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Abstract In this paper, we propose a unified aggrega-
tion and relaxation approach for topology optimization

with stress constraints. Following this approach, we first
reformulate the original optimization problem with a
design-dependent set of constraints into an equivalent

optimization problem with a fixed design-independent

set of constraints. The next step is to perform constraint

aggregation over the reformulated local constraints us-

ing a lower bound aggregation function. We demon-

strate that this approach concurrently aggregates the
constraints and relaxes the feasible domain, thereby
making singular optima accessible. The main advantage

is that no separate constraint relaxation techniques are

necessary, which reduces the parameter dependence of

the problem. Furthermore, there is a clear relationship

between the original feasible domain and the perturbed

feasible domain via this aggregation parameter.
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1 Introduction

Topology optimization of continuum structures has
become a popular design tool in industry due to the

design freedom it provides. However, in most applica-

tions, topology optimization is used in the early design

phase, and there is still a relatively large gap between

the optimized design and the final design for manu-

facturing. The topology optimized design is generally

followed by a number of post-processing steps to make

the design suitable for manufacturing and meet relevant

failure criteria, such as stress and buckling constraints.

Directly including stress constraints in topology opti-

mization has been an important field of study because

this reduces the gap between the optimized and final

design. However, several difficulties arise when includ-

ing stress constraints in topology optimization.

One of the major difficulties is that the correct op-
tima are often inaccessible to standard gradient-based

optimization techniques. These inaccessible optima are

known as ‘singular optima’, and have been first ob-

served in truss optimization by Sved and Ginos (1968).

They demonstrated on a three-bar truss example that

the optimum is a solution in which one of the origi-

nal members vanishes. However, the stress constraint
on that member prevented eliminating this member
by standard gradient-based optimization. Kirsch (1989,

1990) investigated the characteristics of singular op-

tima, and demonstrated that these optima are located

in a lower dimensional subdomain of the feasible do-

main. In general, singular optima arise in optimization

problems that are of the type ‘mathematical programs

with vanishing constraints’ (MPVC’s) (Achtziger and

Kanzow, 2008). Stress-constrained topology optimiza-

tion belongs to this class of problems. For a detailed

discussion on singular optima and its main character-
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istics, we refer to Rozvany (2001a) and the references

therein.

Another fundamental difficulty is that the stress is

a local state variable, which leads to a large number of

constraints. For other topology optimization problems

with few responses and many design variables, the sen-

sitivities can be calculated efficiently using an adjoint

formulation. However, since for stress-constrained prob-

lems the number of constraints design variables are of

the same order, there is no benefit in using an adjoint

formulation. Consequently, the potentially large num-

ber of local constraints leads to a computationally ex-

pensive sensitivity analysis.

Several solutions have been proposed to tackle these

difficulties. The most common approach is to subse-

quently apply (i) constraint relaxation to make singu-

lar optima accessible, and (ii) constraint aggregation to

deal with the large number of local constraints. Con-

straint relaxation techniques replace the original set of

constraints by smooth approximations. This operation

perturbs the feasible domain, and makes singular op-

tima accessible. Constraint relaxation techniques that

have been applied are ε-relaxation (Cheng and Guo,

1997), the qp-approach (Bruggi, 2008), and consider-

ing a ‘relaxed’ stress (Le et al, 2009). Constraint re-

laxation is then generally followed by constraint ag-

gregation. Following this approach, the relaxed local

constraints (or stresses) are lumped into a global con-

straint using an aggregation function that approximates

the maximum local function value. This transforma-
tion drastically reduces the computational costs of the
adjoint sensitivity analysis. Examples of aggregation
functions that have been applied in literature are the

Kreisselmeier-Steinhauser function (KS-function here-

after) (Kreisselmeier, 1979; Yang and Chen, 1996), and

the P -norm (Duysinx and Sigmund, 1998). Recently,

the authors have proposed an alternative solution (Ver-

bart et al, 2015).

The combined relaxation and aggregation approach

introduces two additional parameters: the relaxation

parameter, which controls the perturbation effect on

the original feasible domain, and an aggregation param-

eter, which controls the quality of the approximation of

the maximum local function value. A difficulty is that

the optimal choice for the parameter values in compu-

tational practice is generally very problem dependent,

and therefore, difficult to determine a priori. Further-

more, we demonstrate in this paper that the feasible

domain of the optimization problem with constraint re-

laxation and aggregation depends in a non-trivial way

on the problem parameters.

In order to overcome these difficulties, this paper

unifies these two concepts of constraint relaxation and

aggregation. The first step is to reformulate the original

optimization problem with a design-dependent set of
stress constraints into an equivalent optimization prob-
lem with a design-independent set of constraints. Next,

we apply constraint aggregation using a lower bound

aggregation function without separately relaxing the lo-

cal constraints. We demonstrate that constraint aggre-
gation using a lower bound aggregation function per-

turbs the original feasible domain, and makes singular

optima accessible. Consequently, no separate relaxation

techniques are necessary. The main advantage is that

the optimization problem only depends on a single ag-

gregation parameter, which reduces the parameter de-

pendence of the problem. Furthermore, there is a clear

relationship between the original feasible domain and

the perturbed feasible domain in terms of this aggrega-

tion parameter.

The remainder of this paper is structured as follows.

Section 2 presents the general framework of density-

based topology optimization with stress constraints. Sec-

tion 3 discusses relaxation and conventionally used ag-

gregation strategies, which are generally applied sep-

arately. Both these solution strategies are unified in

the novel approach presented in Section 4. Section 5

discusses the results obtained by testing the method

on several design cases on which we investigated the
parameter- and mesh dependency of the optimized de-
signs. Finally, conclusions are drawn in Section 6.

2 Stress-constrained topology optimization

This section presents density-based topology opti-

mization with stress constraints considering homoge-
nous linear elastic isotropic material following a SIMP

formulation (Bendsøe, 1989).

2.1 SIMP model

We consider density-based topology optimization to
find the optimal distribution of a material domain Ωmat

inside a larger design domain Ω. Following this ap-
proach, the design domain is discretized into finite el-

ements, and a density variable ρ is assigned to each

element. The density design variables can then vary

between zero and one, representing void and solid ma-

terial, respectively. The governing equations for static

equilibrium in terms of the density design variables are

defined as

E(u(ρ),ρ) = K(ρ)u(ρ)− f = 0, (1)

where ρ = (ρ1, ρ2, ..., ρN )
T
denotes the vector with N

density design variables, K denotes the global stiffness
matrix, u denotes the vector with nodal displacements,

and f denotes the design-independent load vector.
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The global stiffness matrix is composed out of the

local element stiffness matrices as

K =
∑

e∈Ωd

Ke(〈Ee〉). (2)

Here, Ωd denotes the discretized design domain; i.e., set

of indices of all elements within the design domain. In

this paper, we use 〈.〉 to indicate homogenized quanti-

ties, therefore, 〈Ee〉 denotes the homogenized (i.e., ef-
fective) Young’s modulus, which we define following the

SIMP model as

〈Ee〉 = ρpeE0, where p > 1. (3)

Here, E0 denotes the Young’s modulus associated with
solid densities (ρe = 1). The exponent p is chosen larger

than one, which makes intermediate density material
unfavorable in terms of stiffness to promote a black and
white design.

