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Abstract: Recently, Fang et al. [6] introduced an interactive(bidirectional) conditional proxy 

re-encryption(C-PRE) scheme such that a proxy can only convert ciphertexts that satisfy 

access policy set by a delegator. Their scheme supports monotonic access policy expressed by 

“OR” and “AND” gates. In addition, their scheme is called interactive since generation of 

re-encryption keys requires interaction between the delegator and delegatee. In this paper, we 

study the problem of constructing a unidirectional(non-interactive) C-PRE scheme supporting 

non-monotonic access policy expressed by “NOT”, “OR” and “AND” gates. A security model 

for unidirectional C-PRE schemes is also proposed in this paper. To yield a unidirectional 

C-PRE scheme supporting non-monotonic access policy, we extend the unidirectional PRE 

scheme presented by Libert et al. [8] by using the ideas from the non-monotonic attributed 

based encryption (ABE) scheme presented by Ostrovsky et al. [9]. Furthermore, the security 

of our C-PRE scheme is proved under the modified 3-weak Decision Bilinear Diffie-Hellman 

Inversion assumption in the standard model.  
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Non-monotonic access structure, Chosen ciphertext security, Attributed based encryption 

 

1. Introduction 

Encryption is one of the most fundamental cryptographic primitives. The concept of 

proxy re-encryption (PRE) was introduced by Blaze et al. in 1998 [4]. A proxy in PRE 

systems can convert a ciphertext encrypted under Alice’s public key (delegator) into a 

ciphertext of the same message under Bob’s public key (delegatee). Proxy re-encryption has 

many applications such as email forwarding, distributed file system [2]. A bidirectional PRE 

scheme allows a proxy to convert ciphertexts encrypted under Alice into ciphertexts under 
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Bob via a re-encryption key and the same key can also be used to translate from Bob to Alice. 

On the other hand, if the re-encryption key only allows one-way conversion (e.g., from Alice 

to Bob), then the corresponding PRE scheme is called unidirectional.  

The PRE scheme in [4] is bidirectional and CPA secure under DDH assumption. In 2005, 

Ateniese et al. [2] presented several CPA secure unidirectional PRE schemes based on bilinear 

pairing. Then Canetti and Hohenberger [5] presented an appropriate definition of chosen 

ciphertext security(CCA) for bidirectional PRE schemes and the first CCA secure 

bidirectional PRE scheme. The work in [5] left an open problem to come up with a CCA 

secure unidirectional PRE scheme. Libert and Vergnaud [8] presented a definition of chosen 

ciphertext security (CCA) for unidirectional PRE schemes and the first unidirectional PRE 

scheme with CCA security in the standard model. 

Normal PRE schemes allow a semi-trusted proxy to translate ciphertexts from Alice to 

Bob unconditionally. It is desirable that a proxy can only convert ciphertexts under certain 

constraints set by the delegator. Shao et al. [12] designed a PRE scheme with keyword search 

property, which allows a proxy equipped with trapdoor information to test whether a 

ciphertext from Alice contains one specified keyword. However, it is pointed out [13] that the 

trapdoor still allows the proxy to convert ciphertexts from Alice without any restriction. On 

the other hand, Weng et al. [14, 15] introduced the notion of conditional proxy re-encryption 

(C-PRE) such that only ciphertexts whose keywords satisfy certain conditions set by Alice 

can be converted by a proxy. They also left it as an open problem to construct a C-PRE 

scheme supporting access policy consisting of “OR” and “AND” gates over keywords. 

Wang et al. [13] presented a unidirectional PRE scheme supporting conjunctive 

keywords search and selective delegation such that a proxy can only re-encrypt ciphertexts 

that contain a set of keywords specified by the delegator. In other words, their construction 

supports access policy expressed by “AND” gates. By regarding keywords as attributes, Fang 

et al. [6] presented an interactive(bidirectional) single-hop C-PRE scheme based on access 

tree used in the attribute based encryption scheme [7], which supports access policy 

consisting of “OR” and ‘AND” gates. Their scheme is called interactive since generation of 

re-encryption keys requires interactions between the delegator and delegatee who take their 

secret keys as private input. Interactive generation of re-encryption keys is an essential feature 
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of bidirectional C-PRE scheme defined in [5]. CCA security of their C-PRE scheme was 

proved under the random oracle model. They also left it as an open problem to construct a 

non-interactive(unidirectional) C-PRE scheme with security in the standard model. 

Although Wang et al. [13] defined their CCA security model for unidirectional PRE 

schemes supporting conjunctive keywords search, their security model is coupled tightly with 

the notion of conjunctive keywords search. Hence the model in [13] is not suitable for C-PRE 

schemes supporting generic access structure. In addition, the work in [6] considered security 

model for interactive(bidirectional) C-PRE schemes and proved security of their construction 

under the random oracle model. 

Sahai and Waters [11] introduced the concept of attribute based encryption (ABE), in 

which a ciphertext is associated with a set of attributes, and a user’s private key will reflect an 

access policy over attributes that controls which ciphertexts a user is able to decrypt. The 

original construction of Sahai and Waters was limited to express threshold access structure. 

Goyal et al. [7] presented ABE schemes based on access tree in which the private key 

supports any monotonic access structure. To increase the expressibility of ABE schemes, 

Ostrovsky et al. [9] designed an ABE construction that supports non-monotonic access 

structure represented by “NOT”, “OR” and “AND” gates over attributes.  

Motivated by the above discussion, we aim to design a unidirectional(non-interactive) 

C-PRE scheme supporting non-monotonic access structure to enhance the expressibility of 

C-PRE schemes. The rest of paper is organized as follows. At first, we provide security 

definitions for unidirectional C-PRE schemes in which a ciphertext is associated with a set of 

keywords, and a re-encryption key will reflect an access policy that controls which 

ciphertexts a proxy is able to re-encrypt. Subsequently, we extend the unidirectional PRE 

scheme [8] to yield a unidirectional C-PRE scheme supporting non-monotonic access 

structures. Finally our construction is proved to be CCA secure under the standard model. 

A challenge in our security proof lies in the fact that a corrupted user in our model is 

allowed to obtain re-encryption keys from the target user so long as the access structure 

associated with these re-encryption keys are not satisfied by the challenge set of attributes 

associated with the challenge ciphertext. On the other hand, in order to support negation by 

using the techniques in [9], we have to design two types of re-encryption keys, which also 
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affects the structure of a user’s secret key in our construction. 

