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Abstract 
 Data warehouses (DWs) are complex computer systems whose main goal is to facilitate the 
decision making process of knowledge workers. ETL (Extraction-Transformation-Loading) 
processes are responsible for the extraction of data from heterogeneous operational data sources, 
their transformation (conversion, cleaning, normalization, etc.) and their loading into DWs. ETL 
processes are a key component of DWs because incorrect or misleading data will produce wrong 
business decisions, and therefore, a correct design of these processes at early stages of a DW project 
is absolutely necessary to improve data quality. However, not much research has dealt with the 
modeling of ETL processes. In this paper, we present our approach, based on the Unified Modeling 
Language (UML), which allows us to accomplish the conceptual modeling of these ETL processes 
together with the conceptual schema of the target DW in an integrated manner. We provide the 
necessary mechanisms for an easy and quick specification of the common operations defined in 
these ETL processes such as, the integration of different data sources, the transformation between 
source and target attributes, the generation of surrogate keys and so on. Moreover, our approach 
allows the designer a comprehensive tracking and documentation of entire ETL processes, which 
enormously facilitates the maintenance of these processes. Another advantage of our proposal is the 
use of the UML (standardization, ease-of-use and functionality) and the seamless integration of the 
design of the ETL processes with the DW conceptual schema. Finally, we show how to use our 
integrated approach by using a well-known modeling tool such as Rational Rose. 
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1 Introduction 
 In the early nineties, Inmon [Inmon92] coined the term “data warehouse” (DW): “A data 
warehouse is a subject-oriented, integrated, time-variant, nonvolatile collection of data in support of 
management’s decisions”. A DW is “integrated” because data are gathered into the DW from a 
variety of sources and merged into a coherent whole. ETL (Extraction-Transformation-Loading) 
processes are responsible for the extraction of data from heterogeneous operational data sources, 
their transformation (conversion, cleaning, normalization, etc.) and their loading into DWs.  
 It is highly recognized that the design and maintenance of these ETL processes is a key 
factor of success in DW projects for several reasons [SQL02, Strange02]. DWs are usually 
populated by data from different and heterogeneous operational data sources such as legacy 
systems, relational databases, COBOL files, Internet (XML, web logs) and so on. Therefore, 
different routines have to be defined and configured for accessing these heterogeneous systems and 
loading the correct data into the common DW repository. 

Moreover, data from the operational systems are usually specified in different schemas and 
have to be extracted and transformed to collect them into a common DW repository [Rahm00]. 
Some of the more common technical tasks that have to be accomplished with these data are as 
follows. Data coming from different sources have to be joined into a unique target in the DW. Data 
usually have to be aggregated in order to facilitate the definition of the queries and improve the 
performance of the DW. Data are usually in different types and formats and they need to be 
converted into a common format. Data in the operational systems are usually managed by different 
primary keys representing for example, product or store codes and so on. In DWs we usually use 
surrogate keys, and therefore, we need an efficient mechanism to assign surrogate keys to the 
operational data in the DW repository. Furthermore, as data are coming from different sources, we 



usually need to check the different primary and foreign keys to assure a high quality of data. 
Moreover, we also need a high number of filters to verify the right data to be uploaded in the DW 
and many more problems. 
 Due to the high difficulty in designing and managing these ETL processes, there has lately 
been a proliferation in the number of available ETL tools that try to simplify this task [Friedman03, 
Greenfield03]. During 2001, the ETL market grew to about $667 million [Agosta02]. Currently, 
companies expend more than thirty percent out of the total budget for DW projects in expensive 
ETL tools, but “It’s not unusual for the ETL effort to occupy 60 percent to 80 percent of a data 
warehouse’s implementation effort” [Strange02]. Nevertheless, it is widely recognized that the 
design and maintenance of these ETL processes has not yet been solved [Agosta02]. 
 Therefore, we argue that a model and methodology is needed to help the design and 
maintenance of these ETL processes from the early stages of a DW project; as Kimball states, “Our 
job as data warehouse designers is to star with existing sources of used data” [Kimball96]. 
Unfortunately, little effort has been dedicated to propose a conceptual model that allows us to 
formally define these ETL processes. 

