
u Ottawa
L'Universiti? canadicrme

Canada's universily

FACULTE DES ETUDES SUPERIEURES FACULTY OF GRADUATE AND
ET POSTOCTORALES U Ottawa POSDOCTORAL STUDIES

I.'University eanadiervne
Canada's university

Muhammad Rizwan Abid
AUTEUR DE LA THESE / AUTHOR OF THESIS

M.C.S.
GRADE/DEGREE

School of Information Technology and Engineering
"TAc i jLTETEcai r^

UML Profile for Goal-oriented Modelling

TITRE DE LA THESE / TITLE OF THESIS

Daniel Amyot
DIRECTEUR (DIRECTRICE) DE LA THESE / THESIS SUPERVISOR

Stephane Some
CO-DIRECTEUR (CO-DIRECTRICE) DE LA THESE / THESIS CO-SUPERVISOR

EXAMINATEURS (EXAMINATRICES) DE LA THESE/THESIS EXAMINERS

Gregor Bochmann

Yvan Labiche

Gary W. Slater
Le Doyen de la Faculte des etudes superieures et postdoctorales / Dean of the Faculty of Graduate and Postdoctoral Studies

UML Profile for Goal-oriented Modelling

Muhammad Rizwan Abid

Thesis submitted to the

Faculty of Graduate and Postdoctoral Studies

in partial fulfillment of the requirements for the degree of

Master of Computer Science

Under the auspices of the Ottawa-Carleton Institute for Computer Science

University of Ottawa

Ottawa, Ontario, Canada

August 2008

© Muhammad Rizwan Abid, Ottawa, Canada, 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-46460-1
Our file Notre reference
ISBN: 978-0-494-46460-1

NOTICE:

The author has granted a non-

exclusive license allowing Library

and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses

worldwide, for commercial or non-

commercial purposes, in microform,

paper, electronic and/or any other

formats.

AVIS:

L'auteur a accorde une licence non exclusive

permettant a la Bibliotheque et Archives

Canada de reproduire, publier, archiver,

sauvegarder, conserver, transmettre au public

par telecommunication ou par Plntemet, prefer,

distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,

sur support microforme, papier, electronique

et/ou autres formats.

The author retains copyright

ownership and moral rights in

this thesis. Neither the thesis

nor substantial extracts from it

may be printed or otherwise

reproduced without the author's

permission.

L'auteur conserve la propriete du droit d'auteur

et des droits moraux qui protege cette these.

Ni la these ni des extraits substantiels de

celle-ci ne doivent etre imprimes ou autrement

reproduits sans son autorisation.

In compliance with the Canadian

Privacy Act some supporting

forms may have been removed

from this thesis.

Conformement a la loi canadienne

sur la protection de la vie privee,

quelques formulaires secondaires

ont ete enleves de cette these.

While these forms may be included

in the document page count,

their removal does not represent

any loss of content from the

thesis.

Canada

Bien que ces formulaires

aient inclus dans la pagination,

il n'y aura aucun contenu manquant.

Abstract

The Unified Modeling Language (UML) is a standard for visual modelling. We can de-

sign abstract models by using its elements. Although the semantic scope of UML ele-

ments is very broad, it does not fully address the needs of some modelling domains, in-

cluding the modelling of goals and non-functional requirements (NFR). To address this

problem, UML allows the customization of its metamodel with an extension mechanism

called UML profile.

Some work has already been done in the area of UML profiles for NFR and goals.

In some cases, the proposed solutions were incorrectly or only partially integrated with

UML. Sometimes, the profiles were based on metamodels whose nature and accuracy for

this domain were unclear. In other cases, the profiling approaches taken were not well

supported by tools, which have led to unsatisfactory solutions.

In this thesis, we propose a UML profile for the Goal-oriented Requirement Lan-

guage (GRL), a goal/NFR notation undergoing standardization at the International Tele-

communication Union. Our profile is based on an abstract metamodel of GRL, which has

already been successfully tested and implemented in non-UML tools. This profile is also

implemented in a UML 2 tool, namely Telelogic G2 4.0, and is well integrated with the

rest of UML. Challenges and design decisions for the concrete support of this profile with

tools are discussed along the way. The profiling approach used in this thesis is one that

has been recommended by modellers and standards developers. Our profile for goal-

oriented modelling is also illustrated and validated with several examples.

n

Acknowledgment

I am first of all thankful to Allah, who has provided me this opportunity of doing a Mas-

ter of Computer Science degree at the University of Ottawa.

I would like to express my gratitude and special thanks to my supervisors,

Dr. Daniel Amyot and Dr. Stephane Soteg Some, who have supported me with invaluable

suggestions, knowledge and positive encouragements during my thesis work.

I also wish to offer my special thanks to Gunter Mussbacher for our great discus-

sions and his comments that provided me with inspiration to complete this thesis.

I am also thankful to Telelogic (now IBM), who provided the Tau G2 4.0 tool and

technical support for my research work, as well as NSERC for financial support.

Finally, I want to thank my parents, family members, and especially my wife for

her understanding throughout my studies and my mother who supported and encouraged

me from past to the present.

ui

Table of Contents

Abstract ii

Acknowledgment iii

Table of Contents iv

List of Figures vii

List of Tables ix

List of Acronyms x

Chapter 1. Introduction 1

1.1. Context and Concepts 1

1.2. Motivation 2

1.3. Research Hypothesis 2

1.4. Thesis Contributions 3

1.5. Thesis Outline 3

Chapter 2. Background 4

2.1. Unified Modeling Language (UML) 4
2.1.1 UML Infrastructure 5
2.1.2 UML Superstructure 8

2.2. User Requirements Notation (URN) 11

2.3. Goal-oriented Requirement Language (GRL) 15

2.4. Metamodel of Goal-oriented Requirement Language (GRL) 19

2.4.1 Scope 19
2.4.2 Overview 20

2.5. UML Profile 21
2.5.1 Definition 21
2.5.2 The Purpose of UML Profiles 22
2.5.3 UML Profile Creation 22
2.5.4 Profiling Related Tools 23

2.6. ITU-T Support for Profiles 24

2.7. Related Work on Goal Modelling Profiles 26
2.1.1 Requirements for a Profile for Goal-oriented Modelling 26

IV

2.7.2 Evaluation of Related Work 27

2.8. Chapter Summary 39

Chapter 3. UML Profile for GRL 41

3.1. Conventions, Names and Template 41
3.1.1 Conventions 41

3.2. Stereo type Summary 42

3.3. Structure of the Goal-oriented Requirement Language (GRL) Profile 43
3.3.1 GRLspec 43
3.3.2 GRLmodelElement 44
3.3.3 GRLLinkableElement 44
3.3.4 Actor 45
3.3.5 IntentionalElement 47
3.3.6 IntentionalElementType 50
3.3.7 ImportanceType 51
3.3.8 ElementLink 52

3.3.9 Contribution 53
3.3.10 ContributionType 55
3.3.11 Dependency 57

3.3.12 Decomposition 60
3.3.13 DecompositionType 62

3.4. Global Overview of Profile 63

3.5. Chapter Summary 66

Chapter 4. Profile Implementation 67

4.1. Introduction to Telelogic Tau G2 4.0 67

4.2. Profile Support in Tau G2 4.0 68

4.2.1 Stereotype Mechanism (SM) 68
4.2.2 Metamodel Extension Mechanism (MEM) 71
4.2.3 Predefined Stereotypes Description 81
4.2.4 Limitations of the Tool 82

4.3. Profile-Based GRL Editor. 83
4.3.1 Stereotype Mechanism 83
4.3.2 Metamodel Extension Mechanism 84

4.4. Chapter Summary 85

Chapter 5. Experiments and Evaluation 86

5.1. The TA System Designed in Tau-GRL Profile 93

5.2. The Merchant and Customer Dependencies Designed in Tau-GRL Profile 97

5.3. Evaluation 100

5.3.1 Integration with UML 101
5.3.2 Diagram Pollution Avoidance 104
5.3.3 Metamodel Stability 105

v

5.3.4 Implementability of the Profiling Mechanism 105

5.4. Chapter Summary 105

Chapter 6. Conclusions 107

6.1. Summary 107

6.2. Concluding Remarks 108

6.3. Future work 110

References I l l

vi

List of Figures

Figure 1 UML Diagrams Presentation in Class Diagram (UML IS) 5

Figure 2 Core Package And its Dependents 6

Figure 3 Four Layers of Metamodel 8

Figure 4 Level 0 (UML Superstructure) 9

Figure 5 Level 1 (UML Superstructure) 9

Figure 6 Level 2 (UML Superstructure) 10

Figure 7 Level 3 (UML Superstructure) 11
Figure 8 High-Level Overview of the URN Metamodel (Z.151) 12

Figure 9 Z . l l l Meta-metamodel 14
Figure 10 Summary of GRL Notations 17

Figure 11 GRL Model Sample 18

Figure 12 GRL Strategies 19

Figure 13 Metamodel of GRL [17] 20

Figure 14 Top Level View of GRL Metamodel [6] 28

Figure 15 GRL Metamodel: Zoom on Intentional Elements [6] 29

Figure 16 Types of Intentional Relationships [6] 29

Figure 17 GRL Metamodel: Zoom on Intentional Relationships [6] 30

Figure 18 Proposal for Enterprise Knowledge Modelling [9] 32

Figure 19 Goal Metamodel: Organizational Metamodel Excerpt [9] 33

Figure 20 Diagram of the UML Profile for Enterprise Goal Modelling [9] 34

Figure 21 NFR Association Points in UseCase Model for NFR Types [25] 35

Figure 22 An Strategy Overview for Dealing with NFR [5] 37

Figure 23 The Class Diagram Integration Process [5] 38

Figure 24 Actor 47

Figure 25 Softgoal 49

Figure 26 Goal 49

Figure 27 Task 49

Figure 28 Resource 50

Figure 29 Belief 50

Figure 30 Contribution 55

Figure 31 Correlation 55

Figure 32 Contribution Type: Make 56

Figure 33 Contribution Type: Help 56

Figure 34 Contribution Type: SomePositive 56

Figure 35 Contribution Type: SomeNegative 56

Figure 36 Contribution Type: Hurt 57

Figure 37 Contribution Type: Break 57

Figure 38 Dependency Scenario 1 58

Figure 39 Dependency Scenario 2 59

vii

Figure 40 Dependency Scenario 3 59

Figure 41 Dependency Scenario 4 60

Figure 42 Dependency 60

Figure 43 Decomposition 62

Figure 44 GRL Model Element 63

Figure 45 Element Link 64

Figure 46 GRL Linkable Element 64

Figure 47 GRL Spec 65

Figure 48 Enumerations 65

Figure 49 Telelogic Tau G2 4.0 Editor 68

Figure 50 GRL Profile by Stereotype Mechanism (1) 70

Figure 51 GRL Model Package (1) 72

Figure 52 GRL Model Package (2) 72

Figure 53 GRL Model Package (3) 73

Figure 54 GRL Model Package (4) 73

Figure 55 GRL Editor Package (1) 74

Figure 56 GRL Editor Package (2) 74

Figure 57 GRL Editor Package (3) 75

Figure 58 GRL Editor Package (4) 75

Figure 59 GRL Concrete Elements Package (1) 76

Figure 60 GRL Concrete Elements Package (2) 77

Figure 61 GRL Abstract Elements Package (1) 78

Figure 62 GRL Abstract Elements Package (2) 79

Figure 63 Stereotype Profile View 84

Figure 64 GRL Editor View 85

Figure 65 jUCMNav Editor View ([19]) 86

Figure 66 TA Candidate, Modelled with jUCMNav 88

Figure 67 Admin, Modelled with jUCMNav 89

Figure 68 Student as Designed in jUCMNav 90

Figure 69 TA Union, Modelled with jUCMNav 90

Figure 70 Merchant and Customer Dependencies, Modelled with jUCMNav 92

Figure 71 TA Candidate, Modelled with Tau GRL Profile 93

Figure 72 Admin, Modelled with Tau GRL Profile 95

Figure 73 Student, Modelled with Tau GRL Profile 96

Figure 74 TA Union, Modelled with Tau GRL Profile 97

Figure 75 Merchant and Customer Dependencies, Modelled with Tau GRL Profile98

Figure 76 GRL Diagram to Show Links 101

Figure 77 Use Case Diagram to Show Links 102

Figure 78 Customer Merchant Dependency (GRL Diagram) 103

Figure 79 Customer Merchant Dependency (Use Case Diagram) 103

Figure 80 Customer Merchant Dependency (Sequence Diagram) 104

Figure 81 GRL Diagram in GRL Editor 105

via

List of Tables

Table 1 Tools supporting UML Profiles 23
Table 2 Overview of Previous Work Contributions 39
Table 3 Stereotype, Metaclass Mapping Information 43
Table 4 Summary of GRL Constructs Used in Sample Models 99
Table 5 Comparison of GRL Profile in Tau with Previous Work 109

ix

List of Acronyms

Acronym

BNF

BWW

CIM

CORBA

CWM

DSM

EAI

EDOC

EMF

FR

GEF

GME

GRL

GUID

IBM

IS

ITU

ITU-T

jUCMNav

LEL

MARTE

MDA

MDD

MEM

MOD

MOF

MSC

NFR

OCL

OMG

POP*

RSA

SDL

SM

SIG

ss
SysML

Definition

Backus-Naur Form

Bunge-Wand-Weber ontology

Computation Independent Model

Common Object Request Broker Architecture

Common Warehouse Metamodel

Domain Specific Modelling

Enterprise Application Integration

Enterprise Distributed Object Computing

Eclipse Modeling Framework

Functional Requirements

Graphical Editing Framework

Generic Modeling Environment

Goal-oriented Requirement Language

Globally Unique Identifiers

International Business Machines Corporation

Infrastructure

International Telecommunication Union

ITU Telecommunication Standardization Sector

Java Use Case Maps Navigator

Language Extended Lexicon

Modeling and Analysis of Real-time and Embedded System

Model Driven Architecture

Model Driven Development

Metamodel Extension Mechanism

Module

Meta Object Facility

Message Sequence Chart

Non-Functional Requirements

Object Constraint Language

Object Management Group

Process, Organisation, Product, and so on

Rational Software Architecture

Specification Description Language

Stereotype Mechanism

Softgoal Interdependency Graph

Superstructure

System Modeling Language

TCL Tool Command Language

TTCN Testing and Test Control Notation

UCM Use Case Map

UEML Unified Enterprise Modeling Language

UML Unified Modeling Language

UML IS Unified Modeling Language- Infrastructure

UML SS Unified Modeling Language- Superstructure

URN User Requirements Notation

URN-FR User Requirements Notation - Functional Requirements

URN-NFR User Requirements Notation - Non-Functional Requirements

U2TP UML Testing Profile

WSDL Web Service Definition Language

XMI XML Metadata Interchange

XML Extensible Markup Language

XSD XML Schema Definition

XI

Chapter 1. Introduction

1.1. Context and Concepts

The modelling of goals and Non-Functional Requirements has always been a hot topic of

discussion in the field of analysis and design. Goals are high-level objectives or concerns

of a business, stakeholders, or system. They are often used to discover, select, evaluate,

and justify requirements for a system. Functional Requirements (FR) define functions of

the system under development, whereas Non-Functional Requirements (NFR) character-

ize system properties and qualities, such as expected performance, robustness, usability,

cost, etc. Goals and NFRs capture essential aspects of systems, which have a significant

impact throughout the development process.

The Unified Modeling Language (UML) is the most popular modelling language

for software applications. However, many modellers are still unsatisfied with the role of

UML in the area of goal and NFR modelling. With the importance of UML in the indus-

try, this deficiency has now become an apparent weakness.

Modellers struggle to define how best to describe and structure goals. While some

metamodels for goal modelling exist, such work has often been completed in isolation

and has not been done in accordance with standards. Yet, there exists at least one mature

metamodel for goal modelling that is undergoing standardization [17]. However, having a

standardized goal metamodel is not sufficient, as we still require it to be aligned with the

UML metamodel. Such alignment will reduce existing communication and integration

problems between goal modellers and UML modellers.

UML does not allow for a direct modification of its metamodel per se. However,

there is a generic extension mechanism for tailoring UML to a particular domain. This

mechanism is called UML profiling. A comprehensible UML profile for goal modelling

would represent a mechanism that enables the integration of goals with the rest of UML

1
 A metamodel is a model used to describe modeling languages. It defines the modeling concepts, their at-

tributes, and their relationships. Often, metamodels are represented as UML class diagrams.

Chapter I. Introduction - Context and Concepts I

and establishes directions for developers to assist them in resolving modelling issues in

this domain. Such a profile would also help tool vendors to synchronize on one meta-

model instead of providing their own solutions in the form of different customized meta-

models. In this thesis, a UML profile is created for goal modelling. It aims at improving

the ease with which modellers integrate goals with other UML concepts.

In this chapter, the motivation behind this work will be discussed as well as the

thesis hypothesis. Finally, there will be a summary of the main contributions and an

overview of the other chapters.

1.2. Motivation

The Unified Modeling Language does not address explicitly the modelling of goals and

non-functional requirements. In the software engineering community, this deficiency has

now become an issue. There has been some work in the area of UML profiles for goal

modelling [5][6][9][25], but the solutions proposed suffer from many deficiencies.

Through the study of the related work above, it has come to light that there are

some minimal requirements that are considerably important for UML profiles for goal-

oriented modelling. These are 1) the integration with UML (i.e. the ability of sharing in-

formation between the goal diagram elements and the existing UML elements), 2) dia-

gram pollution avoidance (i.e. preventing the mixing of different diagram constructs), 3)

metamodel stability (i.e. the maturity of the underlying goal metamodel) and 4) imple-

mentability of the profiling mechanism (i.e. how well the approach used for the creation

of a profile is amenable to implementation). These requirements are discussed further in

section 2.7.1.

The need to address deficiencies related to these requirements, which are common

among current solutions, has motivated the development of a new UML profile for the

Goal-oriented Requirement Language (GRL).

1.3. Research Hypothesis

The research hypothesis of this thesis is that UML can be profiled to support goal-

oriented modelling with a semantics rooted in a standard metamodel such as that of the

Chapter 1. Introduction - Motivation 2

Goal-oriented Requirement Language. The assumption is that a profile based on a mature

and a stable metamodel that has been already used by editors and in analysis techniques

represents a better alternative to current solutions and that this will ease the support by

UML tools, with which resulting models will combine goal-oriented concepts with ob-

ject-oriented concepts in a way that is comprehensible by the UML community at large.

1.4. Thesis Contributions

The main contributions of this thesis include:

• The creation of a UML profile for GRL, where UML metaclasses are mapped in

detail to GRL's metaclasses. Standard guidelines [15] have been followed while

defining this profile.

• A proof of concept implementation, which demonstrates the feasibility of support-

ing such profile in a commercial tool, namely Telelogic Tau G2 4.0.

• Illustration of typical usage of this profile with examples where GRL is used

standalone in a model, and then where GRL diagrams are combined with selected

UML diagrams in a model.

1.5. Thesis Outline

The rest of this thesis is as follows: Chapter 2 presents background work on UML and

GRL and on the standards, profiling technologies, and the tools required for understand-

ing this thesis. An evaluation of related work against our minimal requirements is also

included. Chapter 3 is the core of the thesis and defines the UML profile for GRL by pro-

viding a detailed mapping of UML metamodel elements to GRL metamodel elements,

with corresponding semantics, required attributes, graphical representation, and con-

straints. Chapter 4 focuses on the implementation of this profile in a commercial UML 2

tool, with a discussion of the challenges faced along the way. Chapter 5 illustrates and

validates the profile by creating goal-oriented models with the tool, some of which being

compared to similar models created with a non-UML GRL tool (jUCMNav). Chapter 6

summarizes our contributions, provides conclusions and proposes areas for future work.

Chapter 1. Introduction - Thesis Contributions 3

Chapter 2. Background

The use of UML is very common amongst software engineers, modellers and designers.