The original SIMP model in (3) requires a small

non-zero lower bound on the design variables to prevent
singularity of the global stiffness matrix (0 < ρmin ≪

1). An alternative formulation, which allows the densi-
ties to vary between zero and one, is the modified SIMP
model (Sigmund, 2007):

〈Ee〉 = Emin + ρpe(E0 − Emin). (4)

Here, Emin is a lower bound to the Young’s modulus
(e.g., Emin = 10−9E0). In this paper, we adopt this

modified SIMP formulation.

2.2 Problem formulation

First, we present the original topology optimization

problem with stress constraints. Since the constraints

are only defined on material elements, this topology

optimization problem is known in literature as a topol-

ogy optimization problem with ‘design-dependent con-

straints’1 (Rozvany, 2001a), also known as ‘vanishing

constraints’ (Achtziger and Kanzow, 2008). Next, we

reformulate the original optimization problem as an op-

timization problem with a fixed design-independent set

of constraints.

2.2.1 Original optimization problem

The stress-constrained topology optimization problem

in its nested form is defined as

(P0) : min
ρ∈S

V =
1

V0

∑

e∈Ωd

ρeve,

s.t. gj =
|σj |

σlim
− 1 ≤ 0, ∀j ∈ Ωd

mat(ρ). (5)

1 The term design-dependent refers to set of constraints.

Here, V0 denotes the total volume of the design domain,

ve denotes the volume (area in 2D) of a finite element,
|σ| represents a positive scalar-valued equivalent stress

criterion such as the Von Mises stress that depends on

the symmetric stress tensor σ. The equivalent stress is

bounded by the allowable stress σlim. The stress con-
straints gj are only defined over the material domain:

Ωd
mat :=

{

j ∈ Ωd
∣

∣

∣ ρj > 0
}

, (6)

which in the discretized context is the set of indices of

all elements with a strictly positive density. Finally, the

design space in which we search for a solution is defined

as

S :=
{

ρ ∈ R
N

∣

∣

∣ 0 ≤ ρ ≤ 1, E(u(ρ),ρ) = 0
}

. (7)

Here, E = 0 are the equations of static equilibrium de-
fined in (1). In other words, we only consider solutions

where static equilibrium is satisfied.

The reason that the constraints are only defined on

the material domain, Ωd
mat, is that physically the stress

should be zero in void regions. However, in density-
based topology optimization, one converts the topol-

ogy optimization problem in a continuum setting, into
a sizing optimization problem by modeling void as very
compliant material. In this model, the stress typically
attains a finite value at zero density (assuming finite

strains), which corresponds with the stress in an ele-

ment with infinitesimal density. A similar phenomenon

is known from truss optimization where the stress in a

member converges to a non-zero ‘limiting stress value’
(Cheng and Jiang, 1992) when a member vanishes from
the structure (again assuming finite strains). Conse-
quently, the model fails to represent the correct physics

when material vanishes.

2.2.2 Mathematical program with vanishing constraints

An alternative but equivalent formulation of the op-
timization problem (P0) in (5) was first proposed by

Cheng and Jiang (1992). Later, Achtziger and Kan-
zow (2008) demonstrated that such a reformulation is
generally applicable to the class of optimization prob-

lems known as mathematical programs with vanish-

ing constraints (MPVC’s) assuming continuous differ-

entiable functions. Topology optimization with stress

constraints belongs to this class of problems.

Following this approach, the design-dependent set of

constraints in (P0) is reformulated into a new design-

independent set of constraints defined over the entire
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design domain. The reformulated optimization problem

(P0) is defined as

(P0) : min
ρ∈S

V =
1

V0

∑

e∈Ωd

ρeve

s.t. gj = ρjgj ≤ 0, ∀j ∈ Ωd. (8)

The new constraints gj are defined over the entire de-

sign domain Ωd instead of the design-dependent set
Ωd

mat. The reformulated constraints are always satisfied

when a member vanishes; i.e., gj = 0 when ρj = 0. The

optimization problems (P0) and (P0) are equivalent in

the sense that their feasible domain is identical, and a

minimizer ρ∗ to the reformulated optimization problem

(P0) is also a minimizer to (P0).

The advantage of formulation (P0) over (P0) is that
the set of constraints is design-independent, and there-

fore, suitable for standard gradient-based optimization

techniques. We note that this reformulation does not

solve the difficulty of singular optima, but relaxation

techniques can be applied to this reformulated opti-

mization problem (P0).

2.3 Stress formulation

A difficulty in density-based topology optimization

is that the stress is non-uniquely defined for interme-

diate densities. Assuming that the densities in SIMP

represent a porous microstructure, one can distinguish

the stress at a macroscopic- and microscopic level. Here,

we briefly discuss the macroscopic stress, and the micro-
scopic stress commonly used in density-based topology
optimization (Duysinx and Bendsøe, 1998).

2.3.1 Macroscopic stress

The macroscopic stress is based on the effective Young’s

modulus following the SIMP model in (3). If we assume

that intermediate density represents certain configura-

tions of a microstructure, we can interpret the macro-

scopic stress as the stress based on the homogenized

material properties of the microstructure. The macro-

scopic stress tensor for an element in Voigt notation is
defined as

〈σe〉 = Ce(〈Ee〉) 〈ǫe〉 . (9)

Here, Ce(〈Ee〉) is the elasticity matrix based on the

homogenized Young’s modulus in (3), and 〈ǫe〉 is the
infinitesimal strain tensor.

Unfortunately, the macroscopic stress is not suit-

able for stress-constrained topology optimization, since

it does not correctly predict failure at the microscopic

level for intermediate densities (Duysinx and Bendsøe,

1998). Furthermore, the macroscopic stress leads to an

all-void design in topology optimization (Le et al, 2009).

A solution is to consider the stress experienced at the

microscopic level.

2.3.2 Microscopic stress

Duysinx and Bendsøe (1998) proposed a stress model
that mimics the behavior of the ‘local stress’ in a rank-
2 layered composite. Each density variable can then be

expressed in terms of the thicknesses of the layers. The

microscopic stress is the stress experienced in the lay-

ers. To mimic the behavior of the stress in such ma-

terial, the microscopic stress in density-based topology

optimization should be: (i) inversely proportional to the

density variable, and (ii) converge to a finite stress value

at zero density. The last conditions follow from study-

ing the asymptotic behavior of the microscopic stress

in the layers as the thickness of a layer goes to zero. A

definition consistent with condition (i) is

σe =
〈σe〉

ρqe
= ρp−q

e Ce(E0) 〈ǫe〉 . (10)

The value of the exponent q should be chosen such that
the stress satisfies condition (ii). This condition is only

satisfied for q = p. Thus, the microscopic stress is de-
fined as

σe = Ce(E0) 〈ǫe〉 . (11)

This definition of the microscopic stress has been com-

monly used in stress-constrained topology optimization,
and will also be used in this paper.