In this paper, we present a conceptual model based on the Unified Modeling Language 
(UML) [OMG01] for the design of ETL processes which deals with the more common technical 
problems above-presented. As the UML has been widely accepted as the standard for object-
oriented analysis and design, we believe that our approach will minimize the efforts of developers 
in learning new diagrams or methodologies for modeling ETL processes. Furthermore, as we 
accomplish the conceptual modeling of the target DW schema following our multidimensional 
modeling approach, also based in the UML [Trujillo01, Luján02a, Luján02b], the conceptual 
modeling of these ETL processes is totally integrated in a global approach. Therefore, our approach 
reduces the development time of a DW, facilitates managing data repositories, DW administration, 
and allows the designer to perform dependency analysis (i.e. to estimate the impact of a change in 
the data sources in the global DW schema). 
 The rest of the paper is organized as follows. Section 2 summarizes our DW modeling 
approach. Section 3 provides an overview of ETL processes and their surrounding data quality 
problems. Section 4 describes in detail how to accomplish the conceptual modeling of ETL 
processes using our proposal. Section 5 discusses two general examples that gather all the 
interesting ETL process problems presented throughout the paper and how they are easily covered 
and solved applying our approach. Section 6 shows how to use our ETL modeling approach in 
Rational Rose. Section 7 presents the related work. Finally, Section 8 presents the main conclusions 
and future work. 

2 A global and integrated approach for data warehouse design 
 The architecture of a DW is usually depicted as various layers of data in which data from 
one layer is derived from data of the previous layer [Jarke03]. Following this consideration, we 
consider that the development of a DW can be structured into an integrated model with four 
different schemas as seen in Figure 1: 

• Operational Data Schema (ODS): it defines the structure of the operational data sources. 
• Data Warehouse Conceptual Schema (DWCS): it defines the conceptual schema of the DW. 
• Data Warehouse Storage Schema (DWSS): it defines the physical storage of the DW. 
• Business Model (BM): it defines the different ways or views of accessing the DW from the 

final users’ point of view. It is composed of different subsets of the DWCS. 
 From our point of view, two mapping schemas are also needed in order to obtain a global 
and integrated DW design approach that covers the necessary schemas: 

• ETL Process: it defines the mapping between the ODS and the DWCS. 
• Exportation Process: it defines the mapping between the DWCS and the DWSS.  

 Following our integrated approach, we design a DW as follows. We use different UML 
extensions to model the ODS according to the source: Rational’s UML Profile for Database Design 
[Naiburg01], a UML profile for data modeling [Ambler02], etc. We have proposed a conceptual 
model based on the UML to design the DWCS following the multidimensional paradigm 
[Trujillo01, Luján02a, Luján02b]. Then, from the ODS, we design the ETL processes that will be 



responsible for the gathering, transforming and uploading data into the DW. Furthermore, we define 
different BM as different views from the DWCS for the different type of users that will access the 
DW. Finally, once the target platform has been chosen (ROLAP, MOLAP, etc.), an exportation 
process is defined to automatically map the conceptual modeling constructors used in the DWCS 
into the DWSS, which corresponds to the physical structures of the target platform [Trujillo01]. 
Therefore, the best advantage of our global approach is that we always use the same notation (based 
on the UML) for designing the different DW schemas and the corresponding transformations in an 
integrated manner. 

 
Figure 1. Different schemas for designing data warehouses 

3 ETL 
 In an ETL process, the data extracted form a source system pass through a sequence of 
transformations before they are loaded into a DW. The repertoire of source systems that contribute 
data to a DW is likely to vary from standalone spreadsheets to mainframe-based systems many 
decades old. Complex transformations are usually implemented in procedural programs, either 
outside the database (in C, Java, Pascal, etc.) or inside the database (by using any 4GL). The design 
of an ETL process is usually composed of six tasks: 

1. Select the sources for extraction: the data sources to be used in the ETL process are defined. 
It is very common in an ETL process to access different heterogeneous data sources. 

2. Transform the sources: once the data have been extracted from the data sources, they can be 
transformed or new data can be derived. Some of the common tasks of this step are: 
filtering data, converting codes, performing table lookups, calculating derived values, 
transforming between different data formats, automatic generation of sequence numbers 
(surrogate keys), etc. 