In most cases, these people take advantage of common types of UML diagrams such as

class diagrams and sequence diagrams. In this thesis, one of our main concerns is with

the architecture and semantics of UML itself and not only its diagrams. It is important to

understand basic concepts of the Unified Modeling Language Superstructure (UML SS)

and Unified Modeling Language Infrastructure (UML IS), especially those related to pro-

files. Section 2.1 provides an overview of UML in this context. Section 2.2 introduces the

User Requirements Notation (URN) and its two components, the Goal-oriented Require-

ment Language (GRL) and the Use Case Map (UCM) notation. Section 2.3 presents de-

tails of GRL constructs, their meaning, and how they interlink with each other. Section

2.4 discusses the GRL metamodel, as this will be the target of the profile proposed in this

thesis. Section 2.5 provides background information on UML profiling and on tools used

for creating UML profiles. In section 2.6, standard guidelines from the International

Telecommunication Union for the creation of profiles are presented. This work will ad-

here to these standards. Section 2.7 provides an overview of existing UML profiles for

goal modelling and their limitations.

2.1. Unified Modeling Language (UML)

According to the Object Management Group 2007 (OMG), modelling is the designing of

software applications before coding. The only way to attain a complete picture of a sys-

tem is through a model. A model can help to reveal the extent to which requirements ex-

actly match a system. UML is an OMG standard language which is rich in graphical nota-

tions. These notations can be used by modellers to create an abstract model of their sys-

tem. The latest version of UML (2.1.2, see [22][23]) supports 13 types of diagrams,

which are displayed in Figure 1.

Chapter 2. Background - Unified Modeling Language (UML) 4

Diagram

zrszz
Structure
Diagram

Class Diagram
Component

Diagram

Composite
Structure
Diagram

Object
Diagram

Deployment
Diagram

Package
Diagram

Figure 1 UML Diagrams Presentation in Class Diagram (UML IS)

The UML specification is divided into an Infrastructure (IS) and a Superstructure (SS)

documents. These two specifications provide a complete picture of UML and are briefly

reviewed below in section 2.1.1 and 2.1.2.

2.1.1 UML Infrastructure

The UML Infrastructure [22] is the component of the UML specification that includes all

the constructs that comprise the foundation of this modelling language. The UML has a

significant scope, so its constructs and modelling concepts are grouped into different lan-

guage units. A language unit is a group of modelling concepts and constructs that provide

users with the power to represent aspects of the system under study, according to a par-

ticular paradigm or formalism. The UML Infrastructure is architecturally aligned with the

UML Superstructure. This specification is described using a metamodelling approach.

The UML infrastructure is based on the InfrastructureLibrary package which makes the

UML, Meta Object Facility (MOF) [21] and XML Metadata Interchange (XMI) architec-

turally aligned so that model interchange is fully supported [22]. The InfrastructureLi-

brary is used to customize the UML metamodel by profiling and creating new languages

based on the same metalanguage core as UML. There are two packages in the Infrastruc-

tureLibrary (Core and Profiles). The Core package has four other packages dependant on

Chapter 2. Background - Unified Modeling Language (UML) 5

it. As shown in Figure 2, these include UML, CWM (Common Warehouse Metamodel),

Profiles, and MOF.

4 A h h
S I

,' depends,'

depends'
depends'-

•. depends

Figure 2 Core Package And its Dependents

The Core package is subdivided into four sub-packages: PrimitiveTypes, Abstrac-

tions, Basic, and Constructs. These packages are also subdivided into further sub-

packages. It is however not essential to understand the entire infrastructure for this thesis.

The Profiles package is neither helpful nor practical when used alone; its functionality is

dependent on the Core package and it can be used in combination with either the Core

package or the UML package. In the UML infrastructure, the MOF and UML packages

are not categorized at the same metalevel.

Metamodel and Layers

A metamodel can be instantiated into a model. These layers are relative to each other and

can be used repeatedly. Figure 3, inspired by a figure in the UML infrastructure specifica-

tion [22], shows a common example that uses four types of layers:

• Meta-metamodel (M3): This is the topmost level; the MOF is one example. The

M3 level model has very broad scope and defines concepts that can be used to de-

Chapter 2. Background - Unified Modeling Language (UML) 6

fine all metamodels. The main characteristic of an M3 level language is that it can

define itself by its own constructs and rules, in a circular way (hence, there is no

need for a different M4 level). For instance, MOF can define itself.

• Metamodel (M2): This is an instance of M3, meaning that each of its constructs

is an instance of an M3 level construct. M2 metamodels define the concepts and

rules of a modeling language. An example of a metamodel is the UML meta-

model, which is an instance of MOF. Note that concepts defined in a layer above

can also be reused (or inherited) in a layer below. For instance, UML inherits part

ofMOFaswell.

• User-specified model (Ml): This is an instance of M2. The language of M2 is

used to create a model of a system at Ml . An example of an Ml model is a stu-

dent registration system in a university.

• Object (MO): This is a runtime instance of Ml, with concrete values for the at-

tributes of a user-specified model. Example of MO objects would include specific

students and universities, with their names.

According to the example of Figure 3, the meta-metaclass Class is defined at the M3

level. Attribute, Class and Instance are M2 level concepts. Note that Class of M3 is from

MOF, while Class of M2 is from UML. Student and University are both at Ml level (i.e.

the user model) and, finally, Saeed, Martin and UOttawa are all at the MO level, which is

a runtime instance of Ml .

Chapter 2. Background - Unified Modeling Language (UML) 7

M3(M0F)

«instance o f » y ' «instange o f » \«instance of>>

M2(DML)

Attribute

«instance of>>^

Class Instance

\«instance o f »

Ml (User Model)

Student

H W
<<instance of>J>

University

^<instance o f »
MO (Run-tune instance) /

UOttawa

Figure 3 Four Layers of Metamodel

2.1.2 UML Superstructure

The UML Superstructure [23] complements the UML Infrastructure and divides the en-

tire UML into four levels, according to an increasing level of complexity for the model-

ling concepts. Level 0 is simply an empty package that merges the contents of the Basic

package from the UML Infrastructure (Figure 4). Level 0 has elementary concepts that

allow it to function as a basic, interoperable language between various groups of model-

ing tools. Level 1 inherits level O's components and contains additional features, which

include UseCases, Interactions, Structures, Actions and Activities (Figure 5). Level 2 in-

herits level l 's elements, and the former's additional features include Deployment, State

Chapter 2. Background - Unified Modeling Language (UML) 8

machine modelling and Profiles (Figure 6). Level 3 is comprised of all previous levels

and contains the features that represent the complete UML, which include Modelling In-

formation Flows, Templates and Modelling packaging (0). These levels can be used to

establish a compliance level, as tools may support UML up to one of these levels only.

«nhe(ge»
«merge»

Figure 4 Level 0 (UML Superstructure)

Dependencies BaslcAction;

Interfaces

P F - .
«rherge» «Jnerge»

«me?QB»

BasicBehaviors

«merge»

emerges-

Kernel

IT

,«rnerge»

i
InternalStructures

1 emerge*

" smepges.,^

-̂ merges

FundamentalActivities

Communications

1
BasicActivities

UseCases
1

Basiclnteractions

Figure 5 Level 1 (UML Superstructure)

Chapter 2. Background - Unified Modeling Language (UML) 9

InvocationActions

^ 7

StructuredActtons

K

BehaviorStateMachines

x Fragments

SimpleTime

^r

Ports

«rnerge»
<*nerge»

«mergp»

tmer-ge*

.*rnergey~

L2

emerges. -

«merge» .

«merge»

«roerge»

tmergej

,,«merge»

* s<merge»

emerges «merge»

Intermedial eActivities

StructuredActivities

n.
BasicComponents

"^ 1
Intermedial eActions

JL.
Nodes

fc
Artifacts

3NL

1
Profiles

StructuredClasses

Figure 6 Level 2 (UML Superstructure)

The superstructure also contains the definition of the human-readable notation elements

for representing the individual UML modeling concepts as well as rules for combining

them into a variety of different diagram types corresponding to different aspects of mod-

els, i.e. the 13 types of UML diagrams described in Figure 1.

Chapter 2. Background - Unified Modeling Language (UML) 10

PWWBTTYIS**

"TT

C:Kpr.ri;r,!t>«ttycncrts

Ptscfcas^^Compara^s u . —

3 &:
CeW&srs&Dftg

R f$e i

«ffl&fg<fes-

«&&£$* , , , ,

r«fffisir9e*

Sinjcfored&tilvtthK

12 ^&$Dc&&m0»s5es

i)

«trpj»s*

* I W 9 »

L!sL

Models

—-JT

,'

I
ftrctssfitmFtows

•7

^sner̂ R*

* - , «*wrcje*

iqwrje*

E*trasSfUGfc*eilftcttw3tes

1

....<n

CcmftmMUm

CZZL
-3H

a-mpHtAdi^iM

TwplStee

C9nif*$eS*rit0ijHKWcJivtlfi@

Figure 7 Level 3 (UML Superstructure)

2.2. User Requirements Notation (URN)

The User Requirements Notation (URN) [3][16][27] is being standardized by the Interna-

tional Telecommunication Union (ITU-T) as the Z.150 series of Recommendations. URN

can be defined as a graphical modelling language that is used to gather user requirements

during the very early stages of design. "It enables modellers to analyze scenarios, goals

and NFRs, and also to apply traceability and transformations to other languages such as

Message Sequence Charts. URN was initially developed to address the elicitation, model-

ling, analysis, and validation of functional and non-functional requirements for new or

evolving reactive and distributed systems" [3], but it is applicable to a much wider range

of application domains.

URN is composed of two complementary notations: the Goal-oriented Require-

ment Language (GRL), discussed in section 2.3 in detail, and the Use Case Map (UCM)

scenario notation. Whereas GRL focuses on the "why" aspects of requirements model,

Chapter 2. Background - User Requirements Notation (URN) 11

UCM target the "what" aspects. Draft Recommendation Z.151 [17] describes the details

of the definitions, attributes, relationships, constraints, semantics and semantics varia-

tions of URN, GRL and UCM for both their abstract and concrete metamodels.

Figure 8 gives a high-level overview of some of the top-level metaclasses of the

URN metamodel. In particular, a URN specification may contain GRL and/or UCM

specifications, as well as links between their elements. Links and URN model elements

can also contain metadata information.

urnspec

urnLinks

0..*

URNIink

0..*
toLinks

Figure 8 High-Level Overview of the URN Metamodel (Z.151)

The rules and metalanguages used to describe the URN language in the Z.151 document

are based on another ITU-T standard, namely Z.ll l (Notations to Define ITU-T lan-

guages) [14]. Recommendation Z.ll l standardizes notations to create abstract and con-

crete syntaxes of languages, using metagrammars or metamodels.

"In the following a Named element is a meta-class that contains a name attribute

of the meta-class Token.

Chapter 2. Background - User Requirements Notation (URN) 12

i) Class is a Named element that contains one or more Attribute items and can par-

ticipate in binary Association relations via one or both of the AssociationEnd

attributes of each Association. A Class can inherit the Attribute and

AssociationEnd (and hence Association) items from another Class (single in-

heritance only). Each Class shall have a name with a Token value that is dis-

tinct from the Token value for the name of any other Class (including prede-

fined primitives), or any Enumeration. The inheritedFrom attribute (if pre-

sent) of Class references the parent Class of a Class. An inherited Class of a

Class is either the parent Class or any inherited Class of the parent Class,

transitively.

ii) Attribute is a Named element. It is a meta-class for an ordered element of a Class

that has a DataType and an optional DefaultValue. The multiplicity of an At­

tribute is given by multiplicityMin and multiplicity Max, which have default

values of 1 if they are omitted in concrete notation.

Hi) DataType is a meta-class that is either a PrimitiveType or an EnumeratedType.

PrimitiveType is a DataType where the type is predefined (one of Token, Nat,

Boolean, Unspecified) primitive identified by the Primitive value of the name

attribute of the PrimitiveType. EnumeratedType is a DataType where the type

is an Enumeration identified by name attribute.

iv) Enumeration is a Named element that represents a (quotation) DataType whose

values are represented by a set of literal elements.

v) Literal is a Named element contained in an Enumeration that is one of the values

of an Enumeration.

vi) DefaultValue is a meta-class for the optional component of an Attribute that iden-

tifies a default value of the appropriate type.

vii) Association is a meta-class for the relation between Class meta-classes. It has

two AssociationEnd attributes (source and target) for the logical connection of

the Association with the related Class meta-classes.AssociationEnd is a meta-

class for the end of an Association. It has Boolean attributes that determine if

the AssociationEnd is composite (isComposite), navigable (isNavigable) or

Chapter 2. Background - User Requirements Notation (URN) 13

ordered (isOrdered). If the AssociationEnd is navigable {isNavigable = true),

the name shall not be empty, and the name (which corresponds to the role

name of the AssociationEnd) shall be distinct from the name of any other

AssociationEnd that is an end of the Class that is the source of the

AssociationEnd." [14]. Detail information is in the reference document.

The difference between Z . l l l and Z.151 is that both standards exist at different

metalevel layers. Z . l l l uses an extended subset of Meta-Object Facility to define a sim-

ple meta-metamodel (M3) targeting the definition of modelling languages (see Figure 9),

whereas Z.151 instantiates it to formalize URN's metamodel (M2) from which user-

specified goal and scenario models can be instantiated (Ml) and executed with concrete

values (MO).

0..1

inheritedFrom

Class

name : String

attribute {ordered} 0..*

endClass

1

endType

0..*

Attribute

name: String

multipiicityMin: Nat= T

multipiicityMax;: Nat [0..1

1 • 0..

° - 1 ^ defaultValue

DefaulltValue

name "String

= 1

end

AssociationEnd

name: String [0..1]
multiplicityMin : Nat = 1

multipiicityMax: Nat [Q..1]~ 1

isOrdered: Boolean = false

isNavigable: Boolean ? false

is Composite : Boolean = false

1 attributeType

Association

1 • 1 • associationLink

target

1

source

1

DataType

<:<enumeratian»

Primitive
Boolean

Unspecified

Nat

String

PrimitiveType 'EnurneratedType

Enumeration

name: String

1 •

literal {unordered}

Literal

name: String

Figure 9 Z . l l l Meta-metamodel

Chapter 2. Background - User Requirements Notation (URN) 14

2.3. Goal-oriented Requirement Language (GRL)

The GRL [3][17] is a language that focuses primarily on goal modelling. A subset of

URN and a graphical language, GRL's major contribution is to provide reasoning for

non-functional requirements (high-level goals). GRL also works for functional require-

ments and has notations for both. Its focus is to design the why and the what aspects of a

model. GRL integrates elements from two other goal-oriented modelling languages, i*

[30] and the NFR framework [4]. The i* contains modelling elements that support goal,

agent, and organization modelling, while the NFR framework provides an evaluation

mechanism for goal models. GRL inherits both of these features and has become a very

effective modelling language that also has the ability to evaluate any goal model.

GRL divides its modelling elements into three main categories: Intentional Ele-

ments, Actor and Links

Intentional Elements

Intentional elements are the constructs which are used to model the system. They carry

the intentions of the stakeholders involved. There are five types of intentional elements:

Softgoal, Goal, Task, Resource and Belief.

Softgoals are used to model high-level goals that are uncertain or that can never

be fully satisfied. They are used to describe qualities and non-functional aspects such as

security, robustness, performances and usability [17]. Goals are used to describe func-

tional requirements, which are measureable and achievable. Tasks describe how goals can

be achieved, how certain actions can be performed and how softgoals can be partially sat-

isfied. A task is an action that an actor would ideally want performed in order to deter-

mine solutions for both goals and softgoals. Resources represent physical or informa-

tional entities. A resource status is either available or not available. Beliefs are used to

capture rationales and are used by modellers to understand their concepts and claims for

their described goals.

Actors

An actor represents a stakeholder or a system. It may contain sub-actors and intentional

elements. An Actor is an entity that performs actions and makes decisions in order to ac-

complish goals, perform tasks and satisfy softgoals.

Chapter 2. Background - Goal-oriented Requirement Language (GRL) 15

Links

Links are used to connect intentional elements and actors to show their inter-

relationships. Different links have different semantics and behaviour. GRL has three

types of links which are: Decomposition, Contribution and Dependency

Decomposition links are used to decompose an intentional element into its sub-

intentional elements, one or all of which should be achieved or satisfied (depending on

the decomposition type) in order for the target intentional element to be satisfied. One

exception is that a belief cannot be decomposed either as a source or a target. There are

three types of decomposition: AND, XOR (exclusive OR) and IOR (inclusive OR). One

intentional element can use only one type of decomposition at a time. Satisfaction levels

can be quantitative or qualitative.

Contributions are links used to describe the positive or negative impact of one or

more source intentional elements to their target intentional element. Such links can be

used to understand which intentional element is contributing what to another intentional

element. This contribution can be quantitative (numeric value) or qualitative (one of

Make, Help, SomePositive, Unknown, SomeNegative, Hurt, and Break). Correlations are

similar to contributions, but they are used for modelling side effects.

Dependency is another type of link indicating that an actor or intentional element

depends on another actor or intentional element. All GRL notations are displayed in

Figure 10.

Chapter 2. Background - Goal-oriented Requirement Language (GRL) 16

I Softgoal I

Belief

GE3

0
s

' Actor \
'Boundary)

v /

Resource

(a) GRL Elements

^> Contrtbutjon

- - - - 5^* Correlation

-£) - Dependency

—|— Decomposition

(d) GRL Links

mf Satisficed

^r^. Weakly Satisficed

Undecided 9 A
/ AND \

Weakly Denied X Q R

jjf Denied ,0R

• ^ t Conflict

(b) GRL Satisfaction Levels (c) Link Composition

JL T - ±?
Break Hurt Some- Unknown

+ t + -
Make Help Some* Equal

(e) GRL Contributions Types

Figure 10 Summary of GRL Notations

Figure 11 is a sample model that illustrates the use of GRL constructs, including the com-

bination of links, actor and intentional elements with different satisfaction values. This

diagram is a representation of a teaching assistant (TA) candidate from a TA selection

model. TA candidates expect the system to be secure and flexible. According to them, the

system should allow one to apply to many courses at a time in a secure way. They do not

want to enter the same information repeatedly and also do not want to submit forms by

physical means at a particular office. Figure 11 shows that TA candidates can apply for

positions through several means: paper-based applications or web-based applications.

Web-based applications can be done securely but their availability might be limited, as

not all candidates have computers.

Chapter 2. Background - Goal-oriented Requirement Language (GRL) 17

TACandidate

/ f security ^

/ v _y

C
limitation of ^ / / ' "

availabtty J : « i
" - ' ^ S i / password \

->«».i t authentication >

Figure 11 GRL Model Sample

GRL Strategies

GRL strategies are also a powerful feature of GRL. The process is initiated by a model-

ler, who assigns initial satisfaction values to some of the intentional elements (usually

leaves in the GRL graph). These values then propagate in the GRL model through links,

hence computing satisfaction levels for the other connected intentional elements. The

strategy effect is shown by a coloring scheme applied to different intentional elements as

demonstrated in Figure 12. This evaluation method is effective at an early stage of system

modelling. It helps to analyze different alternatives and tradeoffs for the system and the

stakeholders involved.

Chapter 2. Background - Goal-oriented Requirement Language (GRL) 18

TACand.date

X"
,-•'

1„i*«**'

v
\

SornePos

* » i

stive ^H
J

•Kr
jf^^+LePo*
1* «|- SomePositive \

X-«<«1

Clirrttatiori of ^
avalablity I

• > W

/ • 3».:.d.f,fn.nv,ftrr. X A ^ j ~ A

I ^ . l d J I sutmslion J

' f ik

****r,.

Figure 12 GRL Strategies

2.4. Metamodel of Goal-oriented Requirement Language (GRL)

A model is an abstraction of a system built with an intended purpose in mind. A model

should be able to answer questions in place of the actual system [8]. A model that de-

scribes a set of related models is called a metamodel. A model is an instance of its meta-

model. OMG's MOF is a standard meta-metamodel for model-driven engineering, with

standard instances such as UML and CWM. Application modellers use UML diagrams in

order to create their specific models. Z . l l l is GRL's meta-metamodel, but the GRL

metamodel itself is illustrated graphically with a UML class diagram.

An important part of this thesis examines which classes from the UML meta-

model can be extended to map to the GRL metamodel classes, without violating inherited

constraints.

