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Summary

1. Competition theory predicts that community structure may be shaped by resource partitioning

between co-occurring species. As such, quantifying the degree of resource partitioning (i.e., niche

overlap) is a key component of studies examining community structure and species coexistence.

2. For many organisms, multiple resource axes quantify niche space. Each axis may be described

by a different type of data (e.g. categorical, continuous, count or binary data, as well as electivity

scores), with different data types requiring different statistical treatments. Therefore, incorporating

multiple axes into a single measure of niche space is problematic.

3. Here, we propose general methods for combining multiple niche axes, each characterized by dif-

ferent data types, within a unified analysis of niche overlap. Using appropriate transformations and

probability models, we show that each data type can give rise to directly comparable measures of

niche overlap, with the overlap statistic between two species defined as the overlapping area between

the distributions for each species.

4. Measurements derived from different types of data can be combined into a single unified analysis

of niche overlap by averaging overmultiple axes.

5. We then describe null model permutation tests that assess statistical differences in niche overlap,

which can address questions commonly posed by population ecologists (e.g. do two species occupy

different niche space?) and community ecologists (e.g. are multiple species evenly distributed across

niche space?).

6. To illustrate the use of these newly devised indices, we use an example from reef fishes that com-

bines ratio, categorical and electivity data, and an example from alpine plants that combines contin-

uous and ratio data.

7. The methods described in this article are relevant to a wide variety of ecological projects, includ-

ing the investigation of invasive species, relative abundance distributions, global change, species

coexistence and evolutionary diversification.

Keywords: community structure, multivariate analysis, null model analysis, reef fish,

resource use

Introduction

Hutchinson (1957) defined the niche as a multidimensional hy-

pervolume in which a species maintains a viable population.

The entire hypervolume under which an organism can poten-

tially exist describes its fundamental niche, whereas the portion

of the fundamental niche that a species actually occupies (for

example, due to competitive exclusion) defines its realized

niche. The breadth of a species’ realized or fundamental niche

can be viewed in terms of either the Eltonian niche (the func-

tional attributes of a species and its corresponding trophic

position: Elton 1927), or the Grinnellian niche (the response of

a species to the abiotic and biotic environment: Grinnell 1917).

Further, niche overlap can be analysed at a hierarchy of spatial

scales: the broad geographical range of a species (the c niche);

the region of a species’ niche that corresponds to the habitat(s)

where it is found (the b niche); and the region of a species’ real-

ized niche corresponding to the local scale where interactions

occur among species (the a niche: Silvertown et al. 2006). In

the case of the local scale, the realized niche of a species may

differ between locales where either the identity or abundance
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of heterospecifics differs. The related concept of niche overlap

between species may be viewed as the volume in multidimen-

sional hyperspace within which two or more species maintain

viable populations in the presence of one another (Mouillot

et al. 2005). The quantification of niche overlap has become an

important tool for investigating invasive species (Olden, Poff&

Bestgen 2006; Gregory & Macdonald 2009), relative abun-

dance distributions (Sugihara et al. 2003), global change

(Broennimann et al. 2007), species coexistence (Mookerji,

Weng & Mazumder 2004; Silvertown 2004) and evolutionary

diversification (Day&Young 2004; Smith et al. 2004).

Descriptions of niche space often incorporate multiple axes,

each of which may be an environmental condition (e.g. alti-

tude, pH); a type of resource (e.g. prey type, refuge type); a

phenotypic trait indicating the type of resource used (e.g. gut

length may be indicative of diet); or an index of electivity (e.g.

Manly’s Alpha). Multiple axes may be described by different

data types, including: binary data (e.g. presence ⁄absence of a
prey type in the diet), categorical data (e.g. host size classes:

small, medium or large), continuous data (e.g. soil pH), ratio

data (e.g. pectoral fin aspect ratio), count data (e.g. number of

prey eaten per hour), or indices of electivity (e.g. habitat use

relative to availability). For example, reef fish ecologists may

wish to quantify niche space across multiple axes, incorporat-

ing swimming ability (pectoral fin aspect ratio bounded below

by 0), habitat association (electivity data) and spatial distribu-

tion (categorical data). Incorporating multiple axes described

by different data types into a single measure of niche space is

statistically challenging, because different data types cannot be

dealt with in the same way. Here, we propose general statistical

methods for combining different data types within a unified

analysis of niche overlap, with an emphasis on local realized

niches.