3. Join the sources: different sources can be joined in order to load together the data in a 
unique target. 

4. Select the target to load: the target (or targets) to be loaded is selected. 
5. Map source attributes to target attributes: the attributes (fields) to be extracted from the data 

sources are mapped to the corresponding target attributes. 
6. Load the data: the target is populated with the transformed data from the sources. 

 The transformation step of the ETL processes can also perform data cleaning tasks, 
although ETL tools typically have little built-in data cleaning capabilities. Data cleaning deals with 
detecting and removing errors and inconsistencies from data in order to improve the data quality 
[Rahm00]. Data quality problems are very significant: it has been estimated that poor quality 
customer data cost U.S. businesses $611 billion a year in postage, printing, and staff overhead 
[Eckerson02]. 
 The manual creation and maintenance of ETL processes increases the cost of development, 
deployment, running, and maintenance of a DW. That is why the conceptual modeling of ETL 
processes can be of a crucial help. 



4 Modeling ETL processes 
 In this section we present our ETL modeling proposal that is integrated in our global DW 
modeling approach presented in Section 2. Our approach allows the designer to decompose a 
complex ETL process into a set of simple processes. This approach helps the designer to easily 
design and maintain ETL processes. Moreover, our approach allows the DW designer to tackle the 
design of ETL processes from different detail levels: (i) the designer can define a general overview 
of the process and let the database programmer to specify them or, (ii) the designer can provide a 
detailed description of each one of the attribute transformations. 
 Based on our personal experience, we have defined a reduced and yet highly powerful set of 
ETL mechanisms. We have decided to reduce the number of mechanisms in order to reduce the 
complexity of our proposal. We have summarized these mechanisms in Table 1. We consider that 
these mechanisms process data in the form of records composed of attributes1. Therefore, we 
provide the Wrapper mechanism to transform any source into a record based source. 
 In our approach, an ETL process is composed of UML packages, which allow the user to 
decompose the design of an ETL process into different logical units. Every particular ETL 
mechanism is represented by means of a stereotyped class2. Moreover, we have defined a different 
icon for each ETL mechanism (Table 1). This icon can be used in a UML model instead of the 
standard representation of a class. 
  

ETL Mechanism 
(Stereotype) 

Description Icon 

Aggregation Aggregates data based on some criteria 
+

 
Conversion Changes data type and format or derives new 

data from existing data A B
 

Filter Filters and verifies data 

 
Incorrect Reroutes incorrect data 

! ! !
 

Join Joins two data sources related to each other with 
some attributes 

 
Loader Loads data into the target of an ETL process 

 
Log Logs activity of an ETL mechanism 

LOG
 

Merge Integrates two or more data sources with 
compatible attributes 

 
Surrogate Generates unique surrogate keys 

123
 

Wrapper Transforms a native data source into a record 
based data source 

 
Table 1. ETL mechanisms and icons 

 The ETL mechanisms are related to each other by means of UML dependencies. A 
dependency in the UML is represented as a dashed line with an arrowhead. The model element at 
the tail of the arrow (the client) depends on the model element at the arrowhead (the supplier). A 
dependency states that the implementation or functioning of one or more elements requires the 
                                                      
1 In our approach, the concept of attribute is similar to the concepts of column, property or field. 
2 Due to the lack of space, we do not include the formal definition of each stereotype with their corresponding 
OCL constraints. 



presence of one or more other elements. This implies that if the source is somehow modified, the 
dependents must be probably modified.  
 A UML note can be attached to every ETL mechanism to (i) explain the functioning of the 
mechanism and, (ii) define the mappings between source and target attributes of the ETL 
mechanisms3. These mappings conform to the following syntax: target_attribute = 
source_attribute. To avoid overloading the diagram with long notes, when source and target 
attributes’ names match, the corresponding mappings can be omitted. Furthermore, when some kind 
of ambiguity may exist (e.g., two attributes with the same name in different sources), the name of 
the source can be indicated together with name of the attribute (e.g., Customers.Name and 
Suppliers.Name). 
 We do not impose any restriction on the content of these notes, in order to allow the 
designer the greatest flexibility, but we highly recommend a particular content for each mechanism. 
The designer can use the notes to define ETL processes at the desired detail level. For example, the 
description can be general, specified by means of a natural language, or very detailed, specified by 
means of a programming language. 
 In the following, we provide a deeper description of each one of the ETL mechanisms 
presented in Table 1 together with the more appropriated contents for the corresponding attached 
notes. 

