
1

A unidirectional conditional proxy re-encryption scheme based on

non-monotonic access structure

Bin Wang

Information Engineering College of Yangzhou University

No.196 West HuaYang Road, Yangzhou City, Jiangsu Province, P.R.China

E-mail: jxbin76@yahoo.cn
Abstract: Recently, Fang et al. [6] introduced an interactive(bidirectional) conditional proxy

re-encryption(C-PRE) scheme such that a proxy can only convert ciphertexts that satisfy

access policy set by a delegator. Their scheme supports monotonic access policy expressed by

“OR” and “AND” gates. In addition, their scheme is called interactive since generation of

re-encryption keys requires interaction between the delegator and delegatee. In this paper, we

study the problem of constructing a unidirectional(non-interactive) C-PRE scheme supporting

non-monotonic access policy expressed by “NOT”, “OR” and “AND” gates. A security model

for unidirectional C-PRE schemes is also proposed in this paper. To yield a unidirectional

C-PRE scheme supporting non-monotonic access policy, we extend the unidirectional PRE

scheme presented by Libert et al. [8] by using the ideas from the non-monotonic attributed

based encryption (ABE) scheme presented by Ostrovsky et al. [9]. Furthermore, the security

of our C-PRE scheme is proved under the modified 3-weak Decision Bilinear Diffie-Hellman

Inversion assumption in the standard model.

Keywords: Unidirectional conditional proxy re-encryption, The standard model,

Non-monotonic access structure, Chosen ciphertext security, Attributed based encryption

1. Introduction

Encryption is one of the most fundamental cryptographic primitives. The concept of

proxy re-encryption (PRE) was introduced by Blaze et al. in 1998 [4]. A proxy in PRE

systems can convert a ciphertext encrypted under Alice’s public key (delegator) into a

ciphertext of the same message under Bob’s public key (delegatee). Proxy re-encryption has

many applications such as email forwarding, distributed file system [2]. A bidirectional PRE

scheme allows a proxy to convert ciphertexts encrypted under Alice into ciphertexts under

2

Bob via a re-encryption key and the same key can also be used to translate from Bob to Alice.

On the other hand, if the re-encryption key only allows one-way conversion (e.g., from Alice

to Bob), then the corresponding PRE scheme is called unidirectional.

The PRE scheme in [4] is bidirectional and CPA secure under DDH assumption. In 2005,

Ateniese et al. [2] presented several CPA secure unidirectional PRE schemes based on bilinear

pairing. Then Canetti and Hohenberger [5] presented an appropriate definition of chosen

ciphertext security(CCA) for bidirectional PRE schemes and the first CCA secure

bidirectional PRE scheme. The work in [5] left an open problem to come up with a CCA

secure unidirectional PRE scheme. Libert and Vergnaud [8] presented a definition of chosen

ciphertext security (CCA) for unidirectional PRE schemes and the first unidirectional PRE

scheme with CCA security in the standard model.

Normal PRE schemes allow a semi-trusted proxy to translate ciphertexts from Alice to

Bob unconditionally. It is desirable that a proxy can only convert ciphertexts under certain

constraints set by the delegator. Shao et al. [12] designed a PRE scheme with keyword search

property, which allows a proxy equipped with trapdoor information to test whether a

ciphertext from Alice contains one specified keyword. However, it is pointed out [13] that the

trapdoor still allows the proxy to convert ciphertexts from Alice without any restriction. On

the other hand, Weng et al. [14, 15] introduced the notion of conditional proxy re-encryption

(C-PRE) such that only ciphertexts whose keywords satisfy certain conditions set by Alice

can be converted by a proxy. They also left it as an open problem to construct a C-PRE

scheme supporting access policy consisting of “OR” and “AND” gates over keywords.

Wang et al. [13] presented a unidirectional PRE scheme supporting conjunctive

keywords search and selective delegation such that a proxy can only re-encrypt ciphertexts

that contain a set of keywords specified by the delegator. In other words, their construction

supports access policy expressed by “AND” gates. By regarding keywords as attributes, Fang

et al. [6] presented an interactive(bidirectional) single-hop C-PRE scheme based on access

tree used in the attribute based encryption scheme [7], which supports access policy

consisting of “OR” and ‘AND” gates. Their scheme is called interactive since generation of

re-encryption keys requires interactions between the delegator and delegatee who take their

secret keys as private input. Interactive generation of re-encryption keys is an essential feature

3

of bidirectional C-PRE scheme defined in [5]. CCA security of their C-PRE scheme was

proved under the random oracle model. They also left it as an open problem to construct a

non-interactive(unidirectional) C-PRE scheme with security in the standard model.

Although Wang et al. [13] defined their CCA security model for unidirectional PRE

schemes supporting conjunctive keywords search, their security model is coupled tightly with

the notion of conjunctive keywords search. Hence the model in [13] is not suitable for C-PRE

schemes supporting generic access structure. In addition, the work in [6] considered security

model for interactive(bidirectional) C-PRE schemes and proved security of their construction

under the random oracle model.

Sahai and Waters [11] introduced the concept of attribute based encryption (ABE), in

which a ciphertext is associated with a set of attributes, and a user’s private key will reflect an

access policy over attributes that controls which ciphertexts a user is able to decrypt. The

original construction of Sahai and Waters was limited to express threshold access structure.

Goyal et al. [7] presented ABE schemes based on access tree in which the private key

supports any monotonic access structure. To increase the expressibility of ABE schemes,

Ostrovsky et al. [9] designed an ABE construction that supports non-monotonic access

structure represented by “NOT”, “OR” and “AND” gates over attributes.

Motivated by the above discussion, we aim to design a unidirectional(non-interactive)

C-PRE scheme supporting non-monotonic access structure to enhance the expressibility of

C-PRE schemes. The rest of paper is organized as follows. At first, we provide security

definitions for unidirectional C-PRE schemes in which a ciphertext is associated with a set of

keywords, and a re-encryption key will reflect an access policy that controls which

ciphertexts a proxy is able to re-encrypt. Subsequently, we extend the unidirectional PRE

scheme [8] to yield a unidirectional C-PRE scheme supporting non-monotonic access

structures. Finally our construction is proved to be CCA secure under the standard model.