Historically, niche overlap has been calculated across single-

or multiple axes using either: (1) continuous data (e.g. Mac-

Arthur & Levins 1967; Green 1971; Harner &Whitmore 1977;

Dueser & Shuggart 1979; Litvak & Hansell 1990); or (2) dis-

crete categorical data (e.g. Pianka 1973; Pappas & Stoermer

1997; Dolédec, Chessel & Gimaret-Carpentier 2000); however,

there is currently no methodology for incorporating different

data types into a single analysis of niche overlap acrossmultiple

niche axes. Continuous data has often been modelled as the

overlap of two normal curves (e.g. MacArthur & Levins 1967;

Cody 1975; Harner &Whitmore 1977; Manly 1994), although

this overlap index has two major problems: (1) it assumes that

quantitative functional traits are normally distributed; and (2)

it does not account for differences in variance between two nor-

mal distributions with the same mean. Although continuous

data can be converted to categorical data to overcome these

problems, there is a loss of information in replacing measure-

ments with ordered categories. Mouillot et al. (2005) provides

a solution to these problems, describing an approach, based on

kernel distribution estimators, that models niche overlap from

continuous data independently of the underlying distribution

of the data. Their approach facilitates the construction of

broad, multivariate indices of niche overlap. Mouillot et al.

(2005) constructed their indices from probability distributions

of continuous measurements using density estimation to pro-

vide comparable metrics across different axes. However, this

approach does not provide a framework for other types of data

(e.g. electivity scores between 0 and 1, or categorical data),

which are often recorded by field workers, and might usefully

be included inmultivariate indices of niche overlap.

Slobodchikoff & Schulz (1980) also suggest a mathematical

basis for calculating overlap across several niche dimensions,

which can incorporate both discrete and continuous data.

However, their proposed approach was not fully developed.

Here, we expand the ideas of Slobodchikoff& Schulz (1980) to

develop an approach that provides directly comparable mea-

sures of niche overlap from awide range of data types (e.g. bin-

ary, categorical, continuous, ratio, proportion, percent, count

and electivity data). Using appropriate transformations and

density estimation techniques, each data type gives rise to

equivalent measures of niche overlap ranging from 0 (no over-

lap) to 1 (complete overlap). The use of directly comparable

measures of niche overlap ensures that the geometric interpre-

tation of the overlapping density functions or probability is the

same for each data type. Once estimated probability distribu-

tions are available for each data type, the overlap statistic

between two species is simply the overlapping area between the

distributions for each species. It is thenpossible to create a com-

posite output of nicheoverlap, derived frommultivariate inputs

of different types of data, by averaging overmultiple axes.

A major objective of studies examining niche overlap is to

assess differential use of niche space by multiple species. For

example, population ecologists may want to know if two spe-

cies occupy different niche space. Alternatively, community

ecologists may want to know if multiple species are evenly

spaced across, or clustered within niche space. Niche compari-

sons must be done in a way that rules out detecting as different

two niches which only differ due to sampling variation. We

suggest the use of null models (see Gotelli & Graves 1996;

Gotelli 2000) to differentiate between species occupying similar

and different niches. This approach uses permutation tests to

produce a statistical null distribution (the distribution of the

test statistic under the null hypothesis of no niche difference)

by calculating pseudo-values of the test statistic which would

arise ifH0 was true. The position of an empirically derived test

statistic in relation to the pseudo-values generated by the null

model provides theP-value for the test.

We begin by outlining methodology for combining binary,

categorical, continuous, ratio, proportion, percent, count and

electivity data into a unified analysis of niche overlap (also see

Pledger & Geange 2009). Appropriate transformations and

probability models for each data type give rise to estimated

probability distributions, with the overlapping area between

the probability distributions of two species being the niche

overlap statistic. We then outline how individual axes of niche

overlap can be combined into a single multivariate measure of

niche overlap. We illustrate the construction of composite

measures of overlap in local realized niche space (i.e. the a
niche) with an example from reef fishes that combines mea-

surement, categorical and electivity data, and an example from

alpine plants that combines continuous and ratio data. We use
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permutation tests to evaluate whether local realized niche

space differs between pairs of species, and if the local realized

niches of all species are evenly distributed across niche space.

Materials and methods

DATA TRANSFORMATIONS AND PROBABIL ITY MODELS

To provide comparable measures of niche overlap overmultiple niche

axes that incorporate different types of data, we use a combination of

mixture models and kernel density estimation.Mixturemodels, based

on a probability distribution (e.g. Bernoulli for binary data or Pois-

son for count data), provide flexible approximations of the observed

distribution for discrete data. Similarly, kernel density estimation, an

extreme case of finite mixtures when the number of components in

the mixture is large, is used to approximate the observed distribution

for continuous data. The advantage of using these methods is that

they are amenable to using the same formula for niche overlap; there-

fore, they can be used to provide directly comparable measures of

niche overlap. Here, equations 1–4 use either mixture models or ker-

nel density estimation to provide directly comparable measures of

niche overlap across discrete and continuous data, ranging between 0

and 1. Of note is that: equation 1 is a special case of equation 2; and

equations 2 and 4 are essentially the same (they differ only in how they

are used tomodel discrete and continuous data, respectively).