2.4 Summarizing remarks

Summarizing, our aim is to find an optimum to the
optimization problem (P0) stated in (5), which is equiv-

alent to finding an optimum to the reformulated opti-

mization problem (P0) in (8). We consider an equivalent

stress criterion based on the microscopic stress defined

in (11).

As mentioned before, (P0) cannot be solved directly

because of singular optima, and the potentially large

number of local constraints. Solution techniques have

to be applied to circumvent these difficulties. Before

introducing our new approach, we briefly discuss the

common solution techniques used to deal with these

difficulties.

3 Constraint relaxation and aggregation

The presence of singular optima, and potentially

large number of local constraints make it difficult to

solve (P0) directly. The most common approach is to

subsequently (i) relax the constraints to make singular

optima accessible, and (ii) apply constraint aggregation

to deal with the large number of constraints. In this

section, we discuss both solutions independently and
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Parameters:

P = 1

σlim = 1

E = 1

L1 = 6/10, L2 = 4/10

ρ1 = 1, ρ2 = 2

m = 0.6A1 + 0.8A2

σ1, A1 σ2, A2

L1 L2

P

Fig. 1: Two-bar truss (Stolpe, 2003). The optimiza-
tion problem is to minimize mass by varying the cross-
sectional areas A1 and A2 without exceeding the allow-

able stress.

investigate the parameter dependence of the combined

approach in which constraint relaxation is followed by

relaxation.

3.1 Constraint relaxation

We demonstrate the effect of constraint relaxation

on the accessibility of singular optima using a two-bar

truss problem.

3.1.1 Two-bar truss optimization problem

We consider the two-bar truss example shown in Fig-
ure 1 (Stolpe, 2003). The optimization problem is to

minimize its mass subjected to an allowable stress σlim,
which is equal in tension and compression and bounds

the absolute stress value |σe| in each member. The de-

sign variables are the cross-sectional areas A1 and A2.

Both members have a Young’s modulus E, and ρe and

Le denote the density and the length of the e-th mem-
ber, respectively. The stress in the members is given by

σ1 =
PL2

A1L2 +A2L1
, σ2 = −

PL1

A1L2 +A2L1
. (12)

The original optimization problem with vanishing stress

constraints is defined as

(P0) : min
A∈S

m =
∑

e∈Ωd

ρeAeLe,

s.t. gj =

(

|σj |

σlim
− 1

)

≤ 0, ∀j ∈ Ωd
mat(A),

0 ≤ A ≤ Amax1. (13)

Here, A = (A1, A2)
T
denotes the vector with the cross-

sectional areas, S is the design space where all con-

figurations of A satisfy the equilibrium equations, and

Amax is the maximum allowable cross-sectional area,

which is assumed to be equal for all elements. In this

example, we used Amax = 2. Finally, Ωd
mat ⊆ Ωd is

the set of indices of members with a strictly positive

cross-sectional area.

Because we use the absolute value of the stress, each

constraint can be rewritten as a pair of constraints.

However, for this load case, the left member is always

in tension and the right member is always in compres-

sion. Consequently, two of the four constraints become

redundant and are therefore not considered.

Figure 2a shows the design space of (P0). The gray
lines are the isocontours of the objective function. The

red line corresponds with the stress constraint in ten-

sion of the left member, and the blue line corresponds

with the stress constraint in compression of the right

member. The blue open circle in point F indicates that

the constraint g2 is not defined at A2 = 0 since the con-
straint vanishes together with the structural member.

The reason that stress constraints are removed from the

problem at zero cross-section is that the stress may be

non-zero in the limit. In this example, the stress in the

right member exceeds the allowable stress along D−F ,

and taking the constraint into account at zero cross-

section would therefore wrongfully qualify the subdo-

main D − F as infeasible.

The set of constraints in (13) is design-dependent

and prevents direct use of standard gradient-based opti-

mization techniques. As discussed in Section 2.2.2, (P0)
belongs to the class of MPVC’s (Achtziger and Kanzow,

2008), and can be reformulated as

(P0) : min
A∈S

m =
∑

e∈Ωd

ρeAeLe,

s.t. gj =

(

Aj

Amax

)

gj ≤ 0, ∀j ∈ Ωd,

0 ≤ A ≤ Amax1. (14)

Here, the original constraints are premultiplied by the

normalized cross-sectional area of the members they be-

long to. The new set of constraints is defined over the

entire design domain Ωd and thus design-independent.
Notice that normalization of the cross-sectional area is

not strictly necessary but ensures that the new set of

constraints is also dimensionless.

Figure 2b shows the design space for the reformu-

lated problem (P0). For reasons of clarity, we omit the
isocontours of the objective function. In this case, the

constraint represented by the blue line is also defined in

point F . The feasible domain for both formulations is

the same and is shown in Figure 2c. Since the set of con-

straints is design-independent standard gradient-based

optimization techniques can be applied to (P0).

However, it has been demonstrated that for this

type of problems, true optima cannot be reached since

they reside in a lower-dimensional subdomain of the

feasible domain (Kirsch, 1989, 1990). In this problem

any standard gradient-based optimizer will converge to
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B

FD

g
2 =

0g
1 =

0

∇m

A2

A1
0 0.5 1 1.5 2

0

0.5

1

(a) Design space for (P0).

B

FDD

g
2 =

0g
1 =

0

A2

A1
0 0.5 1 1.5 2

0

0.5

1

(b) Design space for (P0).

Singular optimum

D

A2

A1
0 0.5 1 1.5 2

0

0.5

1

(c) Feasible domain for (P0) and (P0).

Fig. 2: Design space for the two-bar truss problem in Figure 1 for both formulations and the associated feasible

domain, which is identical.

point B located in AB = (0, 1), where the mass is

mB = 4/5. However, this is not the true optimum. The

true optimum is located in point D at the left end of

the one-dimensional subdomain D-F . This subdomain

is part of the feasible domain since the cross-sectional
area of the second member is zero. In point AD = (1, 0)

the mass of the structure is mD = 3/5. In computa-

tional practice, the subdomain D-F , and therefore the

true optimum D, is inaccessible since it is of a lower

dimension than the ‘main body’ of the feasible domain.

Point D is known in literature as a singular optimum

(Kirsch, 1989).