 

2. Preliminaries 

2. 1 Bilinear pairing 

Given a security parameter λ , an efficient algorithm (1 )PG λ  outputs ( , , , , )Te G G g p , 

where G  is a cyclic group of a prime order p  generated by g , and 12 2pλ λ− < < . TG  

is a cyclic group of the same order, and let : Te G G G× →  be a efficiently computable 

bilinear function with the following properties: 

1. Bilinear: ( , ) ( , ) ,a b abe g g e g g=  for all , pa b Z∈ . 

2. Non-degenerate: ( , ) 1
TGe g g ≠  

2.2 Modified 3-wDBDHI assumption 

Given ( , , , , )Te G G g p  output by (1 )PG λ , we define two experiments in which an 

adversary A  outputs 0 or 1. 

Experiment 0: A  is given 
2 2

1
*( , , , , , ( , ) ), ,

b
a a ba a

R pg g g g g e g g a b Z← . 

Experiment 1: A  is given 
2

1

( , , , , , )a a bag g g g g T , *, ,R p R Ta b Z T G← ← . 

The modified 3-weak Decision Bilinear Diffie-Hellman Inversion assumption [8] 

claims for any polynomial time algorithm A , the probability 0 1| Pr[ ] Pr[ ] |W W−  is 

negligible, where iW  is the event that A  outputs 1 in experiment i .  

2.3 One-time signature 

A digital signature scheme (Gen,S,V)Sig =  consists of the following algorithms: 

1. Gen(λ ): Outputs a secret/public key pair ( , )sk pk . 

2. S ( ,sk m ): Given a secret key sk  and a message m , then outputs a signature σ . 

3. V( , ,pk m σ ): Takes as input a public key pk , a message m  and a signature σ , then 

outputs either 1 or 0 to denote “accept” or "reject". 

We review the definition of strong existential unforgeability for a signature scheme denoted 
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by (Gen,S,V)Sig =  in experiment 
1 ,

( )Sig
SCMA

Exp Aλ .  

1 ,
( )k

Sig
SCMA

Exp A  

The challenger C  runs ( , ) Gen(1 )pk sk λ←  and sets Sσ ←∅ . 

* * O-Sig( , ) ( )m A pkσ ← . 

The adversary A  wins if  * *( , )m Sσσ ∉  and V * *( , , )pk m σ =1. 

Advantage of A  in experiment 
1 ,

( )Sig
SCMA

Exp Aλ  is defined to be the probability that A  

wins in the experiment. 

The oracle O-Sig  is defined as follows: 

O-Sig( )m  

Returns ( , )S sk mσ =  and updates Sσ  = {( , )}mSσ σ∪ . 

 

A strongly unforgeable one-time signature scheme Sig  requires that for any PPT adversary 

A  who can access the oracle O-Sig  only once, its advantage OTSAdv  in experiment 

1 ,
( )k

Sig
SCMA

Exp A  is negligible. 

 

3. Security definitions and model 

3.1 Syntax of unidirectional C-PRE schemes 

    A unidirectional single-hop C-PRE scheme consists of the following algorithms. A 

ciphertext is associated with a set of keywords, and a re-encryption key will reflect an access 

policy over keywords that controls which ciphertexts a proxy is able to re-encrypt.  

Setup( )λ : Given the security parameter λ , this algorithm produces a set par  of global 

public parameters. 

Keygen( )par : Given par , this algorithm generates a secret/public key pair ( , )sk pk . 

iReKeygen( , , , )i jpar sk pk A : Given par , the secret key isk  of user i ,  the public 
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key jpk  of user j i≠  and an access structure iA , this algorithm generates a re-encryption key 

i,i j AR
→

. We use an algorithm rather than an interactive protocol to implicitly assume that the 

process of generating re-encryption keys is non-interactive. 

1Enc ( , , )ipar pk m : Given par , a public key ipk  and a message m , this algorithm 

outputs a first level ciphertext 1CT  that cannot be re-encrypted for another party.  

2Enc ( , , , )ipar pk m γ : Given par , a public key ipk , a message m  and a set γ  of 

keywords(attributes), this algorithm outputs a second level ciphertext 2CT  that can be 

re-encrypted into a first level ciphertext. 

i2 ,ReEnc( , , , , )i i j Apar CT pk Rγ
→

: Given par , a re-encryption key i,i j AR
→

 and a second 

level ciphertext 2CT  encrypted under ipk  and a set γ  of keywords, this algorithm outputs a 

first level ciphertext 1CT  encrypted under jpk  when γ  satisfies access structure 

iA ;otherwise a message “invalid” is returned.  

1 1Dec ( , , )ipar sk CT : Given par , a secret key isk  and a first level ciphertext 1CT , this 

algorithm outputs a message m  or a message “invalid”. 

2 2Dec ( , , )ipar sk CT : Given par , a secret key isk  and a second level ciphertext 2CT , 

this algorithm outputs a message m  or a message “invalid”. 

In the following, we will take par  as implicit input for simplicity. For any message m , 

any couple of secret/public key pair ( , )i isk pk , ( , )j jsk pk , the following conditions of 

correctness should be satisfied: 

(1) 1 1Dec ( ,Enc ( , ))i isk pk m = m ; 2 2Dec ( ,Enc ( , , ))i isk pk m γ = m ; 

(2) If γ  satisfies the access structure iA , the following should hold: 

1CT = i
2ReEnc(Enc ( , , ), , ,ReKeygen( , , ))i i i jpk m pk sk pk Aγ γ , 

1 1Dec ( , )jsk CT = m . 
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3.2 Security of second level ciphertexts 

Init:  As in [8], the adversary Ad  determines the target user *i , the corrupted users and 

declares a set *γ  of keywords that he wishes to be challenged upon at this stage. 

Setup: The challenger C  runs Setup( )λ  to produce the global public parameters par  

and generates key pairs as follows: 

* *KeyGen( ) ( , )pk sk⋅ → , KeyGen( ) ( , )x xpk sk⋅ → , KeyGen( ) ( , )h hpk sk⋅ → . 

* *( , )pk sk  is the key pair for the honest target user *i . Key pairs subscripted by h  or /h  

represents honest parties and corrupted key pairs are subscripted by x  or /x . 