A challenge in our security proof lies in the fact that a corrupted user in our model is

allowed to obtain re-encryption keys from the target user so long as the access structure

associated with these re-encryption keys are not satisfied by the challenge set of attributes

associated with the challenge ciphertext. On the other hand, in order to support negation by

using the techniques in [9], we have to design two types of re-encryption keys, which also

4

affects the structure of a user’s secret key in our construction.

2. Preliminaries

2. 1 Bilinear pairing

Given a security parameter λ , an efficient algorithm (1)PG λ outputs (, , , ,)Te G G g p ,

where G is a cyclic group of a prime order p generated by g , and 12 2pλ λ− < < . TG

is a cyclic group of the same order, and let : Te G G G× → be a efficiently computable

bilinear function with the following properties:

1. Bilinear: (,) (,) ,a b abe g g e g g= for all , pa b Z∈ .

2. Non-degenerate: (,) 1
TGe g g ≠

2.2 Modified 3-wDBDHI assumption

Given (, , , ,)Te G G g p output by (1)PG λ , we define two experiments in which an

adversary A outputs 0 or 1.

Experiment 0: A is given
2 2

1
*(, , , , , (,)), ,

b
a a ba a

R pg g g g g e g g a b Z← .

Experiment 1: A is given
2

1

(, , , , ,)a a bag g g g g T , *, ,R p R Ta b Z T G← ← .

The modified 3-weak Decision Bilinear Diffie-Hellman Inversion assumption [8]

claims for any polynomial time algorithm A , the probability 0 1| Pr[] Pr[] |W W− is

negligible, where iW is the event that A outputs 1 in experiment i .

2.3 One-time signature

A digital signature scheme (Gen,S,V)Sig = consists of the following algorithms:

1. Gen(λ): Outputs a secret/public key pair (,)sk pk .

2. S (,sk m): Given a secret key sk and a message m , then outputs a signature σ .

3. V(, ,pk m σ): Takes as input a public key pk , a message m and a signature σ , then

outputs either 1 or 0 to denote “accept” or "reject".

We review the definition of strong existential unforgeability for a signature scheme denoted

5

by (Gen,S,V)Sig = in experiment
1 ,

()Sig
SCMA

Exp Aλ .

1 ,
()k

Sig
SCMA

Exp A

The challenger C runs (,) Gen(1)pk sk λ← and sets Sσ ←∅ .

* * O-Sig(,) ()m A pkσ ← .

The adversary A wins if * *(,)m Sσσ ∉ and V * *(, ,)pk m σ =1.

Advantage of A in experiment
1 ,

()Sig
SCMA

Exp Aλ is defined to be the probability that A

wins in the experiment.

The oracle O-Sig is defined as follows:

O-Sig()m

Returns (,)S sk mσ = and updates Sσ = {(,)}mSσ σ∪ .

A strongly unforgeable one-time signature scheme Sig requires that for any PPT adversary

A who can access the oracle O-Sig only once, its advantage OTSAdv in experiment

1 ,
()k

Sig
SCMA

Exp A is negligible.

3. Security definitions and model

3.1 Syntax of unidirectional C-PRE schemes

 A unidirectional single-hop C-PRE scheme consists of the following algorithms. A

ciphertext is associated with a set of keywords, and a re-encryption key will reflect an access

policy over keywords that controls which ciphertexts a proxy is able to re-encrypt.

Setup()λ : Given the security parameter λ , this algorithm produces a set par of global

public parameters.

Keygen()par : Given par , this algorithm generates a secret/public key pair (,)sk pk .

iReKeygen(, , ,)i jpar sk pk A : Given par , the secret key isk of user i , the public

6

key jpk of user j i≠ and an access structure iA , this algorithm generates a re-encryption key

i,i j AR
→

. We use an algorithm rather than an interactive protocol to implicitly assume that the

process of generating re-encryption keys is non-interactive.

1Enc (, ,)ipar pk m : Given par , a public key ipk and a message m , this algorithm

outputs a first level ciphertext 1CT that cannot be re-encrypted for another party.

2Enc (, , ,)ipar pk m γ : Given par , a public key ipk , a message m and a set γ of

keywords(attributes), this algorithm outputs a second level ciphertext 2CT that can be

re-encrypted into a first level ciphertext.

i2 ,ReEnc(, , , ,)i i j Apar CT pk Rγ
→

: Given par , a re-encryption key i,i j AR
→

 and a second

level ciphertext 2CT encrypted under ipk and a set γ of keywords, this algorithm outputs a

first level ciphertext 1CT encrypted under jpk when γ satisfies access structure

iA ;otherwise a message “invalid” is returned.

1 1Dec (, ,)ipar sk CT : Given par , a secret key isk and a first level ciphertext 1CT , this

algorithm outputs a message m or a message “invalid”.

2 2Dec (, ,)ipar sk CT : Given par , a secret key isk and a second level ciphertext 2CT ,

this algorithm outputs a message m or a message “invalid”.

In the following, we will take par as implicit input for simplicity. For any message m ,

any couple of secret/public key pair (,)i isk pk , (,)j jsk pk , the following conditions of

correctness should be satisfied:

(1) 1 1Dec (,Enc (,))i isk pk m = m ; 2 2Dec (,Enc (, ,))i isk pk m γ = m ;

(2) If γ satisfies the access structure iA , the following should hold:

1CT = i
2ReEnc(Enc (, ,), , ,ReKeygen(, ,))i i i jpk m pk sk pk Aγ γ ,

1 1Dec (,)jsk CT = m .

7

3.2 Security of second level ciphertexts

Init: As in [8], the adversary Ad determines the target user *i , the corrupted users and

declares a set *γ of keywords that he wishes to be challenged upon at this stage.

Setup: The challenger C runs Setup()λ to produce the global public parameters par

and generates key pairs as follows:

* *KeyGen() (,)pk sk⋅ → , KeyGen() (,)x xpk sk⋅ → , KeyGen() (,)h hpk sk⋅ → .

* *(,)pk sk is the key pair for the honest target user *i . Key pairs subscripted by h or /h

represents honest parties and corrupted key pairs are subscripted by x or /x .

Phase 1: Ad takes *pk , { }hpk ,{ , }x xpk sk as input and issue queries to oracles rekeyO ,

rencO and 1decO − .

Challenge: Ad outputs two equal-length messages 0 1(,)m m . The challenger C flips a

random bit b and returns *
2CT = * *

2Enc (, ,)bpk m γ .

Phase 2: Ad still issues queries to oracles rekeyO , rencO and 1decO − .

Guess: Ad outputs a bit /b .