2.4.1 Scope

The GRL metamodel provides an opportunity for all modellers (including software engi-

neers and requirements engineers) to model requirements, especially non-functional re-

quirements, for their proposed systems and to evaluate them by using strategies for preci-

Chapter 2. Background - Metamodel of Goal-oriented Requirement Language (GRL) 19

sion, validity and comprehensiveness. In this thesis, we focus on the GRL models ele-

ments themselves, and leave aside the notion of strategy, as the latter relates more to the

evaluation of the former.

2.4.2 Overview

The GRL core diagram in Figure 13 represents the GRL metamodel. It complements the

URN metamodel extract shown in Figure 8.

IntentionalElement

type : IntentionalElementType

decompositionType : DecompositionType = AND

importance : ImportanceType = None

importanceQuantitative : Integer = 0

contribution : ContributionType = Unknown

quantitati\«ContributJon : Integer = 0

correlation : Boolean = false

Make

Help

SomePositive

Unknown

SomeNegative

Hurt

Break

<<enumeration>>

IntentionalElementType

Softgoal

Goal

Task

Resource

Belief

<<enumeration>>

ImportanceType

High

Medium

Low

None

Figure 13 Metamodel of GRL [17]

This metamodel formalizes all the GRL concepts and constructs introduced earlier.

Unlike what the name "abstract metamodel" may imply, there are no abstract classes in

the abstract metamodel; there are only concrete classes. However, it is considered ab-

stract because it does not include graphical or layout information relevant to the concrete

notation. All of the constraints, semantics, attributes and notations are discussed in detail

in Chapter 3. Here we only discuss how these classes interact with each other, and how

such metamodel should be read.

The Actor class has a self-association "includingActor" of multiplicity [0..1] and

"includedActors" of multiplicity [0..*]. This association specifies that Actor may or may

not contain one or more sub-Actors and all included Actors have a unique including Ac-

Chapter 2. Background - Metamodel of Goal-oriented Requirement Language (GRL) 20

tor. The Actor class has an association "elems" with IntentionalElement, with multiplicity

[0..*], meaning that an Actor may or may not contain IntentionalElements. The GRLSpec

contains the Actors, which are generalized by GRLLinkableElement.

The IntentionalElement class has an association with the Actor class, which

means that an intentional element may belong to at most one actor. The IntentionalEle-

ments are also GRLLinkableElements and are contained by GRLSpec. Note that there are

various types of IntentionalElement.

The ElementLink class, also contained by GRLspec class, is a generalization of

Decomposition, Dependency and Contribution. The ElementLink class has two associa-

tions with GRLLinkableElement class, one describing the source and the other the target.

The DecompositionType, ContributionType, IntentionalElementType and Impor-

tanceType are enumeration classes used to capture values for the attributes of some of the

classes mentioned above.

GRLspec aggregates the IntentionalElements, Actors and ElementLinks (Figure

13) but is itself contained by URNspec, as shown in Figure 8.

2.5. UML Profile

2.5.1 Definition

A UML profile [18] is an extension mechanism provided by UML to customize it's

metamodel. UML does not allow direct modifications of its metamodel, but the use of a

UML profile enables one to reuse and extend the UML metamodel constructs with new

concepts. One common interpretation of a UML profile is "the extension mechanism of a

UML metamodel for a particular domain" [23]. The different constructs used to define a

profile are listed below with their definitions:

• Stereotype: A construct which is similar to a class construct in UML's meta-

model. According to the UML Superstructure Profile package, stereotypes are

specific metaclasses.

• Tagged value: A construct similar to an attribute construct of a class in UML's

metamodel. According to the UML Superstructure Profile package, tagged values

are standard meta-attributes.

Chapter 2. Background - UML Profile 21

• Constraints: Restrictions required in a particular domain.

2.5.2 The Purpose of UML Profiles

The purpose of introducing UML profiles is to give modellers the means to customize the

UML metamodel without directly changing it. Modellers can utilize stereotypes, tag val-

ues and constraints for this customization. However, some restrictions still apply, as the

modeller can introduce new constraints, but cannot violate any inherited constraint from

the original UML metamodel. Being able to customize the UML metamodel through a

UML profile is an effective method to improve and narrow the scope of the original

UML metamodel for a specific domain.

In many cases, like in the finance or manufacturing domains, there is no need to

create profiles because the original UML constructs already fulfill modelling require-

ments. The profile's most prominent use is when a new, domain-specific language is be-

ing introduced. In order for a community to define and integrate a new language, a profile

can be created to extend the UML metamodel.

There already exist multiple standard UML profiles available on the OMG Web

site [20], including: Systems Modeling Language (SysML); Common Object Request

Broker Architecture (CORBA); Enterprise Application Integration (EAI); Enterprise Dis-

tributed Object Computing (EDOC); Profile for Modeling and Analysis of Real-time and

Embedded System (MARTE); Schedulability, Performance and Time; Software Radio;

Voice; and Testing.

2.5.3 UML Profile Creation

There are different ways of creating a UML profile. These different ways are [18]:

Stereotype Mechanism (SM)

This is a very common and straightforward method of creating a UML profile. The

stereotype mechanism is an extension of the basic UML elements and is supported by

most UML tools. This method is comprised of several steps:

• Assigning a new name to an extended metaclass, which will be represented as a

stereotype of UML;

Chapter 2. Background - UML Profile 22

• Adding new attributes in the stereotype, which are called tags;

• Adding new constraints to the stereotype. However, we cannot weaken existing

UML metamodel constraints;

• Assigning a new appearance to the stereotype.

Some limitations still exist for this method, including that the modeller may pol-

lute the diagram by mixing domain-specific diagram constructs with predefined UML

diagram constructs, hence possibly hurting the understandability of models.

Metamodel Extension Mechanism (MEM)

This mechanism [29], which includes the functionalities of SM, is a less common method

of creating a UML profile. It allows the extension of non-basic UML elements and im-

poses restrictions that allows for the sole use of domain-specific assigned diagrams to

stereotypes. While it is more flexible, the MEM is a more complex approach of profiling

and is supported by fewer tools than the SM.

2.5.4 Profiling Related Tools

There are a number of tools which provide support for creating UML profiles. Table 1

lists popular commercial UML tools.

Table 1 Tools supporting UML Profiles

Company Name

@-portunity

ARTiSAN software

IBM

Telelogic (IBM)

MID

No Magic

MD Workbench- S odius

Objecteering software

Tool Name

Blueprint SM

ARTiSAN Studio

Rational Software Architecture (RSA)

TauG2

Innovator

MagicDraw

MDWorkbench

Objecteering 6.1

There exist other tools and technologies for domain specific modelling (DSM)

that are not based on UML. These include the Generic Modelling Environment (GME)

Chapter 2. Background - UML Profile 23

[11], Xactium's XMF-Mosaic [28], and the Eclipse Modeling Framework (EMF) [7].

There has been previous research which has used a number of factors to analyze which

tool is more suitable for prototyping an editor for an evolving graphical language, and a

subset of GRL was used as an example [2]. "These evaluation factors are Graphical com­

pleteness (Can we represent all the notation elements?), Editor usability (Does the editor

generated support undo/redo, load/save, simple manipulation of notation elements and

properties, etc?), Effort (How much time and effort is required to learn the approach and

produce DSML tools?), Language evolution (How are older models handled when the

language or metamodel evolves?), Integration with other languages (How can we support

additional languages(e.g., Use Case Maps in combination with GRL) or integrate with

other tools?), Analysis capabilities (Can we easily analyze or transform models produces

with the graphical editor?)"[2]. UML profiling tools were also part of this study. One of

the conclusions was that Telelogic Tau G2 was superior to IBM's RSA [10] in terms of

support for UML profiles in that context. In particular, Tau G2 supports both the stereo-

type mechanism and the metamodel extension mechanism discussed earlier, whereas

RSA only supports the former.

2.6. ITU-T Support for Profiles

There is an ITU-T standard document, Recommendation Z.119 [15], which provides

guidelines for creating a UML profile for a modelling language. According to these

guidelines, a profile can be expressed by the following headings and descriptions:

• Scope: The span of the profile, which states the rules for conformance, as well as

the notation guidelines for UML.

• References: A valid source that provides information about a specific topic. Ex-

amples include the relevant ITU-T system design languages, the UML SS, the

Object Constraint Language, and if applicable, MOF.

• Definitions: The terms and explanations provided in the standard.

• Abbreviations and acronyms.

• Conventions: Includes name resolution, the drawing style, and formal notations

for mapping, translation and transformation.

Chapter 2. Background - ITU-T Support for Profiles 24

The main text of the profile is also the subject of many guidelines:

• Defining the profile

o Stereotype summary: Ideally comprised of a UML diagram that provides the

stereotype definitions and explanations of which class of the UML metamodel

maps with which class of a particular language metamodel (like in our case,

the GRL metamodel), the stereotype summary can also be presented in a table.

o Stereotypes

o UML Metamodel: This should be an appendix to the profile document that

summarizes the relevant parts of the UML metamodel. This is not strictly nec-

essary, but may make the profile document easier to understand.

• Structure of stereotype sub-clauses

o Attributes: the stereotype characteristics that the modellers select from the

extended UML metaclass and any new required characteristics. Modellers can

set default or initial values, as well as data types.

o Constraints: the rules that are passed down from the extended metaclass.

Modellers are also allowed to apply new rules as required.

o Semantics: The mapping between the UML metaclass and the stereotype, as

well as the corresponding ITU-T language element. Items for consideration

include the new class concept in the new model, as well as its original mean-

ing in the UML metamodel.

o Notations: The creation of new representations if there is any change from the

inheriting class.

o References: It specifies where to find related sections of the UML SS and

ITU-T Recommendation(s). While strictly this is not needed, it will be invalu-

able for readers so that the relevant parts of UML SS and ITU-T Recommen-

dation^) can be found and the effect of the profile understood.

One of the profiles standardized by ITU-T is the Z.109 UML profile for SDL

(Specification Description Language) [13]. GRL is very different from SDL. While SDL

[12] is a language used for specifications and behaviour descriptions of telecommunica-

Chapter 2. Background - ITU-T Support for Profiles 25

tion systems, GRL deals with modelling and evaluating goals and requirements. As the

SDL profile mostly extends the UML metaclasses without conceptually altering them,

there remains a need to discuss the semantics, value and constraints of every single at-

tribute that the metaclass possesses or inherits from its parent classes.

2.7. Related Work on Goal Modelling Profiles

2.7.1 Requirements for a Profile for Goal-oriented Modelling

Goal-oriented profiles shall support different functionalities and satisfy the quality crite-

ria expressed by the following four requirements:

Rl. Integration with UML: This is the ability of sharing information between the

goal-oriented modelling diagram and the existing UML diagrams. It is appar-

ent that UML diagrams share some information and knowledge with each

other. For example, an instance of a class from a class diagram can be used as

a lifeline in a sequence diagram. Hence, in this specific case, there must be an

evaluation of how the GRL diagram integrates with other UML diagrams.

R2. Diagram Pollution Avoidance: Different diagrams offer different viewpoints

on the same model. In most UML tools, whenever a UML diagram is created,

a separate editor for each diagram type, with a customized toolbar, is used in

order to maintain the diagram "purity". The allocation of unique toolbars and

editors for each diagram prevents the "pollution" or mixing of different dia-

gram constructs. In order for modellers to use GRL diagrams, based on GRL

profile, without polluting other diagrams, and vice-versa, it is important that

the profile promotes this feature.

R3. Metamodel Stability: A metamodel is considered stable if it is standardized

or if it has reached a good level of maturity through tool support and a com-

munity of users. The stability of the underlying metamodel is very important

for the evaluation of any goal-oriented modelling profile.

R4. Implementability of the Profiling Mechanism: The profiling mechanism

used must ease the implementation and proper tool support of the profile. This

Chapter 2. Background - Related Work on Goal Modelling Profiles 26

is important as some profiles are expressed in vague terms or in ways that are

incompatible with UML tools.

These requirements will be used to evaluate the work of others and later, in Section 5.3,

to evaluate our own work.

2.7.2 Evaluation of Related Work

In this section, we will analyze four research works [5][6][9] [25] close to our work.

Evaluation and analysis of these works are based on their level of satisfaction to our

stipulated requirements.

Research Work 1: A Template-based Analysis of GRL

A template-based analysis of GRL has been conducted by Dallons et al. in [6]. However,

there is no actual profile for goal modelling in this work. The authors considered three

concrete syntaxes for GRL: 1) a textual syntax (expressed in Backus-Naur Form (BNF),

2) a graphical syntax (also expressed in BNF, but augmented with topological informa-

tion) and 3) an Extensible Markup Language (XML) syntax (expressed as an XML Docu-

ment Type Definition (DTD)). Other considerations include informal semantic definitions

of constructs, examples of GRL models and a tutorial. A conclusion reached by [6] is that

a GRL metamodel should be comprised of four different concepts shown in Figure 14 -

Figure 17. These are: Actor, IntentionalElement, NonlntentionalElements and Intention-

alRelationship.

Chapter 2. Background - Related Work on Goal Modelling Profiles 27

• Ironi

A GRL Model Dsknita is
from a GRL mods! iype

carwtnicted with

Wofi-JWeiMraiar'
Element

I name

description g L I ! ttl

fflnmuana/
relationship

uiiiimiiiHii muu m

1J" 0

âwftffg'

i

i _

i .

ftllVfllibfMf

dement

name

0s8ctii

w

0_1

External
Specification

external lypa
external name
muMnntB

0."
i

from

«
1

• h a s

a.' o_"

—JL,^ {aKBdfp-am} GL1

has

M M)

noma
1 - iB0«AiatBdby - I - | Vaiue

f ^ ™ _ _

Wail Type

{ External Specification is
not ffom a GRL model

9̂ 9P^BH

14i i n Bttmiiflte •*
fam^wm

| i • « araBJarr&as *
] - « iJstHntsrte *

m inataniififes *
i

B^:
UtlL Modd SUARJLIKIIBHL

a^
GraL;HtKtBT

Figure 14 Top Level View of GRL Metamodel [6]

Chapter 2. Background - Related Work on Goal Modelling Profiles 28

Figure 15 GRL Metamodel: Zoom on Intentional Elements [6]

* Intentional
relationship

Identifier [0..1I

^{Partition}

Means-ends

Dependency

Decomposition

Correlation

Figure 16 Types of Intentional Relationships [6]

Chapter 2. Background - Related Work on Goal Modelling Profiles 29

Intentional
element

name
Description [0..1)

Actor
name
description P„1]

f Component/
I Dependtim

tL
{Disjomt}

<r Posse n/eflo/efej »
Depender/
Dependee

dependee depe rider A

€L* Dependency

fr°'
depsndum

j « Possibteflolefs) »
lE-but-beltef

SyPPil

Goal -4:

1

A to
\ w 3„*

| name{0.1]
type

Softgoal

1

Means-ends

WBÎ B

v
«r PossibleRolefsj»

Contributes

contributes

4
corelatee

4 Correlation

correlator 0..*

i l'ussibfoRots{i\ u

Curieiatot

Task

from J

{Disjoint}

F i g u r e 17 G R L M e t a m o d e l : Z o o m on Intent ional Re la t ionsh ips [6]

The authors of [6] applied an already established template-based analysis on their meta-

model. "The template was proposed by Opdahl and Hendeson Sellers as a means to sys-

Chapter 2. Background - Related Work on Goal Modelling Profiles 30

tematize the description of Enterprise Modelling Language (EML) constructs. It can be

used for various purposes like comparing and integrating EML constructs or, simply, for

better understanding them. Translating models from one EML to another is another pos-

sible use. In Version 1.1 of the template, each construct is defined by filling in the fol-

lowing sections: Preamble (General issues are specified here, i.e., constructs, diagram

type, language name and version, acronyms and external resources.), Presentation (such

issues are lexical information (icons, line styles), syntax and layout conventions are

specified here.), Semantics (It requires the analyst to answer some questions which are in

detail discussed in [6]), Open issues (All the issues that the template failed to address

should be mentioned here.)" [6] The assessment concluded that the GRL specification is

very vague and the scope of the definitions is very broad. They noted confusion with the

definition and semantics of Actor. They raised a number of questions including whether

there should be subtypes of Actor, the difference between roles and actors, as well as is-

sues concerning whether tasks and goals could be decomposed. Additionally, they pro-

vided suggestions to improve the GRL textual syntax.

Their research does not demonstrate any integration with the existing UML dia-

grams. The research was based on a metamodel that was not valid or stable. It can be

considered more as a theoretical effort as there is no mention of a practical implementa-

tion of the profile in any tool. In the evaluation part below, we give an analysis of how

the work in [6] satisfies our requirements.

Evaluation

Rl.Integration with UML: It can be concluded that this work does not fulfill

requirement Rl since the research does not demonstrate any integration with

the existing UML diagrams.

R2.Diagram Pollution Avoidance: This requirement is not satisfied because of

the lack of a practical implementation.

R3.Metamodel Stability: The metamodel does not satisfy the requirement for

stability. As mentioned in [6], a GRL metamodel did not exist at the time of

the work. So the proposed metamodel is a supposed metamodel with no guar-

antee of validity.

Chapter 2. Background - Related Work on Goal Modelling Profiles 31

R4.Implementability of the Profiling Mechanism: This requirement is not sat-

isfied because the constructs were only verbally mapped. In order for this re-

quirement to be satisfied, one needs to implement the profile through the use

of profile supporting UML tools after mapping it.

Research Work 2: UML Profile for Enterprise Goal Modelling

Figure 18 shows a UML profile proposed by Grangel et al. [9] for enterprise goal model-

ling at the Computation Independent Model (CIM) level. "It is used to represent domain

and system requirements. It is based on business models and shows the enterprise from a

holistic point of view that is independent of the computation" [9]. The concepts are di-

vided in two parts: CIM-Knowledge and CIM-Business. The top-level general vision of

the enterprise and its knowledge are discussed in the first part. The second part involves

details of the enterprise knowledge, through the examination of its business representa-

tion. The depiction adheres to organisational, structural and behavioural models.

Abstraction Level Met&model UML Profile Model Diagram

"CIM-Knowledge Knowledge foFKM™" Knowledge Blocks

Ontological
Knowledge

CIM-Business Qr^anisation for G M ^ g a n f e a t t o n Goals
for OSM Organisational Structure

for AM Analysis

for BRM Business Rules
Structure for SM Structure Product

Resource
Behaviour for BM Behaviour Process

Service

Figure 18 Proposal for Enterprise Knowledge Modelling [9]

The work in [9] is based on the Unified Enterprise Modeling Language (UEML), and the

Process, Organisation, Product, and so on (POP*2). They proposed a metamodel for goal

modelling shown in Figure 19:

2 In POP*. * means so on

Chapter 2. Background - Related Work on Goal Modelling Profiles 32

I

• patent

'•• 't',T3p'.0li>ectivoTVpS
•- irLeaf: R-jotean
a level • LeveTTvoe

«enume;a&oo»
:-• VariabteType

-> values
' strengths
»- weataesses
; oRporturtites
<s threats
o keySuceess
* pokes
» sMtuflte

1..*

h i * ' - v»u6l«Tv[» I

athteros

ts delpoyetf

* depends OH

performs

WMWWWHWtW

-"'type: PianTwe
'• penod' ?l?ing

«enumetatiQn»
t~0b|etHv8Type

o frisson
o vision
o strategic
o tactical
o operative

«enurr>era(Mfi»
S LevelType
e cofaboraBw
o strategic
•o tactical
« oparatfre

«8numeraBon»
SPlanType

r> business
* action
» WtMrtiw

Figure 19 Goal Metamodel: Organizational Metamodel Excerpt [9]

The metamodel distinguishes four different conceptual constructs: "Objective (this repre-

sents any target that enterprises want to achieve, it is possible to define it at different hi-

erarchical levels, such as strategic, tactical and operative levels. At the strategic level, this

construct is also used to represent the enterprise's mission and vision.), Strategy (this

represents how the enterprise wants to achieve the objectives proposed at the strategic

level), Plan (this represents the organisation of the work at different hierarchal levels in

order to accomplish the objectives and strategy defined in the enterprise) and Variable

(this represents any factor that is able to influence the execution of the plans defined in

the organisation)" [9].