Binary data

Manymeasures of resource overlap are binary. An example is a habi-

tat patch that may be colonized or not (e.g. Moilanen & Nieminen

2002). For such data, we assume a Bernoulli (binary) distribution for

the response variable and calculate niche overlap (NO) between

species i and j (on axis t) as:

NOijt ¼ minðpit; pjtÞ þminðqit; qjtÞ eqn 1

where species i has probability pi for ‘success’ (value 1) and

qi = 1 ) pi for ‘failure’ (value 0). The proportion of individuals

of species i with value 1 is the estimate of pi. Similarly, pj is esti-

mated by the proportion of individuals of species j with value 1.

Categorical data

An example of categorical data is prey types in stomach content anal-

ysis (e.g. pelagic teleosts, demersal teleosts, invertebrates and chondri-

chthyans: Lucifora et al. 2008). There are K categories assumed to be

equally available to species i. In an extension from binary data (two

categories) to K categories, the niche overlap (NO) between species i

and j (on axis t) is:

NOijt ¼
XK
k¼1

minðpiktpjktÞ eqn 2

where pik is the proportional usage of category k by species i,

assuming the sum of pik across all k categories equals 1. Simi-

larly, species j has proportions pjk.

For a graphical representation, see Appendix 1a.

Continuous data

Examples of continuous measures include many quantitative func-

tional traits (e.g. specific leaf area: Beaumont&Burns 2009) and envi-

ronmental covariates (e.g. salinity: Clarke & Allaway 1993). Using

kernel density estimations,Mouillot et al. (2005) converted finite data

sets into continuous probability densities of flexible shape, avoiding

two problems: (1) the loss of information involved in replacing con-

tinuous measurements with discrete categories; and (2) the unwar-

ranted assumption of normality (or some other particular shape of

distribution) if a single continuous distribution is fitted to the data.

Density estimation by the kernel method (Silverman 1986) gives a

smooth, flexible, nonparametric curve for a probability density func-

tion over the data points; however, the choice of the kernel bandwidth

is a critical issue. Smaller kernel bandwidths concentrate the kernel

function around the observed value, reducing estimated overlap,

while larger bandwidths increase the width of the kernel, increasing

estimated overlap (see discussions in: Stine & Heyse 2001; Mouillot

et al. 2005). Silverman (1986) proposes an optional bandwidth based

on the standard deviation of the data set and the population size when

applying normal kernel density to normal data; however, as high-

lighted byMouillot et al. (2005), further evaluation of the application

of this bandwidth to nonparametric data is required.

For continuous data, niche overlap based on nonparametric kernel

density functions (NOK) on axis t is calculated as:

NOKi;j;t
¼ 1� 1

2

Z
jfitðxÞ � fjtðxÞjdx eqn 3

where fit and fjt are the kernel population density functions for

species i and j, respectively.

Modelling observed data with a mixture of normal distributions,

which do not observe a restriction to positive values, may result in the

extension of density curves tox < 0when the datawere positivemea-

surements. Although this may be appropriate for data that can go

below zero (e.g. minimum temperature), it is not appropriate for data

that must be positive [e.g. fish standard length (SL)]. In the later case,

Silverman (1986: section 2Æ10) suggests it is preferable to estimate the

density of log(x). For a graphical representation, seeAppendix 1b.

Ratio, proportion and percentage data

With appropriate transformations, ratio, proportion and percent

data can be modelled in the same way as continuous data. Ratio data

is a continuous positive measurement; therefore (as with continuous

data), density estimation is appropriate. Ratio data requires one of

two transformations depending on how the data is bounded. Ratio

data that is bounded below by zero, but has no upper bounds (e.g.

ratio of leaf area to leaf mass: see Appendix 1b) requires density esti-

mation on log(x). Ratio data that is bounded below by zero and

above by one (e.g. proportion data: for example, the proportion of

tail length to total body length in lizards) requires density estimation

on logit(x). This transformation prevents the density estimation over-

flowing the (0,1) bounds. The same approach is used for percentage

data, which is bounded below by 0 and above by 100.