The advantage of the adversary in this game is /| Pr[] 0.5 |b bε = = − . A C-PRE scheme is

CCA secure at level 2 if ε is negligible.

The re-encryption key oracle rekeyO

Given a tuple i(, ,)i jpk pk A , this oracle proceeds as follows:

(1) If both ipk and jpk are honest, returns i,i j AR
→

iReKeygen(, ,)i jsk pk A← ;

(2) If the honest ipk = *pk , jpk is corrupted and *γ does not satisfy iA , returns

i* ,i j A
R

→
i*ReKeygen(, ,)jsk pk A← ;

8

The re-encryption oracle rencO

Given a tuple i
2((, ,), ,)i jCT pk pk Aγ , where 2CT is a second level ciphertext encrypted

under (ipk ,)γ , and ,i jpk pk are public keys produced by Keygen , this oracle proceeds

as follows:

(1) If ipk = *pk , jpk is corrupted and *
2 2 0 1Dec (,) { , }sk CT m m∈ , returns a message

“invalid” since re-encryption may leak information about the challenge bit b in this case.

(2) If γ satisfies the access structure iA , computes i,i j AR
→

iReKeygen(, ,)i jsk pk A←

and returns the first level ciphertext i1 2 ,ReEnc((, ,),)i i j ACT CT pk Rγ
→

← . Otherwise, outputs

a message “invalid”.

First level decryption oracle 1decO −

Given a tuple 1(,)ipk CT , where 1CT is a first level ciphertext encrypted under the public

key ipk , this oracle proceeds as follows:

(1) If 1(,)ipk CT is a derivative of the challenge pair * *
2(,)pk CT , returns a message

“invalid”.

(2) Otherwise, returns 1 1Dec (,)im sk CT← .

A Derivative 1(,)ipk CT of the challenge pair * *
2(,)pk CT in this game is defined as

follows:

If 1CT is a first level ciphertext and ipk = *pk , or ipk belongs to a honest user,

1(,)ipk CT is a derivative of the challenge pair if 1 1 0 1Dec (,) { , }isk CT m m∈ .

3.3 Security of first level ciphertexts

Init: The adversary Ad determines the target user *i and the corrupted users at this

stage.

9

Setup: The challenger C runs Setup()λ to produce the global public parameters par

and generates key pairs in the same way as described previously:

* *KeyGen() (,)pk sk⋅ → , KeyGen() (,)x xpk sk⋅ → , KeyGen() (,)h hpk sk⋅ → .

Phase 1: The adversary Ad who takes as input *pk , { }hpk , { , }x xpk sk can issue

queries to oracles rekeyO , 1decO − .

Challenge: Ad outputs two equal-length message 0 1(,)m m . The challenger C flips a

random bit b and returns *
1CT = *

1Enc (,)bpk m .

Phase 2: Ad still issues queries to the oracle 1decO − .

Guess: The adversary outputs a bit /b .

The advantage of the adversary in this game is /| Pr[] 0.5 |b bε = = − . A C-PRE scheme is

CCA secure at level 1 if ε is negligible.

The re-encryption key oracle rekeyO

Given a tuple i(, ,)i jpk pk A , this oracle returns i,i j AR
→

iReKeygen(, ,)i jsk pk A← . This

means that the adversary is allowed access to all re-encryption keys without any restriction.

First level decryption oracle 1decO −

Given a tuple 1(,)ipk CT , where 1CT is a first level ciphertext encrypted under the public

key ipk , this oracle proceeds as follows:

If 1(,)ipk CT is a derivative of the challenge pair * *
1(,)pk CT , returns a message

“invalid”. Otherwise, returns 1 1Dec (,)im sk CT← .

A Derivative 1(,)ipk CT of the challenge pair * *
1(,)pk CT in this game is defined as

follows:

If 1CT is a first level ciphertext and ipk = *pk , 1(,)ipk CT is a derivative of the

10

challenge pair if 1 1 0 1Dec (,) { , }isk CT m m∈ .

Ateniese et al. [2] defined a security notion called master secret security for unidirectional

PRE schemes. This notion requires that no coalition of dishonest delegatees be able to pool their

re-encryption keys in order to expose the secret key of their common delegator. It is discussed in

[6, 8] that CCA security at level 1 implies master secret security for single-hop PRE schemes.

4. Our C-PRE scheme

Setup()λ : Given (, , , ,)Te G G g p output by (1)PG λ , picks generators

*
1 2(, ,) , ,w

pg u v G g g w Z← = ← and a strongly unforgeable one-time signature scheme

(, ,)Sig Gen S V= . Let parameter d specifies the exact number of keywords that every second

level ciphertext has. We associate each keyword with a unique element in *
pZ .

Then chooses two random polynomials ()h x and ()q x of degree d subject to the

constraint (0)q = 1 modw p− . We also define two functions ()
1 2()

dx h xT x g g= ⋅ and

()
2() q xV x g= that are publicly computable by interpolation. The set par of public

parameters is (0) () (0) ()
1 2 2 2 2 2(, , , , , , , , , , ,)q q d h h dg u v g g g g g g g Sig= " " .

Keygen : Picks *
1 2(,)i i px x Z← and sets a secret/public key pair for user i as

1 2
1 2 1 2(,), (,)i ix x

i i i i i isk x x pk X g X g= = = = .

iReKeygen(, ,)i jsk pk A : Given the secret key isk of user i , the public key jpk of

user j and a non-monotonic access structure iA , user i generates a re-encryption key i,i j AR
→

as follows:

When dealing with a non-monotonic access structure iA over a set of (unprimed)keywords

iP , we proceed similarly as in [9]. For each unprimed keyword ip P∈ , we define another

11

primed keyword /p . Let /P = i/{ | }p p P∈ . Then define a monotonic access structure A over

P = i/P P∪ in such a way that iS A∈ if and only if ()N S A∈ , where ()N ⋅ is an operator

defined as ()N S = / /{ | \ }S p P p P S∈ ∈∪ . That is, ()N S consists of all the keywords in

S plus the primed part of all the keywords that are not in S .

Let A be associated with a linear secret sharing mechanism ∏ . Then user i applies ∏

over the set P to obtain shares { }kλ of the secret 1
2ix − . For each keyword jkp P∈ (the

underlying unprimed keyword is kp), a random k pr Z← is chosen:

If jkp = kp is unprimed, kD = (1) (2)
1 2(() ,)k k kr r

k j k k iD X T p D Xλ= ⋅ = .