Phase 1: Ad  takes *pk , { }hpk ,{ , }x xpk sk  as input and issue queries to oracles rekeyO , 

rencO  and 1decO − .  

Challenge: Ad  outputs two equal-length messages 0 1( , )m m . The challenger C  flips a 

random bit b  and returns *
2CT = * *

2Enc ( , , )bpk m γ . 

Phase 2: Ad  still issues queries to oracles rekeyO , rencO  and 1decO − . 

Guess: Ad  outputs a bit /b . 

The advantage of the adversary in this game is /| Pr[ ] 0.5 |b bε = = − . A C-PRE scheme is 

CCA secure at level 2 if ε  is negligible. 

 

The re-encryption key oracle rekeyO  

Given a tuple i( , , )i jpk pk A , this oracle proceeds as follows: 

(1) If both ipk  and jpk  are honest, returns i,i j AR
→

iReKeygen( , , )i jsk pk A← ; 

(2) If the honest ipk = *pk , jpk  is corrupted and *γ does not satisfy iA , returns 

i* ,i j A
R

→
i*ReKeygen( , , )jsk pk A← ; 
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The re-encryption oracle rencO  

Given a tuple i
2(( , , ), , )i jCT pk pk Aγ , where 2CT  is a second level ciphertext encrypted 

under ( ipk , )γ , and ,i jpk pk   are public keys produced by Keygen , this oracle proceeds 

as follows: 

(1) If ipk = *pk ,  jpk  is corrupted and *
2 2 0 1Dec ( , ) { , }sk CT m m∈ , returns a message 

“invalid” since re-encryption may leak information about the challenge bit b  in this case.  

(2) If γ  satisfies the access structure iA , computes i,i j AR
→

iReKeygen( , , )i jsk pk A←  

and returns the first level ciphertext i1 2 ,ReEnc(( , , ), )i i j ACT CT pk Rγ
→

← . Otherwise, outputs 

a message “invalid”. 

 

First level decryption oracle 1decO −  

Given a tuple 1( , )ipk CT , where 1CT  is a first level ciphertext encrypted under the public 

key ipk , this oracle proceeds as follows: 

(1) If 1( , )ipk CT  is a derivative of the challenge pair * *
2( , )pk CT , returns a message 

“invalid”. 

(2) Otherwise, returns 1 1Dec ( , )im sk CT← . 

A Derivative 1( , )ipk CT  of the challenge pair * *
2( , )pk CT  in this game is defined as 

follows: 

If 1CT  is a first level ciphertext and ipk = *pk  , or ipk  belongs to a honest user, 

1( , )ipk CT  is a derivative of the challenge pair if 1 1 0 1Dec ( , ) { , }isk CT m m∈ . 

 

3.3 Security of first level ciphertexts 

Init:  The adversary Ad  determines the target user *i  and the corrupted users at this 

stage. 
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Setup: The challenger C  runs Setup( )λ  to produce the global public parameters par  

and generates key pairs in the same way as described previously: 

* *KeyGen( ) ( , )pk sk⋅ → , KeyGen( ) ( , )x xpk sk⋅ → , KeyGen( ) ( , )h hpk sk⋅ → . 

Phase 1: The adversary Ad  who takes as input *pk , { }hpk , { , }x xpk sk  can issue 

queries to oracles rekeyO , 1decO − .  

Challenge: Ad  outputs two equal-length message 0 1( , )m m .  The challenger C  flips a 

random bit b  and returns *
1CT = *

1Enc ( , )bpk m . 

Phase 2: Ad  still issues queries to the oracle 1decO − . 

Guess: The adversary outputs a bit /b . 

The advantage of the adversary in this game is /| Pr[ ] 0.5 |b bε = = − . A C-PRE scheme is 

CCA secure at level 1 if ε  is negligible. 

 

The re-encryption key oracle rekeyO  

Given a tuple i( , , )i jpk pk A , this oracle returns i,i j AR
→

iReKeygen( , , )i jsk pk A← . This 

means that the adversary is allowed access to all re-encryption keys without any restriction.  

 

First level decryption oracle 1decO −  

Given a tuple 1( , )ipk CT , where 1CT  is a first level ciphertext encrypted under the public 

key ipk , this oracle proceeds as follows: 

If 1( , )ipk CT  is a derivative of the challenge pair * *
1( , )pk CT , returns a message 

“invalid”. Otherwise, returns 1 1Dec ( , )im sk CT← . 

A Derivative 1( , )ipk CT  of the challenge pair * *
1( , )pk CT  in this game is defined as 

follows: 

If 1CT  is a first level ciphertext and ipk = *pk , 1( , )ipk CT  is a derivative of the 
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challenge pair if 1 1 0 1Dec ( , ) { , }isk CT m m∈ . 

 

Ateniese et al. [2] defined a security notion called master secret security for unidirectional 

PRE schemes. This notion requires that no coalition of dishonest delegatees be able to pool their 

re-encryption keys in order to expose the secret key of their common delegator. It is discussed in 

[6, 8] that CCA security at level 1 implies master secret security for single-hop PRE schemes. 

 

4. Our C-PRE scheme 

Setup( )λ : Given ( , , , , )Te G G g p output by (1 )PG λ , picks generators 

*
1 2( , , ) , ,w

pg u v G g g w Z← = ←  and a strongly unforgeable one-time signature scheme 

( , , )Sig Gen S V= . Let parameter d  specifies the exact number of keywords that every second 

level ciphertext has. We associate each keyword with a unique element in *
pZ .  

Then chooses two random polynomials ( )h x  and ( )q x  of degree d  subject to the 

constraint (0)q = 1 modw p− . We also define two functions ( )
1 2( )

dx h xT x g g= ⋅  and 

( )
2( ) q xV x g=  that are publicly computable by interpolation.  The set par of public 

parameters is (0) ( ) (0) ( )
1 2 2 2 2 2( , , , , , , , , , , , )q q d h h dg u v g g g g g g g Sig= " " . 

 

Keygen : Picks *
1 2( , )i i px x Z←  and sets a secret/public key pair for user i  as 

1 2
1 2 1 2( , ), ( , )i ix x

i i i i i isk x x pk X g X g= = = = . 