Count data

An example of count data is the number of prey items eaten by an

individual during a period of observation (e.g. Jansen et al. 2002).

For species i, there will be records from several individuals. Density

estimations are created by taking a finite mixture of Poisson distribu-

tions, which is analogous to the mixture of normal distributions used

in kernel density estimation for continuous data. Using nonparamet-

ric maximum likelihood estimation (NPMLE: see Norris & Pollock

1998), a mixture of finitely many Poisson distributions can be fitted to

count data, with Akaike’s Information Criterion (Akaike 1973)

providing an objective choice of the number of components needed to
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provide a good fit (analogous to bandwidth selection in kernel density

estimation of continuous data).

For count data, the niche overlap (NO) for axis t is calculated as:

NOi;j;t ¼
Xxmax

x¼0
minfpixt; pjxtg eqn 4

where the fitted distributions for species i and j have probabilities

pix, pjx respectively for values x = 0, 1, 2, 3,…, and xmax is set

high enough for the minimum probability to be almost zero.

Electivity data

An example of electivity data is patterns of habitat use relative to

availability in reef fish (e.g. McDermott & Shima 2006). Electivity

scores are similar to proportion data (bounded below by 0 and above

by 1), but they are not strictly continuous because there may be clus-

ters of observations at 0 or at 1. If axis t is the usage of a resource, and

all individuals of species i associate with that resource, the electivity

score (e.g. Manly’s Alpha: Manly, Miller & Cook 1972; Chesson

1978) is 1. If no individuals of species i associate with that resource,

the electivity score is 0; however, between 0 and 1, with partial usage

of the resource, the electivity measure is continuous. This implies

there is a composite, or mixed, statistical distribution, neither fully

continuous nor fully discrete. Such a distribution is not easily repre-

sented as a density. If a continuous curve is used for the probability

density function on 0 < x < 1, there should be infinite spikes at 0

and 1; similarly, the bar charts used in discrete distributions cannot

accommodate continuous density functions.We note that representa-

tion as the cumulative distribution function is possible,

y = F(x) = Prob(X £ x). With discrete distributions, this rises from

0 to 1 in a step function, while a continuous distribution gives a con-

tinuously rising curve. A distribution with a mixture of discrete and

continuous probability simply includes both steps and a continuous

curve; however, it is not possible to display niche overlap on the

cumulative probability graph. Instead, we illustrate such distributions

in a triptych graph that has left and right panels to display the proba-

bilities of 0 and 1 respectively, and a central panel for the continuous

probability (see Appendix 1c). The density estimation for the central

panel uses logit transformed data to avoid an overflow outside the

lower bound of zero and the upper bound of one.

For species i, the estimated probability of 0 is the proportion of

zeros, and the probability of 1 is the proportion of ones. The remain-

ing observations have density estimation as for proportion data; how-

ever, the probabilities from the density estimation are downscaled to

ensure the total probability (including values zero and one) equals

one. The same procedure is used for species j. The combined overlap

between species i and j in the three density estimates is then taken as

the degree of niche overlap.

CONSTRUCTING UNIF IED INDICES OF NICHE OVERLAP

AND THEIR GRAPHICAL REPRESENTATION

Having calculated overlap between species i and j for each data type

in a mixed data set, unified measures of niche overlap may be

obtained by averaging niche overlap (NO) between species i and j over

each different axis t, whereT is the number of axes:

NOi;j ¼
1

T

XT
t¼1

NOi;j;t eqn 5

NOi,j is 0 when the two distributions are completely disjoint, and

is 1 when they exactly coincide.

Mouillot et al. (2005) also provide approaches for calculating niche

overlap for traits that are related to similar functions. In this scenario,

the degree of independence of each trait is discounted by down-

weighting highly correlated traits (see formulas 8–10: Mouillot et al.

2005).

The niche overlap measure may be viewed as a measure of associa-

tion between species pairs, therefore, di,j = 1 ) NOi,j may be viewed

as a measure of distance between species i and j. Using these distance

measures, an n · n distance matrix D = (di,j) can be constructed,

where n is the number of species in the study. From this matrix,

non-metric multidimensional scaling (nMDS), which reduces the

dimensionality of the data below n (if justified by the stress levels in

the scaling) can be used to graphically display, in two dimensions,

niche relationships amongst a group of n species. Multidimensional

scaling is only one of several multivariate techniques that could be

used for dimension reduction (others include principal coordinates

analysis – PCoA; principal component analysis – PCA; or linear dis-

criminant analysis – LDA). If the assumption of a linear relationship

between initial distances and distances in ordination space is justified,

PCoA may be used. PCoA is advantageous in that it maximizes the

linear correlation between initial distances in the dissimilarity matrix

and distances in the ordination space.