The profile has been implemented in IBM Rational Software Modeler Develop-

ment Platform and in MagicDraw UML 12.0. Figure 20 shows stereotypes created for the

implementation of the profile. Below is an evaluation of this work from our perspective.

Chapter 2. Background - Related Work on Goal Modelling Profiles 33

_ ^ _ _ _ _ _ J ^ — _ _ .

[««nuwHttw»»
PlmType t

taction
WtisBv*

LewlType ;

cotoboMhve

l*ctfc<n
operative

«ereM*ra8orj»

WUbteTwe

values
strengths
wetnesses
onwrtunbH
threats
Is/Success
ootoss
aMwtes

Objects

-tyjwiCtfec&wType
4wet;UwfType

|*«lerMtfl)«>>,

Strategy

Ktotl

-typrWanType

«*stsre«iyf«»> c

¥wltWe

[CtawJ

4ype; VartafcteType

Figure 20 Diagram of the UML Profile for Enterprise Goal Modelling [9]

Evaluation

Rl.Integration with UML: This requirement can be satisfied by [9]. It is sup-

ported by most tools to reuse the constructs of UML diagrams. It is apparent

that they created stereotypes, so they can be reused in other UML diagrams.

R2.Diagram Pollution Avoidance: The implementation is based on SM, which

does not allow for the creation of a separate editor. The modellers are there-

fore forced to use a different diagram editor (most likely a Class diagram edi-

tor) that allows for their metamodel constructs to become polluted through the

mixing with other UML diagram constructs (e.g. with Class diagram con-

structs).

R3.Metamodel Stability: We cannot assert that the metamodel fulfills all aspects

of Goal-oriented Modelling, since there is no pre-existing editor based on their

proposed metamodel. Their metamodel is neither a standard nor in an ongoing

process of standardization.

R4.Implementability of the Profiling Mechanism: This requirement is partially

satisfied, as the profile is implemented in the IBM Rational Software Modeller

Development Platform and MagicDraw UML 12.0 through the use of Stereo-

Chapter 2. Background - Related Work on Goal Modelling Profiles 34

type Mechanism (whereas Metamodel Extension Mechanism is the recom-

mended approach for profiling [18] [29]). Our claim of partial satisfaction of

this requirement by their work is motivated by the use of the simple stereotype

mechanism for implementation. As mentioned in [18][29], the metamodel ex-

tension mechanism is recommended.

Research Work 3: UML Profile for Softgoal by Use Case Driven Approach

Supakkul and Chung [25] proposed a metamodel for NFR concepts, and its integration

with the UML metamodel through the use of the UML profile extension mechanism. The

integration of UML and NFR notations occurs in a Use Case diagram. NFRs are repre-

sented as softgoals and associated with appropriate Use Case model elements as depicted

in Figure 21.

nraiuflwViL-so'll tjfcM:NrRs.o- _ ,--'ch
I Lfiislfdintpiao'dt:}!'*! sy41pm le-.Jtwi j (<x«S

-""'ohafactarisifcs of or"- \

" ' . ' » . '

onslraintplaceclanttie }
l>as«hM) acta* .v

Active Actor

Subjfl-ct

•
•

' j sw ••.•ita'*&-J«"-.
.ICCCS4

c.r,T7n;>injt'Tii / v
 \

NFRs J

v ^ y

Passive Actor

Figure 21 NFR Association Points in UseCase Model for NFR Types [25]

The profile is also referred to as Softgoal Profile because NFRs are considered as soft-

goals. It consists in two parts:

• Softgoal Interdependency Graph (SIG) subproflle: A representation of the

concepts used in the NFR framework."The NFR Framework is a goal-oriented

approach for addressing NFRs. In this framework, they represent NFRs as NFR

softgoals to be satisficed."[25]

Chapter 2. Background - Related Work on Goal Modelling Profiles 35

• Procedure subprofile: A representation of the concepts that are related to the

method, correlation rule and evaluation procedures. The Procedure subprofile

may import the SIG subprofile for use in its stereotypes.

The modeller can use these profile stereotypes with the combination of UML standard

notations. The authors implemented their work and used the London ambulance dispatch

system as a case study.

Evaluation

Rl.Integration with UML: The authors of [25] did not mention which mecha-

nism was considered for their profile implementation. From their diagrams

and references, it appears that they used SM. As a result, they fulfill our stipu-

lated requirement.

R2.Diagram Pollution Avoidance: The constructs can be polluted by the UML

diagram constructs. The authors mention that their profile allows users to

model using a combination of UML standard notations and their stereotypes.

R3.Metamodel Stability: The metamodel is only partially stable, as it is inspired

from the NFR framework which does not fully address the goal-modelling

domain. Furthermore, there is no editor solely based on the metamodel.

R4.Implementability of the Profiling Mechanism: We are not able to assess the

work based on this criterion. It is not clear from [25] which tool the authors

used for the implementation of their work, or whether it is purely a theoretical

concept.

Research Work 4: Using UML to Reflect Non-Functional Requirements

Cysneiros et al. [5] based their study on the idea that there should be an integration of

NFRs with functional requirements. They remarked that there are two cycles to the soft-

ware development process: one which covers functional requirements and the second,

which comprises non-functional requirements. There is no integration of these two cy-

cles. They concluded that there is a requirement for a junction point that would integrate

these two independent cycles. Figure 22 shows their proposed strategy for integration.

Chapter 2. Background - Related Work on Goal Modelling Profiles 36

Non-FuKtkmai View

Figure 22 An Strategy Overview for Dealing with NFR [5]

In this strategy, the integration point is called Language Extended Lexicon (LEL). Func-

tional and non functional views are joined at that point. The junction point is used to reg-

ister the words or phrases unique to a specific field of the application. A LEL can hold

information from both functional and non functional requirements. "To build the NFR

model one must search all entries of the LEL looking for notions that express the need for

an NFR. For each NFR found, create an NFR graph expressing all the operationalizations

that are necessary to satisfice this NFR. It resulted, at end, a set of NFR graphs that repre-

sent the non functional aspects of the system"[5]. Cysneiros et ah claim that their pro-

posed solution covers all diagrams. For instance, Figure 23 shows how NFR graphs are

integrated with Class diagrams. The term integration means in this context that "every

root of each NFR graph must refer to an LEL symbol and every class of the Class dia-

gram must be named using an LEL symbol" [5]. Cysneiros et al. also proposed some

heuristics for the convergence process.

• They created a stereotype « N F R » for classes which are used to satisfy a NFR.

• They represented a link to the non-functional view beside each operation that has

been included to satisfy an NFR.

Chapter 2. Background - Related Work on Goal Modelling Profiles 37

• Each operation may have pre- and post conditions.

• An attribute can be added to satisfy a NFR and it may use the same expression as

in the operations to create a link to the non-functional view.

The approach has been validated through case studies.

Pick up
next graph
th:Hftpptt«

Look far NTRi flirt!
applies to rM; class

Fwkupa
Class

Figure 23 The Class Diagram Integration Process [5]

Evaluation

Rl.Integration with UML: This work does not meet the integration criteria.

R2.Diagram Pollution Avoidance: This work cannot be evaluated according to

this requirement because the proposed strategy differs from UML profiling.

They did not create any stereotype.

R3.Metamodel Stability: For the same reason as above, the work cannot be

evaluated according to this requirement.

R4.Implementability of the Profiling Mechanism: For the same reason as

above, the work cannot be evaluated according to this requirement.

Chapter 2. Background - Related Work on Goal Modelling Profiles 38

Overall Analysis of Previous Work

Table 2 gives the overall view of previously discussed research works and their satisfac-

tion level with our stipulated requirements. It is observed that none of the discussed ap-

proaches satisfies all four requirements. Some requirements are not applicable (N/A) with

their work (and we suspect they are not satisfied) and some are partially satisfied.

Table 2 Overview of Previous Work Contributions

A Template based analysis of

GRL

UML profile for Enterprise^

Goal Modelling

UML profile for Softgoal by

use case driven approach

Using UML to reflect non-

functional requirements

Integration

with UML

Not

Satisfied

Satisfied

Satisfied

Not

Satisfied

Diagram

Pollution

Avoidance

Not

Satisfied

Not

Satisfied

Not

Satisfied

N/A

Metamodel

Stability

Not

Satisfied

Not

Satisfied

Partially

Satisfied

N/A

Tool

Support

Not

Satisfied

Partially

Satisfied

N/A

N/A

2.8. Chapter Summary

In this chapter, we provided a review of the UML architecture, examined the dif-

ferent levels of metamodelling, discussed URN in detail and reviewed some related work

on goal-oriented modelling profiles.

The UML architecture is divided into two parts known as UML infrastructure and

UML superstructure. The different levels of metamodel are referred to as M3, M2, Ml

and MO. The MOF is at the meta-metamodel level (M3), the UML at the metamodel level

(M2), user-specified models are at level Ml , and objects at level MO. The URN includes

the UCM notation and GRL. The former is used for modelling scenarios and functional

requirements, while GRL exists specifically for modelling goals and non-functional re-

quirements. GRL's main elements include Intentional elements, Actors and Element

Chapter 2. Background - Chapter Summary 39

links. We also discussed the GRL metamodel and presented GRL strategies used for

model evaluation.

Profiling was discussed as a UML feature that is used to customize the UML

metamodel because modellers are prevented from directly customizing the UML meta-

model. There are two approaches for creating a profile: a Stereotype Mechanism and a

Metamodel Extension Mechanism. The ITU-T has published a Recommendation on the

creation of UML profiles for modelling languages.

We gave a brief analysis of four goal modelling and profiling approaches related

to our work and compared them against four requirements. While there have been some

interesting contributions, existing approaches do not fulfill our established criteria for a

goal-oriented modelling profile.

Chapter 2. Background - Chapter Summary 40

Chapter 3. UML Profile for GRL

In chapter two, we discussed prerequisites for writing a GRL profile in detail. The current

chapter embodies the core work of this thesis, including how we map the UML meta-

model to the original GRL metamodel. In section 3.1, we discuss naming conventions

which are used in this profile. Section 3.2 provides a summary of the GRL metaclasses

and their extensions from the UML metaclasses in tabular form. In section 3.3, we sepa-

rately map each GRL metaclass with a UML metaclass. We also discuss GRL meta-

classes semantics, attributes, constraints and notations. Section 3.4 then provides a global

overview of the GRL profile.

GRL model elements have an id attribute that is unique inside the model and that

does not change as new versions of the model are created. It is used to enable traceability

from between versions of a GRL model and between a GRL model and external require-

ments or other types of models. GRL model elements also have names but these names

can be modified from one version to the next, and their uniqueness has a scope that is

smaller than the model (e.g., actor names are all different, but the name of an actor can be

the same as the name of an intentional element).

3.1. Conventions, Names and Template

3.1.1 Conventions

This work uses the conventions defined in ITU-T Rec. Z.l 19 [15]. These conventions are

repeated below:

• A term in this profile is a sequence of characters making up either an English

word or a concatenation of English words. The sequence of characters indicates

the meaning of the term.

• An underlined term refers to a UML term or a term defined by a stereotype in this

profile. A term beginning with a capital letter denotes a metaclass.

Chapter 3. UML Profile for GRL - Conventions, Names and Template 41

• A term preceded by the word "stereotype" designates a UML stereotype according

to the stereotype concept defined in the UML Superstructure specification docu-

mentation (usually in a phrase "The stereotype X extends the metaclass X" where

X is a term). The stereotype is required when its multiplicity is [1..1] (that is the

derived attribute isRequired of the Extension association between the extended

metaclass and the stereotype is true). If the multiplicity of the stereotype is [0..1],

the stereotype is not required.

• The convention for a term enclosed in « and » is extended to allow GRL quali-

fiers to be used. The convention for a term enclosed in < and > is extended to al-

low GRL concrete syntax to be used. A convention on the meaning of terms in

italics is added.

o A term enclosed in « and » refers to a stereotype described by this

profile. These terms are not underlined.

o A term in italic in a stereotype description refers to a GRL abstract

syntax item.

o A metaclass enclosed in « and » and preceded by "GRL" is a GRL

metamodel class and is not underlined. Here the term in « a n d » is

the name of a GRL metaclass.

• All owned attributes of stereotypes are in the attribute section and all inherited at-

tributes are in the semantics section.

In addition, the prefix "/" is often used to indicate a UML association role (e.g.,

/superclass).

3.2. Stereotype Summary

The following table lists the stereotypes with the UML metaclass that each stereotype

extends. A description of the stereotypes is provided in section 3.3.

Chapter 3. UML Profile for GRL - Stereotype Summary 42

Table 3 Stereotype, Metaclass Mapping Information

Stereotype

GRLspec

GRLmodelElement

GRLLinkableElement

Actor

IntentionalElement

IntentionalElementType

ImportanceType

ElementLink

Contribution

ContributionType

Dependency

Decomposition

DecompositionType

Stereotyped UML metaclass

Model

NamedElement

Class

Class

Class

Enumeration

Enumeration

Relationship

Association

Enumeration

Association

Association

Enumeration

3.3. Structure of the Goal-oriented Requirement Language
(GRL) Profile

3.3.1 GRLspec

The stereotype GRLspec is mapped from the metaclass Model with multiplicity [0..1].

Note: The stereotype GRLspec is intended to work as a container for GRL specifications.

Attributes

No attributes.

Constraints

No constraints.

Semantics

None. It is a structural concept.

Notation

There is no notation for «GRLspec» Model.

Chapter 3. UML Profile for GRL - Structure of the Goal-oriented Requirement Language (GRL) Profile 43

References

• UML SS: 17.3.1 Model (from Models).

3.3.2 GRLmodelElement

The stereotype GRLmodelElement extends the metaclass NamedElement with multiplic-

ity [0..1].

Note: This stereotype contains GRL concept metadata to associate with other model ele-

ments.

Attributes

Stereotype attributes:

• id: String Defines the identifier of the «GRLmodelElement»

NamedElement.

Constraints

• «GRLmodelElement» NamedElement has a unique id tag within the URN

specification.

• Each «GRLmodelElement» NamedElement must have a unique name.

Semantics

Attribute name: String of «GRLmodelElement» NamedElement is mapped with the

name of NamedElement.

Notation

There is no notation for «GRLmodelElement» NamedElement.

References

• UML SS: 7.3.33 NamedElement (from Kernel, Dependencies).

3.3.3 GRLLinkableElement

The stereotype GRLLinkableElement extends the metaclass Class with multiplicity [0..1]

Note: The stereotype GRLLinkableElement is intended for generalizing GRL « A c t o r »

and GRL «IntentionalElement».

Chapter 3. UML Profile for GRL - Structure of the Goal-oriented Requirement Language (GRL) Profile 44

Attributes

Stereotype attributes:

• id: String Defines the identifier of the «GRLLinkableElement» Class.

Constraints

• «GRLLinkableElement» Class has an id tag that must be unique within the

URN specification.

• Each «GRLLinkableElement» Class must have a unique name.

Semantics

The attribute name:String of «GRLLinkableElement» Class is mapped with the attrib-

ute name of NamedElement.

«GRLLinkableElement» Class contain common properties with both

G R L « A c t o r » and GRL«IntentionalElement».

Notation

There is no notation for «GRLLinkableElement» Class.

References

• UMLSS: 7.3.7 Class (from Kernel)

• UML SS: 7.3.33 NamedElement (from Kernel, Dependencies)

3.3.4 Actor

The stereotype Actor extends the metaclass Class with multiplicity [0..1].

Note: In this profile, Class behaves as a new G R L « A c t o r » concept. Here, GRL « A c -

t o r » behaves as a container and stakeholder. A G R L « A c t o r » can depend on other

actors and intentional elements and can also contain other actors and intentional ele-

ments.

Attributes

Stereotype attributes:

• id: String Defines the identifier of the « A c t o r » Class.

Chapter 3. UML Profile for GRL - Structure of the Goal-oriented Requirement Language (GRL) Profile 45

Constraints

• An « A c t o r » Class cannot include itself, either directly or indirectly.

• An « A c t o r » Class has an id tag that must be unique within the URN specifica-

tion.

• Each «Acto r> Class must have a unique name.

• An « A c t o r » Class has attribute isLeaf (inherited from RedefineableElement) -

True. It is therefore not possible to further specialize « A c t o r » Class.

Semantics

Class describes a set of objects that share the same specifications of features, constraints

and semantics. Its features are comprised of attributes and operations. In the same way,

« A c t o r » Class has attributes and operations. Instances of Property are represented by

attributes, which map to the « A c t o r » Class attributes.

The nestedClassifier is an association owned by Class. This association has on the

other end a Classifier. This association is used for referencing all the Classifiers that are

defined within the Class. G R L « A c t o r » owns an association "elems" with

GRL«IntentionalElement». As G R L « A c t o r » can contain

GRL«IntentionalElement»s, that same behaviour maps nestedClassifier with elems.

G R L « A c t o r » also owns an association includingActor [0..1] and includedAc-

tors [0..*]. This association provides the reference of including G R L « A c t o r » which

have other G R L « A c t o r » s included. It helps to find out which G R L « A c t o r » con-

tains other G R L « A c t o r » s . This same behaviour is the reason to map nestedClassifier

with includingActor with multiplicity [0..1] and includedActors with multiplicity [0..*].

Attribute name: String of G R L « A c t o r » is mapped with name of Class, which

is inherited from NamedElement.

Notation

An « A c t o r » Class is represented by a "dashed circle" with the accompanying actor

name, as shown in Figure 24.

Chapter 3. UML Profile for GRL - Structure of the Goal-oriented Requirement Language (GRL) Profile 46

Customer

References

• UML SS

• UML SS

• UML SS

Figure 24 Actor

7.3.7 Class (from Kernel).

7.3.33 NamedElement (from Kernel, Dependencies).

7.3.46 RedefineableElement (from Kernel).

3.3.5 IntentionalElement

The stereotype IntentionalElement extends the metaclass Class with multiplicity [0..1].

Note: In this profile, Class is introduced with the concept of a linkable element used by

the model. Stereotype IntentionalElement can be decomposed into sublevels. It can also

be evaluated by assigning a qualitative and quantitative importance level. Stereotype In-

tentionalElement has both, inherited and owned attributes.

Attributes

Stereotype attributes:

• id: String

• type: Intention-

alElementType

• decompositionType:

DecompositionType

Defines the identifier of the «IntentionalEle-

m e n t » Class.

This is enumeration data type. It defines the differ-

ent types of GRL«IntentionalElement» like

Softgoal, Goal, Task, Resource and Belief.

This is the enumeration data type. Its possible val-

ues are AND, XOR and 10R. Its default or initial

value is AND. It defines the different type of de­

composition when GRL«IntentionalElement» is

the source of the decomposition link.

Chapter 3. UML Profile for GRL - Structure of the Goal-oriented Requirement Language (GRL) Profile 47

• importance: This is the enumeration data type. Its possible val-

ImportanceType ues are High, Medium, Low, and None. Its default

value is None. It is used to evaluate the importance

level of the intentional element quality to its own-

ing actor when specified.

• importanceQuanti- Defines the evaluation of the quantitative impor-

tave: Integer tance of GRL«IntentionalElement» on its

G R L « A c t o r » . Its value ranges from 0 to 100,

with 0 as default.

Constraints

• «IntentionalElement» Class has a tag importanceQuantitative which value

must be > 0 and < 100.

• «IntentionalElement» Class has a tag id which must be unique within URN

specification.

• Each «IntentionalElement» Class must have a unique name

Semantics

The «IntentionalElement» Class has an association with GRL « A c t o r » . It specifies

the reasons for including particular behaviours, information and structural aspects in a

system's requirements. There are different types of intentional elements corresponding to

different types of behaviour and information elements. These various types have different

notations and are very flexibly linked to each other.

The «IntentionalElement» Class has a tag importance that captures an actor's

level of interest in the included intentional element. However, it is not mandatory that

modellers use both the importance and importanceQuantitative tags. The selection de-

pends on a modeller's requirements for the desired analysis type, either qualitative, quan-

titative, or mixed.

Class is given its attribute name by inheritance from NamedElement. The name

attribute maps to the name: String attribute of «IntentionalElement» Class.