 

iReKeygen( , , )i jsk pk A : Given the secret key isk  of user i ,  the public key jpk  of 

user j  and a non-monotonic access structure iA , user i  generates a re-encryption key i,i j AR
→

 

as follows: 

When dealing with a non-monotonic access structure iA  over a set of (unprimed)keywords 

iP , we proceed similarly as in [9]. For each unprimed keyword ip P∈ , we define another 
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primed keyword /p . Let /P = i/{ | }p p P∈ . Then define a monotonic access structure A  over 

P = i/P P∪  in such a way that iS A∈  if and only if ( )N S A∈ , where ( )N ⋅  is an operator 

defined as ( )N S = / /{ | \ }S p P p P S∈ ∈∪ . That is, ( )N S  consists of all the keywords in 

S  plus the primed part of all the keywords that are not in S . 

Let A  be associated with a linear secret sharing mechanism ∏ . Then user i  applies ∏  

over the set P  to obtain shares { }kλ  of the secret 1
2ix − . For each keyword jkp P∈ (the 

underlying unprimed keyword is kp ), a random k pr Z←  is chosen: 

If jkp = kp  is unprimed, kD = (1) (2)
1 2( ( ) , )k k kr r

k j k k iD X T p D Xλ= ⋅ = .  

If jkp = /
kp  is primed, kD = (3) (4) (5)

1 2( , ( ) , )k k k kr r r
k j k k k iD X g D V p D Xλ= = = .  

The re-encryption key i,i j AR
→

= j{ }
kk p PD
∈

. 

 

1Enc ( , )ipk m : Given a public key ipk  and a message m , this algorithm proceeds as 

follows: 

(1) Chooses pr Z←  and generates a fresh one-time signature key pair 

( , ) ( )ssk svk Gen λ← ; 

(2) /
1 2 1 3, ( , ) , ( , )r r

iC svk C e g X C e g g m= = = ⋅ , 4 ( )svk rC u v= ; 

(3) Generates a one-time signature 3 4( , || || )S ssk m C Cσ = ; 

The first level ciphertext 1CT = /
1 2 3 4( , , , , )C C C C σ . 

 

2Enc ( , , )ipk m γ : Given the public key ipk , a message m  and a set γ  of d  keywords, 

outputs a second level ciphertext 2CT  that can be re-encrypted into a first level ciphertext as 

follows: 

(1) Chooses pr Z←  and generates a fresh one-time signature key pair ( , )ssk svk ; 

(2) 1 2 2 3 4, , ( , ) , ( )r r svk r
iC svk C X C e g g m C u v= = = ⋅ =  
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5 6{ ( ) } , { ( ) }p r p r
p pC T p C V pγ γ∈ ∈= = ; 

(3) Generate a one-time signature 3 4( , || || )S ssk m C Cσ = . 

The second level ciphertext 2CT = 1 2 3 4 5 6( , , , , , , )p pC C C C C C σ . 

 

i2 ,ReEnc(( , , ), )i i j ACT pk Rγ
→

: Given a re-encryption key i,i j AR
→

 and a second level 

ciphertext 2CT  encrypted under ( , )ipk γ , if γ  satisfies access structure iA , this algorithm 

outputs a first level ciphertext 1CT  encrypted under jpk  as follows: 

(1) Parses 2CT  as 1 2 2 3 4, , ( , ) , ( )r r svk r
iC svk C X C e g g m C u v= = = ⋅ =  

5 6{ ( ) } , { ( ) }p r p r
p pC T p C V pγ γ∈ ∈= = , σ  

(2) Recall that iA  induces a monotonic access structure A . Denote / ( )Nγ γ= . As γ  

satisfies access structure iA , /γ  is authorized in A  by previous definition of the operator 

( )N ⋅ . Let j /{ : }kI k p γ= ∈ .  A set of coefficients { }k k Iω ∈  can be efficiently computed such 

that 1
2k k ik I

xω λ −
∈

=∑ [3].  

For every unprimed attribute  j /
k kp p γ= ∈ ,  (so kp γ∈  by definition of the operator 

( )N ⋅ ), we proceeds as follows: 

(2.1) Extracts kD = (1) (2)
1 2( ( ) , )k k kr r

k j k k iD X T p D Xλ= ⋅ =  from the re-encryption key; 

(2.2) Computes kZ = (1) (2)
2 5( , ) ( , )kp

k ke D C e D C  

                    = 1 2 2( ( ) , ) ( , ( ) )j k k i i kx r x r x r r
k ke g T p g e g T pλ ⋅ = 1 2( , ) j i kx x re g g λ  

For every primed attributed  j / /
k kp p γ= ∈  (so kp γ∉  by definition), let 

{ }k kpγ γ= ∪ . Note that | | 1k dγ = +  and recall that the degree of the polynomial ( )q ⋅  is d . 

Using the keywords in kγ  as an interpolation set, we compute lagrangian coefficients { }
kp p γσ ∈  

such that 1
2( ) (0) (log )

k
p gp
q p q g

γ
σ −

∈
= =∑ . Then we proceeds as follows: 

 (2.3) Extracts kD = (3) (4) (5)
1 2( , ( ) , )k k k kr r r

k j k k k iD X g D V p D Xλ= = =  from the 
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re-encryption key and computes:  

kZ =
(3)

2
(5) (4)

6 2

( , )
( , ( ) ) ( , ) pp k

k
p

k kp

e D C
e D C e D C σσ

γ∈∏
=

1 2

2 2

( , )
( , ( ( ) ) ) ( ( ) , )

k j k i

ppi k k i k

x r x r

x r r x rr
kp

e g g g
e g V p e V p g

λ

σσ

γ∈∏
 

  =
1 2 2

2 2( )( )
2 2

( , ) ( , )
( , ( ) ) ( , )

j k i k i

ppi k k k i k

x x r r x r

x r q p r x rq p r
p

e g g e g g
e g g e g g

λ

σσ

γ
⋅

∈∏
 

  =
2 1 2

2 ( )

2

( , ) ( , )

( , )

i j k k i

i k pp k

x x r x rr

x r r q p

e g g e g g

e g g γ

λ

σ
∈∑ = 1 2( , ) j i kx x re g g λ  

Finally we have k
kk I

Z ω
∈∏ = 1 2 ( )( , ) j i k kk I

x x re g g ω λ
∈

⋅ ∑ =
1 2

2( , )
j i

i

rx x
xe g g = 1( , ) jrxe g g . 

The first level ciphertext 1CT = /
1 2 1 3 4( , ( , ) , , , )r

jC C e g X C C σ= . 

