public health studies.

Google Earth offers an easy digitizing option where

points, lines or polygons can be drawn on the map and

stored in a user specified folder. The user has the option

at the end of each session to email a KMZ which can be

recombined in a GIS. The dialogue box associated with

each point allows for freeform comments to be added

without constraint by data fields, though the previously

mentioned initial coding strategy was still adopted as a

preliminary frame. Points were located on any object of

interest; a building, a person (or small group of people),

an animal, standing water, water hazard and trash. In

addition, lines were added where open drains followed

road courses. Additional free form comments were used

to contextualize locations or capture additional insights.

One coding decision with a spatial analysis implication

is how to code fuzzy space. For example, standing water

can be a pool or open drainage trench and the number

of points assigned to each, along with the weight

(depth), will affect the type of local area analysis used. It

was decided to use a two pronged approach. Firstly,

water depth was estimated on a four point scale: 1 = any

visible water, 2 = substantial water pooling such as centi-

meters at the bottom of a drain or a road side pool, 3 =

an extensive or deep amount of water (the drain was

partially full, the puddle’s spatial extent was several me-

ters), and 4 = an unusually deep amount (for example it

covered the entire road, or filled a main drainage artery).

In Figure 1a the depth of water at this particular location

was coded as a “2.5”. Although this is subjective, as with

other coding studies of spatial video data, the coder soon

develops a high level of consistency across video frames.

The final output maps are comparative rather than offer-

ing an actual depth measurement – it is possible to

visualize the areas of town where trash accumulation

was highest. Cross coding validation would be required

for multiple coders but for this proof of concept paper

only one coder was used. Secondly, the number of

points to cover a spatial extent will influence any local

area analysis, for example, the centroid of a drainage

channel, or three points equally spaced along its length

can change hotspot identification. For this purpose, the

normal unit of coding was a house, or open space where

presumably a house once stood. This was in keeping

with other spatial video research [44], and other

informal settlement studies which had used domiciles as

the unit of analysis (for example the “premise” in Ali et al

2010). The justification for this unit was the potential im-

pact on a single living space. Where no house existed or

was visible (for example along a wall), points were placed

at approximate house lot separations. The same coding

scheme was used for trash, both in terms of the 1 to 4

scale, and the point placement. The trash in Figure 1a was

coded as a “2”, and a “3” for Figure 1b.

Once all points and lines had been digitized, the differ-

ent KMZ files were imported into ArcGIS 10.1. All sep-

arate point files were combined, as were the line files.

Attribute columns were added to the resulting shapefile

and the codes captured in the Google Earth dialogue

box split into different fields. Data were visualized using

a kernel density analysis, where the input codes (for ex-

ample water depth) were smoothed using different band-

widths. Kernel density analysis is a commonly applied

technique in public health and epidemiology to gauge

spatial patterns (usually) of a single variable independent

of artificial boundaries. For example the previously de-

scribed study by Reis et al (2008) applied the technique

to subjects with Leptospira anitiobodies in Pau da Lima,

Brazil. In their study, bandwidths ranged from 10 to 120

meters. In our study bandwidths of 50 and 100 meters

were used though only 100 meters are reported here.

To add more robustness to the analysis, a modification

of a technique more commonly used in spatial epidemi-

ology was applied, the DMAP spatial filter [47,48].

DMAP has previously been used by the authors in both

health and hazard applications to create smoothed rate

surfaces, as an “information layer” where any location

can be joined to the closest output node to understand

the neighborhood rates (for example the rates of differ-

ent codes surrounding a school), and as input for differ-

ent forms of spatial and traditional analysis (see [45]). In

this approach the rate of a numerator (the number of

dogs) over a denominator (all buildings surveyed which

helps standardize the survey “effort”) is generated for

user defined overlapping filters (circles). The resulting

rate map which is assigned to each grid node can be in-

terpolated to reveal smooth data trends rather than

using graduated color mapping within artificial boundar-

ies. Unlike the kernel density maps, these interpolated

surfaces display numerator concentrations with respect

to the total effort of digitizing along the spatial video

routes. In addition, the nodes surrounding key locations

can be extracted for analysis, either being compared to

each other, or against the whole population. In other

projects a test of statistical significance is also added

using a Monte Carlo simulation [49]. For this paper each

of the schools were spatially joined to the closest rate

node, meaning the three risk attributes calculated for

that node were assigned to each school.