If jkp = /
kp is primed, kD = (3) (4) (5)

1 2(, () ,)k k k kr r r
k j k k k iD X g D V p D Xλ= = = .

The re-encryption key i,i j AR
→

= j{ }
kk p PD
∈

.

1Enc (,)ipk m : Given a public key ipk and a message m , this algorithm proceeds as

follows:

(1) Chooses pr Z← and generates a fresh one-time signature key pair

(,) ()ssk svk Gen λ← ;

(2) /
1 2 1 3, (,) , (,)r r

iC svk C e g X C e g g m= = = ⋅ , 4 ()svk rC u v= ;

(3) Generates a one-time signature 3 4(, || ||)S ssk m C Cσ = ;

The first level ciphertext 1CT = /
1 2 3 4(, , , ,)C C C C σ .

2Enc (, ,)ipk m γ : Given the public key ipk , a message m and a set γ of d keywords,

outputs a second level ciphertext 2CT that can be re-encrypted into a first level ciphertext as

follows:

(1) Chooses pr Z← and generates a fresh one-time signature key pair (,)ssk svk ;

(2) 1 2 2 3 4, , (,) , ()r r svk r
iC svk C X C e g g m C u v= = = ⋅ =

12

5 6{ () } , { () }p r p r
p pC T p C V pγ γ∈ ∈= = ;

(3) Generate a one-time signature 3 4(, || ||)S ssk m C Cσ = .

The second level ciphertext 2CT = 1 2 3 4 5 6(, , , , , ,)p pC C C C C C σ .

i2 ,ReEnc((, ,),)i i j ACT pk Rγ
→

: Given a re-encryption key i,i j AR
→

 and a second level

ciphertext 2CT encrypted under (,)ipk γ , if γ satisfies access structure iA , this algorithm

outputs a first level ciphertext 1CT encrypted under jpk as follows:

(1) Parses 2CT as 1 2 2 3 4, , (,) , ()r r svk r
iC svk C X C e g g m C u v= = = ⋅ =

5 6{ () } , { () }p r p r
p pC T p C V pγ γ∈ ∈= = , σ

(2) Recall that iA induces a monotonic access structure A . Denote / ()Nγ γ= . As γ

satisfies access structure iA , /γ is authorized in A by previous definition of the operator

()N ⋅ . Let j /{ : }kI k p γ= ∈ . A set of coefficients { }k k Iω ∈ can be efficiently computed such

that 1
2k k ik I

xω λ −
∈

=∑ [3].

For every unprimed attribute j /
k kp p γ= ∈ , (so kp γ∈ by definition of the operator

()N ⋅), we proceeds as follows:

(2.1) Extracts kD = (1) (2)
1 2(() ,)k k kr r

k j k k iD X T p D Xλ= ⋅ = from the re-encryption key;

(2.2) Computes kZ = (1) (2)
2 5(,) (,)kp

k ke D C e D C

 = 1 2 2(() ,) (, ())j k k i i kx r x r x r r
k ke g T p g e g T pλ ⋅ = 1 2(,) j i kx x re g g λ

For every primed attributed j / /
k kp p γ= ∈ (so kp γ∉ by definition), let

{ }k kpγ γ= ∪ . Note that | | 1k dγ = + and recall that the degree of the polynomial ()q ⋅ is d .

Using the keywords in kγ as an interpolation set, we compute lagrangian coefficients { }
kp p γσ ∈

such that 1
2() (0) (log)

k
p gp
q p q g

γ
σ −

∈
= =∑ . Then we proceeds as follows:

 (2.3) Extracts kD = (3) (4) (5)
1 2(, () ,)k k k kr r r

k j k k k iD X g D V p D Xλ= = = from the

13

re-encryption key and computes:

kZ =
(3)

2
(5) (4)

6 2

(,)
(, ()) (,) pp k

k
p

k kp

e D C
e D C e D C σσ

γ∈∏
=

1 2

2 2

(,)
(, (())) (() ,)

k j k i

ppi k k i k

x r x r

x r r x rr
kp

e g g g
e g V p e V p g

λ

σσ

γ∈∏

 =
1 2 2

2 2()()
2 2

(,) (,)
(, ()) (,)

j k i k i

ppi k k k i k

x x r r x r

x r q p r x rq p r
p

e g g e g g
e g g e g g

λ

σσ

γ
⋅

∈∏

 =
2 1 2

2 ()

2

(,) (,)

(,)

i j k k i

i k pp k

x x r x rr

x r r q p

e g g e g g

e g g γ

λ

σ
∈∑ = 1 2(,) j i kx x re g g λ

Finally we have k
kk I

Z ω
∈∏ = 1 2 ()(,) j i k kk I

x x re g g ω λ
∈

⋅ ∑ =
1 2

2(,)
j i

i

rx x
xe g g = 1(,) jrxe g g .

The first level ciphertext 1CT = /
1 2 1 3 4(, (,) , , ,)r

jC C e g X C C σ= .

1 1Dec (,)isk CT : Given a secret key isk and a first level ciphertext 1CT , this algorithm

proceeds as follows:

(1) Parses 1CT as /
1 2 3 4(, , , ,)C C C C σ ;

(2) Computes 1

1
/
2

ixC = 1 1(,) (,)i i

r
x x re g g e g g= and m = 3 (,)rC e g g ;

(3) Tests 1 3 4(, || ||) 1V C m C C = (V1)

If relation V1 does not hold, outputs a message “invalid”; otherwise outputs m .

2 2Dec (, (,))isk CT γ : Given a secret key isk and a second level ciphertext 2CT , this

algorithm proceeds as follows:

(1) Parses 2CT as 1 2 3 4 5 6(, , , , , ,)p pC C C C C C σ ;

(2) Tests 1
2 2 4(, ()) (,)C

ie C u v e X C= (V2)

If relation V2 does not hold, outputs a message “invalid”.

(3) Otherwise, computes
2 2 2

3
1 1

2

(,)

(,) (,)i i i

r

x x r x

C e g g mm
e g C e g g ⋅

⋅
= = ;

(4) If relation V1 does not hold, outputs a message “invalid” ; otherwise outputs m .

Remark: Although our construction requires that every second level ciphertext has exactly

14

d keywords, this restriction can be mitigated by using the method proposed in [9].