 

1 1Dec ( , )isk CT : Given a secret key isk  and a first level ciphertext 1CT , this algorithm 

proceeds as follows: 

(1) Parses 1CT  as /
1 2 3 4( , , , , )C C C C σ ; 

(2) Computes 1

1
/
2

ixC = 1 1( , ) ( , )i i

r
x x re g g e g g=  and m = 3 ( , )rC e g g ;  

(3) Tests 1 3 4( , || || ) 1V C m C C =         (V1) 

If relation V1 does not hold, outputs a message “invalid”; otherwise outputs m . 

 

2 2Dec ( , ( , ))isk CT γ : Given a secret key isk  and a second level ciphertext 2CT , this 

algorithm proceeds as follows: 

(1) Parses 2CT  as 1 2 3 4 5 6( , , , , , , )p pC C C C C C σ ; 

(2) Tests 1
2 2 4( , ( )) ( , )C

ie C u v e X C=     (V2) 

If relation V2 does not hold, outputs a message “invalid”. 

(3) Otherwise, computes 
2 2 2

3
1 1

2

( , )

( , ) ( , )i i i

r

x x r x

C e g g mm
e g C e g g ⋅

⋅
= = ; 

(4) If relation V1 does not hold, outputs a message “invalid” ; otherwise outputs m . 
 

Remark: Although our construction requires that every second level ciphertext has exactly 
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d  keywords, this restriction can be mitigated by using the method proposed in [9]. 

 

Theorem 1: Assume that the one-time signature scheme is strongly unforgeable. Our scheme is 

CCA secure at level 2 under the modified 3-wDBDHI assumption. 

Proof: Let 
2

1

1 1 2( , , , , , )a a bag A g A g A g B g T− = = = =  be a modified 3-wDBDHI instance. 

We build an algorithm AB  deciding whether T = 2( , )
b
ae g g  from a successful CCA adversary 

Ad  at level 2 with advantage ε .  

Init:  The adversary Ad  determines the target user *i , the corrupted users and declares a 

set *γ  of d  keywords to be challenged upon. 

Setup: AB  picks a one-time signature scheme ( , , )Sig Gen S V=  such that the maximal 

probability δ  that any public key can be selected should be less than 2 λ−  as in [8]. AB  

generates a fresh one-time signature key pair * *( , )ssk svk  and sets u = 1
1Aα , 

v =
*

1 2
1 2

svkA Aα α− ⋅ ⋅ , *
1 1 2 2 1 2( ) , , , , pg A g A Zμ α α μ= = ← .  

Having chosen a random degree d  polynomial ( )f x ， two random degree d  

polynomials ( )u x  and ( )h x  are defined as follows:  

Let *γ = * *
1{ , , }dp p" . AB  sets ( )u x = dx−  for all *x γ∈  and ( )u x ≠ dx−  for 

some(arbitrary) *x γ∉ . This ensures that ( )u x = dx−  if and only if *x γ∈ . Let 

( )h x = 1( ( ) ( ))a u x f xμ− ⋅ ⋅ + . Hence ( )
1 2( )

dx h xT x g g= ⋅ = ( ) ( )
1 2

dx u x f xg g+ ⋅  can be publicly 

computed for arbitrary x .  

Then AB  picks *
1{ , , }d pZθ θ ←"  and implicitly defines a random degree d  

polynomial ( )q x  such that (0)q = 2 1( )a − , *( )iq p = iθ , 1 i d≤ ≤ . We have (0)
2

qg = g  and 

( )
2( ) q xV x g=  can be computed for arbitrary x  by interpolation. These parameters are 

distributed identically to that in the real scheme.  
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Key generation: Public key of an honest user *\{ }i HU i∈  is defined as 

1iX = 1iaxg = 1
1

ixA , 2iX = 2ixg  for randomly chosen *
1 2,i i px x Z← . The target user’s public key 

is set as *1i
X = *1i

a xg ⋅
= *1

1
i

xA , * 2i
X =

2
* *2 2

2
i i

a x xg A⋅
=  for randomly chosen * *

*
1 2
, pi i

x x Z←  . 

Key pair of a corrupted user j  is set as 1jX = 1jxg , 2jX = 2jxg   for randomly chosen 

*
1 2,j j px x Z← . 

 

Given a tuple i( , , )i jpk pk A  chosen by Ad , the re-encryption key oracle rekeyO  is 

simulated by AB  as follows: 

 Let ∏  be the linear secret sharing mechanism associated with the monotonic access 

structure A  induced by iA  over a set P . Let M  be the share-generating matrix for ∏  

with l  rows and n  columns. Each row kM  of M  is labeled by a keyword named jkp P∈  

and kp  is the unprimed keyword underlying jkp . We list the following propositions: 

Proposition 1 [3]: Assume Q  is not an authorized set in the access structure A . (1,0, ,0)
n

"��	�
  

is linearly independent of the rows QM , where QM  is the sub-matrix of M  containing those 

rows labeled by keywords in Q . 

Proposition 2 [1, 10]: A vector π  is linearly independent of a matrix N  if and only if there 

exist a vector θ  which can be efficiently computed such that 0N θ⋅ =
G

 while 1π θ⋅ = . 

    Then we consider the following cases: 

(1) i = *i , j CU∈  and *γ does not satisfy iA : 

When iA  is not satisfied by *γ , */ *( )Nγ γ=  is not an authorized set in A . According 

to Proposition 1 and 2, there exists a column vector 1( , , )T
nθ θ θ=

G
"  such that */ 0M

γ
θ⋅ =
G G

 

and 1(1,0, ,0) 1
n

θ θ⋅ = =
G

"�	
 .  

Given a row vector 1( , , )n pR r r Z= ←" , let 1( )S R s r θ= + − ⋅
G

, where 
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*
2 1

2
( )

i
s a x −= ⋅ . Note that S  is uniformly distributed subject to the constraint that the first 

component is s . Let TM S⋅  be the vector of l  shares for the secret s . Let kM  be the  

row  labeled by j */
kp γ∈ , we have that 0kM θ⋅ =

G
by Proposition 2. Hence the share 

kλ = T
kM S⋅ = T

kM R⋅ , which has no dependency on s . 