4.1 Aggregation 
 The Aggregation mechanism aggregates data based on some criteria. This mechanism is 
useful to increase the aggregation level of a data source4. The designer can define the grouping 
criteria and the aggregation functions employed (SUM, AVG, MAX/MIN, COUNT, STDDEV, 
VARIANCE and so on) in the attached note to this mechanism. 

Sales
IdTicket : Integer
IdProducts : Integer
Name : String
Description : String
Price : Currency
Quantity : Integer
Discount : Integer
Date : Date

SummedSales
Product : Integer
TotalQty : Integer
Total : Currency
Date : Date

+

TotalQty = SUM(Quantity)
Total = SUM(Quantity * Price)
GroupBy(IdProducts, Date)
Product = IdProducts

 
Figure 2. Aggregation example by using standard 

UML class notation 

Sales

IdTicket : Integer
IdProducts : Integer

Name : String
Description : String

Price : Currency
Quantity : Integer
Discount : Integer

Date : Date

+
SummedSales

Product : Integer
TotalQty : Integer
Total : Currency

Date : Date

TotalQty = SUM(Quantity)
Total = SUM(Quantity * Price)
GroupBy(IdProducts, Date)
Product = IdProducts

 
Figure 3. Aggregation example by using the 

defined stereotype icons 

 For example, in Figure 2, we have represented a portion of a loading process in a DW5 by 
using standard UML notation in which the stereotype icons are placed in the upper right-hand 
corner of the corresponding class. It may also be observed that the icon used in the Sales class 
corresponds to the Table stereotype icon defined in the UML profile for database design 
[Naiburg01]. As the grain of Sales is ticket line, we need the daily total sales in the DW. Therefore, 
Sales are grouped and summed up by product and date in SummedSales. We have decided to 
specify these aggregation tasks in the corresponding attached note. Figure 3 represents the same 

                                                      
3 The connection between a note and the element it applies to is shown by a dashed line without an arrowhead 
as this is not a dependency [OMG01]. 
4 Partial summarization of data under different criteria is a very common technique used in DWs to facilitate 
complex analysis. Summarization helps to reduce the size of the resulting DW and increase the query 
performance [Kimball96]. 
5 From now on, partial examples are used to describe each ETL mechanism. 



ETL process using our ETL icons. From now on, we will use this representation throughout the 
paper. 

4.2 Conversion 
 The Conversion mechanism is used to change data types and formats or to calculate and 
derive new data from existing data. The conversions are defined in the attached note by means of 
conversion functions applied to source attributes. The syntax of these conversions is 
target_attribute = Function(source_attributes), where Function is any kind of function that can 
be applied to source attributes. 
 Based on our experience, we have defined conversion functions for the most common 
situations. However, this is not a closed set as the designer can define their own user-defined 
functions for more particular and complex situations: 

• Data type conversions: convert data from a data type into another data type. For example: 
Price = StringToCurrency(Price). 

• Arithmetic conversions: perform arithmetic operations (add, multiply, etc.) with data. For 
example: Total = Quantity * Price. 

• Format conversions: convert a value (currency, date, length, etc.) from one format into 
another one. For example: Price = DollarToEuro(Price). 

• String conversions: transform strings (upper and lower-case, concatenate, replace, 
substring, etc.). For example: Name = Concatenate(FirstName, “ ”, Surname). 

• Split conversions: break a value into different elements. For example, the following 
expression breaks a name (“John Doe”) into first name (“John”) and surname (“Doe”): 
FName = FirstName(Name); SName = Surname(Name). 

• Standardization conversions: standardize attributes to contain identical values for equivalent 
data elements. We can use a set of rules or look-up tables to search for valid values. For 
example, the following expression substitutes “Jan.” or “1” with “January”: Month = 
StdMonth(Month). 

• Value generator:  generates a constant value or a variable value from a function. The new 
value does not depend on any source attribute. For example: Date = Timestamp(). 

• Default value: when a value is missing (null, empty string, etc.), it is possible to define a 
default value. The syntax of this option is target_attribute ?= value. For example: Type 
?= “unknown”. 