DETECTING STATISTICAL DIFFERENCES IN NICHE

OVERLAP

There are two alternative approaches to assessing differential use of

niche space bymultiple species. In the first approach, the relative posi-

tion of two species within niche space is assessed to determine if their

niches differ. The second approach examines the distribution of mul-

tiple species within niche space to determine if they are evenly distrib-

uted across, or clustered within, niche space (seeAppendix 2).

Do the niches of two species differ?

A major objective of studies examining niche overlap is to determine

if two (or more) species occupy the same niche. Even if two or more

niches are identical, there will be some differences in the data purely

by chance. To rule out detecting as different two niches that only dif-

fer due to sampling variation, niche comparisons between two species

must be done statistically to determine whether the same probability

distribution describes the niche of two (or more) species, or whether

there is evidence of some difference. On any axis t, species i has ni
readings fxi1; xi2; :::;xinig, which are realizations of the random vari-

able Xit; similarly, species j has nj readings fxj1;xj2; :::; xjnjg, from the

random variable Xjt. The observed readings are used to estimate the

parameters and hence the probability structure of each distribution;

however, even if the random variables Xit and Xjt are the same, sam-

pling variation will almost certainly cause the sampled data values to

differ, giving NOijt < 1. The question of interest is whether NOijt is

sufficiently <1 to provide evidence of niche differentiation. The same

argument applies to the combined NOmeasure, averaged over all the

axes.

Because the assumptions of equal variance and normality are unli-

kely to be met, we recommend analysis using null models and their

associated permutation tests (Gotelli & Graves 1996; Gotelli 2000).

Null models use randomization or permutation tests which do not

rely on distributional assumptions (Manly 2007). Calculating

pseudo-values of the test statistic that would arise ifH0 (no niche dif-

ferentiation) were true generates the null distribution. This is achieved

by permutating species labels over all species (i.e., average niche

overlap over all species). The justification is that if all the species in
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question occupy the same niche, the actual labelling of each species is

irrelevant. This has the advantage of (1) retaining the total amount of

each resource that is used; and (2) incorporating individual variation

in resource use. If the set of species in the test isA, the test statistic is:

NO ¼ meanij2A;i<jNOij eqn 6

with the mean niche overlap for all pairs of species (i and j)

belonging in the set A (i, j ‘in’ A), with i the first species and j

the second (i < j). If this is significantly higher than would be

obtained under random assortment, there is niche overlap among

the species within set A. The P-value is the proportion of pseudo-

values less than the data-based value. If an overall niche

difference exists between species i and j, details of which axes

contribute to the difference may be obtained by comparing the

data-based NOijt with the pseudo-values of NOijt and finding

the P-value for each axis in turn; however, doing t-tests brings

the problem of multiple comparisons, so an adjustment to the

P-values is necessary to protect against false positives (‘detecting’

a difference which is not really there). We suggest a sequential

Bonferroni adjustment (see Quinn & Keough 2005).

Are species within a community evenly distributed

across niche space?

In community ecology, the distribution of species across niche space

is often assessed to determine if species coexist via resource partition-

ing. Given i species and t axes, for each axis, there are iði�1Þ
2 niche over-

lap values (say x1, x2,…, xn) with an associatedmean (�x) and variance

(s2). To evaluate how species are distributed across niche space we

can consider two extreme cases of the variance in relation to the

mean. A minimum variance of zero occurs if the individual species’

niches are evenly spaced across niche space, with equal mean niche

overlap for each adjacent pair of species. The actual value of mean

overlap will be set by the boundaries of niche space. This represents

the maximum possible separation of species on this niche axis. Alter-

natively, maximum variance occurs when all niche overlaps are either

0 or 1, a proportion being at 1 (p = �x) and the remaining proportion

being at zero (1 ) p). The maximum variance is �x(1 ) �x) or p(1 ) p).

This case represents species clustering (the opposite of species separa-

tion). Between these two extremes, there will be a variance associated

with random distribution of the species on the niche axis, with neither

even spacing nor clustering occurring (see Appendix 3). Therefore,

the proportion of maximum variance (i.e., the coefficient of heteroge-

neity: see Pledger 2005) can be used as a measure of even spacing vs.

clustering:

g ¼ s2

�xð1� �xÞ ¼
s2

pð1� pÞ eqn 7

A value near 0 indicates even spacing, while a value near 1 indi-

cates clustering. The shape and position of the curve of random

association is difficult to calculate; however, by calculating g for

pseudo-values generated by permutating species labels so that all

species are randomly placed in this niche dimension, a test statis-

tic can be constructed to determine if the pattern in the data is

random (the null model), clustered (g near 1) or evenly spaced (g
near 0). Having calculated g for each niche axis, examining the

minimum and maximum values across all t niche axis will indi-

cate if clustering occurs in one axis while there is even spacing in

another. Finally, the average of g over the t niche axis gives an

overall measure of clustering vs. even spacing.