3.1.2 Constraint relaxation

In general, relaxation techniques, such as ε-relaxation

(Cheng and Guo, 1997) and the qp-approach (Bruggi
and Venini, 2008), are applied to tackle the difficulty

of singular optima. Instead of the original set of con-

straints, a set of relaxed constraints is considered. By

relaxing the constraints, the original feasible domain is

perturbed such that singular optima become accessible.

Here, we briefly discuss ε-relaxation since it has a

clear relationship to the original problem (P0). The idea

FD

A2

A1

0 0.5 1 1.5 2

0

0.5

1

Fig. 3: Design space of (Pε) for ε = 0.01. The dashed
lines correspond to the original constraints of (P0).

is to relax the original set of constraints in (14) by in-

troducing a small relaxation parameter 0 < ε ≪ 1. The

relaxed optimization problem (Pε) is defined as

(Pε) : min
A∈S

m =
∑

e∈Ωd

ρeAeLe,

s.t. g̃j = gj − ε ≤ 0, ∀j ∈ Ωd,

0 ≤ A ≤ Amax1, (15)

where gj are the constraints as defined in (14).

Figure 3 shows the effect of relaxation on the fea-

sible domain for ε = 0.01. Relaxation makes the true

optimum D accessible by widening the subspace D-F .

Solving the relaxed problem will give an optimal solu-

tion close toD, where both constraints intersect. Cheng

and Guo (1997) demonstrated that the optimum solu-
tion A∗

ε of the relaxed problem (Pε) converges to the

optimum solution A∗

0 of (P0) as the relaxation param-

eter tends to zero: i.e., ‖A∗

ε − A∗

0‖ → 0 as ε → 0.

Therefore, ε-relaxation has been applied sometimes in

a continuation strategy beginning with a relatively large

amount relaxation, and gradually decreasing the relax-

ation parameter during optimization (see, e.g., Duysinx

and Bendsøe, 1998; Duysinx, 1999).

However, Stolpe and Svanberg (2001) demonstrated
that the ’global trajectory’ may be discontinuous with

respect to the relaxation parameter. Here, global trajec-

tory is defined as the path of the global solution in the

design space with respect to the relaxation parameter;

e.g., A∗

ε(ε). The global trajectory A∗

ε(ε) with respect
to (Pε) may suddenly jump from location within the

design space for arbitrary small ε > 0. Consequently,

following a sequence of solutions to the ε-relaxed prob-

lem in a continuation strategy does not guarantee find-

ing the true optimum, even when the starting point is

a global optimum of the relaxed problem.

3.2 Constraint aggregation

The most common approach to deal with the large

number of constraints is constraint aggregation. Fol-
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lowing this approach, the local constraints are lumped

together into a global constraint using an aggregation

function. Instead of many local constraints, only a sin-

gle aggregated constraint is considered, which drasti-

cally decreases the computational costs of sensitivity

analysis.

Several aggregation functions have been used in lit-

erature; e.g., the Kreisselmeier-Steinhauser (KS) func-

tion (Kreisselmeier, 1979; Yang and Chen, 1996) and

the P -norm, and P -mean (Duysinx and Sigmund, 1998;

Le et al, 2009). These aggregation functions have in

common that they transform a set of local function val-

ues into a scalar function. This scalar function depends

on an aggregation parameter P > 0, and converges in

the limit to the maximum local function value:

lim
P→∞

Ψ(f ;P ) = max(f1, f2, ..., fN ). (16)

Here, f = (f1, f2, ..., fN )
T
denotes a vector in which the

entries are the local function values, and Ψ is the scalar

aggregation function.

Some aggregation functions approximate the maxi-

mum local function value from above, and others from

below. Depending on this characteristic behavior the

aggregation function forms an upper- or lower-bound

to the maximum local function value. As will become

clear later, this characteristic is important for the pro-
posed approach in this paper. First, we briefly discuss
aggregation functions that have been used in literature.

3.2.1 P -norm and P -mean

Under the assumption that the local function values

in f are non-negative, two aggregation functions that
satisfy the asymptotic behavior in (16) are the P -norm

and P -mean, which are defined as

ΨU
PN =





N
∑

i=1

fP
i





1/P

, (17)

and

ΨL
PM =





1

N

N
∑

i=1

fP
i





1/P

, (18)

respectively.

The difference between these two aggregation func-

tions is that the P -norm is an upper bound, and the

P -mean is a lower bound to the maximum local func-

tion value:

ΨL
PM ≤ max(f1, f2, ..., fN ) ≤ ΨU

PN. (19)

D
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0

0.5

1

Fig. 4: The green line represents the constraint surface

(ΨU
KS(A; ε, P ) = 0) for subsequent ε-relaxation followed

by aggregation using the upper bound KS-function. The

aggregation- and relaxation parameter were chosen as

P = 106 and ε = 10−6, respectively. The magenta color

filled region represents the original unperturbed feasible

domain.

We use superscripts U and L, to denote an upper and

lower bound aggregation function, respectively. The P -

norm and P -mean have been mostly used to aggre-
gate non-negative stress criteria, such as the Von Mises

stress, into a global stress function (see, e.g., Le et al
(2009); Holmberg et al (2013)).

3.2.2 KS-function and lower bound KS-function

Another aggregation function often used is the KS-

function (Kreisselmeier, 1979; Yang and Chen, 1996),

which is defined as

ΨU
KS =

1

P
ln





N
∑

i=1

ePfi



 . (20)

Here, we used the superscript U to emphasize that the

KS-function forms an upper bound to the maximum
local function value. For any P > 0, the KS-function

overestimates the maximum local function value.
The maximum difference between KS-function and

maximum local function value fmax occurs when all lo-

cal function values are equal, and is defined as

1

P
ln
(

NePfmax

)

− fmax =
1

P
ln (N) . (21)

Subtracting this maximum difference of the original

KS-function gives a lower bound to the maximum local
function value defined as

ΨL
KS = ΨU

KS −
1

P
ln (N) =

1

P
ln





1

N

N
∑

i=1

ePfi



 . (22)

We will refer to ΨL
KS as the lower bound KS-function,

which also has been used by some researchers (Paŕıs
et al, 2009; Luo et al, 2012).
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(b) ΨKS(A1, A2; ε)
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Fig. 5: a) Isocontours of the KS-function for increasing values of the aggregation parameter, P = 2.5, 5, 10, 40, and

a fixed value of the relaxation parameter ε = 0.1, and b) isocontours of KS-function for decreasing values of the

relaxation parameter ε = 1/4, 1/16, 1/64, 1/256 and a fixed value of the aggregation parameter P = 10.

Similar to the P -norm and P -mean, the upper and

lower bound KS-function satisfy the asymptotic behav-

ior of (16). However, for the KS-function the local func-

tion values are not restricted to non-negative values.

Consequently, in contrast to the P -norm and P -mean,

the KS-function is often applied over the constraint
functions (Paŕıs et al, 2010; Luo et al, 2013) in con-
trast to the relaxed stresses (Le et al, 2009).