A B
ConvertedCustomers

IdCustomer : Integer
Name : String

Street_type : String
Street_name : String

Street_number : String
BornDate : Date

Name = Concatenate(Name, " ", Surname)
Street_type = StreetType(Address)
Street_name = StreetName(Address)
Street_number = StreetNumber(Address)
BornDate = FormatDate(Born, "dd/mm/yyyy")

Customers
IdCustomer : Integer

Name : String
Surname : String
Address : String

Born : Date

LOG

CustomerLog
IdCustomer : Integer

Date : Date
Description : String

Date = Timestamp()
Description = "Customer conversion"

 
Figure 4. An example of Conversion and Log processes 



 Figure 4 presents an example in which different conversions are applied through the 
ConvertedCustomers stereotype. As it can be easily seen from the attached note, Name and 
Surname are concatenated; Address is split into street type, name and number; and Born is 
converted using a date format. Furthermore, all the activity is audited by CustomerLog (see next 
section). 

4.3 Log 
 The Log mechanism can be connected to any ETL mechanism as it controls the activity of 
another ETL mechanism. This mechanism is useful to audit and produce operational reports for 
each transformation. The designer can add any kind of additional information in the note attached to 
this mechanism. 
 For example, in Figure 4, the activity of a Conversion mechanism is controlled by the Log 
mechanism called CustomerLog. 
 

4.4 Filter 
 The Filter mechanism filters unwanted data and verifies the correctness of data based on 
constraints. In this way, this mechanism allows the designer to load only the required data or the 
data that meet an established quality level in the DW. The verification process is defined in the 
attached note by means of a set of Boolean expressions that must be satisfied. The Boolean 
expressions can be expressed by means of a set of rules or by means of look-up tables that contain 
the correct data. Some common tasks for this mechanism are checks for null values, missing values, 
values out of range, and so on. The data that do not satisfy the verification can be rerouted to an 
Incorrect mechanism (see Section 4.7). 
 For example, in Figure 5, Customers are filtered and only those that were born before 
1950 are accepted for a subsequent processing. 

Customers
Name : String
Surname : String
BornDate : Date
City : Integer

<<File>>

FilterCustomers
Name : String

Surname : String
BornDate : Date

City : Integer

Year(BornDate) < "1950"

 
Figure 5. An example of Filter process 

4.5 Join 
 The Join mechanism is used to join two data sources related to each other with some 
attributes (defined by means of a restrictive condition). The designer can define the following 
information in the attached note: 

• The type of join: Join(conditional_expression), where Join can be InnerJoin (includes 
only the records that match the conditional expression), LeftJoin (includes all of the records 
from the first (left) of the two data sources, even if there are no matching values for records 
in the second (right) data source), RightJoin (includes all of the records from the second 
(right) of the two data sources, even if there are no matching values for records in the first 
(left) data source), and FullJoin (includes all of the records from both data sources, even if 
there are no matching values for records in the other data source). 

• If LeftJoin, RightJoin or FullJoin are used, then the designer can define the values that 
substitute the non-existing values. The syntax of this option is target_attribute ?= value. 

 In Figure 6, we have represented an ETL process that joins three data sources. Due to the 
fact that Join can only be applied to two sources, and in this particular case we are dealing with 
three sources, two Join mechanisms are needed. In the CitiesStates join, a LeftJoin is performed to 
join cities’ names and states’ names. When it is not possible to join a city with a state (because 



Cities.State is missing or is incorrect), the corresponding state name is replaced by “unknown”. 
Finally, in the CompleteCustomers join, the result of the previous join is joined with Customers. 
 

Customers
Name : String
Surname : String
BornDate : Date
City : Integer

<<File>>

Cities
IdCity : Integer
Name : String
State : Integer

<<File>>

States
IdState : Integer
Name : String

<<File>> CitiesStates
IdCity : Integer

City : String
State : String

CompleteCustomers
Name : String

Surname : String
Citiy : String
State : String

LeftJoin(State = IdState)
City = Cities.Name
State = States.Name
State ?= "unknown"

InnerJoin(Customers.City = IdCity)
City = CitiesStates.City

 
Figure 6. An example of Join process 

4.6 Loader 
 The Loader mechanism loads data into the target of an ETL process such as a dimension or 
a fact in a DW. Every ETL process should have at least one Loader mechanism. Two operation 
modes are supported in the Loader: 

• Free loading: the Loader mechanism does not verify any constraint as the target applies its 
own constraints to the new data. 