CORAL REEF FISH EXAMPLE

To illustrate the use of overlap indices on multiple niche axes gener-

ated from data of different types, we use data from individuals

<25 mm SL from five fish species found between the shore and bar-

rier reefs crest of the northern lagoon of Moorea, French Polynesia

(17�30¢S, 149�50¢W): Gomphosus varius (Lacepéde, 1801); Pseudoche-

ilinus hexataenia (Bleeker, 1857), Scarus sordidus (Forsskål, 1775),

Thalassoma hardwicke (Bennett, 1830) and T. quinquevittatum (Lay

& Bennett, 1839). For each species, we quantified local realized niche

space along three axes, incorporating three different types of data:

(1) Pectoral fin aspect ratio (ratio data bounded below by 0); (2)

habitat association (electivity data); and (3) distributions across the

lagoon (categorical data). Pectoral fin aspect ratio was quantified as

leading edge2 per area (following Wainwright, Bellwood & Westneat

2002). Pectoral fin aspect ratio is related to manoeuvrability, swim-

ming speed and efficiency of locomotion (Walker & Westneat 1997;

Wainwright, Bellwood & Westneat 2002). The use of individuals of

different sizes can introduce allometric bias into shape analysis

(McCoy et al. 2006). We examined each species for allometric bias

by regressing pectoral fin aspect ratio against SL, resulting in linear

regressions described by Y = a + bX. We tested the significance of

the slope (b) obtained in each regression in order to determine if the

Y variables showed isometric (b = 0) or allometric (b „ 0) growth

in relation to SL. We found no evidence against isometry (b „ 0,

P > 0Æ05 in all cases). Pectoral fin aspect ratio was determined for

19, 14, 17, 16 and 15 individuals for G. varius, P. hexataenia, S. sor-

didus, T. hardwicke and T. quinquevittatum, respectively.

Habitat association was quantified as Manly’s Alpha (Manly,

Miller & Cook 1972; Chesson 1978), the proportion of fish at a given

reef, on a given habitat type, relative to the probability of the fish

associating with that habitat type under conditions of random assort-

ment. In March 2005, we established three transects within Moorea’s

northern lagoon. Each transect was c. 800 m in length, and ran from

shore to the barrier reef crest. We selected five equally spaced sites

along each transect. Within each site, we haphazardly selected 16

patch reefs (hereafter reefs) of similar size [n = 240 (=3 · 5 · 16)

reefs: average surface area = 7Æ98 m2, SD = 3Æ79; average

height = 0Æ83 m, SD = 0Æ22]. For each reef, and a 1-m halo sur-

rounding the reef, we visually estimated percent cover of six substrate

categories: Poritesmassive; branching corals; macroalgae; bare habi-

tat; other and rubble.We also recorded the presence of all individuals

of the study species <25 mm SL, and noted the substrate each indi-

vidual was associated with at the time it was first observed. We made

all observations between 08:00 h and 16:00 h (time of peak activity of

benthic fishes) from 27 May to 6 June 2005. Mean overlap in habitat

associationwas calculated separately for each of six habitat categories

on 240 reefs, and then combined into a single index of habitat associa-

tion using formula 5 above.

Using the data set from (2) above, we calculated distribution across

the lagoon as the density of each species on each reef at the five sites

between the barrier reef crest and shore (crest, offshore, centre,

inshore, shore).

For each axis (pectoral fin aspect ratio, habitat association and dis-

tribution within the lagoon), we calculated niche overlap between the

five species using the appropriate modelling technique. We then

constructed unified measures of mean niche overlap and associated

variance over the three axes using equation 5 above. We used Krus-

kal’s nMDS to graphically display results (Cox & Cox 2001). We

constructed test statistics from 1000 permutations of species labels

using null models to determine if local realized niche space differs

Unified niche overlap 5
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between pairs of species, and if the local realized niches of all species

are evenly distributed across niche space.