Chapter 3. UML Profile for GRL - Structure of the Goal-oriented Requirement Language (GRL) Profile 48

The nestedClassifier is an association owned by Class. This association has on the

other end a Classifier. This association is used for referencing all the Classifiers that are

defined within the Class. GRL«IntentionalElement» also owns an association actor

with multiplicity [0..1]. This association provides the reference of G R L « A c t o r » which

contains other GRL«IntentionalElement»s. It helps to find out which G R L « A c t o r »

owns which GRL«IntentionalElement»s. This same behaviour is the reason to map

nestedClassifier with actor with multiplicity [0.. 1].

decompositionType is only effective when GRL«IntentionalElement» has

GRL«ElementLink» of type GRL«Decomposit ion» and the value of type is not Be­

lief.

Notation

An «IntentionalElement» Class has different types as mentioned above in semantics.

Each type has a separate notation:

• Softgoal:

Softgoal

Figure 25 Softgoal

Goal:

• Task:

CD
Figure 26 Goal

<33
Figure 27 Task

• Resource:

Chapter 3. UML Profile for GRL - Structure of the Goal-oriented Requirement Language (GRL) Profile 49

Resource

Figure 28 Resource

• Belief:

/"Description .VTN

Figure 29 Belief

References

• UMLSS: 7.3.7 Class (from Kernel).

• UML SS: 7.3.33 NamedElement (from Kernel, Dependencies).

3.3.6 IntentionalElementType

The stereotype IntentionalElementType extends the metaclass Enumeration with multi-

plicity [0..1].

Note: The stereotype is also a user-defined data type. An instance of stereotype Inten-

tionalElementType is a value of GRL«IntentionalElementType» attribute type. There

are five values: Softgoal, Goal, Task, Resource, and Belief.

Attributes

No attributes.

Constraints

No constraints

Semantics

The «IntentionalElementType» Enumeration instance has different values taken by an

attribute type of GRL«IntentionalElementType». These values have their own mean-

ing and are used according to modelling requirements.

Goal, Softgoal, Task, Resource and Belief are all instance values of «Intention-

alElementType» Enumeration with extensive use in goal-oriented modelling.

Chapter 3. UML Profile for GRL - Structure of the Goal-oriented Requirement Language (GRL) Profile 50

Every instance of «IntentionalElemenfType» Enumeration is a value that is

mapped with EnumerationLiteral.

Notation

There is no notation of «IntentionalElementType» Enumeration.

References

• UML S S: 7.3.16 Enumeration (from Kernel).

• UML SS: 7.3.17 EnumerationLiteral (from Kernel).

3.3.7 ImportanceType

The stereotype ImportanceType extends the metaclass Enumeration with a multiplicity of

[0..1].

Note: This stereotype ImportanceType is a user-defined data type. Its literal values are

used by the attribute importance of GRL«IntentionalElement». These literal values are

High, Medium, Low and None.

Attributes

No attributes.

Constraints

No constraints.

Semantics

«Impor tanceType» Enumeration has different literal values which are used by attrib-

ute importance of GRL«IntentionalElement».

Every literal of «ImportanceType» Enumeration is a value which is mapped

with EnumerationLiteral.

Notation

There is no notation for «ImportanceType» Enumeration.

References

• UML SS: 7.3.16 Enumeration (from Kernel).

• UML S S: 7.3.17 EnumerationLiteral (from Kernel).

Chapter 3. UML Profile for GRL - Structure of the Goal-oriented Requirement Language (GRL) Profile 51

3.3.8 ElementLink

The stereotype ElementLink extends the metaclass Relationship with a multiplicity of

[0..1].

Attributes

Stereotype attributes:

• id: String Defines the identifier of the «E lemen tL ink» Relation-

ship.

• name: The name of the « E l e m e n t L i n k » Relationship.

String

Constraints

• «E lemen tL ink» Relationship has a Tag id that must be unique within the URN

specification.

• Each «E lemen tL ink» Relationship must have a unique name.

• As «E lemen tL ink» Relationship is used to connect

GRL«GRLLinkableElement»s, the source and destination

GRL«GRLLinkableElement»s must be different.

Semantics

The purpose of «E lemen tL ink» Relationship is to show the intentional relationship

among GRL«GRLLinkableElements» which include G R L « A c t o r » and

GRL«IntentionalElement».

The relatedElement is a derived union (of all elements) used in Relationship. On

the other end of this association is Element, which has a children association with Class.

This association specifies the elements related by the Relationship.

GRL«ElementLink» has associations named dest and src with

GRL«GRLLinkableElement». They also bear the same functionality. So relatedEle-

ment can be mapped with dest and src.

«Elemen tL ink» Relationship is a directed link that is used to connect a source

G R L « A c t o r » or a source GRL«IntentionalElement» to a different destination.

Chapter 3. UML Profile for GRL - Structure of the Goal-oriented Requirement Language (GRL) Profile 52

Notation

There is no notation for «E lemen tL ink» Relationship. However, its subclasses have

their own notations, which are used according to modelling requirements.

References

• UMLSS: 7.3.47 Relationship (from Kernel).

3.3.9 Contribution

The stereotype Contribution extends the metaclass Association with multiplicity [0..1].

Note: The stereotype Contribution is a link which illustrates how a source

GRL«IntentionalElement» helps with the satisfaction of a destination

GRL«IntentionalElement».

Attributes

Stereotype attributes:

• id: String

• contribution:

ContributionType

• quantitativeCon-

tribution: Integer

• correlation: Boolean

Defines the identifier of the «Cont r ibu t ion» As-

sociation.

An enumeration datatype. Its possible values are

Make, Help, SomePositive, Unknown, SomeNega-

tive, Hurt, and Break. Its default value is Un­

known. This attribute assigns a qualitative value of

contribution to GRL«IntentionalElement».

A primitive datatype, its default value is 0. This at-

tribute assigns a quantitative value of contribution

to GRL«IntentionalElement».

The link is a GRL«Contr ibut ion» when the

value is true and a correlation, which is also like a

contribution when the value is false. The side ef-

fect is also shown in the later case. The default

value is false.

Chapter 3. UML Profile for GRL - Structure of the Goal-oriented Requirement Language (GRL) Profile 53

Constraints

• «Cont r ibu t ion» Association has a tag id that must be unique within the URN

specification.

• Each «Cont r ibu t ion» Association must have a unique name.

• Only GRL«IntentionalElement» can be a source or a destination of «Contr i -

bu t ion» Association.

• «Cont r ibu t ion» Association cannot link any G R L « A c t o r » .

• An instance of «Cont r ibu t ion» Association is a link with two ends, a source

and a destination. A GRL«IntentionalElement» used as destination must not be

a resource or a belief.

• The upper and lower range of attribute quantitativeContribution must be > -100

and < 100.

Semantics

Attribute name: String of «Cont r ibu t ion» Association is mapped with the name of the

Class, which is inherited from NamedElement.

A «Cont r ibu t ion» Association is a primary required effect in goal-oriented

modelling. A correlation is a side effect and not a primary requirement.

A «Contribution»Association can be used to define the qualitative and quanti-

tative impact level put by a source GRL«IntentionalElement» on a destination

GRL«IntentionalElement».

Correlations behave in the same way as «Cont r ibu t ion» Association, but their

consideration includes the side effects between the different categories of

GRL«IntentionalElement» and also between the different categories of

GRL«IntentionalElement» and G R L « A c t o r » .

Additional constraints may be applied by modellers according to specific model-

ling requirements on «Cont r ibu t ion» Association.

Notation

A contribution is a solid arrow, while a correlation is a dashed arrow, as shown in

Figure 30 and Figure 31:

Chapter 3. UML Profile for GRL - Structure of the Goal-oriented Requirement Language (GRL) Profile 54

«

Figure 30 Contribution

<

Figure 31 Correlation

References

• UML SS: 7.3.33 NamedElement (from Kernel, Dependencies)

• UML SS: 7.3.3 Association (from Kernel)

3.3.10 ContributionType

The stereotype ContributionType extends the metaclass Enumeration with multiplicity

[0..1].

Note: It is intended to assign some qualitative values to the attribute contribution of

stereotype Contribution. Its user-defined literal values are Make, Help, SomePositive,

Unknown, SomeNegative, Hurt and Break.

Attributes

No attributes.

Constraints

No constraints.

Semantics

«ContributionType» Enumeration is a user-defined data type. Each of its literal values

is mapped with EnumerationLiteral, which is a value. This value is used to assign the

qualitative contribution to the GRL«IntentionalElement» through a link. All of the

values have their own notational presentation and weight based on a positive or negative

sense.

Notation

The notations for «ContributionType»Enumeration are:

Chapter 3. UML Profile for GRL - Structure of the Goal-oriented Requirement Language (GRL) Profile 55

• Make: This is a positive contribution that sufficiently affects stakeholder satis-

faction when evaluated; see Figure 32.

<r

_L Make

Figure 32 Contribution Type: Make

• Help: This is also a positive but insufficient contribution. See Figure 33.

<
T Help

Figure 33 Contribution Type: Help

• SomePositive: This is a positive contribution, but the level of its impact or extent

is not known; see Figure 34.

<

^ p SomePositive

Figure 34 Contribution Type: SomePositive

• Unknown: It is known that there is some contribution, but it is unknown whether

the impact of that contribution is positive or negative. This contribution type has

no particular symbolic representation and uses the same notation as the

GRL«Contribution» arrow.

• SomeNegative: This is a negative contribution with an unknown extent. See

Figure 35.

<

" • SomeNegative

Figure 35 Contribution Type: SomeNegative

• Hurt: This contribution is negative and it is insufficient. See Figure 36.

Chapter 3. UML Profile for GRL - Structure of the Goal-oriented Requirement Language (GRL) Profile 56

<

• Break: This contribution is negative and sufficient. See Figure 37.

« T

Figure 37 Contribution Type: Break

References

• UML SS: 7.3.16 Enumeration (from Kernel).

• UML S S: 7.3.17 EnumerationLiteral (from Kernel).

3.3.11 Dependency

The stereotype Dependency extends the metaclass Association with a multiplicity of

[0..1].

Note: The stereotype Dependency is used to create a link that expresses the dependencies

between GRL«Actors> for GRL«IntentionalElements».

Attributes

Stereotype attributes:

• id: String Defines the identifier of the « D e p e n d e n c v » Association.

Constraints

• « D e p e n d e n c y » Association has a tag id that must be unique within the URN

specification.

• Each « D e p e n d e n c y » Association must have a unique name.

• GRL«IntentionalElement» Belief can never be the source or destination of a

« D e p e n d e n c y » Association.

Chapter 3. UML Profile for GRL - Structure of the Goal-oriented Requirement Language (GRL) Profile 57

• A «Dependency» Association is a link that is used to join at least one of the

linkable elements GRL«Actor» or GRL«IntentionalElement», that are con-

tained in a GRL«Actor».

Semantics

Attribute name: String of «Dependency» Association is mapped with name of Class,

which is inherited from NamedElement.

«Dependency» Association is a construct that enables reasoning about how

GRL«Actors» depend on each other to achieve their Goals.

Different configurations of «Dependency» Association can be used. Some sce-

narios are discussed below:

• [source GRL«Actor» -> depends -> GRL«IntentionalElement» (not con-

tained in any GRL«Actor») -> destination GRL«Actor>] means that Source

GRL«Actor» depends on the destination GRL«Actor» for the

GRL«IntentionalElement» which is not contained in any GRL«Actor». See

Figure 38.

ActorSource

*

Figure 38 Dependency Scenario 1

• [source GRL«Actor» -> depends -> GRL«IntentionalElement» (contained

by destination GRL«Actor»] means that Source GRL«Actor» depends on

the destination GRL«Actor» for the GRL«IntentionalElement» which is

contained inside the destination GRL«Actor». See Figure 39.

Actoruestination

S,

» » "

Chapter 3. UML Profile for GRL - Structure of the Goal-oriented Requirement Language (GRL) Profile 58

ActorSource ActorDestination

\ ..•*'

•J f IEDestination ^

*'»,.
. , . , ,»o"

'"*..

Figure 39 Dependency Scenario 2

[GRL«IntentionalElement» (which is contained by source G R L « A c t o r »)

-> depends -> GRL«IntentionalElement» (not contained in any

G R L « A c t o r ») -> depends -> destination G R L « A c t o r »] , meaning that

GRL«IntentionalElement», which is contained by source G R L « A c t o r » , de-

pends on the destination G R L « A c t o r » for the GRL«IntentionalElement»

which is not contained by any G R L « A c t o r » . See Figure 40.

ActorSource ActorDestination

/ " IESource * \ \ W

Figure 40 Dependency Scenario 3

[sourceGRL«IntentionalElement» (contained by source G R L « A c t o r ») ->

depends -> destination GRL«IntentionalElement» (contained by destination

G R L « A c t o r »)] , meaning that source GRL«IntentionalElement» which is

contained by the source G R L « A c t o r » depends on the destination GRL « I n -

Chapter 3. UML Profile for GRL - Structure of the Goal-oriented Requirement Language (GRL) Profile 59

tentionalElement», which is contained by destination G R L « A c t o r » . See

Figure 41.

ActorSource

* ,
"<..

ActorDestination

, '•">„.

C IESource ^ \ \

u r •: / lEDes t i na t i on \ '-

I v •

'"* -*'*'

Figure 41 Dependency Scenario 4

Notation

It is as shown in Figure 42:

Figure 42 Dependency

References

• UML SS: 7.3.33 NamedElement (from Kernel, Dependencies)

• UML SS: 7.3.3 Association (from Kernel)

3.3.12 Decomposition

The stereotype Decomposition extends the metaclass Association with multiplicity [0..1].

Note: The purpose of a GRL«ElementLink» is to define what a source

GRL«IntentionalElement» requires to be satisfied in order for a target

GRL«IntentionalElement» to be satisfied. An instance of Association is called a link3

[23]. It has the same semantics as stereotype Decomposition. The stereotype Decomposi-

tion possesses some of its own new attributes and properties.

3 Link: it is instance of UML metaclass Association. All previous occurrences of the term link were inter-
preted as English language words, not as Associations.

Chapter 3. UML Profile for GRL - Structure of the Goal-oriented Requirement Language (GRL) Profile 60

Attributes

Stereotype attributes:

• id: String Defines the identifier of the «Decompos i t ion» Association.

Constraints

• «Decompos i t ion» Association has an id tag, which must be unique within

URN specification,

• Each «Decomposi t ion» Association must have a unique name.

• A G R L « A c t o r » can never be the source or the destination of a «Decomposi-

t i o n » Association.

• A belief is a GRL«IntentionalElement» that can never be the source or destina-

tion of a «Decompos i t ion» Association.

Semantics

«Decompos i t ion» Association has different types that are specified by decomposition-

Type attribute of GRL«IntentionalElement». Those types are AND, XOR, IOR.

By using several types of «Decomposi t ion» Association, it is possible to de-

compose a target GRL«IntentionalElement» into many sources

GRL«IntentionalElement»s as desired. For the decomposition type with value AND, it

is mandatory that the entire set of source GRL«IntentionalElement» for the target

GRL«IntentionalElement» be satisfied.

«Decomposition»Association also enables the description of alternative means

for satisfying a target GRL«IntentionalElement» {XOR for mutually exclusive alterna-

tives, or IOR for alternatives that are not mutually exclusive)[17]. One of the source

GRL«IntentionalElement»s is sufficient for the target GRL«IntentionalElement» to

be satisfied

Modellers may apply additional constraints according to particular modelling re-

quirements with «Decomposi t ion» Association, like restricting only a Task as a

GRL«IntentionalElement» target for a link.

Attribute name: String of «Decompos i t ion» Association is mapped with name

of Class, which is inherited from NamedElement.

Chapter 3. UML Profile for GRL - Structure of the Goal-oriented Requirement Language (GRL) Profile 61

Notation

The notation for «Decomposition» Association is as shown in Figure 43:

Figure 43 Decomposition

References

• UML SS: 7.3.33 NamedElement (from Kernel, Dependencies)

• UML SS: 7.3.3 Association (from Kernel)

3.3.13 DecompositionType

The stereotype DecompositionType extends the metaclass Enumeration with a multiplic-

ity of [0..1].

Note: The purpose of stereotype DecompositionType is to decompose the

GRL«IntentionalElement» into one of three types according to the value of its attrib-

ute decompositionType. These types are AND, XOR or IOR.

Attributes

No attributes.

Constraints

No constraints.

Semantics

«DecompositionType» Enumeration is a user defined data type that is mapped with

EnumerationLiteral. The literals of «DecompositionType» Enumeration are used as

value by the attribute decompositionType. This attribute belongs to GRL «Intention-

alElement» metaclass.

«DecompositionType» Enumeration has three user defined values: AND means

that each of the sub GRL«IntentionalElement»s is necessary. XOR means one of the

sub GRL«IntentionalElement»s is enough and only one is selected. IOR means one of

the sub GRL«IntentionalElement»s is enough, but many may be selected.

Chapter 3. UML Profile for GRL - Structure of the Goal-oriented Requirement Language (GRL) Profile 62

These values are used by attribute decompositionType of «IntentionalElement»

Class.

Notation

No notation.

References

• UML S S: 7.3.16 Enumeration (from Kernel).

• UML S S: 7.3.17 EnumerationLiteral (from Kernel).

3.4. Global Overview of Profile

The next five figures summarize the stereotypes and extensions to UML present in our

profile for GRL and discussed in the previous section.

« m e t a c l a s s »

NamedElement < -

extends

«s te reo type»

ElementLink

«s te reo type»

GRLModelElement

«s te reo t ype»

GRLLinkableElement

Figure 44 GRL Model Element

Chapter 3. UML Profile for GRL - Global Overview of Profile 63

« m e t a c l a s s »

Relationship <-
extends

«s te reo type»

Decomposition

<<stereotype>>

•— ElementLink

«s te reo type»

Dependency

<<stereotype»

Contribution

contribution : ContributionType = Unknown

quantitveContribution : Integer = 0

correlation : Boolean = false

extends extends

'extends

XI _î _
<<metaclass»

Association

Figure 45 Element Link

«stereotype»
GRLLinkableElement

«stereotype»
IntentionalElement

type : IntentionalElementType
decompositionType : DecompositionType = AND
importance : ImportanceType = None
importancequantitati\« : Integer = 0

Figure 46 GRL Linkable Element

Chapter 3. UML Profile for GRL - Global Overview of Profile 64

<<metaclass»
Model <-

extends

«stereotype»
ElementLink

«stereotype»
IntentionalElement

type : IntentionalElemenlType
decompositionType : DecompositionType = AND
importance : ImportanceType = None
importancequantitative : Integer = 0

Figure 47 GRL Spec

«enumerat ion»

DecompositionType

extends extends ^

^

\

« m e t a c l a s s »

Enumeration

^

«enumerat ion»

ContributionType

- Make

-Help

- SomePositi\«

- Unknown

- SomeNegative

-Hurt

- Break

/?

«enumerat ion»

IntentionalElementType

Softgoal

Goal

•Task

• Resource

Belief

extends extends

«enumerat ion»

ImportanceType

High

Medium

Low

None

Figure 48 Enumerations

Chapter 3. UML Profile for GRL - Global Overview of Profile 65

3.5. Chapter Summary

In this chapter, we presented the correspondence of the appropriate UML metaclasses

with our GRL metaclasses. All GRL intentional elements are associated with the UML

Class metaclass and all ElementLinks are associated with UML Association metaclass.

Additionally, GRL Actor is also associated with UML Class metaclass and behaves as a

container and a stakeholder. GRL Actor is semantically different from UseCase Actor.

Some additional constraints required for GRL elements and inherited constraints from

their extended UML metaclasses were also discussed. The next chapter will discuss the

implementation of this profile in an industrial-strength UML tool.

Chapter 3. UML Profile for GRL - Chapter Summary 66

Chapter 4. Profile Implementation

This chapter provides a step-by-step implementation of our GRL profile with the tool

named Tau G2 4.0 from Telelogic [26] . Section 4.1 gives an introduction to Tau and its

features. Section 4.2 discusses Tau's support for profile creation using the Stereotype

Mechanism (SM) and the Metamodel Extension Mechanism (MEM). The steps we fol-

lowed to create the GRL profile are also included. The final section discusses tool limita-

tions and the visual appearance of the profile.