• Constrained loading: the designer can apply primary and foreign key constraints during the 
loading process. Moreover, the designer can also define how to manage existing data in the 
target. The following information can be attached to the Loader mechanism: 

o PK(source_attributes): defines the attributes of the source data that define a 
unique record in the target. This information is used for constraining the loading 
process and it is also used for detecting the old data that should be updated. 

o FK(target_attributes; source_attributes): defines the attributes of the source data 
that should previously exist in a target. 

o Append: the target need not be empty before loading the new data; new data are 
loaded and old data are updated. 

o Delete: the target need be empty before loading the data. 
o Insert: only new data are loaded in the target; old data are not loaded again or 

updated, although they have changed,  
o Update: only existing data in the target are updated with the corresponding data, 

but new data are not loaded. 
 Append, Delete, Insert, and Update are mutually exclusive: only one of them can be used 
in a Loader mechanism. 
 For example, in Figure 7, CustomerLoader updates existing data in CustomersDim with 
data coming from Customers. Furthermore, due to the high probability of errors when making the 
loading process, those records that do not satisfy the constraints are rerouted to 
DiscardedCustomers. CustomersDim represents a dimension in our DW schema; the icon 
corresponds to the Dimension stereotype defined in our multidimensional modeling approach 
[Luján02a]. 

4.7 Incorrect 
 The Incorrect mechanism is used to reroute bad or discarded records and exceptions to a 
separate target. In this way, the DW designer can track different errors. This mechanism can only be 
used with the Filter, Loader, and Wrapper, because these mechanisms constrain the data they 



process. The designer can add additional information in the note attached to this mechanism, such 
as a description of the error or a timestamp of the event. 
 For example, in Figure 7, the records that do not satisfy the constraints of 
CustomerLoader (primary key constraint on IdCustomer and only update existing data in the 
target) are rerouted to DiscardedCustomers, which collects the erroneous data and adds the Date 
attribute that is a timestamp of the event. 

CustomerLoader

IdCustomer : Integer
Name : String

Surname : String

CustomersDim
IdCustomer : Integer

Name : String
Surname : String

Customers
IdCustomer : Integer

Name : String
Surname : String
Address : String

Born : Date

PK(IdCustomer)
Update
CustomersDim.IdCustomer = Customers.IdCustomer
CustomersDim.Name = Customers.Name
CustomersDim.Surname = Customers.Surname

! ! !

DiscardedCustomers
IdCustomer : Integer

Name : String
Surname : String

Date : Date

Date=Timestamp()

 
Figure 7. An example of Loader and Incorrect processes 

4.8 Merge 
 The Merge mechanism integrates two or more data sources with compatible attributes. Two 
data sources are compatible as long as both of them contain a subset of the attributes defined in the 
target: the attributes used in the integration must have the same names in all the data sources. If the 
attributes do not have the same names, the Conversion mechanism can be previously applied in 
order to standardize them. The attached note to this mechanism is used to define the mapping 
between the data sources and the target. 
 For example, in Figure 8, MergedCustomers is used to integrate data coming from a file 
and from a database table. Firstly, WrappedCustomers is used to transform a file into a record 
based source (see next section). Then, ConvertedCustomers changes the names of the attributes 
(CName and CSurname) and adds a new attribute (BornDate) with a default value. 

4.9 Wrapper 
 The Wrapper mechanism allows us to define the required transformation from a native data 
source into a record based data source. Different native sources are possible in an ETL process: 
fixed and variable format sources, COBOL files (line sequential, record sequential, relative files, 
and indexed files), multiline sources, XML documents, and so on. The needed code to implement 
the Wrapper is not relevant as we are at the conceptual level, although the designer can define in 
the attached note all the information that considers relevant to help the programmer at the 
implementation phase. 
 In Figure 8, WrappedCustomers is used to transform data from a fixed format file. Some 
information about the format of the file is included in the attached note. 
 