ALPINE PLANT EXAMPLE

We also illustrate the use of overlap indices using data from five plant

species found along an elevational gradient in the Nelson Lakes

National Park of New Zealand’s South Island (41�49¢S, 172�50¢E):
Coprosma foetidissima (Forst & Forst, 1776); Coprosma microcarpa

(Hooker, 1853); Coprosma pseudociliata (Jane, 2005); Coprosma

pseudocuneata (Garnock-Jones & Elder 1996) andCoprosma rhamno-

ides (Cunningham1839). For each species,we quantified local realized

niche space along two axes incorporating two different types of data:

(1) Distribution along an elevational gradient (continuous data: 26

elevations; 620, 655, 690, 730, 770, 795, 820, 860, 885, 925, 960, 1000,

1030, 1055, 1075, 1100, 1125, 1150, 1195, 1230, 1270, 1310, 1345,

1385, 1420 and 1460 m a.s.l) taken as the number of each species in

five 10 m2 randomly situated plots at each elevation. (2) Specific leaf

area (ratio data bounded below by 0), defined as the ratio between leaf

blade area and its dry weight (Garnier et al. 2001). Although specific

leaf area may not be an appropriate measure of niche space, we use it

here as an exemplar. Specific leaf area is representative of different

life-history strategies, ranging from low-cost, short-lived leaves that

provide a quick return on their energetic investment, to long-lived,

energetically costly leaves that offer slower returns relative to energetic

investment (see Whitfield 2006). Specific leaf area was determined for

4, 8, 5, 13 and 5 individuals forC. foetidissima,C.microcarpa,C. pseu-

dociliata, C. pseudocuneata and C. rhamnoides, respectively. For each

axis (distribution along an elevational gradient and specific leaf area),

we calculated local realized niche overlap between the five species

using the appropriatemodelling technique, and then constructedmul-

tivariate measures of mean niche overlap using equation 5 above. We

used nMDS to graphically display results. We constructed test statis-

tics from 1000 permutations of species labels using null models to

determine if pairs of species occupied different niche space, and if all

species were evenly distributed across niche space.

All statistical analysis was conducted in R 2Æ11Æ1 (R Development

Core Team 2010). We conducted nMDS using the algorithm in the R

package MASS, command isoMDS (R Development Core Team

2010). The stress function used in nMDS was the square root of the

ratio of the sum of squared differences between the input distances

and those of the configuration to the sum of configuration distances

squared. Appendix 4 contains R-code and data sets for conducting

the reef fish and alpine plant analyses.

Results

CORAL REEF FISH EXAMPLE

Of the five fish species, the local realized niches ofP. hexataenia

and S. sordidus (overlap = 0Æ470; Table 1) were most dissimi-

lar, and local realized niches of P. hexataenia and T. hardwicke

were most similar (overlap = 0Æ811; Table 1). Scarus sordidus

did not have the same local realized niche as any of the other

species (Table 1, Fig. 1). Gomphosus varius, P. hexataenia and

T. hardwicke had similar local realized niches (Table 1, Fig. 1).

Although the local realized niche of T. quinquevittatum was

similar to G. varius, it differed from P. hexataenia and T. hard-

wicke (Table 1, Fig. 1). The local realized niches of the five

species displayed significant clustering in their distribution

across niche space (Table 2, Fig. 1).

ALPINE PLANT EXAMPLE

Of the five alpine plants, the local realized niches of C. pseudo-

cuneata and C. foetidissima were most dissimilar (over-

lap = 0Æ101, Table 3). Conversely, the local realized niches of

C. foetidissima and C. rhamnoides were most similar (over-

lap = 0Æ582, Table 3), and these species did not differ in their

local realized niches (Fig. 2). Coprosma rhamnoides and C. fo-

etidissima had similar local realized niches (Table 3, Fig. 2).

The five species displayed significant clustering in their distri-

bution across niche space (Table 4, Fig. 2).

Discussion

A major objective of studies examining niche overlap is to

determine if two or more species occupy the same niche. This

requires first identifying the position in niche space occupied

by each species, and then determining if two or more species

occupy the same portion of niche space. To the best of our

knowledge, there are currently no formal indices capable of

describing niche space using multiple axes described by differ-

ent data types. Although multivariate niche analysis is a well

established field (e.g. Green 1971; Harner & Whitmore 1977;

Mahdi, Law & Willis 1989; Litvak & Hansell 1990; Pappas &

Stoermer 1997), this article presents a novel analytical

approach, capable of providing a composite measure of niche

overlap, derived from a wide range of data types: binary, cate-

gorical, various continuous data types, and electivity data.

Also presented are novel permutation tests that assess if pairs

of species occupy the same niche space, and if all species are

evenly distributed across niche space.