4.1. Introduction to Telelogic Tau G2 4.0

Telelogic (now IBM) Tau G2 version 4.0 [26] was released on February 24, 2008. Tau

supports Model Driven Development (MDD) in a UML-based environment. The product

is available for all well-known operating systems including Microsoft Windows, Sun So-

laris, Redhat Enterprise Linux, and Citrix XPe. The tool has the ability to integrate with

Eclipse and Microsoft Visual Studio .NET, as well as to fulfill requirements of domains

such as aerospace, defence, enterprise IT, financial services and transportation. Tau fully

supports OMG UML 2.1 for systems modelling. It also supports related standards such as

the System Modeling Language (SysML 1.0), the Extensible Markup Language (XML)

and the UML Testing Profile (U2TP). Figure 49 shows the Tau editor interface.

Tau G2 4.0 supports round-trip engineering of Java, C#, C++, Web Service Defi-

nition Language (WSDL), XML Schema Definition (XSD) and Common Object Request

Broker Architecture (CORBA). Tau supports automatic bi-directional communication

with the Eclipse environment, so the impact of any change in the code can be automati-

cally reflected in the model and vice-versa.

Chapter 4. Profile Implementation - Introduction to Telelogic Tau G2 4.0 67

ft !"•'. '? . !.•!•) .•;!. T-W jV' '-tMSI. \1 l.'l«'J

; " © 9 a E * S « Erafect guild Unit tools santfe" t*lp _ s x

... .3°^ 1. ^JJJ^gS^ 'Jg EQflJ tii to tf •£. ;*• f
! < * 8 ' HjJpetlink \W\ l&jkjt * l
* Wof[apace

-"IpTjpracUp

>. Model

* Predefined

*• Library

Fifes

*- Dependencies

Applied Stereotypes

| £] Welcome tnTaul [

ft v f , ^|flt'^JO«MB|Bfe
TauWetcome

New Project

Create a new Tan Project.

Documentation and Tutorials

• Access the latest product newsletter
• Access tutorials and short videos
» Download product documentation
• Install Tau Add-irts

Lea
pro

!
ili

Proceed Q

Open Workspace

owse for a workspace to open or open a
centry viewed Tau Workspace.

I Q l We View | & Model View | l j L-

Training and Support

visit Tetelogic Product Support
Browse the Knowledge Sasa
Download iate-breaktng and user-
contributed Tau add-ins
visit the Community Bulletin Board

Cp«

Figure 49 Telelogic Tau G2 4.0 Editor

4.2. Profile Support in Tau G2 4.0

Tau G2 4.0 supports UML profiling. As previously discussed, Tau allows to extend the

UML metamodel and, therefore, enables modellers to customize the UML metamodel

according to specific domains. Tau supports both the stereotype mechanism and the

metamodel extension mechanism discussed in Section 2.5.3. We briefly describe how

these two extension mechanisms can be used to support our UML profile for GRL in the

next two subsections. The tool has some limitations that are outlined in Section 4.2.4.

4.2.1 Stereotype Mechanism (SM)

As discussed in Chapter 2, the SM is a straightforward way of creating a profile. Some

specific steps are required in order to use Tau to design a UML profile with the SM. As

Chapter 4. Profile Implementation - Profile Support in Tau G2 4.0 68

no formal documentation exists that describe these steps, they are included here so others

can reproduce our results or create their own profile:

1. Create a directory structure in <Tau Installation>\addins folder.

2. In this folder, create a directory with a profile-appropriate name, like GRLProfile.

3. In this directory, create two sub directories, named "etc" and "script".

4. Create a script in GRLProfile directory with the same name as the parent direc-

tory and the extension .mod. The code of GRLProfile.mod will be:

[simplegrlprofile]

"scope" = "PROJECT"

"version" = "1.0"

"longname" = "GRL Profile by Stereotype Mechanism"

"description" = "It enables one to design a model, based on

GRL elements"

"product" = "elvis"

[simplegrlprofile/Bin]

"listBin"= ""

[simplegrlprofile/Script]

"listScript" = ""

[simplegrlprofile/Etc]

"listEtc" = "urn:u2:addins/simplegrlprofile/etc/

simplegrlprofile/simplegrlprofile.u2".

5. Launch Tau G2 4.0 and create a "UML for Modelling" project in "etc" directory.

Provide the same name to the project as simplegrlprofile. By right clicking on the

project, select the option "stereotype" and check TTDPredefinedStereo-

types::profile.

6. Create a class diagram in the model.

7. Collapse the library TTDMetamodel. There is a metaclass Class. Drag and drop

Class into the Class diagram.

8. Create a stereotype in the Class diagram by Tau tool palette. Assign Softgoal as

name to the stereotype.

9. Provide an extension link from the stereotype to TTDMetamodel::Class. A multi-

plicity is mandatory in the extension link. This method allows for the creation of

all stereotypes and their TTDMetamodel metaclasses that they extend.

10. Create the remaining stereotypes for the profile. These stereotypes represent the

GRL elements that are added to the profile.

Chapter 4. Profile Implementation - Profile Support in Tau G2 4.0 69

At this point, the profile is created. For the activation and usability of this profile, we

have to follow these additional steps:

11. Open a new instance of Tau. Create a project Prac (or any other name).

12. Create a Class diagram and add classes to it. Right click on Class, select stereo-

type, and apply simplegrlprofile::Softgoal, which will inherit all of the Softgoal

properties.

13. Repeat this action for the other stereotypes.

© W e l c o m e to Tau! I H) Class diagram!

«profile»packagesimplegrlprofile

«nwtaelas!,broiBserNo(l«»

::TTDMetamodel::Class V

^stereotyped

Actor

id; Charstring

name;Ch«WnB

«sterettype»

GRLLinkarjieBement

«sterertype»

TrtentionaBement

i d : Charstring

name: Charstring

type1: ttentionaBementType

decomposiionType: DecomposftionType =

importance: ImportanceType • None

intportanceOuirttaft'e: Integer = 0

AND

«metao1ass .MflserNode »

::TTDMetamodet:Association

«stereotype»

Decomposition

id : Charstring

name: Charstring

«stereotyf>e»

Dependency

id : CharstrhB

name Charstring

«enumef3tion»

DecomposittonType

AND

XOR

OR

< (enumeration >>

ImportanceType

High

Medium

Low

None

«enijmer3ti&n» '

IntentionaBementType

softgoal • ; ;

Goal

Task

Resource,

Belief:

«eriiimerat!orf>>

ContributionType

Make

Help

SomePosjtive .

Unknown

SomeNegatiye

Hurt

Break

«metaclassJnw»serNode»

::TTDMetamodet:ModeI A
* 0..1

«stereotype»

GRLspec

. ,

«metadass»

;:TTDMetaMQM:8etatior>$tiip

\

* 0..1

«stereotype»

BementLink

i d : Charstring

name; Charstring

«steraotype»

Contribution

id : Charstring

name: Charstring

contrtjutlon; Contri WienType=Unknown

quaritltatrveCortribution: Integer« 0

correlation: Boolean • false

Figure 50 GRL Profile by Stereotype Mechanism (1)

Chapter 4. Profile Implementation - Profile Support in Tau G2 4.0 70

Figure 50 shows the stereotypes that represent the GRL metamodel. The modeller can use

these stereotypes to design a system with a goal-oriented modelling view.

4.2.2 Metamodel Extension Mechanism (MEM)

Metamodel Extension Mechanism [29] is a more complicated but more complete way of

profiling UML. The support for MEM profiling was one of the reasons for the selection

of Tau as a target tool in this thesis. However, we realized after some experiments with

the tool that Tau does not fully support MEM profiling. Additionally, only very basic

documentation and limited support is provided by Tau for this type of profiling.

The following are the steps for creating a profile using this mechanism:

1. Install the FIDebugger, which is part of TAU G2 SDK. A UML entity is by de-

fault provided with a unique, randomly generated identifier called a Globally

Unique Identifier (GUID). A GUID remains unchanged for the entire lifetime of

an entity. FIDebugger is used to read that GUID for any GRL element residing in

the GRL profile.

2. Create a directory structure in <Tau Installation>\addins folder.

3. In this folder, create a directory with a profile-appropriate name, like GRLProfile.

4. In this directory, create two sub directories, named "etc" and "script".

5. Create a script in GRLProfile directory with the same name as the parent direc-

tory and the extension .mod. Some changes have occurred in the mod file, which

will cause the script to looks like the following:

[GRLProfile]

"scope" = "PROJECT"

"version" = "1.0"

"longname" = "GRL Profile by Metamodel Extension Mechanism"

"description" = "Enables one to design a model based on GRL

elements and creates a GRL editor with its own tool palette."

"product" = "elvis"

[GRLProfile/Bin]

"listBin"= ""

[GRLProfile/Script]

"listScript" = "load.tcl"

[GRLProfile/Etc]

"listEtc" = "urn:u2:addins/GRLProfile/etc/GRLProfile/

GRLProfile.u2"

Chapter 4. Profile Implementation - Profile Support in Tau G2 4.0 71

6. Create a project with the same name as the parent directory name and the mod file

name (GRLProfile). Select TTDPredefinedStereotypes::profile.

7. In the main GRLProfile Package, create four additional sub packages:

a. GRL Model

This package contains all metaclasses used for GRL model creation. Pass the

GRL information to the package. See Figure 51- Figure 54 for a description.

< <browserNode .metaclass > >

::GRLProfile::Package

«stenectype>>

GRLModel

0..1

I
< <metaclass .browserNode > >

:: TTDMetamodel:: Package

Figure 51 GRL Model Package (1)

< <brouiserNode .metaclass > >

:: GRLProfite::Narne$if>ace

< <browserNode .metaclass > >

::GRLProfile::'GRL Spec'

< <browserNode .metaclass > >

'GRL Model'

Figure 52 GRL Model Package (2)

Chapter 4. Profile Implementation - Profile Support in Tau G2 4.0 72

< <browserHode .metaclass > >

::GRLProfile:: Definition

T

< <bro«BerNods .metaclass > >

"GRL Model'

ownedMember

< <brouiserNode .metaclass > >

ElementlnGRLModel

Figure 53 GRL Model Package (3)

< <browserNode .metaclass > >

:: GRLPrafi/e:: Namespace

T

< <brawserNode .metaclass > >

:: GRLProfile:: Association

< <brouiserNode .metaclass > >

::GRLProfile::Class

Figure 54 GRL Model Package (4)

b. GRL Editor

This package contains all of the information necessary to create a GRL editor,

to specify which information can be kept by the editor, as well as to whom

this information can be passed to. The package diagrams are depicted in

Figure 55 - Figure 58.

Chapter 4. Profile Implementation - Profile Support in Tau G2 4.0 73

< <browserNode .metaclass > >

GRLModelDiagramContai/ter

J
< <browserNode .metaclass > >

:GRLProfile::'GRL Model': :'GRL

Model'
GRLModelDiagram

diagram

< <broujserNode .metaclass ,diagr3mRestrictions> >

"GRL Diagram'

Figure 55 GRL Editor Package (1)

< <stereotype.instance Presentation > >

GRLDiagram

0..1

< <browserNode .metaclass .diagram Restrictions > >

'GRL Diagram'

< <metaclass .brotuserNode .instance Presentation > >

:: TTDMetamodel: :ClassDiagram

Figure 56 GRL Editor Package (2)

Chapter 4. Profile Implementation - Profile Support in Tau G2 4.0 74

«browserfJode, metaclass»

::GRl_Profile::'GRL Model'::BementlnGRLModel

«metaclass»

Bementlink

«metaclass»

GRLLinkableBement

<<metaclass,browserNode,labelPosition,icon>>

::GRLProfile::'GRL Abstract Bements':: Actor

Figure 57 GRL Editor Package (3)

^browserModel.propertyModel.metamodel.profile.bindByGuid^

::GRl_Profile::'GRL Editor'

« i r |npor t»

«browserModel, property Model,rnetamodel,prof ile,bindBy Guid»

::GRLProfile:;'GRL Concrete Bements'

Figure 58 GRL Editor Package (4)

Chapter 4. Profile Implementation - Profile Support in Tau G2 4.0 75

c. GRL Concrete Elements

This package shows the metaclasses created for GRL elements. These meta-

classes describe the actual GRL constructs. Figure 59 and Figure 60 show the

content of this package.

«brawserNode,metaclassFdiagramRestrictions»

.;:GRLPI-oflie::'GRL Editor';:'GRL Diagram1

v elements

«metaclass»

tiGRLProfile.-rGRLEdiior^GRlmodslElement

7\_.. _

-^

«metaclass»

::GRLProfile::'GRi. Bitor'::BementLink

_

«browserN6de,metaclass,icon>>

Decomposition

«browserNode,metaclass,icon»

Dependency

«brotoserNode,metaclass,icon»

Contribution

«metaclass»

::GRLProfiler:'GRLEditor'::GRLLinkableHement

_ ,

<<metaclass,browserNodeJabeiPositiort,icon>>

:;GRLProfile::'GRL Abstract Bements'::Actor

«metaclass»

::GRLProfile::;GRLEditor'::lntentionalBement

«browserNode,metaciass,iabefPosition,tcon»

::GRLR-ofile::'GRL Abstract Hements'::goftGoal

<<browserNQde7metaclassjabe1PositiarUcon>>

::GRLProfiie:;'GRL Abstract Bements':;Goal

«brawserNMe,metaclass,labeIPosition,icon»

;:GRLR-of ite^'GRL Abstract Bements'::Task

«braywserNode,metaGlass,labelPosition,icon»

::GRlProfile::'GRl Abstract Bements'::Resource

<<browserNode,metaclass,fabelPosition,icon»

::<3RLProfile::'GRL Abstract Hements'::Belief

Figure 59 GRL Concrete Elements Package (1)

Chapter 4. Profile Implementation - Profile Support in Tau G2 4.0 76

«browserModel, property Model,metamodel,profile,bindByGuid»

::GRLProfile::'GRL Concrete Elements'

1,| ,1 , ,„ , | | I) " '", " , " " ,

«irVport»

,v
;
 : t . .

«bro»«erModel, property ModeI,metamodel,profile,birrdByGuid»

;;GRLProfile::'GRI_ Abstract Bements'

Figure 60 GRL Concrete Elements Package (2)

d. GRL Abstract elements

This package has all of the stereotypes that represent the GRL profile

ments. The package diagram is depicted in Figure 61 and Figure 62.

Chapter 4. Profile Implementation - Profile Support in Tail G2 4.0

«metaclass»

::GRLProfile::'GRL

Editor':;BementLink 0..1

«stereotype»

"GRLProfile-'GRLBditor'-elernentlink

0..1

«browserNode,metaclass,icon»

::GRLProfile::'GRL Concrete Bements'::Decorrposition

«metaclass»

::TTDMetam6del::Relationship

0..1

«browsefNode,metaclass,icon>>

::GRLPrafile::'GRL Concrete Bements'::Dependency

0..1

«stereotype»

;:GRLPrdfile::'GRL Concrete Bements'::decomposit ion

0..1

«stereotype»

::GRLProfile;:'GRL Concrete Bernents'::'dependency'

0..1

«browserNode,metaclassricon»

::GRLProfile::'GRL,Concrete BementS'::

Contribution

z

«metaclass,browserNode»

::TTDMetamodel::Association

0..1

«stereotype»

. ::GRLR"ofile::'GRl_ Concrete Bements'::contribution

contribution : ContributionType = Unknown

quantitativeContribution : Integer = 0

Correlation; Boolean = false

Figure 61 GRL Abstract Elements Package (1)

Chapter 4. Profile Implementation - Profile Support in Tau G2 4.0 78

«metaclass>>

^GRLProfileri'GRLEaitor'^GRLLinkableBement

'0..1

«stereotype>>

::GRLFrafile::'GRL Editor'::grlLinkableBement

<<bro\^erNode,metaefass,labelPositiQn,icon>>

SoftGoal

«browserNode,metaclass,labelPosftion,icon»

Goal

«metaclass»

::GRLR-ofi[e::'GRLEditor':::lntentionalBement

«stereotype,labelPosttion,icon»

softGoal

' type ' : Charstring = "Softgoal"

0..1

0..1

«stereotype,!abelPosition,icon»

goal

' type ' : Charstring = "Goal"

0..1

X.
<<stereotype»

intentionalBerhent

decorripositiohType: DecOrrpositibnType s= A N D

importance: ImportanceType• = None

importanceQuantitative: Integer = 0

0..1

<<metaclass, brows erN ode»

::TTDMetamodel::Class

ft"
0..1

CU,

«stereotype,labelPosition,icon»

task

' type ' ; Charstring = "Task"

«browserNode,metacfass,labelPqsition,icon»

Task: ' • • ' • ! . . .

<<browserNods,metaclass,[abelPosltron,rcon>>

Resource
IT.1

«stereoty pe, labeiPosition, icon»

resource

' type ' ; Charstring = "Resource"

«brqwserNode,metaa!ass,labelPosltton,taori»

Belief

<<stereotype,!abelPosition,icon»

belief :

' t ype ' : Charstring = "Belief"
0..1

«metaclass,browserNode,labelPbsition,icon»

Actor
t£i~

«stereoty pe,{abeiPosition,icon»

actor

0..1

«smu!'neration»

DecompositionType

AND

XOR

IOR

«enumeration»

ContfibutionType

Make

Help

Some Positive

Unknow n

SomeNegative

Hurt

Break

• <<enumeration» ^

ImportanceType

'High

Medium

Low

None

Figure 62 GRL Abstract Elements Package (2)

Chapter 4. Profile Implementation - Profile Support in Tau G2 4.0

All four packages extend the following predefined stereotypes, which will be explained

in the next section:

• TTDExtensionManagement: :browserModel

• TTDExtensionManagement: :propertyModel

• TTDPredefinedStereotypes: :metamodel

• TTDPredefinedStereotypes:: profile

• TTDPredefinedStereotypes: :bindByGuid

Classes and stereotypes use these predefined stereotypes with some addition from the

above mentioned:

• TTDPredefinedStereotypes: :metaclass

• TTDStereotypesDetails::icon

• TTDStereotypesDetails::labelPosition

• TTDExtensionManagement: :diagramRestrictions

• TTDExtensionManagement: :instancePresentation

GRLProfile is the main package and represents the GRL core. It has all metaclasses that

are not included in the above mentioned packages. Additionally, a number of properties

are required and can be made visible by simply right clicking on any element and select-

ing the properties option. The package GRL Model and the GRL Editor have constructs

which require extension of the GRL elements with the metamodel of TAU.

8. By launching the debugger, retrieve the GUID of the GRL profile and create a

Tool Command Language (TCL) script to launch the GRL profile. This TCL file

(load.tcl) should be located in the script directory which was produced when the

directory architecture was first created. The text file will have the following in-

formation:

package require commands

• Returns the session of the active project. Should be used whenever

• the session is needed.

proc GetActiveSession {} {

set activeProject [std::GetActiveProject]

return [lindex [std::GetModels -kind U2 -project

$activeProject] 0]

}

set ProfilePath [file join [std::GetlnstallationDirectory]

addins/GRLProfile/etc/GRLProfile/GRLProfile.u2]

output "Loading GRLProfile ..."

u2::LoadLibrary $ProfilePath

Chapter 4. Profile Implementation - Profile Support in Tan G2 4.0 80

set GRLMetaModel [u2::FindByGuid [GetActiveSession]

"QlhHIIuL3KVLJ8 9hjVuJ7 6RI"]

if {$GRLMetaModel != 0} {

RegisterMetaModel $GRLMetaModel

u2::SelectMetaModel $GRLMetaModel

}

output "Done.\n"

4.2.3 Predefined Stereotypes Description

Regarding the metamodel extension mechanism, there was a need to use predefined tool

stereotypes to obtain advanced profile functionalities. These predefined stereotypes are

listed below:

TTDExtensionManagement::browserModel

This stereotype is used for the application of metaclasses in metamodels and determines

the availability of nodes in the view.

TTDExtensionManagement::propertyModel

This stereotype is intended for the application of metamodels and determines the pres-

ence of a property view for the particular metamodel.

TTDPredefinedStereotypes::metamodel

This stereotype specifies that a package contains a representation of a metamodel; the

package typically contains classes that represent metaclasses in that metamodel.