(1.1) For a unprimed keyword j * */
k kp p γ γ= ∈ ⊆ , AB  picks a random k pr Z←  and 

outputs the following: 

kD = *
(1) (2)

1 2
( ( ) , )k k kr r

k j k k i
D X T p D Xλ= ⋅ =  

The above is computable since the share kλ  is independent of *
2 1

2
( )

i
a x −⋅  by the 

above-mentioned discussion. 

(1.2) For a unprimed keyword j *
k kp p γ= ∉ , kλ  is linearly dependent on *

2 1
2

( )
i

a x −⋅ . 

AB  picks a random /
k pr Z←  , implicitly defines 

1
1/ ( )

( ) ( )
j k

k k d
k k

a x
r r

p u p
μ λ− ⋅ ⋅

= −
+

 and outputs 

kD = (1) (2)( , )k kD D  as follows: 

(1)
kD = 1 ( ) ( ) ( )

1 1 2( ) ( ) ( )
d

jk k k k k k kxr p u p f p r
j kX T p g g gλ λ +⋅ = ⋅ ⋅   

                  =

1
1/

1

( )

( ) ( ) ( ) ( ) ( )
1 2( ) ( )

j k
kd d

j k k k k k k

a x
r

x p u p f p p u pg g g
μ λ

λ

− ⋅ ⋅
−

+ +⋅ ⋅  

                   =
/( ) ( ) ( )

1 2( )
d

k k k kp u p f p rg g+ ⋅

1
1( )

( ) ( )
k j k

d
k k

f p x a

p u pg
μ λ−⋅ ⋅ ⋅ ⋅

−
+  

                  =

1
1

/

( )

( ) ( ) ( ) ( ) ( )
1 2( ) ( )

k j
d d

k k k k k k k

f p x

p u p f p r a p u pg g g
μ

λ

−⋅ ⋅
−

+ ⋅ +⋅  

(2)
kD = * 2

kr
i

X =

1
1/

* 2

( )

( ) ( )
2( )

j k
k d

i k k

a x
rx p u pA

μ λ− ⋅ ⋅
−

+ =

1
1 * 2

/
* 2 ( ) ( )

2( )( )
j i

dki k k k

x x
x r a p u pA g

μ

λ

− ⋅ ⋅
−

⋅ +  

As kλ  is linearly dependent on *
2 1

2
( )

i
a x −⋅ ,  kag λ⋅ can be computed via 1A−  and 1A . 

 

(1.3) For a primed keyword j /
k kp p= ∉ */γ  (the underlying unprimed keyword *

kp γ∈ ),   
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kλ  is linearly dependent on  *
2 1

2
( )

i
a x −⋅ . AB  picks a random /

k pr Z← , and implicitly 

defines kr = /
1k k jr xλ− ⋅ . Then outputs kD = (3) (4) (5)( , , )k k kD D D  as follows: 

(3)
kD =

/

1
k k kr r

jX g gλ =  

(4) ( ) kr
k kD V p= =

/
1( )

2( ) p k k jk r xg θ λ⋅ − ⋅ =
/

1
2 2( ) ( )k p j pk k kr xA Aθ θλ⋅ − ⋅⋅  

*2
kr

iX =
2 /

* 12 ( )( ) k k ji
a x r xg λ⋅ − ⋅ =

/ 2* 1 *2 2
2( ) ( )k ji k i

r x x xaA g λ⋅ − ⋅⋅⋅   

2
kag λ⋅  can be computed via 2A  since kλ  is linearly dependent on  *

2 1
2

( )
i

a x −⋅ . 

(1.4) For a primed keyword  j /
k kp p= ∈ */γ  (the underlying unprimed keyword *

kp γ∉ ), 

kλ  is independent of  *
2 1

2
( )

i
a x −⋅ . AB  picks a random k pr Z← , Then outputs the 

following: 

kD = (3) (4) (5)
1 *2( , ( ) , )k k k kr r r

k j k k k iD X g D V p D Xλ= = =  

(2) i = *i  and *\{ }j HU i∈ : 

(2.1)  For a primed keyword j /
k kp p= , AB  picks a random k pr Z←  and outputs 

kD = (3) (4) (5)( , , )k k kD D D  as follows: 

(3)
kD = 1 1

1 ( )j k jk k k k ka x xr r a r
jX g g g g gλλ λ⋅ ⋅= =   

(4) ( ) kr
k kD V p=  

(5)
kD = * 2

kr
i

X * 2
2

k i
r xA ⋅

=  

As kλ  may be linearly dependent on *
2 1

2
( )

i
a x −⋅  , kag λ⋅ can be computed via 1A−  and 

1A .  

(2.2) For a unprimed keyword jk kp p= , AB  picks a random k pr Z←  and outputs 

kD = (1) (2)( , )k kD D  as follows: 

(1)
kD = 1 ( )k kr

j kX T pλ ⋅ = 1( ) ( )jk kxa r
kg T pλ⋅ ⋅  

(2)
kD = * 2

kr
i

X = * 2
2

k i
r xA ⋅
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Similarly, kag λ⋅  can be computed via 1A−  and 1A . 

(3) If *\{ }i HU i∈ :  This can be handled easily since we know the shared secret 2ix  in 

this case.  

Finally, returns the re-encryption key i,i j AR
→

={ }kD . 

 

Let the challenge second level ciphertext *
2CT = * * * * * * *

2 3 4 5 6( , , , , , , )p psvk C C C C C σ  and 

bm  be the encrypted challenge message. Then we define an event OTSF  as follows and bound 

its probability to occur in a way similar to [8]. 

(1) The adversary issues a re-encryption query in which 

2CT = *
2 3 4 5 6( , , , , , , )p psvk C C C C C σ   and m  is the implicit message embedded in 2CT  such 

that * * *
3 4 3 4( || || , ) ( || || , )bm C C m C Cσ σ≠  and *

3 4( , || || , ) 1V svk m C C σ = . 

(2) The adversary issues a first level decryption query in which 1CT = * /
2 3 4( , , , , )svk C C C σ  

and m  is the implicit message embedded in 1CT  such that 

* * *
3 4 3 4( || || , ) ( || || , )bm C C m C Cσ σ≠  and *

3 4( , || || , ) 1V svk m C C σ = . 

As the adversary has no information on *svk  before the challenge phase, the probability of 

occurrence of OTSF  in phase 1 can be bounded by 
2

O
O

qq λδ⋅ ≤ , where Oq  is the total number 

of oracle queries made by the adversary and δ  is the maximal probability that any one-time 

public key can be selected.  