MergedCustomers
Name : String

Surname : String
BornDate : Date

Customers
Name : String
Surname : String
BornDate : Date
City : Integer

<<File>>

Customers
CName : String

CSurname : String

Name = CName
Surname = CSurname
BornDate = "01/01/1900"

WrappedCustomers
Name : String

Surname : String
BornDate : Date

City : Integer

Skip 5 lines
Fixed format: Name(1, 30), 
Surname(31, 60), 
BornDate(61, 71), City(72, 76)

A B

ConvertedCustomers
Name : String

Surname : String
BornDate : Date

 
Figure 8. An example of Merge and Wrapper processes 

 

4.10 Surrogate 
 The Surrogate mechanism generates unique surrogate keys. Surrogate key assignment is a 
common process in DWs, employed in order to replace the original keys of the data sources with a 
uniform key. The attached note to this mechanism is used to define the source attributes used to 
define the surrogate key. Surrogate keys could have been defined in the Conversion mechanism, 
however, due to the importance that surrogate keys represent in DWs, we have decided to define an 
own mechanism. 
 For example, in Figure 9, SurrogatedCities adds a surrogate key (IdCity) based on the 
attributes Name, State, and Country before loading the data into the DW. 
 

Cities
Name : String

Population : Integer
State : String

Country : String

123

SurrogatedCities
IdCity : Integer
Name : String

Population : Integer
State : String

Country : String

IdCity = SurrogateKey(Name, State, Country)

 
Figure 9. An example of Surrogate process 

5 ETL examples 
 In previous sections, we have shown short and specific examples to explain how we 
modeled the particular ETL mechanisms. In this section, we present two interesting ETL examples. 
The first one is a complete example in which we show how to easily model different ETL 
mechanisms keeping a high grade of simplicity and yet a very powerful ETL process model. In the 
second example, we show how to merge two different data sources and deal with a multi-target 
loading. These examples show the expressiveness power of our ETL modeling approach. 

5.1 A complete ETL process 
 In Figure 10, we have represented a loading process into a DW. The grain level of Sales 
(the data source) is ticket line, but we need the daily total sales in the DW (Sales fact table at the 



right hand side of Figure 10). Therefore, Sales are grouped and summed up by product and date in 
SummedSales. Then, SurrogatedSales adds a surrogate key (Time) based on the Date attribute 
before loading the data into the DW. This surrogate key is used in the DW to establish a relation 
between Sales fact and Time dimension. Finally, SalesLoader loads summarized sales into Sales 
fact table, ProductsLoader loads the product list into Products dimension, and TimeLoader loads 
time data into Time dimension. 

+

SummedSales
Product : Integer
TotalQty : Integer
Total : Currency

Date : Date

123

SurrogatedSales
Product : Integer

Time : Integer
TotalQty : Integer
Total : Currency

Date : Date

Sales
IdTicket : Integer

IdProducts : Integer
Name : String

Description : String
Price : Currency
Quantity : Integer
Discount : Integer

Date : Date

Sales
Product : Integer

Time : Integer
TotalQty : Integer
Total : Currency

TotalQty = SUM(Quantity)
Total = SUM(Quantity * Price)
GroupBy(IdProducts, Date)
Product = IdProducts

Time
Time : Integer
Date : Date

Products
IdProducts : Integer

Name : String
Price : Currency

Discount : Integer

ProductsLoader
IdProducts : Integer

Name : String
Price : Currency

Discount : Integer

TimeLoader
Time : Integer
Date : Date

Time = SurrogateKey(Date)

SalesLoader
Product : Integer

Time : Integer
TotalQty : Integer
Total : Currency

 
Figure 10. An example of a complete ETL process 

 
Figure 11. Merging two different data sources and accomplishing multi-target loading 



5.2 Merging two different data sources and multi-target loading 
 In Figure 11, we deal with the problem of merging two incompatible data sources as they 
have different attribute number and the common attributes have different names. Regarding the first 
data source, ProductWrapper is used to transform a multiline file into a record based data source 
and rename the attributes’ names. With respect the second one, ProductsWithKeys (Surrogate) 
generates a surrogate key from the Name attribute. Then, AllProducts (Merge) is used to integrate 
the two sources. Finally, all the products have to be loaded into two targets depending on the 
discount of each product: the products with a discount lower than 50 percent have to be loaded into 
the Products dimension, whereas the products with a discount equal or greater than 50 percent 
have to be loaded into the Bargains dimension. FilterProducts and FilterBargains are used to 
filter the products. 