TTDPredefinedStereotypes: .'profile

A stereotype profile is a package that is used for model extensibility and typically con-

tains a set of stereotypes that may be applied to elements in a model.

TTDPredefinedStereotypes: :bindByGuid

This stereotype specifies that contained references shall exclusively be bound by GUID.

TTDPredefinedStereotypes: :metaclass

This stereotype specifies that a class represents a metaclass.

TTDStereotypesDetailsr.icon

This stereotype is used to associate an icon with the graphical appearance of a symbol.

Chapter 4. Profile Implementation - Profile Support in Tau G2 4.0 81

TTDStereotypesDetailsr.labelPosition

This stereotype determines the position of the label (vertical or horizontal).

TTDExtensionManagementr.diagramRestrictions

This stereotype is applied to a metaclass in a diagram, in order to disable the use of a text

or comment symbol in that diagram.

TTDExtensionManagement::instancePresentation

This stereotype describes how instances of a stereotype should be presented by the prop-

erties editor; applying this stereotype as the default presentation enables it to be custom-

ized.

4.2.4 Limitations of the Tool

Although Telelogic Tau G2 4.0 supports UML profile creation, there exist several limita-

tions. The tool does not possess any construct or mechanism by which an Actor boundary

can be created. Furthermore, none of the profile creation mechanisms (i.e. Stereotype

Mechanism and Metamodel Extension Mechanism) supports the custom appearance of

GRL links. The tool, also, does not support all of the UML metamodel classes. At the

time of the GRL profile modelling, we found that the tool did not support the Enumera-

tion metaclass and the NamedElement metaclass. It is not apparent whether there are

other non-supported metaclasses, as our scope was limited. The tool forces the use of its

own custom enumeration construct. Thus, we did not find a way to extend our user de-

fined data types with the UML Enumeration metaclass. Moreover, we were forced to de-

viate from the original GRL metamodel, since the tool does not provide the NamedEle-

ment UML metaclass. Consequently, we used the Definition
4 metaclass as a replacement.

The GRL metamodel does not have a Package to encapsulate all GRL construct, but it is

limited by the tool that uses Package for accumulating and containing the GRL profile

constructs.

The tool does not support the association of customized multiple icons with Enu-

meration literals. As a result, we were forced to deviate from the original GRL meta-

model and we instead generalized the IntentionalElement class into five subclasses

4 Definition is a metaclass defined in Tau Metamodel.

Chapter 4. Profile Implementation - Profile Support in Tau G2 4.0 82

called: Softgoal, Goal, Task, Resource and Belief. This generalization allowed us to as-

sign customized icons to the classes.

Another limitation is caused by the stereotypes that are associated with meta-

classes other than the Class metaclass. These stereotypes are neither applied nor selected

automatically by the tool at runtime. Consequently, this made us unable to automatically

implement the functionality of the Associations and led us to manually assign the appro-

priate stereotype. However, we did not face this problem when dealing with the other

stereotypes associated with the Class metaclass.

The tool has a number of views to show the different aspects of the model. These

views include a standard view and a diagram view. When a UML diagram and GRL dia-

gram are created together, the diagram view reveals all of the diagrams but not the cus-

tomized tool palette for the GRL diagram. Only the Class diagram tool palette is shown,

as the GRL diagram is based on the Class diagram. Conversely, the standard view only

shows the GRL diagram and its tool palette, but no other types of UML diagrams.

After discussion with the Telelogic support staff, it was concluded that some limi-

tations were due to a bug in the tool.

4.3. Profile-Based GRL Editor

The two approaches discussed above were used to create GRL profiles and models based

on these profiles. The following is a discussion on GRL model edition based on the two

mechanisms.

4.3.1 Stereotype Mechanism

This approach does not provide a separate GRL editor. We must activate the GRL profile

and then create a Class diagram. In the Class diagram editor, we create classes and manu-

ally associate an appropriate stereotype to each of these classes. A property view enables

the setting of attribute values for the elements. The resulting model appears as in Figure

63. This approach significantly increases the probability of mixing UML elements with

GRL elements in undesirable ways.

Chapter 4. Profile Implementation - Profile-Based GRL Editor 83

-af i le S« Bw Ere)** 6 * U* I « * Mn*» tW>

' & & * £ ' Hyperlink ^ ^ a ^ ^ ^ j
iljt^pp|lc.a!!on_B^deL .Ed® Lfj & Jft & ; 4 »

• * : ^ ^ « -i : r ~ T » *™i jyj™ 3 ^

Workspace ^ * x

c ^ I P r a c T t t p

- Model

- _j Frac

^Ctasicfiacjfarfii

^ TM Zand date

|=§ 'TA Application system

t1 i <Associdhon>('TA Ap|

t Predehnud

\$ Library

• Files

si) Dependencies

Applied Stereotypes

i g j Welcome to Taii j ; ^ Class diagram!

J 1

4 T

4 *

1L
[gReMiew | ^ Model View F

liL

package Prac

'TA candidate'

depends_on

«simpfegf!proM* ;:Dependencv»

'TA Application system'

"31

;•' ;• • Visibintyf

•"•/'ViFtuality(

TefnplaterPaf ameters j ^ !"i X * *

•Act ive

Id 2

decwipositignTypefflM) [v]

importance [ffofle [v]

importanceQuantttative jtt]

type softgoal a
flame I TA Application 5ystem

!AL ^

Add-in simplegrlprofile selected for project Prac.ttp

JAdd-in module simplegrlprofile activated.

H _Messages ^AutQCheefc /
..B

ClassSymbol TA Application system

I QSRLPtoflte [i3<k&sm$ I SJthesisSmlPKifteJ.,,

Figure 63 Stereotype Profile View

4.3.2 Metamodel Extension Mechanism

This approach allows obtaining a specific GRL editor with a customized tool palette for

GRL constructs. It is possible to "drag and drop" elements in the GRL editor to create a

GRL model. The user is able to create a model based solely on GRL elements with little

chance of diagram pollution. Again, a property view can be used to provide values to at-

tributes without visual representation. The resulting diagram appears as in Figure 64.

Chapter 4. Profile Implementation - Profile-Based GRL Editor

file:///_Messages

. i s Bis 6 * Jew P/oiect Bulk) Link lools Htatew Help

; O u H « A 'b *d X •'• -- a ':* ,<3> *? fMCDttp ' v l W a i * :d f Mci'™Mei_.hJct ̂ a i t a '*•-"»
•$ & ifcU Hyperlink M « B - » l y a ; & a > ^ *i JSi° J3~ H ' J ^ A J

: Workspace * * x

'fa ^ MCDit|T[GRijPi'rfLileT 1 A |

j S f._3 MCD

G ownedMernber

j f Customer

O Receive Products

O Clerk Validation

O Customer Credit Histor

O Customer Bank Balanci

O Valid Payments

£ Clerk

• Products

• Payment

O Products correspond tc

J£ Merchant

CD Receive Payment

O Provide Products

O Cheque Bounce

J£ Bank
* O Validated Certified Chej

• Bank Account

O Verification by Credit C f

1 O Verification ot o^enl! ("j

, Q Verification by Concern

Q Send Request to Teller *

O Access Cusromer Historvt

I 1>JJ
l i f f e V w 1 3 Model View j

: • « • • • •

il<L

*

*

1 14 « ^ H \j^essase^jV^,i?^25!iA§S!Pt A^^SE!;/ II<L ' _ 1 »

F
a'

v

GP.L Diagram GRL Dtagraml

Figure 64 GRL Editor View

4.4. Chapter Summary

In this chapter we have used Telelogic Tau G2 4.0 for implementing our GRL profile.

We used both the Stereotype Mechanism and the Metamodel Extension Mechanism, and

the steps required to create such profiles were defined and illustrated. We faced some tool

limitations that forced alterations to the implemented GRL metamodel. The major limita-

tion was the lack of support of the Association metaclass in the UML profile.

Chapter 4. Profile Implementation - Chapter Summary 85

Chapter 5. Experiments and Evaluation

In this chapter we use goal models created with a specialized GRL tool (jUCMNav [19])

and model them again with the help of our GRL profile created using the Metamodel Ex-

tension Mechanism in TAU. "jUCMNav [24] is a graphical editor and an analysis and

transformation tool for the User Requirements Notation (URN). URN is intended for the

elicitation, analysis, specification and validation of requirements. URN combines two

complementary views: one for goals provided by the Goal-oriented Requirement Lan-

guage (GRL) and one for scenarios provided by the Use Case Map (UCM) notation"

[19]. A snapshot of this editor is shown in Figure 65.

>(gjxfi

Figure 65 jUCMNav Editor View ([19])

Chapter 5. Experiments and Evaluation - Chapter Summary 86

We attempt to validate our profile through the creation of a sample model. We

will compare an implementation of the model using both jUCMNav and Tau with the

GRL profile. This example is taken from software engineering course assignment given

by D. Amyot (with his permission) in 2007. The application model is a university Teach-

ing Assistants (TAs) allocation system. This system models the concerns of various

stakeholders for an upcoming system used to allocate TAs to courses in a University.

There are two alternatives considered for TA candidates to apply for courses: Pa-

per-based forms and Web-based forms. There are also two alternatives for allocating

candidates to courses: 1) fast and cheap allocation based completely on the candidate-

provided information, and 2) candidates are also interviewed to ensure minimal compe-

tencies. This system is limited to four actors with several goals, tasks, softgoals and be-

liefs. These actors are:

Chapter 5. Experiments and Evaluation - Chapter Summary 87

TA Candidate: Their expectation from the system is to be secure and flexible. According

to them, the system should allow one to apply to many courses at a time in a secure way.

They do not want to enter the same information repeatedly and also do not want to submit

forms by physical means at a particular office. The following figure shows that TA can-

didates can apply using a paper-based application or web-based application. With the

former, TA Candidate cannot easily apply to many courses at once and there are security

concerns. The latter enables the TA Candidate to apply to many courses at once by a se-

cure mean. Candidate may or may not be interviewed with either means of application.

TA Candidate

Figure 66 TA Candidate, Modelled with jUCMNav

Chapter 5. Experiments and Evaluation - Chapter Summary 88

Administration: The University administration wants the system to be produced and op-

erated at a very low cost and enormously wants to avoid objections and grievances from

candidates. The following figure shows that the administration may or may not interview

candidates during the selection process. If the administration follows the process of inter-

viewing each candidate, then there is a possibility of discrimination. This also affects the

effort of maximizing the number of selected TAs and increases the cost of the selection

process. On the other hand, if the administration does not do any interview, this decreases

the selection process cost, helps to select a maximum number of TAs, and decreases the

possibility of discrimination.

.„.•'*'"' f Minimize Cost ^ "'"''-.,,

f Minimize \ jJt ^ s „
/ (Grievances 1 / * + H e b T^M* ~ \
; V J / C * ~ ~ T r T " N 7 Wimize Ongoing \ :.
• -'r f Minimize Startup A I Cos ts i •

V ^ _ c o s t J K^L^V

Figure 67 Admin, Modelled with jUCMNav

Students: Students want a competent TA for their labs and tutorials. They also desire to

get TAs as early as possible at the beginning of the semester. The following figure shows

that by using interviews, students get a competent TA but the process may take more

time. Without interviews, students may get TAs earlier but the competency will not be

guaranteed.

Chapter 5. Experiments and Evaluation - Chapter Summary 89

Student

\ / Paper Based \ / W e b Based \

Figure 68 Student as Designed in jUCMNav

TA Union: The TA Union wants a maximum number of candidates to be able to access

the system and fill the forms, and that a maximum number of appointments of TA posi-

tion become possible.

TA Union

Ifegativ^'

/ No Interview \ / Interview \

Figure 69 TA Union, Modelled with jUCMNav

Chapter 5. Experiments and Evaluation - Chapter Summary 90

This example will reveal several limitations of Tau, as previously discussed in

Section 4.2.4. The nature and correctness of the modelling of the above actors and inten-

tions is not a concern here; this is only an example that uses many elements of the nota-

tion.

Another Example considers is a Merchants and Customer Dependencies (with the

jUCMNav Editor): The merchant-customer dependency system has almost all the possi-

ble usage scenarios of GRL constructs. The model includes four actors: Customer, Clerk,

Bank and Merchant. Actor Customer receives products from actor Merchant. In response,

actor Customer sends a Payment to actor Merchant. Payment should be valid. Its validity

can be checked by actors Clerk and Bank. An effort was made in Figure 70 to cover a

maximum number of GRL constructs. Both considered example's diagrams are aimed at

showing the completeness of our work. They include the GRL constructs of goal, soft-

goal, task, belief, resource, dependency, contribution, correlation, decomposition and ac-

tor.

Actor Customer contains intentional elements as well as another actor with its

own intentional elements. It has dependency links with intentional elements residing out-

side of its boundary. Intentional elements inside its boundary have contribution links, de-

pendency links, and "OR" decomposition links. The actor also has dependencies with

other actors and intentional elements.

Actor Clerk is placed inside the boundary of actor Customer (the customer here is

likely a large organization). It owns intentional elements and has contribution links with

other intentional elements owned by actor Customer. Actor Clerk's intentional elements

have "And" and "Or" decomposition links as well as contribution links with standalone

intentional elements.

Actor Bank is dependent on actor Customer for specifying a Bank Account during

transactions. It resides outside of Customer's boundary.

Actor Merchant is also a standalone actor. It does not reside in any other actor

boundary and it also has its own intentional elements, which depend on other intentional

elements outside the boundary of the actor.

Chapter 5. Experiments and Evaluation - Chapter Summary 91

Standalone intentional elements have correlation links, dependency links and con-

tribution links. There is a belief "Cheque Bounces" that does not belong to any actor and

has a correlation link with an intentional element owned by actor Customer

Figure 70 Merchant and Customer Dependencies, Modelled with jUCMNav

The goal of this exercise is to demonstrate the profile's level of effectiveness and pre-

ciseness in comparison to jUCMNav. Both considered examples will mutually cover all

constructs, links and scenarios of GRL. In Section 5.1, we describe the Ta system model

created using Telelogic TAU G2 4.0 with the GRL profile extension. Section 5.2 dis-

cusses the Merchant and Customer Dependencies model created using Telelogic TAU G2

4.0 with the GRL profile extension and Section 5.3 evaluates the two designs from our

perspective.

Chapter 5. Experiments and Evaluation - Chapter Summary 92

5.1. The TA System Designed in Tau-GRL Profile

Our GRL model is composed of four diagrams, one per actor. Each diagram created using

the profile's implementation will be compared to the equivalent jUCMNav diagram.

TA Candidate

<<actor>>

'TA Candidate'

X
<<softGoal>>

• 'Eliminate repetitive information'

4 * *

T y w i

<<softGoal>>

lo need to physically transport forme' 3

<<softGoal>>

'Many Courses at Once' 3

Contribution

Ctntritautidn

t Contribution

correlation

Contribution
Contributiol

/ <<task>> \ / < < t a s k > > \

\ Interview / \ 'No Interview' /

Correlation

/ ' ' J / <<task>> V

/ <<aak>> \ W e b Based' /
y Paper Based ' / * '

Decomposition

OR

VGet Applications'^

Decomposition

sj, OR Decomposition

I 'Assign Positions' J Decomposition ^ 'Assign Positions'

«7

Figure 71 TA Candidate, Modelled with Tau GRL Profile

Chapter 5. Experiments and Evaluation - The TA System Designed in Tau-GRL Profile 93

Figure 66 and Figure 71 represent the first diagram of our GRL model in jUCMNav and

Tau-GRL profile, respectively. This is a representation of the TA Candidate actor. The

actors, intentional elements and links are captured correctly in our profile. However, by

comparing both diagrams, we can see that the actor boundary is not supported by our

GRL profile, because of a limitation of Tau, and containment relations have to be shown

using associations. Textual and graphical representations of the impact and decomposi-

tion type of the different links are also missing in Figure 71 Again; this is because of a

lack of support by the tool. We can show a textual representation of these elements only

as comments, but they are captured formally in the properties of their respective model

elements (so the information is there for analysis).

Admin

Figure 67 and Figure 72 show the Admin actor goal diagram in both jUCMNav and Tau-

GRL profile. In this comparison, our focus is on correlations, decomposition, contribu-

tion, goal, softgoal and task. They are captured, but with limitations similar to the ones

discussed before.

Chapter 5. Experiments and Evaluation - The TA System Designed in Tau-GRL Profile 94

-factor »

Admin

J <<softGoal>> |_

m. 'Minimize Grievances' I

Decomposition

INEMD

Decomposition

<<softGoal»

LMaximize number of TAs' ^ \

<<softGoal>>

Co •relation

contribution

contributon

Correlation

'Minimize possibility of discrimination'

t Correlation

J qjfrelafioril

t Contributbn

Contribution contribution

ContrtbA* *

contribution

J <<task>> V / <<task>> \ / <flask» \ f~

\ Interview / Vfo Interview/ y'web Based ' /) £

CiJntoiui i

DecompositibnDecomposition

OR OR

(\
\ 'Assign Positions' J

<<task>

'aper Based;

Decomposition

OR

(\
I 'Get Applications' /

OR

s e d /

Decomposition

Figure 72 Admin, Modelled with Tau GRL Profile

Chapter 5. Experiments and Evaluation - The TA System Designed in Tau-GRL Profile 95

Student

<<actor>>

Student

Contribution

Contribution

y lo Interview/ \ Int

dcontribution

Correlation

:ontribution

<task>

Interview *J \

+ *

Correlation

<<task>> ^

'aperBasecW

/ <flask>> V

\ ' w e b Based' /

Figure 73 Student, Modelled with Tau GRL Profile

Actor Student's goals are to get a competent TA on time. Figure 68 and Figure 73 show

these goals modeled with both tools. The above diagrams have intentional elements

owned by the actor and some intentional elements that are outside of their boundaries.

Chapter 5. Experiments and Evaluation - The TA System Designed in Tau-GRL Profile 96

TA Union

<<aetor>>

'TA Union'

/ «task>> \

\ 'Paper Based' /

Figure 74 TA Union, Modelled with Tau GRL Profile

Actor TA Union's goals are modeled in Figure 69 and Figure 74. This actor wants a

maximum of students to be able to fill forms for a TA application and that the number of

hired TAs be maximized. Both diagrams show that a Web-based application is a good

approach for maximizing the number of TAs by the contribution link of Web-based task

with the softgoal "Maximize number of TAs".

5.2. The Merchant and Customer Dependencies Designed in
Tau-GRL Profile

In this example, we cover all constructs and scenarios which are not discussed in the pre-

vious example.

Chapter 5. Experiments and Evaluation - The Merchant and Customer Dependencies Designed in Tau-
GRL, Profile 97

Merchants and Customer Dependencies (with the Tau GRL Profile)

«actor»

Bank

Contribution

j » '

/ «task» \ i t
('Verification by Credit) / «task» \
\ Card Company / ('Verification of overall 1

» — - ' \ Credit Card History' /

Make

(V
V'Send Request to Teller" /

:ontribution

j < < a s k > > \ Contribution
{ 'Access Customer J
\ History /

Figure 75 Merchant and Customer Dependencies, Modelled with Tau GRL Profile

Chapter 5. Experiments and Evaluation - The Merchant and Customer Dependencies Designed in Tau-
GRL Profile 98

This sample model has an actor (Bank), a goal (Receive Payment), a task (Provide Prod-

ucts), a belief (Cheque Bounce), resources (Products) and a softgoal (Verification by

Concern Bank). All links (Dependency, Contribution, Correlation, and Decomposition)

are also covered as mentioned in Table 4. The example also covers different scenarios

like actor containing other actors, actor containing intentional elements, belief linked

with a resource, intentional elements owned by an actor which depend on stand alone in-

tentional elements and vice versa, actor depending on other actor. Figure 75 has Contri-

bution types (Make, Help, and Break) but these are just names and they are actually set in

the properties of the constructs. All valid links from actor to actor, actor to intentional

elements, intentional elements to intentional elements and intentional elements to actor

are also examined in the sample models. Table 4 summarizes all GRL constructs from

sample models

Table 4 Summary of GRL Constructs Used in Sample Models

Category

Intentional Elements

Actor

Element Links

Element Name

Goal

Softgoal

Task

Resource

Belief

Actor

Decomposition

Contribution

Correlation

Dependency

Figure#

Figure 71

Figure 71

Figure 71

Figure 75

Figure 75

Figure 71

Figure 75

Figure 75

Figure 72

Figure 75

Figure 75

Figure 75

Construct Instance

Get Applications

Security

Interview

Products

Cheque Bounce

TA Candidate

XOR (Clerk Validation: Goal)

AND (Customer Credit History

Check: Task)

IOR (Get Applications: Goal)

Send Request to Teller: Goal

Valid Payments: Task

Valid Payments: Task

Chapter 5. Experiments and Evaluation - The Merchant and Customer Dependencies Designed in Tau-

GRL Profile 99

5.3. Evaluation

The comparison of the two designs provides a visual evaluation of the limitations of Tau

profiling. We attempted in this example to include all of the GRL constructs. Actors, as

well as all types of intentional elements, element links, and contributions are supported.