During the guess phase, the event OTSF  could be used to construct an algorithm breaking 

strong unforgeability of the one-time signature scheme. Therefore Pr[ ]
2

OTSO
OTS

qF Advλ≤ + . 

 

The re-encryption oracle rencO  is simulated as follows: 

Given a tuple i
2(( , ), , , )i jCT pk pk Aγ  chosen by the adversary, AB  proceeds as follows: 

(1) Parses 2CT  as 1 2 3 4 5 6( , , , , , , )p pC C C C C C σ ; 
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(2) If iA  is not satisfied by γ  or relation V2 does not hold, outputs a message “invalid”; 

(3) If *\{ }i HU i∈  or j CU∉ , AB  makes a query to the oracle rekeyO and re-encrypts 

by using the returned re-encryption key.  

(4) If *i i= , j CU∈ , we consider the following sub-cases: 

(4.1) 1C = *svk : If * * *
3 4 3 4( , , , ) ( , , , )bm C C m C Cσ σ=  in this situation, we have bm m= . 

But we should return “invalid” by our convention for the re-encryption oracle presented in section 

3.2. In addition, 1C = *svk ∧ * * *
3 4 3 4( , , , ) ( , , , )bm C C m C Cσ σ≠  implies an occurrence of OTSF . 

Hence AB  halts when 1C = *svk  at step (4.1).  

(4.2) 1C ≠ *svk : Assuming 4 ( )svk rC u v= , relation V2 guarantees that *2 2
( )r

i
C X= . So  

* * *2 2 2
1 1

2 2 2( )i i i
x r x x rC A A⋅

= = , 4 ( )svk rC u v= =
*

1 2( )
1 2( )svk svk rA Aα α− ⋅ , AB  computes 

*
1

2 * 2

1
( )4

2

( )
i

svk svk
x

C
C

α
α

− = 1
rA , 1

1 1( , )jxre A A− = 1( , )r
je g X = /

2C  . Let 1CT = /
1 2 3 4( , , , , )C C C C σ . If 

1 1 0 1Dec ( , ) { , }jsk CT m m∈ , returns a message “invalid”. Otherwise, returns 1CT . 

 

The first-level decryption oracle 1decO −  is simulated as follows: 

    Given a tuple 1( , )ipk CT , where 1CT  is a first level ciphertext encrypted under a public 

key ipk , AB  proceeds as follows: 

(1) Parses 1CT  as /
1 2 3 4( , , , , )C C C C σ ; 

(2) If i CU∈ , decrypts the ciphertext by the known secret key;  

(3) i HU∈ , 1C = *svk : Assuming * * *
3 4 3 4( , , , ) ( , , , )bm C C m C Cσ σ= , we should output a 

message “invalid” to indicate that 1CT  is a Derivative of the challenge * *
2( , )pk CT . Otherwise, 

* * *
3 4 3 4( , , , ) ( , , , )bm C C m C Cσ σ≠  means that we either face with an occurrence of the event 

OTSF  or AB  should output a message “invalid” to indicate that relation V1 does not hold. Hence 

AB  halts at step (3). 
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(4) i HU∈  and 1C  ≠ *svk : As 4 ( )svk rC u v= =
*

1 2( )
1 2( )svk svk rA Aα α− ⋅ , AB  computes: 

1 4( , )e A C− =
*

1 2( )
1 1 1 2( , ) ( , )svk svk r re A A e A Aα α−
− −  

2
/
2( ) ixC

α

 =
2

1
1( , ) i

r
x

ie g X
α
⋅

=
2

1 1 2( , ) ( , )i i
r

a x x rae g g e g g
α

α
⋅

⋅ =  

*
1

2

1
( )1 4

/
2

( , )( )
( ) i

svk svk

x

e A C

C

α
α

−− = ( , )re g g ，m = 3 ( , )rC e g g  

 (5) If relation V1 does not hold or 0 1{ , }m m m∈ , outputs a message “invalid”; Otherwise 

outputs m .    

 

Challenge: The adversary outputs two equal-length message 0 1( , )m m .  AB  flips a 

random bit b  and outputs the challenge second level ciphertext *
2CT  as follows: 

* 2* * * * *
1 2 3 4, , ,i

x
bC svk C B C T m C= = = ⋅ = 2Bα , *

5
pC =

*

* *
( ){ }i

i

f p
p

B
γ∈

 *
6
pC =

*

* *{ }i

ip
Bθ

γ∈
, 

* * * *
3 4( , || || )bS ssk m C Cσ =  

When Ad  outputs /b = b , AB  outputs 1 to indicate that T = 2( , )
b
ae g g . Otherwise AB  

outputs 0 to indicate that T  is random. 

If T = 2( , )
b
ae g g , we have *

2

br
a

=  and the following equations:  

2* 2* *2 2
*

*
2 2

( )i i

b
a x xr a

i
C X g B⋅

= = =  

* **
4 ( )svk rC u v= =

*
2

2( )rA α = 2Bα  

*

* *
* *

5 { ( ) }
i

p r
i p

C T p
γ∈

= =
* *

* *
( )

2{ }i

i

f p r
p

A
γ

⋅
∈

=
*

* *
( ){ }i

i

f p
p

B
γ∈

 

*

* *
* *

6 { ( ) }
i

p r
i p

C V p
γ∈

= =
* *

* *
( )

2{ }i

i

q p r
p

A
γ

⋅
∈

=
*

* *{ }i

ip
Bθ

γ∈
 

 

So *
2CT  is a valid encryption of bm  if T = 2( , )

b
ae g g . In contrast, if  T  is random, 

*
2CT  perfectly hides bm  and Ad  guesses b  with probability 0.5. Hence the overall 

advantage of AB  is Pr[ ]OTSFε − . 
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Theorem 2: Assume that the one-time signature scheme is strongly unforgeable, our scheme is 

CCA secure at level 1 under the modified 3-wDBDHI assumption. 

Proof: Let 
2

1

1 1 2( , , , , , )a a bag A g A g A g B g T− = = = =  be a modified 3-wDBDHI instance. 

We build an algorithm AB  deciding whether T = 2( , )
b
ae g g  from a successful CCA adversary 

Ad  at level 1 with advantage ε . 

Init:  The adversary Ad  determines the target user *i  and the corrupted users at this 

stage. 

Setup: AB  picks a one-time signature scheme ( , , )Sig Gen S V=  and generates a fresh 

one-time signature key pair * *( , )ssk svk .  