3.3 Subsequent relaxation and aggregation

Finally, we consider the conventional approach of

subsequently applying constraint relaxation followed by

constraint aggregation. On the two bar truss example

we show that, in computational practice, the feasible

domain of this approximate optimization problem de-
pends in a non-trivial way on the problem parameters.
First, we relax the constraints by ε-relaxation, followed

by constraint aggregation using the upper bound KS-

function in (20). The approximate optimization prob-

lem is then formulated as minimizing mass subject to

a global constraint:

ΨU
KS(g̃(A; ε);P ) =

1

P
ln





N
∑

i=1

eP g̃i



 ≤ 0, (23)

where g̃i are the ε-relaxed constraints defined in (15).

The global constraint depends on the relaxation pa-

rameter ε and aggregation parameter P . Figure 4 shows

the constraint surface (ΨU
KS = 0) represented by the

green line. The magenta color represents the original
unperturbed feasible domain, and point D denotes the

true optimum. The constraint surface is plotted for pa-

rameter values close to their limits; i.e., a small relax-

ation parameter ε = 10−6, and a large aggregation pa-

rameter P = 106. We observe that the feasible domain

of the approximate optimization problem (i.e., the re-

gion to the right of the green line) approximates the

original feasible domain when approaching the limit of

both parameters.

Although the feasible domain of the approximate

optimization problem converges to the original feasible
domain, in computational practice, the problem param-

eters are chosen far from these limits (e.g., P = 20 and
ε = 0.01, Paŕıs et al, 2009). The reason is that a large

value of the aggregation parameter may cause numer-

ical instabilities, and a too small value of the relax-

ation parameter does not provide sufficient relaxation

to make singular optima accessible. Next, we investigate

the effect of both parameters on the feasible domain of

the approximate optimization problem.

Figure 5a shows the constraint surface for increasing

values of the aggregation parameter and a constant re-

laxation parameter ε = 0.1. The arrow shows the effect

of increasing the aggregation parameter. We observe
that increasing the aggregation parameter for a fixed

relaxation parameter does not necessarily give a bet-
ter approximation of the true optimum. The global op-
timum of the approximate optimization problem may
deviate more from the true optimum as the aggrega-

tion parameter is increased. Figure 5b shows a similar

result when decreasing the relaxation parameter for a

fixed value of the aggregation parameter P = 10. We

observe that as the relaxation parameter approaches

its limit, the global optimum of the approximated op-

timization problem is not necessarily closer to the true

optimum in D.

In conclusion, increasing the aggregation parame-

ter for a constant relaxation parameter may produce a

feasible domain in which the global optimum deviates

more from the true optimum. The same behavior oc-
curs visa versa when decreasing the relaxation param-
eter while keeping the aggregation parameter constant.
This non-trivial dependence makes it difficult to choose

optimal parameter values. In addition, these findings
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(a) Lower bound KS-function.
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(b) P -mean.

Fig. 6: Design space for the problem formulation in (24) with a single global constraint based on the (a) lower
bound KS-function and (b) P -mean. The green lines represents the constraint surface (GL = 0) for different values

of the aggregation parameter: P = 4, 16, 32, 256. The arrow indicates the direction of the constraint surface for

increasing values of P . The magenta color represents the original feasible domain.

indicate that continuation strategies applied to a sin-
gle parameter while keeping the other parameter con-
stant may not lead to improved designs. Next, we pro-
pose a novel unified approach, in which we demonstrate

that constraint relaxation is not necessary when apply-

ing constraint aggregation. This reduces the previously

shown parameter dependence of the problem.

4 A unified aggregation and relaxation approach

In this section, we propose a unified aggregation and

relaxation approach. We demonstrate that aggregating

the constraints using a lower bound aggregation func-

tion simultaneously relaxes the feasible domain. Conse-

quently, there is no need for additional relaxation tech-

niques and the problem only depends on a single aggre-

gation parameter. Finally, we demonstrate that using a

lower bound KS-function can be considered as a special

case of ε-relaxation combined with constraint aggrega-

tion using the original upper bound KS-function.

4.1 Problem formulation

Here, we present the approach in the context of
truss optimization, and apply it to the two-bar truss

example of Section 3.1.1. The approach consists of two

steps: (i) reformulate the original problem (P0) in (13)

into an equivalent optimization problem (P0) in (14),
and (ii) aggregate these reformulated constraints using

a lower bound aggregation function. The resulting opti-

mization problem formulation with a single aggregated

constraint is

(PL
P ) : min

A∈S
m =

∑

e∈Ωd

ρeAeLe,

s.t. GL(ΨL(g;P )) ≤ 0,

0 ≤ A ≤ Amax1, (24)

Here, GL denotes the global constraint function, which

depends on a lower bound aggregation function ΨL,

which aggregates the reformulated constraints defined
as

gj =
Aj

Amax

(

|σj |

σlim
− 1

)

∀j ∈ Ωd. (25)

Next, we use the P -mean (ΨL
PM) and lower bound KS-

function (ΨL
KS), and demonstrate the effect of using this

formulation on the original feasible domain. When us-

ing the lower bound KS-function, we aggregate directly

over the reformulated constraints in (25); i.e., we sub-

stitute fi = gi in (22). Therefore, the global constraint

is simply defined as GL
KS = ΨL

KS.
For the P -mean we first rewrite the set of original

constraints in (25) as

gj − gmin ≤ −gmin, ∀j ∈ Ωd. (26)

Here, gmin = −1, which is the minimum possible value

that the constraints in (25) can take. By subtracting

this constant we ensure that the left hand side of (26)

is non-negative. The P -mean can then be applied over

the left hand side; i.e., we substitute fi = gi + 1 in

(18). The global constraint function in (24) based on

the P -mean is then defined as

GL
PM =





1

N

N
∑

i=1

(gi + 1)P





1/P

− 1 ≤ 0. (27)

Figure 6 shows the design spaces for the problem for-

mulation (PL
P ) based on the P -mean, and KS-function.

The green lines represent the global constraint surface

for different values of P ∈ ]0,∞[. The arrow in both fig-

ures indicates the effect of increasing the aggregation

parameter. The magenta color represents the original

unperturbed feasible domain.

It is observed that the P -mean and KS-function

have a similar perturbing effect on the unperturbed
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(a) Upper bound KS-function.
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(b) P-norm.

Fig. 7: Design space for the problem formulation in (24) with a single global constraint based on the (a) upper
bound KS-function and (b) P -norm. The green lines represents the constraint surface for different values of the

aggregation parameter: P = 4, 8, 16, 32. The arrow indicates the direction of the constraint surface for increasing

values of P . The magenta color represents the original feasible domain.

feasible domain as conventional relaxation techniques
such as ε-relaxation (cf. Figure 3). For both aggregation

functions, the perturbed feasible domain converges to
the original feasible domain as the aggregation param-

eter tends to infinity. We notice that the lower bound

KS-function provides slightly more relaxation within

the same range of the aggregation parameter.