Curtis et al. International Journal of Health Geographics 2013, 12:21 Page 11 of 14

http://www.ij-healthgeographics.com/content/12/1/21



Endnotes
aSee http://www.un.org/millenniumgoals/bkgd.shtml
bFrom this point forward we will call all these urban

types “underserved”.
cAlthough other spatial data may be available, it mostly

exists in NGO or research silos making its presence and

availability largely unknown.
dThe Contour plus camera and associated “Storyteller”

software were used in this paper, see www.contour.com
eAt the time of writing the GIS, Health and Hazards

lab at Kent State University has a collaborator collecting

data in the informal settlements of Dhaka using a single

hand held camera. He collects data within an evolving

spatial sampling frame as well as responding to daily

events, such as the fires that burnt sections of the infor-

mal settlements in early 2013. The flexibility of this cam-

era also allows for hand-held collection which is vital for

typical informal settlement environments.
fFor example, 117504 in the GeoNames database.
gMINUSTAH United Nations stabilization mission in

Haiti, geospatial data available through http://cegrp.cga.

harvard.edu/haiti/?q=resources_data;
hFor examples see: http://www.gelib.com/haiti-earth-

quake.htm; http://www.un-spider.org/haiti; http://haitidata.

org/data/search.
iSchools are used as an example of how these methods

can be applied. However we do not intend the reader to

make assumptions about the quality of education in this

town based on the number mapped. Most have “kinder-

garten” on them. In general education is as lacking in

this area as is WASH infrastructure.
jMINUSTAH United Nations stabilization mission in

Haiti, geospatial data available through http://cegrp.cga.

harvard.edu/haiti/?q=resources_data;

kAge was estimated in the coding process so it is pos-

sible errors will occur because of malnutrition.
lFor three locations two buildings were digitized separ-

ately though being part of the same large compound –

therefore there were 19 unique locations. It might be

argued that these additional three buildings should be

kept as a potential weight both in terms of the number

of children, and in one case, the number of education

levels at the same location.
mThere is a bias to this assumption as only road side

structures are recorded and not the interior blocks. Future

solutions could include a combination of handheld spatial

video paths into the interior, and extrapolation based on

coding from high resolution aerial photography.
nAn interesting aspect with regards schools in Haiti is

that students do not necessarily come from the immedi-

ate area. This might have implications for the spread of

disease because of the mobility tendencies of students to

travel some distance. In addition school attendance is

quite low compared to the entire population. The Na-

tional Schools are regarded as being problematic while

private schools are quite costly. If the analysis presented

here was the beginning of a more in-depth school fo-

cused analysis attention would have to be paid to these

issues.
oFigure 5 shows one of two public information cholera

signs located along the video path, this one in associ-

ation with an NGO and a vendor with a bucket of water.
pAlthough this paper uses Haiti as an example, and

the hope is that the methods here are translatable across

other environments, the authors feel as though the follow-

ing comment needs to be made. There are certain issues

in working in Haiti that have made this long-distance col-

laboration challenging. Internet connection, access to

Figure 5 An example of a post-analysis image extracted from the spatial video, in this case public education with regards cholera.
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vehicles, and time needed to be invested in talking

through data collection in real time. There is still the need

for initial resources and time commitments both on the

part of the field workers and on the researcher. Further,

each environment will differ with regards to cultural sensi-

tivity in association with this methodology.
qThere were questionable locations within this cat-

egory as although a gathering of people centered around

bowls or containers no actual water source was visible

on the video.
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