Theorem 1: Assume that the one-time signature scheme is strongly unforgeable. Our scheme is

CCA secure at level 2 under the modified 3-wDBDHI assumption.

Proof: Let
2

1

1 1 2(, , , , ,)a a bag A g A g A g B g T− = = = = be a modified 3-wDBDHI instance.

We build an algorithm AB deciding whether T = 2(,)
b
ae g g from a successful CCA adversary

Ad at level 2 with advantage ε .

Init: The adversary Ad determines the target user *i , the corrupted users and declares a

set *γ of d keywords to be challenged upon.

Setup: AB picks a one-time signature scheme (, ,)Sig Gen S V= such that the maximal

probability δ that any public key can be selected should be less than 2 λ− as in [8]. AB

generates a fresh one-time signature key pair * *(,)ssk svk and sets u = 1
1Aα ,

v =
*

1 2
1 2

svkA Aα α− ⋅ ⋅ , *
1 1 2 2 1 2() , , , , pg A g A Zμ α α μ= = ← .

Having chosen a random degree d polynomial ()f x ， two random degree d

polynomials ()u x and ()h x are defined as follows:

Let *γ = * *
1{ , , }dp p" . AB sets ()u x = dx− for all *x γ∈ and ()u x ≠ dx− for

some(arbitrary) *x γ∉ . This ensures that ()u x = dx− if and only if *x γ∈ . Let

()h x = 1(() ())a u x f xμ− ⋅ ⋅ + . Hence ()
1 2()

dx h xT x g g= ⋅ = () ()
1 2

dx u x f xg g+ ⋅ can be publicly

computed for arbitrary x .

Then AB picks *
1{ , , }d pZθ θ ←" and implicitly defines a random degree d

polynomial ()q x such that (0)q = 2 1()a − , *()iq p = iθ , 1 i d≤ ≤ . We have (0)
2

qg = g and

()
2() q xV x g= can be computed for arbitrary x by interpolation. These parameters are

distributed identically to that in the real scheme.

15

Key generation: Public key of an honest user *\{ }i HU i∈ is defined as

1iX = 1iaxg = 1
1

ixA , 2iX = 2ixg for randomly chosen *
1 2,i i px x Z← . The target user’s public key

is set as *1i
X = *1i

a xg ⋅
= *1

1
i

xA , * 2i
X =

2
* *2 2

2
i i

a x xg A⋅
= for randomly chosen * *

*
1 2
, pi i

x x Z← .

Key pair of a corrupted user j is set as 1jX = 1jxg , 2jX = 2jxg for randomly chosen

*
1 2,j j px x Z← .

Given a tuple i(, ,)i jpk pk A chosen by Ad , the re-encryption key oracle rekeyO is

simulated by AB as follows:

 Let ∏ be the linear secret sharing mechanism associated with the monotonic access

structure A induced by iA over a set P . Let M be the share-generating matrix for ∏

with l rows and n columns. Each row kM of M is labeled by a keyword named jkp P∈

and kp is the unprimed keyword underlying jkp . We list the following propositions:

Proposition 1 [3]: Assume Q is not an authorized set in the access structure A . (1,0, ,0)
n

"��	�

is linearly independent of the rows QM , where QM is the sub-matrix of M containing those

rows labeled by keywords in Q .

Proposition 2 [1, 10]: A vector π is linearly independent of a matrix N if and only if there

exist a vector θ which can be efficiently computed such that 0N θ⋅ =
G

 while 1π θ⋅ = .

 Then we consider the following cases:

(1) i = *i , j CU∈ and *γ does not satisfy iA :

When iA is not satisfied by *γ , */ *()Nγ γ= is not an authorized set in A . According

to Proposition 1 and 2, there exists a column vector 1(, ,)T
nθ θ θ=

G
" such that */ 0M

γ
θ⋅ =
G G

and 1(1,0, ,0) 1
n

θ θ⋅ = =
G

"�	
 .

Given a row vector 1(, ,)n pR r r Z= ←" , let 1()S R s r θ= + − ⋅
G

, where

16

*
2 1

2
()

i
s a x −= ⋅ . Note that S is uniformly distributed subject to the constraint that the first

component is s . Let TM S⋅ be the vector of l shares for the secret s . Let kM be the

row labeled by j */
kp γ∈ , we have that 0kM θ⋅ =

G
by Proposition 2. Hence the share

kλ = T
kM S⋅ = T

kM R⋅ , which has no dependency on s .

(1.1) For a unprimed keyword j * */
k kp p γ γ= ∈ ⊆ , AB picks a random k pr Z← and

outputs the following:

kD = *
(1) (2)

1 2
(() ,)k k kr r

k j k k i
D X T p D Xλ= ⋅ =

The above is computable since the share kλ is independent of *
2 1

2
()

i
a x −⋅ by the

above-mentioned discussion.

(1.2) For a unprimed keyword j *
k kp p γ= ∉ , kλ is linearly dependent on *

2 1
2

()
i

a x −⋅ .

AB picks a random /
k pr Z← , implicitly defines

1
1/ ()

() ()
j k

k k d
k k

a x
r r

p u p
μ λ− ⋅ ⋅

= −
+

 and outputs

kD = (1) (2)(,)k kD D as follows:

(1)
kD = 1 () () ()

1 1 2() () ()
d

jk k k k k k kxr p u p f p r
j kX T p g g gλ λ +⋅ = ⋅ ⋅

 =

1
1/

1

()

() () () () ()
1 2() ()

j k
kd d

j k k k k k k

a x
r

x p u p f p p u pg g g
μ λ

λ

− ⋅ ⋅
−

+ +⋅ ⋅

 =
/() () ()

1 2()
d

k k k kp u p f p rg g+ ⋅

1
1()

() ()
k j k

d
k k

f p x a

p u pg
μ λ−⋅ ⋅ ⋅ ⋅

−
+

 =

1
1

/

()

() () () () ()
1 2() ()

k j
d d

k k k k k k k

f p x

p u p f p r a p u pg g g
μ

λ

−⋅ ⋅
−

+ ⋅ +⋅

(2)
kD = * 2

kr
i

X =

1
1/

* 2

()

() ()
2()

j k
k d

i k k

a x
rx p u pA

μ λ− ⋅ ⋅
−

+ =

1
1 * 2

/
* 2 () ()

2()()
j i

dki k k k

x x
x r a p u pA g

μ

λ

− ⋅ ⋅
−

⋅ +

As kλ is linearly dependent on *
2 1

2
()

i
a x −⋅ , kag λ⋅ can be computed via 1A− and 1A .