The true optimal solution in D is accessible for all

chosen values of the aggregation parameter. Notice that

the constraint surface of both the P -mean and the KS-

function intersects with the optimal solution D for the

different values of the aggregation parameter P . This is
generally true for stress-constrained problems under a

single load case with the same stress limits in tension
and compression. Since for this class of optimization
problems, the optimum is a fully stressed design (Roz-
vany, 2001b), and all constraints g in (25) will be ac-

tive at a minimizer. Consequently, the global constraint
value is equal to all local constraint values in that point.
Next, we compare the result to the result obtained when

using an upper bound aggregation function.

4.2 Lower bound vs. upper bound aggregation function

Here, we consider the same optimization problem

in (24), but instead of lower bound aggregation func-

tions, we consider upper bound aggregation functions:

the original upper bound KS-function ΨU
KS(g;P ), and

the P -norm ΨL
PN(g + 1;P ). For the P -norm, we aggre-

gate similarly as for the P -mean over the left hand side

of (26).

Figure 7 shows the constraint surfaces of both up-

per bound functions for different values of P ∈ ]0,∞[.

We observe that in contrast to the lower bound ag-

gregation functions, the upper bound functions cut off

the lower dimensional subspace in which the true op-

timum D is located. In fact, this lower dimension sub-

space will never be a part of the feasible domain for

any P ∈ ]0,∞[. Consequently, in numerical practice,

the true optimum can never be reached following this

approach and additional relaxation techniques are nec-

essary to make singular optima accessible. As a result,

in literature, constraint aggregation is typically applied

to the relaxed local stress constraints (see e.g., Duysinx

and Sigmund, 1998; Le et al, 2009).

In conclusion, we have demonstrated that aggregat-

ing the local constraint using a lower bound aggregation

function, concurrently relaxes the feasible domain for

any P ∈ ]0,∞[. Therefore, no additional relaxation pro-

cedures are necessary, and the approximated problem

only depends on a single parameter P . As the aggre-

gation parameter tends to infinity the relaxed feasible

domain approximates that of the original unperturbed

problems: (PL
P ) → (P0) as P → ∞. Furthermore, for

the class of problems where the optimal design is a fully

stressed design, the lower bound KS-function gives an

exact approximation in the true optimum of the max-

imum local function value for any value of the aggre-

gation parameter. Note that this exact approximation

in the true optimum does not imply that the global

optimum in this formulation coincides with the true

optimum for every value of the aggregation parameter.

4.3 A special case of aggregation and ε-relaxation

Next, we demonstrate that the proposed approach

using a lower bound KS-function turns out to be a spe-

cial case of subsequently applying ε-relaxation and con-

straint aggregation by the original KS-function. Con-

sider the optimization problem in which aggregation



A unified aggregation and relaxation approach for stress-constrained topology optimization 11

Table 1: General settings

Option Setting/Value (All values are in SI units)

Model

Model Plane stress
Element type Q4
Mesh Fixed regular mesh in which every element has the same dimensions.

Thickness 1

Young’s Modulus E0 = 1

Young’s Modulus voids Emin = 10−9E0

Poisson’s ratio ν = 0.3

Equivalent stress criterion Von Mises stress based on the microscopic stress tensor in (11), and evaluated at
the centroid of each element

Allowable stress σlim = 1

Distributed loads All loads are distributed over a length of 5

Optimization parameters

Density filter Linear hat filter (Bruns and Tortorelli, 2001) with radius r = 2 (absolute value)
Initial density distribution Uniform density field: ρ = 1

Optimizer settings

Optimizer MMA (Svanberg, 1987) using the default settings + an external move-limit

External move-limit 0.1 (maximum absolute distance between an asymptote and the design variable)

Stop criteria ‖∆ρ‖∞ < 0.001

and relaxation are implemented separately:

min
A∈S

m =
∑

e∈Ωd

ρeAeLe,

s.t. ΨU
KS(g̃;P ) ≤ 0,

0 ≤ A ≤ Amax1, (28)

Here, ΨU
KS(g̃;P ) is the upper bound KS-function over

the ε-relaxed set of constraints, which is defined as:

g̃j(A; ε) = gj − ε ≤ 0, ∀j ∈ Ωd. (29)

The relaxation parameter ε is assumed to be equal for
all local constraints. Aggregating the local relaxed con-

straints using the KS-function gives

ΨU
KS(g̃;P ) =

1

P
ln





N
∑

i=1

eP g̃i





= ΨU
KS(g;P )− ε (30)

We observe that the KS-function over the relaxed con-

straints can be written in terms of the KS-function over

the original constraints minus a relaxation parameter ε.

Comparing (30) with (22), we conclude that using

the lower bound KS-function is a special case of ag-

gregating ε-relaxed constraints by the original upper

bound KS-function, and using an adaptive relaxation

parameter defined as ε(P ) = ln(N)/P .

4.4 A unified relaxation and aggregation approach in
density-based topology optimization

Here, we briefly summarize the unified approach for

density-based topology optimization. First, we reformu-

late the original topology optimization problem with a

design-dependent set of constraint, as the equivalent

optimization problem:

(P0) : min
ρ∈S

V =
1

V0

∑

e∈Ωd

ρeve,

s.t. gj = ρj

(

σj

σlim
− 1

)

≤ 0, ∀j ∈ Ωd.

(31)

Here, σj(σj) represents an equivalent stress criterion

(e.g., Von Mises stress) based on the microscopic stress

50

100

P = 1

(a) Cantilever

100

100

40

40

P = 1

(b) L-bracket.

Fig. 8: Design cases.
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(Duysinx and Bendsøe, 1998) of Section 2.3.2, defined

as

σe = Ce(E0) 〈ǫe〉 . (32)

Instead of solving (31) directly, we solve an approximate

optimization problem in which the local constraints in

(P0) are aggregated by a lower bound aggregation func-

tion. We consider the lower bound KS-function and the
P -mean. In case of the KS-function, the constraints are

replaced by the following global constraint:

GL
KS = ΨL

KS =
1

P
ln





1

N

N
∑

i=1

ePg
i



 ≤ 0. (33)

For the P -mean, we follow the procedure as described

in Section 4.1, in which the minimum possible local

constraint value gmin = −1 is subtracted from both
sides of the original set of constraints in (31). Following

this approach, the P -mean can be applied over the non-
negative left hand side and is defined as

ΨL
PM =





1

N

N
∑

i=1

(gi + 1)P





(1/P )

, (34)

and we consider the single constraint:

GL
PM = ΨL

PM − 1 ≤ 0. (35)

Next, we present the results obtained in density-based

topology optimization in which we parameterized the

design following the modified SIMP model as described

in Section 2.1.