AB  sets u = 1gα , v =
*

1 2
*1

svk
i

g Xα α− ⋅ ⋅ , *
1 2, pZα α ← , *

1 2, ,w
pg G g g w Z← = ← . Then 

chooses two random polynomials ( )h x  and ( )q x  of degree d  subject to the constraint 

(0)q = 1w− . Subsequently AB  defines two publicly computable functions ( )
1 2( )

dx h xT x g g= ⋅  

and ( )
2( ) q xV x g= . 

 

Key generation: Key pair of an honest users *\{ }i HU i∈  is defined as 1iX = 1ixg , 

2iX = 2ixg  for randomly chosen *
1 2,i i px x Z← . The target user’s public key is set as 

*1i
X =

2
* *1 1

2
i i

a x xg A⋅
=  , * 2i

X = * 2i
a xg ⋅

 for randomly chosen * *
*

1 2
, pi i

x x Z←  . Key pair of a 

corrupted user j  is set as 1jX = 1jxg , 2jX = 2jxg  for randomly chosen *
1 2,j j px x Z← . 

 

Given a tuple i( , , )i jpk pk A  chosen by the adversary, the re-encryption key oracle rekeyO  

is simulated by AB  as follows: 

Let ∏  be the linear secret sharing mechanism associated with the monotonic access 

structure A  induced by iA  over a set P .  As the secret keys of corrupt users and honest 
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users *i i≠  are known to AB , we only consider how to handle the following case: 

(1) * *,i i j i= ≠ : 

Let M  be the share-generating matrix for ∏  with l  rows and n  columns. Each row 

kM  of M  is labeled by a keyword named jkp P∈  and kp  is the unprimed keyword 

underlying jkp . Given a vector *
1

22
(( ) , , , )ni

R a x r r−= ⋅ " , where 2( , , )nr r"  are randomly 

chosen from pZ , TM R⋅  is the vector of l  shares for the secret *
1

2
( )

i
a x −⋅ . For each 

keyword jkp P∈ (the underlying unprimed keyword is kp ), a random k pr Z←  is chosen by 

AB . 

If jkp  is unprimed, kD = (1) (2)
1 2( ( ) , )k k kr r

k j k k iD X T p D Xλ= ⋅ = .  

If jkp  is primed, kD = (3) (4) (5)
1 2( , ( ) , )k k k kr r r

k j k k k iD X g D V p D Xλ= = =  

A key point in the above expressions is to compute 1
k

jX λ = 1( ) jk xgλ . As kλ = T
kM R⋅  may 

be linearly dependent on the secret *
1

2
( )

i
a x −⋅ ,  kgλ can be computed via 1A− .  

 

The first level decryption oracle 1decO −  is simulated as follows: 

As the secret keys of corrupt users and honest users *i i≠  are known to AB , given a first 

level ciphertext 1CT  and a public key ipk , we only consider how to handle the case *i i= : 

(1) Parses 1CT  as /
1 2 3 4( , , , , )C C C C σ ; 

(2) 1C = *svk : Assume * * *
3 4 3 4( || || , ) ( || || , )bm C C m C Cσ σ= , which implies the 

randomness *r r= . So / /*
2 2C C=  and we have 1CT = *

1CT . But the challenge ciphertext *
1CT  

is not allowed to be decrypted by our security definition. On the other hand, 

* * *
3 4 3 4( || || , ) ( || || , )bm C C m C Cσ σ≠  means that we either face with an occurrence of the 

event OTSF  or AB  should output a message “invalid” to indicate that relation V1 does not hold. 

Hence AB  halts at step (2).  
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(3) 1C ≠ *svk : As 4 ( )svk rC u v= =
*

1 2
*

( )
1

( )svk svk r
i

g Xα α− ⋅ ， AB  computes: 

4( , )e g C =
*

1 2
*

( )
1

( , ) ( , )svk svk rr
i

e g g e g Xα α− ⋅  

2 2
*

/
2 1

( ) ( , ) r
i

C e g Xα α ⋅=  

*
1

2

1
( )4

/
2

( , )( )
( )

svk svke g C
C

α
α

− = ( , )re g g , m = 3 ( , )rC e g g  

(4) If relation V1 does not hold or 0 1{ , }m m m∈ , outputs a message “invalid”; Otherwise 

outputs m . 

Challenge: The adversary outputs two equal-length message 0 1( , )m m .  AB  flips a 

random bit b  and outputs the challenge first level ciphertext *
1CT  as follows: 

* 2 *1 1* * /* * *
1 2 3 4, ( , ), ,i i

x x
bC svk C e g B C T m C Bα ⋅

= = = ⋅ = , * * * *
3 4( , || || )bS ssk m C Cσ =  

If T = 2( , )
b
ae g g , we have *

2

br
a

=  and the following equations: 

*

*
/*
2 1

( , )r
i

C e g X= =
2

2*1( , )i

b
a x ae g g ⋅

= *1( , )i
xe g B  

* **
4 ( )svk rC u v= =

*
2

*1
r

i
X α ⋅ = 2 *1i

xBα ⋅
 

So *
1CT  is a valid encryption of bm  if T = 2( , )

b
ae g g . In contrast, if  T  is random, 

*
1CT  perfectly hides bm  and Ad  guesses b  with probability 0.5. Hence the overall 

advantage of AB  is Pr[ ]OTSFε − . 

 

5. Conclusion 

Fang et al. [6] presented an interactive bidirectional single-hop C-PRE scheme, which 

supports access policy consisting of “OR” and ‘AND” gates. They also left it as an open 

problem to construct a non-interactive C-PRE scheme with security in the standard model. In 

this paper, we present a security model for unidirectional(non-interactive) C-PRE schemes. To 

yield a unidirectional C-PRE scheme supporting non-monotonic access policy expressed by 

“NOT”, “OR” and “AND” gates, we extend the unidirectional PRE scheme [8] by using the 

ideas from the non-monotonic attributed based encryption(ABE) [9]. Hence our C-PRE 
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scheme enables more flexible access policy set by delegator in comparison with previous 

works. Non-interactive feature of our unidirectional scheme also simplifies generation of 

re-encryption keys. Finally we prove our scheme to be CCA secure under the modified 

3-weak Decision Bilinear Diffie-Hellman Inversion assumption in the standard model.  
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