(1.3) For a primed keyword j /
k kp p= ∉ */γ (the underlying unprimed keyword *

kp γ∈),

17

kλ is linearly dependent on *
2 1

2
()

i
a x −⋅ . AB picks a random /

k pr Z← , and implicitly

defines kr = /
1k k jr xλ− ⋅ . Then outputs kD = (3) (4) (5)(, ,)k k kD D D as follows:

(3)
kD =

/

1
k k kr r

jX g gλ =

(4) () kr
k kD V p= =

/
1()

2() p k k jk r xg θ λ⋅ − ⋅ =
/

1
2 2() ()k p j pk k kr xA Aθ θλ⋅ − ⋅⋅

*2
kr

iX =
2 /

* 12 ()() k k ji
a x r xg λ⋅ − ⋅ =

/ 2* 1 *2 2
2() ()k ji k i

r x x xaA g λ⋅ − ⋅⋅⋅

2
kag λ⋅ can be computed via 2A since kλ is linearly dependent on *

2 1
2

()
i

a x −⋅ .

(1.4) For a primed keyword j /
k kp p= ∈ */γ (the underlying unprimed keyword *

kp γ∉),

kλ is independent of *
2 1

2
()

i
a x −⋅ . AB picks a random k pr Z← , Then outputs the

following:

kD = (3) (4) (5)
1 *2(, () ,)k k k kr r r

k j k k k iD X g D V p D Xλ= = =

(2) i = *i and *\{ }j HU i∈ :

(2.1) For a primed keyword j /
k kp p= , AB picks a random k pr Z← and outputs

kD = (3) (4) (5)(, ,)k k kD D D as follows:

(3)
kD = 1 1

1 ()j k jk k k k ka x xr r a r
jX g g g g gλλ λ⋅ ⋅= =

(4) () kr
k kD V p=

(5)
kD = * 2

kr
i

X * 2
2

k i
r xA ⋅

=

As kλ may be linearly dependent on *
2 1

2
()

i
a x −⋅ , kag λ⋅ can be computed via 1A− and

1A .

(2.2) For a unprimed keyword jk kp p= , AB picks a random k pr Z← and outputs

kD = (1) (2)(,)k kD D as follows:

(1)
kD = 1 ()k kr

j kX T pλ ⋅ = 1() ()jk kxa r
kg T pλ⋅ ⋅

(2)
kD = * 2

kr
i

X = * 2
2

k i
r xA ⋅

18

Similarly, kag λ⋅ can be computed via 1A− and 1A .

(3) If *\{ }i HU i∈ : This can be handled easily since we know the shared secret 2ix in

this case.

Finally, returns the re-encryption key i,i j AR
→

={ }kD .

Let the challenge second level ciphertext *
2CT = * * * * * * *

2 3 4 5 6(, , , , , ,)p psvk C C C C C σ and

bm be the encrypted challenge message. Then we define an event OTSF as follows and bound

its probability to occur in a way similar to [8].

(1) The adversary issues a re-encryption query in which

2CT = *
2 3 4 5 6(, , , , , ,)p psvk C C C C C σ and m is the implicit message embedded in 2CT such

that * * *
3 4 3 4(|| || ,) (|| || ,)bm C C m C Cσ σ≠ and *

3 4(, || || ,) 1V svk m C C σ = .

(2) The adversary issues a first level decryption query in which 1CT = * /
2 3 4(, , , ,)svk C C C σ

and m is the implicit message embedded in 1CT such that

* * *
3 4 3 4(|| || ,) (|| || ,)bm C C m C Cσ σ≠ and *

3 4(, || || ,) 1V svk m C C σ = .

As the adversary has no information on *svk before the challenge phase, the probability of

occurrence of OTSF in phase 1 can be bounded by
2

O
O

qq λδ⋅ ≤ , where Oq is the total number

of oracle queries made by the adversary and δ is the maximal probability that any one-time

public key can be selected.

During the guess phase, the event OTSF could be used to construct an algorithm breaking

strong unforgeability of the one-time signature scheme. Therefore Pr[]
2

OTSO
OTS

qF Advλ≤ + .

The re-encryption oracle rencO is simulated as follows:

Given a tuple i
2((,), , ,)i jCT pk pk Aγ chosen by the adversary, AB proceeds as follows:

(1) Parses 2CT as 1 2 3 4 5 6(, , , , , ,)p pC C C C C C σ ;

19

(2) If iA is not satisfied by γ or relation V2 does not hold, outputs a message “invalid”;

(3) If *\{ }i HU i∈ or j CU∉ , AB makes a query to the oracle rekeyO and re-encrypts

by using the returned re-encryption key.

(4) If *i i= , j CU∈ , we consider the following sub-cases:

(4.1) 1C = *svk : If * * *
3 4 3 4(, , ,) (, , ,)bm C C m C Cσ σ= in this situation, we have bm m= .

But we should return “invalid” by our convention for the re-encryption oracle presented in section

3.2. In addition, 1C = *svk ∧ * * *
3 4 3 4(, , ,) (, , ,)bm C C m C Cσ σ≠ implies an occurrence of OTSF .

Hence AB halts when 1C = *svk at step (4.1).

(4.2) 1C ≠ *svk : Assuming 4 ()svk rC u v= , relation V2 guarantees that *2 2
()r

i
C X= . So

* * *2 2 2
1 1

2 2 2()i i i
x r x x rC A A⋅

= = , 4 ()svk rC u v= =
*

1 2()
1 2()svk svk rA Aα α− ⋅ , AB computes

*
1

2 * 2

1
()4

2

()
i

svk svk
x

C
C

α
α

− = 1
rA , 1

1 1(,)jxre A A− = 1(,)r
je g X = /

2C . Let 1CT = /
1 2 3 4(, , , ,)C C C C σ . If

1 1 0 1Dec (,) { , }jsk CT m m∈ , returns a message “invalid”. Otherwise, returns 1CT .