However, we were not able to support visually some of these constructs using the profil-

ing feature in Tau. This resulted in the need for compromises and forced us to deviate

from our original GRL metamodel. The differences can be summarized as follows:

• Decompositions differ visually in the jUCMNav example from the Tau GRL pro-

file. This is because there is no customized appearance for links in Tau GRL pro-

file.

• The new GRL metamodel no longer supports Belief as a comment; it is now an

IntentionalElement. This metamodel change has not yet been reflected in jUCM-

Nav but was reflected in Tau.

• Due to Tau limitations, we were unable to implement, in a visual way, the actor

boundary construct in Tau GRL profile. However, the actor boundary construct is

well supported in the GRL profile as discussed in Chapter 3. We have linked In-

tentionalElements association to Actor, to preserve the sense of ownership.

• The qualitative values of Contribution links are not shown in Tau GRL profile but

appear in the jUCMNav example. They exist as properties in the Tau GRL pro-

file. It is therefore, possible for the modeller to set qualitative values as attributes.

• One thing that our Tau GRL profile supports well and that the current release of

jUCMNav does not yet support is direct dependencies between actors.

• Tau does not support OCL implementation for profiling. There is a notion of in-

formal constraints in Tau that are limited to text. Consequently, the GRL profile

in Tau does not implement the constraints mentioned in Chapter 3, for each GRL

element.

The extents to which GRL profile meet our requirements are examined in the following

four subsections.

Chapter 5. Experiments and Evaluation - Evaluation 100

5.3.1 Integration with UML

To fulfill this requirement, we have created a model where the UML diagrams and the

GRL diagrams are connected to each other. This makes the exchange of information be-

tween the two different types of diagram possible and allows achieving the integration

requirement. This integration helps to create required UML diagrams based solely on

GRL artefacts.

To make these connections, we have used a start link and end link, already avail-

able in Tau, between GRL constructs and UML diagram constructs. These are similar in

spirit and form to the URN links discussed in Figure 8. This also allows to navigate from

one diagram construct to the other. As shown in Figure 76 and Figure 77, all (blue col-

oured) underlined constructs of the GRL diagram are linked to the Use Case diagram

constructs with (blue coloured) triangles. For instance, the use case actor Customer is lin-

ked to the GRL actor Customer. The user can navigate back and forth between the two

diagrams by clicking on these elements.

<<actor>>

Customer

X

r~—\
V 'Receive Products' J

<<actor»

Merchant

Dependency

Help

Contribution

Dependency i ! \ Deper
/ <<task>> \ < .
\ Valid Payment1 /

%
Contribution

<<rasouree>>

Products

/ <<task>> \

-^V 'Provide Products' J Help

<<task>
Dependency (, p r o v j d e P m d u c t s l

<<resouree>>

Payment.

Contribution

Dependency

V 'Receive Payment' J

Figure 76 GRL Diagram to Show Links

Chapter 5. Experiments and Evaluation - Evaluation 101

<actor> <actor>

Customer: Customer Merchant: Merchant

Figure 77 Use Case Diagram to Show Links

An interesting feature that we have provided is the re-usability of the GRL diagram con-

structs. This feature allows a UML diagram to re-use a reference to a GRL construct from

another diagram. This means that any change in the re-used construct (e.g., the name or

some other attribute) appears automatically on all its other occurrences in all the dia-

grams of the model.

An example demonstrating how our work fulfills this requirement is given below

in Figure 78 - Figure 80. This example shows a system that is modelled first by a GRL

diagram and, re-using some of the information available in the GRL diagram, we created

two other UML diagrams representing the same model. A GRL actor can for example be

dragged from a list of UML constructs and dropped onto a use case diagram or a se-

quence diagram to create new references to the original element.

Chapter 5. Experiments and Evaluation - Evaluation 102

«actor>>

Customer

X

<<actor>>

Merchant

r~—Y
V 'Receive Products' J

Dependency

'Receive Products' J ^

Help

Contribution

Dependency
/ <<task>> \ ^ — Z - .

\ 'Valid Payment' /

*
Cortribution

<<resource>>

Products

/ <<task>> \

->\'Provide Products' / i e | p

<<task>>
Dependency f , p m v i d e p r 0 d u c t s ,

«nasGurce>>

Payment

Contribution

Dependency

<~ Y
V 'Receive Payment' J

Figure 78 Customer Merchant Dependency (GRL Diagram)

<aotor>

Customer: Customer

<actor>

Merchant: Merchant

<<include»

r—%

f Validity)

Figure 79 Customer Merchant Dependency (Use Case Diagram)

Chapter 5. Experiments and Evaluation - Evaluation 103

<<actor»

: Customer

-Q-

Merchant

-^ 'Product request send'Q i
'Ack. with price info'Q

'Place Order'Q

'Send invoice'Q

'Debit payment'Q

'Recipt send'Q

l Products

'Product send'Q

Payment

'Transaction approved'Q

Figure 80 Customer Merchant Dependency (Sequence Diagram)

5.3.2 Diagram Pollution Avoidance

Because of the availability of separate GRL editors and a separate customized tool bar,

diagram pollution is avoided in our work. This can be seen clearly in Figure 81, where

the palette available for a GRL diagram in a model only contains GRL constructs.

Chapter 5. Experiments and Evaluation - Evaluation 104

; SB gte 6 * VBW Project {u*f link loch Sffindow Help

v] DefaL |£[^Applic;lloriBuildei__ [vJQ | j j djl M A ; 4 " *>

'«>t»̂ iHiimiriir g «s a; ;*yH : - f t ^ ^ » ^ ; a - [M „ , .-_-7ET1° .1:3'* Bnt ««jojx\
> o a

Workspace f. >•

* 3 " mcd with umUtp rGftlPrrtfHef

l*L. - i Li>
| D Fie View I £ j Model View I

j ^ ^ jWefeonf f l foTau i l .Q; Merchant Customei GRL | S3 Usecase dagraml j ^ Sequence diagram!

O

•
a
o
t
A
+

package merchant_customer Merchant Customer GRL {!/:•:}

«acror»

Merchant

\ 'Valid Payment' /

.>\'Provide Products' Alelp

Contribution

c~—v
V 'Receive Payment' J

Figure 81 GRL Diagram in GRL Editor

5.3.3 Metamodel Stability

Our GRL profile is based on a metamodel that has been created two years ago and that is

also at the core of the goal modelling tool jUCMNav. This metamodel is ongoing a stan-

dardization process by the ITU-T [17]. Consequently, our work meets the metamodel sta-

bility requirement, although we expect minor modifications in the final form of the stan-

dard.

5.3.4 Implementability of the Profiling Mechanism

We implemented our profile using both the Stereotype Mechanism and Metamodel Ex-

tension Mechanism. The latter approach led to better results in terms of what the editor

enables modellers to do. Although the visualisation of some of the GRL elements is still

an issue, all of the attributes can be set correctly through property panels.

5.4. Chapter Summary

This chapter discussed the implementation of the GRL profile. From the above examples

and evaluations, it is possible to conclude that profiling practices are sufficiently mature

Chapter 5. Experiments and Evaluation - Chapter Summary 105

to support a goal modelling profile in a way that satisfies our four requirements. How-

ever, the tool we used for profiling GRL (Tau) is still incomplete in several aspects re-

lated to visualization. More effort is required to improve the tool functions, which will

improve its ability to create good editors for UML profiles.

Chapter 5. Experiments and Evaluation - Chapter Summary 106

Chapter 6. Conclusions

6.1. Summary

In this thesis, we defined a UML profile for the Goal-oriented Requirement Language

based on a GRL metamodel. This metamodel is currently used by an editor named

jUCMNav. It is also undergoing standardization [17] in ITU-T, with an expected comple-

tion date in the fall of 2008. The profile was implemented for validation in an industrial-

strength UML tool, namely Telelogic Tau G2 4.0. Two examples were designed to ana-

lyze how well our profile can be supported in practice (with a comparison to jUCMNav)

and to evaluate Tau's features and limitations for supporting such a profile. Previous re-

search work suggested metamodels for non-functional requirements and functional re-

quirements. However, a standard UML profile addressing a goal-oriented modelling do-

main does not exist. All of the reviewed previous work was based on presumed and non-

validated metamodels.

During our research, we extended the UML metamodel for a goal-oriented model-

ling domain. UML does not allow a direct customization of its metamodel. A profiling

mechanism is rather provided through which a modeller can extend and then customize

the UML metamodel. We used this feature to map the GRL metamodel classes with ap-

propriate UML metaclasses as described in Chapter 3. The mapping was completed by

strictly following the ITU-T guidelines for UML profile creation. We also ensured that

the inherited UML metaclass constraints were not violated.

This thesis work entailed the following research process. Section 2.1 briefly dis-

cussed the UML architecture with a detailed focus on its infrastructure and superstruc-

ture. Additionally, the UML metamodel and its layers were also reviewed. Section 2.2

gave an overview of URN and of its meta-metamodel (Z. 111). In Section 2.3, GRL was

studied in detail with its elements and notations along with an overview of an evaluation

mechanism. Section 2.4 presented an explanation of the GRL metamodel based on the

draft ITU-T standard document Z.151. Section 2.5 and 2.6 examined the standard rec-

Chapter 6. Conclusions - Summary 107

ommended methods for a UML profile creation. Tools supporting profile creation and

ITU-T's standard for profiles were studied in detail. Section 2.7 discussed previous re-

search work for goal modelling and compared their results with our stipulated require-

ments.

Chapter 3 explained the correspondence of the GRL metamodel with the UML

metamodel. This chapter proposed appropriate UML metamodel classes that should be

extended by GRL metamodel classes. This chapter included the description of all attrib-

utes, semantics, constraints, notations, and individual class references for stereotypes.

Chapter 4 included the implementation of our suggested UML profile for GRL us-

ing Telelogic Tau G2 4.0. Section 4.1 included a discussion of Tau. Section 4.2 entailed

the detailed discussion of Tau's support for profile creation by the stereotype mechanism

and the metamodel extension mechanism. Because of weaknesses in Tau's documenta-

tion, our implementation was based on the exploration of Tau's metamodel and its add-

ins. We were forced to deviate from the original metamodel because of some limitations

of Tau.

Chapter 5 consisted of experimentations and evaluation of our implemented pro-

file. The evaluation was assessed based on a comparison between jUCMNav and our pro-

file for the creation of two goal models.

6.2. Concluding Remarks

The work in this thesis is the first to design, implement, and evaluate a UML profile for

standard-based goal-oriented modelling. Although some goal-modelling profiles already

existed in the literature, such as those in [4][5][6][9][25], none of them is fully imple-

mented. In our work, we addressed four requirements, which are 1) the integration with

UML, 2) the avoidance of diagram pollution, 3) the stability of the metamodel and 4) the

implementability of the profiling mechanism. Our work was compared with four related

approaches [5][6][9][25]. The results of the comparison were detailed in Chapter 2 and

they are repeated in Table 5 together with a new row (at the bottom) that addresses our

UML profile for GRL. It is worth mentioning that our profile is the only one that meets

all the stipulated requirements, mainly because it is the only one implemented. Interest-

Chapter 6. Conclusions - Concluding Remarks 108

ingly, the implementation of the profile showed us some major limitations in the state-of-

the-art profile creation tool we used.

Table 5 Comparison of GRL Profile in Tau with Previous Work

A Template based analysis of

GRL [6]

UML profile for Enterprise

Goal Modelling [9]

UML profile for Softgoal by

use case driven approach [25]

Using UML to reflect non-

functional requirements [5]

UML Profile for Goal-

oriented Modelling

Integration

With UML

Not

Satisfied

Satisfied

Satisfied

Not

Satisfied

Satisfied

Diagram

Pollution

Avoidance

Not

Satisfied

Not

Satisfied

Not

Satisfied

N/A

Satisfied

Metamodel

Stability

Not

Satisfied

Not

Satisfied

Partially

Satisfied

N/A

Satisfied

Tool

Support

Not

Satisfied

Partially

Satisfied

N/A

N/A

Satisfied

Our proposed solution acknowledges that the selected tool Tau is not yet in a po-

sition to completely support profiling. Due to Tau's limitations (which were detailed in

our implementation and experiment work), we were forced to make alterations to the

GRL metamodel. However, these alterations did not change the semantics of the original

metamodel. There are visualization limitations for some of the elements but all the re-

quired attributes are accessible via a property panel.

Last but not least, the profile implementation was used to model two sample ap-

plications: a university Teaching Assistant allocation system, and a Merchant and Cus-

tomer system. All the GRL constructs were covered by these examples. In addition, it

was shown how the goal view integrates with the other types of diagrams in a UML

model.

Chapter 6. Conclusions - Concluding Remarks 109

6.3. Future work

The extension of the UML metamodel for GRL is a significant step in establishing our

metamodel's compatibility with the UML metamodel. Its successful implementation adds

to our overall vision of effectively mapping the UML metamodel elements to GRL

metamodel elements.

Future works include adding GRL strategies to the profile. This will enable mod-

ellers to capture in UML strategies meant to evaluate their goal models. The creation of a

UML profile for Use Case Map (UCM) will also be a considerable contribution to model-

ling and would help covering the entire User Requirements Notation. However, the mis-

sion will be comparatively more technical than creating a UML profile for GRL due to

the existence of some dynamic elements (e.g. dynamic stub) in UCM, and the fact that

there are many more metaclasses, associations and attributes to support.

Finally, the integration of UML profiles for GRL with jUCMNav should also be

considered for future work. UML tools could export goal models created with the profile

to the jUCMNav XML-based format. Such integration would improve the way applica-

tions are validated.

Chapter 6. Conclusions - Future work 110

References

[I] Abdulhadi, S., Grau, G., Horkoff, J., and Yu, E.: i* Guide. V. 3.0, August 2007.

http://istar.rwth-aachen.de/tiki-ndex.php ?page_ref_id=67.

[2] Amyot, D., Farah, H., and Roy, J.-F.: Evaluation of Development Tools for Do-

main-Specific Modeling Languages. R. Gotzhein, R. Reed (Eds.) SAM 2006:

Language Profiles - Fifth Workshop on System Analysis and Modelling, Kaiser-

slautern, Germany, May 2006. LNCS 4320, 183-197, Springer.

[3] Amyot, D.: Introduction to the User Requirements Notation: Learning by Exam-

ple. In: Computer Networks, 42(3), 285-301, 21 June 2003.

[4] Chung, L., Nixon, B.A., Yu, E., and Mylopoulos, J. Non-Functional Require­

ments in Software Engineering. Kluwer Academic Publishers, Dordrecht, USA,

2000

[5] Cysneiros, L.M. and Leite, J.C.S.P: Using UML to Reflect Non-Functional Re-

quirements. CASCON2001, Toronto, Canada, November 2001.

[6] Dallons, G., Heymans, P., and Pollet, I.: A template-based analysis of GRL. In:

Workshop on Evaluating Modeling Methods for System Analysis and Design

(EMMSAD'05), Porto, Portugal, 493-504, June 2005.

[7] Eclipse: Eclipse Modeling Framework (EMF), http://www.eclipse.org/emf/.

[8] Favre J.M.: Towards a Basic Theory to Model Model Driven Engineering In:

WISME, Lisboa, Portugal, October 11, 2004.

[9] Grangel, R., Chalmeta, R., Campos, C , Sommar, R., and Bourey, J.-P.: A Pro-

posal for Goal Modelling Using a UML Profile. Enterprise Interoperability III,

679-690, Springer, 2008.

[10] IBM: Rational Software Architect 7.0.0.3, July 2007.

http://www-306.ibm.com/software/awdtools/architect/swarchitect/

[II] Institute for Software Integration System: The Generic Modeling Environment

(GME), 2004. http://www.isis.vanderbilt.edu/projects/gme.

[12] ITU-T: Specification and Description Language (SDL) - ITU-T Recommendation

Z.I00. Geneva Switzerland, 2007.

[13] ITU-T: SDL-2000 combined with UML - ITU-T Recommendation Z.109. Geneva,

Switzerland, June 2007.

[14] ITU-T: Notations to Define ITU-T Languages - ITU-T Draft Recommendation

Z.1I1. Geneva, Switzerland, April 2008.

[15] ITU-T: Guidelines for UML profile design - ITU-T Recommendation Z.119. Ge-

neva, Switzerland, December 2006.

References III

http://istar.rwth-aachen.de/tiki-ndex.php
http://www.eclipse.org/emf/
http://www-306.ibm.com/software/awdtools/architect/swarchitect/
http://www.isis.vanderbilt.edu/projects/gme

ITU-T: Language Requirement and Framework — User Requirements Notation -

ITU-T Recommendation Z. 150. Geneva, Switzerland, February 2003.

ITU-T: User Requirements Notation (URN) - ITU-T Draft Recommendation

Z.I51. Geneva, Switzerland, April 2008.

Janmohamed, N.: Expressing Goal-oriented Requirement Language in UML 2.0:

Examining the functionality of UML Profiles. CSI 4900 report, SITE, University

of Ottawa, April 2005.

jUCMNav, version 3.1.0, http://jucmnav.softwareengineering.ca/jucmnav/

OMG: Catalog of UML Profile specifications, http://www.omg.org/technology/

documents/profilecatalog.htm.

OMG: Meta Object Facility (OMG MOF): core specification version 2.0. formal

/2006-01 -01, http://www.omg.Org/spec/MOF/2.0/PDF.

OMG: Unified Modeling Language (OMG UML): infrastructure version 2.1.2

formal /2007-11-04, http://www.omg.Org/spec/UML/2.l.2/Infrastructure/PDF.

OMG: Unified Modeling Language (OMG UML): superstructure version 2.1.2

formal /20007-11-02, http://www.omg.Org/spec/UML/2.l.2/Superstructure/PDF.

Roy, J.-F., Kealey, J., and Amyot, D.: Towards Integrated Tool Support for the

User Requirements Notation. R. Gotzhein, R. Reed (Eds.) SAM 2006: Language

Profiles - Fifth Workshop on System Analysis and Modelling, Kaiserslautern,

Germany, LNCS 4320, 198-215, Springer, May 2006.

Supakkul, S. and Chung, L.: A UML profile for goal-oriented and use case-driven

representation of NFRs and FRs. SERA'05 Revised Selected Papers, LNCS 3647,

29-41, Springer, 2006.

Telelogic, An IBM Company: Tau Documentation 4.0. February 2008.

http ://www. telelogic. com/products/tau/tau/index. cfm

Weiss M. and Amyot D.: Business Process Modeling with URN. In: International

Journal of E-Business Research, 1(3), 63-90, July 2005.

Xactium: XMF-Mosaic Getting Started Guide, Version 1.0, July 2005.

http://www.xactium.com.

Jiang, Y., Shao, W., Zhang, L., Ma, Z., Meng, X., and Ma, H.: On the Classifica-

tion of UML's Model Extension Mechanism. UML 2004, LNCS 3273, 54-68,

Springer, 2004.

Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements

Engineering. 3r IEEE Int. Symp. on Requirements Engineering, Washington,

USA. IEEE CS, 226-235, 1997.

References 112

http://jucmnav.softwareengineering.ca/jucmnav/
http://www.omg.org/technology/
http://www.omg.Org/spec/MOF/2.0/PDF
http://www.omg.Org/spec/UML/2.l.2/Infrastructure/PDF
http://www.omg.Org/spec/UML/2.l.2/Superstructure/PDF
http://www.xactium.com