6 ETL modeling in Rational Rose 
 Rational Rose (RR) is one of the most well-known visual modeling tools. As RR supports 
the UML, it is becoming the common modeling tool for OO modeling. RR is extensible by means 
of add-ins, which allows the user to group together customizations and automation of several RR 
features through the Rose Extensibility Interface (REI) [Rational01] into one component. An add-in 
allows the user to customize main menu items, data types, stereotypes, etc. 
 We have developed a RR add-in that allows us to use the stereotypes we have defined for 
modeling ETL processes. This add-in complements our previous add-in [Luján02b] that allows the 
DW designer to accomplish the conceptual modeling of a DW in RR. 
 In Figure 12, we can observe the same ETL process presented in Section 5.2 but modeled in 
RR. On the left hand side, a hierarchy list of icons that represent different modeling elements is 
displayed: at the top, the DWCS is shown with the multidimensional modeling elements (Bargains, 
CustomersDim, Sales, etc.); in the middle, the ODS (Source1, Source2, etc.) are represented; at the 
bottom, different UML packages (Aggregation, Conversion, Customers, etc.) that contain ETL 
processes are shown. Furthermore, the vertical toolbar in the middle of Figure 12 contains ten new 
buttons that correspond to each one of our ETL stereotypes. Finally, on the right hand side, the ETL 
process is shown. 
 

 
Figure 12. Modeling ETL processes using our approach in Rational Rose 



7 Related work 
 Little effort has been dedicated to propose a conceptual model that allows the DW designer 
to formally define ETL processes. Various approaches for the conceptual design of DWs have been 
proposed in the last few years [Golfarelli98, Sapia98, Tryfona99, Husemann00, Abelló02]. 
However, none of them has addressed the modeling of ETL processes. 
 To the best of our knowledge, the best advance in this research line has been accomplished 
by the Knowledge and Database Systems Laboratory from NTUA [KDBS03]. In particular, they 
have proposed a conceptual model that provides its own graphical notation that allows the designer 
to formally define most of the usual technical problems regarding ETL processes [Vassiliadis02]. 
Furthermore, this approach is accompanied by an ETL tool called ARKTOS as an easy framework 
for the design and maintenance of these ETL processes [Vassiliadis01].  
 The main differences, and advantages, of our approach in contrast to Vassiliadis’ are the use 
of a standard modeling language (UML), the use of a grouping mechanism (UML packages) that 
facilitates the creation and maintenance of complex ETL processes, and the integration of the design 
of ETL processes in a global and integrated approach for DW design. Moreover, Vassiliadis et al. 
do not employ standard UML notation because they need to treat attributes as “first class citizens” 
of their model, what we believe complicates the resulting ETL models: a DW usually contains 
hundreds of attributes, and therefore, an ETL model can become exceedingly complex if every 
attribute is individually represented as a model element. 

8 Conclusions 
 In this paper, we have presented the modeling of ETL processes as part of an integrated and 
global approach for DW design. Thanks to the use of the UML, we can seamlessly model different 
aspects of a DW architecture such as operational data sources, conceptual schema and ETL 
processes in an integrated manner. In this way, it is very easy to detect inconsistencies between the 
different schemas of a DW architecture and it helps the designer to estimate the feasibility of the 
development. 
 Our approach for modeling ETL processes defines a set of UML stereotypes that represents 
the most common ETL tasks such as the integration of different data sources, the transformation 
between source and target attributes, the generation of surrogate keys, and so on. Furthermore, 
thanks to the use of the UML package mechanism, large ETL processes can be easily modeled in 
different ETL packages obtaining a very simple but yet powerful approach. Thanks to its simplicity, 
our approach facilitates the design and subsequent maintenance of ETL processes at any modeling 
phase. Finally, we have implemented our approach in Rational Rose 2002 through the Rose 
Extensibility Interface (REI) [Rational01]. 
 Regarding future work, we are currently working on the automatic transformation of the 
ETL models into a target platform. For this task, we need specific information about the target 
platform to be able to transform the content of the attached notes to the defined stereotypes into 
valid code. In this way, our approach will help the programmer with the required code to solve the 
most common ETL problems. 
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