The first-level decryption oracle 1decO − is simulated as follows:

 Given a tuple 1(,)ipk CT , where 1CT is a first level ciphertext encrypted under a public

key ipk , AB proceeds as follows:

(1) Parses 1CT as /
1 2 3 4(, , , ,)C C C C σ ;

(2) If i CU∈ , decrypts the ciphertext by the known secret key;

(3) i HU∈ , 1C = *svk : Assuming * * *
3 4 3 4(, , ,) (, , ,)bm C C m C Cσ σ= , we should output a

message “invalid” to indicate that 1CT is a Derivative of the challenge * *
2(,)pk CT . Otherwise,

* * *
3 4 3 4(, , ,) (, , ,)bm C C m C Cσ σ≠ means that we either face with an occurrence of the event

OTSF or AB should output a message “invalid” to indicate that relation V1 does not hold. Hence

AB halts at step (3).

20

(4) i HU∈ and 1C ≠ *svk : As 4 ()svk rC u v= =
*

1 2()
1 2()svk svk rA Aα α− ⋅ , AB computes:

1 4(,)e A C− =
*

1 2()
1 1 1 2(,) (,)svk svk r re A A e A Aα α−
− −

2
/
2() ixC

α

 =
2

1
1(,) i

r
x

ie g X
α
⋅

=
2

1 1 2(,) (,)i i
r

a x x rae g g e g g
α

α
⋅

⋅ =

*
1

2

1
()1 4

/
2

(,)()
() i

svk svk

x

e A C

C

α
α

−− = (,)re g g ，m = 3 (,)rC e g g

 (5) If relation V1 does not hold or 0 1{ , }m m m∈ , outputs a message “invalid”; Otherwise

outputs m .

Challenge: The adversary outputs two equal-length message 0 1(,)m m . AB flips a

random bit b and outputs the challenge second level ciphertext *
2CT as follows:

* 2* * * * *
1 2 3 4, , ,i

x
bC svk C B C T m C= = = ⋅ = 2Bα , *

5
pC =

*

* *
(){ }i

i

f p
p

B
γ∈

 *
6
pC =

*

* *{ }i

ip
Bθ

γ∈
,

* * * *
3 4(, || ||)bS ssk m C Cσ =

When Ad outputs /b = b , AB outputs 1 to indicate that T = 2(,)
b
ae g g . Otherwise AB

outputs 0 to indicate that T is random.

If T = 2(,)
b
ae g g , we have *

2

br
a

= and the following equations:

2* 2* *2 2
*

*
2 2

()i i

b
a x xr a

i
C X g B⋅

= = =

* **
4 ()svk rC u v= =

*
2

2()rA α = 2Bα

*

* *
* *

5 { () }
i

p r
i p

C T p
γ∈

= =
* *

* *
()

2{ }i

i

f p r
p

A
γ

⋅
∈

=
*

* *
(){ }i

i

f p
p

B
γ∈

*

* *
* *

6 { () }
i

p r
i p

C V p
γ∈

= =
* *

* *
()

2{ }i

i

q p r
p

A
γ

⋅
∈

=
*

* *{ }i

ip
Bθ

γ∈

So *
2CT is a valid encryption of bm if T = 2(,)

b
ae g g . In contrast, if T is random,

*
2CT perfectly hides bm and Ad guesses b with probability 0.5. Hence the overall

advantage of AB is Pr[]OTSFε − .

21

Theorem 2: Assume that the one-time signature scheme is strongly unforgeable, our scheme is

CCA secure at level 1 under the modified 3-wDBDHI assumption.

Proof: Let
2

1

1 1 2(, , , , ,)a a bag A g A g A g B g T− = = = = be a modified 3-wDBDHI instance.

We build an algorithm AB deciding whether T = 2(,)
b
ae g g from a successful CCA adversary

Ad at level 1 with advantage ε .

Init: The adversary Ad determines the target user *i and the corrupted users at this

stage.

Setup: AB picks a one-time signature scheme (, ,)Sig Gen S V= and generates a fresh

one-time signature key pair * *(,)ssk svk .

AB sets u = 1gα , v =
*

1 2
*1

svk
i

g Xα α− ⋅ ⋅ , *
1 2, pZα α ← , *

1 2, ,w
pg G g g w Z← = ← . Then

chooses two random polynomials ()h x and ()q x of degree d subject to the constraint

(0)q = 1w− . Subsequently AB defines two publicly computable functions ()
1 2()

dx h xT x g g= ⋅

and ()
2() q xV x g= .

Key generation: Key pair of an honest users *\{ }i HU i∈ is defined as 1iX = 1ixg ,

2iX = 2ixg for randomly chosen *
1 2,i i px x Z← . The target user’s public key is set as

*1i
X =

2
* *1 1

2
i i

a x xg A⋅
= , * 2i

X = * 2i
a xg ⋅

 for randomly chosen * *
*

1 2
, pi i

x x Z← . Key pair of a

corrupted user j is set as 1jX = 1jxg , 2jX = 2jxg for randomly chosen *
1 2,j j px x Z← .

Given a tuple i(, ,)i jpk pk A chosen by the adversary, the re-encryption key oracle rekeyO

is simulated by AB as follows:

Let ∏ be the linear secret sharing mechanism associated with the monotonic access

structure A induced by iA over a set P . As the secret keys of corrupt users and honest

22

users *i i≠ are known to AB , we only consider how to handle the following case:

(1) * *,i i j i= ≠ :

Let M be the share-generating matrix for ∏ with l rows and n columns. Each row

kM of M is labeled by a keyword named jkp P∈ and kp is the unprimed keyword

underlying jkp . Given a vector *
1

22
(() , , ,)ni

R a x r r−= ⋅ " , where 2(, ,)nr r" are randomly

chosen from pZ , TM R⋅ is the vector of l shares for the secret *
1

2
()

i
a x −⋅ . For each

keyword jkp P∈ (the underlying unprimed keyword is kp), a random k pr Z← is chosen by

AB .

If jkp is unprimed, kD = (1) (2)
1 2(() ,)k k kr r

k j k k iD X T p D Xλ= ⋅ = .

If jkp is primed, kD = (3) (4) (5)
1 2(, () ,)k k k kr r r

k j k k k iD X g D V p D Xλ= = =

A key point in the above expressions is to compute 1
k

jX λ = 1() jk xgλ . As kλ = T
kM R⋅ may

be linearly dependent on the secret *
1

2
()

i
a x −⋅ , kgλ can be computed via 1A− .