5 Results and discussion

This section discusses the results that were obtained

by applying the proposed approach described in Sec-
tion 4.4 on the design cases shown in Figure 8. In order
to focus primarily on the effect of the proposed formu-
lation and study its parameter and mesh-dependency,

optimizer settings have not been tuned to achieve the

fastest convergence but were set to conservative values;

i.e., tight move-limits and a strict convergence crite-

rion. Unless stated otherwise, we use the settings listed
in Table 1. All values are in SI units.

Section 5.1 discusses the design-dependency on the

aggregation parameter value. Subsequently, Section 5.3
discusses the effect of mesh-refinement on the optimized

designs. Both studies are performed for the lower bound
KS-function and the P -mean aggregation function.

5.1 Effect of the aggregation parameter

Here, we discuss the effect of the aggregation pa-

rameter value on the optimized designs for both ag-
gregation functions. This effect is studied considering

the cantilever and L-bracket design cases shown in Fig-
ure 8. The design domains are discretized using square
elements of dimension 1× 1, which results in 5000 and

6400 elements for the cantilever and L-bracket, respec-

tively. The Von Mises stress used in the analysis is
based on the microscopic stress tensor in (32) evalu-
ated at the centroid of each element. For interpretation

of the optimized designs, we consider the Von Mises

stress only in ‘material elements’, which we define as

all elements with a density value ρ ≥ 1/2. The rea-

son to neglect lower density elements when plotting is

that the microscopic stress is non-zero at zero densi-

ties, and therefore, distracting large stress values arise

in zero densities making design interpretation difficult.

This phenomenon is well-known from truss optimiza-

tion where the stress converges to a non-zero ’limiting

stress’ value (Cheng and Jiang, 1992) for members with

zero cross-sectional area (assuming finite strains).

5.1.1 Cantilever design case

First, the cantilever design problem was solved using

the lower bound KS-function for different values of the

aggregation parameter. Figure 9a shows the different

optimized designs and the corresponding stress plots.

It is observed that increasing values of the aggregation

parameter result in designs with more uniform stress

distributions. This effect is especially noticeable in the
lower range of values for P . For example, consider the

optimized designs for P = 4, and P = 12 in Figure 9a.

The optimized for P = 4 has two peak stresses at the

corners of the design domain of the fixed boundary con-
dition. Although the optimized design for P = 12 has
the same topology the two diagonal members closest to

the fixed boundary moved slightly into the direction of
the corners. Consequently, the peak stress of this design
was reduced by approximately 23%, while the volume

fraction only increased by approximately 1%.

Next, the cantilever design was solved using the P -
mean aggregation function. Figure 9b shows the op-

timized design and associated stress plots versus the

aggregation parameter value. A similar behavior is ob-

served as for the lower bound KS-function. Increasing

values of the aggregation parameter lead to designs with

a more uniform stress distribution, but eventually also
to an increased number of iterations.

Figure 10 shows the data of the optimized designs
for both aggregation functions versus P ∈ {4, 8, ..., 60}.

Figure 10a shows that the maximum stress becomes
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(a) Lower bound KS-function: optimized designs for different values of P .
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(b) P -mean: optimized designs for different values of P .

Fig. 9: Optimized cantilever designs using the (a) lower bound KS-function and (b) P -mean aggregation function

for different values of aggregation parameter P . On top the density distribution and below the Von Mises stress

plotted for material elements (i.e., ρ ≥ 1/2).
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Fig. 10: Data of the optimized cantilever designs for both the lower bound KS-function and P -mean for different

values of the aggregation parameter.
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(a) LBKS: P = 12
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(b) LBKS: P = 28
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(c) LBKS: P = 52
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(d) P -mean: P = 12
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(e) P -mean: P = 28
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(f) P -mean: P = 52

Fig. 11: A selection of convergence histories of the cantilever designs in Figure 9 for increasing values of the

aggregation parameter for both the lower bound KS-function (LBKS) in (a-c) and P -mean in (d-f) .
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(d) P = 40

Fig. 12: Optimized designs using the P -mean, and different values of the aggregation parameter P . On top the

density distribution, and below the Von Mises stress plotted for material elements (i.e., ρ ≥ 1/2).

closer to the allowable stress (σlim = 1) as the aggrega-

tion parameter increases. As mentioned before, in the
case of a single load case, in theory all constraints are
active in the true optimum, and therefore, the maxi-

mum stress should exactly match the allowable stress at

an optimum. However, in computational practice, a sig-

nificant amount of local constraints are inactive, which

introduces an error between the global constraint value

GL (defined by (33) or (35)) and the maximum local
constraint value gmax. Figure 10b shows the error for

both aggregation functions and shows that it decreases

for increasing P .

Figure 10c shows the volume fractions of the opti-

mized designs versus the aggregation parameter. In con-

trast to the maximum stress, which smoothly decreases

as P increases for both aggregation functions, the vol-
ume fraction shows less predictable behavior. Compare

for example the optimized designs obtained using the
lower bound KS-function for P = 44 and P = 52 in

Figure 9a. These designs have approximately the same

maximum stress value, however, the volume fraction for

P = 52 is approximately ≈ 16% larger. The same effect,

but less pronounced, is observed for the P -mean com-
paring the optimized design for P = 52 and P = 60

in Figure 9b. The maximum stress value is approxi-

mately equal for both designs, but the volume fraction

increased with ≈ 6% from P = 52 to P = 60. From

this result, we conclude that increasing the aggregation

parameter further does not necessarily lead to more op-

timal designs.

Figure 10d shows the number of iterations versus

the aggregation parameter. For both aggregation func-

tions, we observe a trend of an increasing number of

iterations as P increases, which is especially noticeable
in the range of larger values P > 28. The increased

number of iterations may be explained by the increased

nonlinearity of the constraint function as the aggrega-

tion parameter value increases. Figure 11 shows some

convergence histories of the cantilever designs in Fig-

ure 9. For both aggregation functions, it is observed

that the convergence histories show more fluctuation as
P increases, which coincides with slower convergence.

For larger values of P > 60 for both aggregation

functions, the designs did often not converge, or con-
verged to designs containing large areas of intermediate

densities. These large regions of intermediate densities

can be attributed to the fact that as P increases, the
feasible domain approximates the feasible domain of the

original unperturbed optimization problem. It is well-
known that the original optimization problem contains
singular optima, which prevent convergence to a black

and white design (Duysinx and Bendsøe, 1998).