The first level decryption oracle 1decO − is simulated as follows:

As the secret keys of corrupt users and honest users *i i≠ are known to AB , given a first

level ciphertext 1CT and a public key ipk , we only consider how to handle the case *i i= :

(1) Parses 1CT as /
1 2 3 4(, , , ,)C C C C σ ;

(2) 1C = *svk : Assume * * *
3 4 3 4(|| || ,) (|| || ,)bm C C m C Cσ σ= , which implies the

randomness *r r= . So / /*
2 2C C= and we have 1CT = *

1CT . But the challenge ciphertext *
1CT

is not allowed to be decrypted by our security definition. On the other hand,

* * *
3 4 3 4(|| || ,) (|| || ,)bm C C m C Cσ σ≠ means that we either face with an occurrence of the

event OTSF or AB should output a message “invalid” to indicate that relation V1 does not hold.

Hence AB halts at step (2).

23

(3) 1C ≠ *svk : As 4 ()svk rC u v= =
*

1 2
*

()
1

()svk svk r
i

g Xα α− ⋅ ， AB computes:

4(,)e g C =
*

1 2
*

()
1

(,) (,)svk svk rr
i

e g g e g Xα α− ⋅

2 2
*

/
2 1

() (,) r
i

C e g Xα α ⋅=

*
1

2

1
()4

/
2

(,)()
()

svk svke g C
C

α
α

− = (,)re g g , m = 3 (,)rC e g g

(4) If relation V1 does not hold or 0 1{ , }m m m∈ , outputs a message “invalid”; Otherwise

outputs m .

Challenge: The adversary outputs two equal-length message 0 1(,)m m . AB flips a

random bit b and outputs the challenge first level ciphertext *
1CT as follows:

* 2 *1 1* * /* * *
1 2 3 4, (,), ,i i

x x
bC svk C e g B C T m C Bα ⋅

= = = ⋅ = , * * * *
3 4(, || ||)bS ssk m C Cσ =

If T = 2(,)
b
ae g g , we have *

2

br
a

= and the following equations:

*

*
/*
2 1

(,)r
i

C e g X= =
2

2*1(,)i

b
a x ae g g ⋅

= *1(,)i
xe g B

* **
4 ()svk rC u v= =

*
2

*1
r

i
X α ⋅ = 2 *1i

xBα ⋅

So *
1CT is a valid encryption of bm if T = 2(,)

b
ae g g . In contrast, if T is random,

*
1CT perfectly hides bm and Ad guesses b with probability 0.5. Hence the overall

advantage of AB is Pr[]OTSFε − .

5. Conclusion

Fang et al. [6] presented an interactive bidirectional single-hop C-PRE scheme, which

supports access policy consisting of “OR” and ‘AND” gates. They also left it as an open

problem to construct a non-interactive C-PRE scheme with security in the standard model. In

this paper, we present a security model for unidirectional(non-interactive) C-PRE schemes. To

yield a unidirectional C-PRE scheme supporting non-monotonic access policy expressed by

“NOT”, “OR” and “AND” gates, we extend the unidirectional PRE scheme [8] by using the

ideas from the non-monotonic attributed based encryption(ABE) [9]. Hence our C-PRE

24

scheme enables more flexible access policy set by delegator in comparison with previous

works. Non-interactive feature of our unidirectional scheme also simplifies generation of

re-encryption keys. Finally we prove our scheme to be CCA secure under the modified

3-weak Decision Bilinear Diffie-Hellman Inversion assumption in the standard model.

Acknowledgement

This work is supported by Natural Science Foundation of Higher Education Institutions,

in Jiangsu Province office of education, P.R. China (Grant No. 10KJD520005), National

Natural Science Foundation of China(Grant No. 60803122), Innovative Foundation of

Yangzhou University (Grant No. 2011CXJ022, 2011CXJ023).

References

[1] Anton H. and Rorres C., “Elementary Linear Algebra”, 9th Edition. 2005

[2] Ateniese G., Fu K., Green M., and Hohenberger S., “Improved proxy re-encryption

schemes with applications to secure distributed storage”. ACM Trans. Inf. Syst. Secur.,

9(1):1-30, 2006

[3] Beimel A., “Secure Schemes for Secret Sharing and Key Distribution”, PhD thesis, Israel

Institute of Technology, Israel, 1996

[4] Blaze M., Bleumer G., and Strauss M.. “Divertible protocols and atomic proxy

cryptography”, In EUROCRYPT’1998, LNCS, Vol. 1403, pp. 127–144, 1998

[5] Canetti R. and Hohenberger S., “Chosen-Siphertext Cecure Proxy Re-Encryption”. In

ACM Conference on Computer and Communications Security, pages 185-194. ACM, 2007

[6] Fang L.M., Susilo W., Ge C.P., Wang, J.D., “Interactive conditional proxy re-encryption

with fine grain policy”, The Journal of Systems and Software, Vol.84, No.12,

pp.2293-2302,2011

[7] Goyal, V., Pandey, O., Sahai, A., Waters, B., “Attribute-based encryption for fine grained

access control of encrypted data”, In: ACM Conference on Computer and Communications

Security 2006, pp. 89–98, 2006

[8] Libert B., Vergnaud D., “Unidirectional chosen-ciphertext secure proxy re-encryption”,

IEEE Transaction on Information Theory, Vol.57, No.3, pp.360-379, 2011

25

[9] Ostrovsky R., Sahai A., Waters B., “Attribute-Based Encryption with Non-Monotonic

Access Structures”, In: ACM Conference on Computer and Communications Security 2007,

pp. 195–203,2007

[10] Prasolov V.V. “Problems and Theorems in Linear Algebra”, American Mathematical

Society, 1994

[11] Sahai A., Waters, B., “Fuzzy Identity-Based Encryption”, In: Cramer, R. (ed.)

EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473 (2005)

[12] Shao J., Cao Z.F., Liang X., Lin H.,”Proxy re-encryption with keyword search”.

Information Science 180 (20), pp.4042–4059, 2010

[13] Wang X.A., Huang X.Y., Yang X.Y., Liu L.F., Wu X.G. , “Further observation on proxy

re-encryption with keyword search”, The Journal of Systems and Software, Vol.85, No.3,

pp.643-654, 2012

[14] Weng J., Deng R.H., Ding X.H., Chu C.K., Lai J.Z., “Conditional proxy re-encryption

secure against chosen-ciphertext attack”, AsiaCCS 2009, pp. 322-332, 2009

[15] Weng, J. Yang Y.J., Tang Q., Deng R.H., Bao F., “Efficient Conditional Proxy

Re-encryption with Chosen-Ciphertext Security”, ISC 2009, pp.151-166,2009