5.2 L-bracket design case

The same study was performed on the L-bracket

design case. Figure 12 shows a selection of optimized

designs for the L-bracket using the P -mean. It is ob-

served that the optimized design for P = 16 contains a

peak stress in the reentrant corner. Increasing the ag-

gregation parameter value leads to designs with a more

uniform stress distribution. For example, in contrast to
the optimized design for P = 16, the optimized de-

signs for P ≥ 24 have a rounded shape in the reentrant

corner, which is desired to effectively prevent a peak

stress. However, increasing the aggregation parameter
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Fig. 13: Mesh refinement applied to the L-bracket using the P -mean function for P = 28 in Figure 12c.

value further does not necessarily lead to improved de-

signs. Compare for example the optimized designs for

P = 40 and P = 32. Although the optimized design for

P = 40 has a maximum stress value of approximately
1% lower, the volume fraction increased with approx-

imately 6%. This result confirms what was found for

the cantilever design case, that further increasing the

aggregation parameter does not necessarily gives im-

proved designs. In general, the same dependence of the

optimized designs on the aggregation parameter was

found as for the cantilever design case.

5.2.1 Concluding remarks

In general, we have found that both the Lower-bound

KS-function and the P -mean produce similar designs

and have a similar dependence of the aggregation pa-

rameter. Two trends were observed. First, increasing

the aggregation parameter value initially leads to im-

proved designs, which have a more uniform stress distri-

bution. However, for increasingly large values of the ag-
gregation parameter, the number of iterations increases
and the optimizer is prone to convergence to inferior
local minima. Eventually, too large values of the aggre-

gation parameter lead to numerically unstable behavior

and no convergence at all.

For the used optimizer settings in Table 1, well-

performing designs, both in terms of structural per-

formance and number of iterations, were found in the

range P ∈ [20, 40]. Consequently, the value of P should

be chosen as a trade-off between a large enough value

to prevent peak stresses, but not too large value in or-

der to prevent numerical instabilities and large number

of iterations. This may offer opportunities for continu-

ation strategies, but this aspect has not been explored

in this paper.

5.3 Effect of mesh refinement

Next, we study the effect of mesh refinement where

the L-bracket design for the P -mean with P = 32 of

Figure 12c is used as a reference design. The mesh of
the reference design contains N = 6400 equally sized

quadrilaterals: 100 × 100 elements along the longest
edges. We solved this optimization problem under 4 dif-
ferent levels of mesh refinement.

Figure 13 shows the optimized designs and associ-

ated data obtained under mesh refinement. We observe
that the gap between the maximum stress and the al-
lowable stress (σlim = 1) increases with mesh refine-

ment. However, the aggregation function does produce
fully stressed designs and successfully prevents peak
stresses by forming a rounded shape in the reentrant
corner for all mesh sizes. The gap between the maxi-

mum stress and allowable stress can be dealt with us-

ing adaptive normalization techniques to scale the al-

lowable stress during optimization (Le et al, 2009).

Although the resulting optimized designs show a
clear black and white design, we observed that density

fluctuations occur in void regions under mesh refine-

ment. In order to make this effect more visible, the op-

timized design in Figure 13d is plotted again but with

the greyscale colormap rescaled from a density range

of [0, 1] to a range of [0, 0.05]; i.e., every density value

ρ ≥ 0.05 is depicted as black. The result is shown in
Figure 14a. Cross-section A − A′ shows fluctuating in-

termediate densities inside the void region.

A possible explanation for this behavior is that in

the proposed approach a local constraint becomes ac-
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Fig. 14: (a) Cross-section of Figure 13d shows fluctuation densities in the void region, (b) shows the optimized

design and cross-section after aggregating only local constraints with density ρ > 0.04.

tive as the density approach zero, since gj = ρjgj → 0

as ρj → 0. Consequently, low-density elements can po-
tentially have an important contribution in the aggrega-

tion function, and therefore, new search direction. The
aforementioned hypothesis is confirmed by only aggre-
gating the local constraints of elements with a density
above a small threshold value: ρ > 0.04. Figure 14b

shows that except for the void regions, this result is
equivalent to the previous result in Figure 14a indicat-
ing that these density fluctuations are indeed numerical

artifacts associated with lower density elements.

We notice that the densities in the void regions in

Figure 14b converge to a lower bound of approximately
ρ = 0.015. The reason for this is currently unknown

and is a topic of future research. This phenomenon was
not observed for simple compliance minimization under
mesh refinement for which the densities in void regions

converged to a value closer to zero (≈ 3 · 10−5). How-

ever, it was also observed using other approaches for

stress-constrained topology optimization; e.g., the dam-

age approach (Verbart et al, 2015) and the conventional

approach of constraint relaxation followed by aggrega-
tion. For example, Figure 15 shows a result obtained by
considering qp-relaxed stresses aggregated into a single

P -norm constraint (Le et al, 2009).
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0
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Fig. 15: Cross-section for optimized design using qp-

relaxed Von Mises stress (σ̃e = ρ
1/2
e σe), and P -norm

aggregation with an aggregation parameter of P = 32.

6 Conclusions

In this paper, we proposed a new approach that

unifies constraint aggregation and relaxation in stress-

constrained topology optimization. We demonstrated

on an elementary two-bar truss example, that aggre-

gating the local constraints using a lower bound aggre-

gation function simultaneously relaxes the feasible do-

main. In contrast to the conventional approach of sub-

sequently relaxing and aggregating the local stress con-

straints, no additional constraint relaxation techniques

are necessary. It was also found that using an upper

bound aggregation function makes singular optima in-

accessible (at least for the two-bar truss). This explains

the need of constraint relaxation before aggregation in

the conventional approach.

The main advantage of the proposed approach is
that the problem only depends on a single aggregation

parameter which reduces the parameter dependency of

the problem, which is non-trivial in the conventional

approach as also is demonstrated on the two-bar truss.

Furthermore, in contrast to the conventional approach,

there is a clear relationship between the original feasible

domain, and the relaxed feasible domain in terms of this
aggregation parameter.

We tested the proposed approach on a cantilever
and L-bracket design case and studied the effect of
the aggregation parameter. Both the lower bound KS-

function and the P -mean are suitable for this approach

and produced similar results. Both aggregation func-

tions show the same dependency on the aggregation

function. Increasing the aggregation parameter initially

gives better results, however, for large values of the ag-
gregation parameter the constraint function becomes
increasing nonlinear and the optimizer may converge

to inferior local minima. Furthermore, large values of

the aggregation parameter lead to an increased num-

ber of iterations. In general, best results were obtained

with moderate values of the aggregation parameter P ∈
[20, 40].
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Finally, the effect of mesh refinement was studied.

It was observed that the gap between the maximum
stress and the allowable stress increases under mesh re-
finement. However, the optimized designs remain fully

stressed under mesh refinement and contain a rounded

shape along the reentrant corner thereby preventing

a peak stress. The increasing gap between the maxi-

mum stress and the allowable stress can potentially be
dealt with using adaptive normalization strategies as
was shown in (Le et al, 2009). Numerical artifacts were

observed in low-density regions. It was found that only

aggregating stress values of elements above a certain

threshold effectively circumvent these numerical arti-

facts. Future work focuses on finding the exact cause of

these numerical artifacts.
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