Of the five coral reef fishes examined in the formal analysis

of niche overlap, four were wrasses and one (S. sordidus) was a

parrotfish. We were therefore not surprised to find that the

local realized niche of S. sordidus differed from that of

the wrasse species, which have similar local realized niches.

Table 1. Mean (SD) niche overlap between

five species of reef fishes incorporating three

functional traits: (1) pectoral fin aspect ratio

(ratio data bound by 0 and 1); (2) habitat

association (electivity data) and (3) distance

from shore (categorical data)

Pseudocheilinus

hexataenia Scarus sordidus

Thalassoma

hardwicke

Thalassoma

quinquevittatum

Gomphosus varius 0Æ730 (0Æ155) 0Æ585 (0Æ194) 0Æ775 (0Æ137) 0Æ785 (0Æ062)
P. hexataenia 0Æ470 (0Æ376) 0Æ811 (0Æ011) 0Æ569 (0Æ160)
S. sordidus 0Æ512 (0Æ345) 0Æ570 (0Æ161)
T. hardwicke 0Æ632 (0Æ216)

Species pairs occupying statistically different niches, as identified by null model tests, are

indicated in bold (P < 0Æ01).
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The local realized niches of S. sordidus and P. hexataenia were

most dissimilar. These species have distinct functional niches;

the former over-associates with Porites rus, Turbinaria ornata

and coral rubble (Geange 2010), feeding primarily on algae

(Chen 2002). Pseudocheilinus hexataenia over-associates with

the structurally complex hard corals Pocillopora verrucosa and

Porites rus (Geange 2010), feeding on copepods, amphipods,

gastropods, shrimps and polychaete worms (Harmelin-Vivien

1979). Conversely, the local realized niches of P. hexataenia

and T. hardwicke were most similar. Like, P. hexataenia,

T. hardwicke feeds primarily on small invertebrates (Myers

1999) and over-associates with Pocillopora verrucosa and

Porites rus (Geange 2010).

In the analysis of alpine plant species, lowest overlap

occurred between C. pseudocuneata and C. foetidissima. These

species have very different elevational distributions. Coprosma

pseudocuneata occupies higher montane to subalpine forest

while C. foetidissima is restricted to lowland to lower montane

forest and shrubland (Allan 1961). Additionally, the leaves of

C. pseudocuneata are thick and coriaceous, while those of

C. foetidissima are membranous subcoriaceous leaves (Allan

1961), suggesting that these species have very different ener-

getic investments in leaf production. Highest niche overlap

occurred between C. foetidissima and C. rhamnoides, both

of which were found at lower elevations (the former inha-

bits coastal to sub-alpine forests: Allan 1961). The marked

Fig. 1. Interspecific similarities in ‘unified’ niche overlap between five

species of reef fishes incorporating three functional traits: (1) pectoral

fin aspect ratio (measurement data); (2) habitat association (electivity

data) and (3) distance from shore (categorical data). Similarities are

represented graphically as non-metric multi-dimensional scaling.

Ellipses encircle species occupying niches that were not identified as

significantly different using null model tests.

Table 2. Measures of the evenness vs. clustering of five species of reef

fishes across niche space incorporating three functional traits: (1)

pectoral fin aspect ratio (ratio data bound by 0 and 1); (2) habitat

association (electivity data); and (3) distance from shore (categorical

data); with the average coefficient of heterogeneity over the three

functional traits giving an overall measure of clustering vs. even

spacing (seeMethods)

Pectoral fin

aspect ratio

Habitat

association

Distance

from shore Overall

Evenness test >0Æ999 0Æ985 0Æ980 0Æ992
Clustering test <0Æ001 0Æ015 0Æ020 0Æ008

Statistically significant evenly spaced or clustered distributions, as

identified by null model tests, are indicated in bold (P < 0Æ05).

Table 3. Mean (SD) niche overlap between

five alpine plant species incorporating two

functional traits: (1) elevation (continuous

data); and (2) surface leaf area (ratio data

bounded below by 0)

Coprosma

microcarpa

Coprosma

pseudociliata

Coprosma

pseudocuneata

Coprosma

rhamnoides

Coprosma foetidissima 0Æ363 (0Æ213) 0Æ358 (0Æ470) 0Æ101 (0Æ034) 0Æ582 (0Æ094)
C. microcarpa 0Æ139 (0Æ151) 0Æ303 (0Æ250) 0Æ413 (0Æ139)
C. pseudociliata 0Æ478 (0Æ481) 0Æ310 (0Æ438)
C. pseudocuneata 0Æ121 (0Æ129)

Species pairs occupying statistically different niches, as identified by null model tests, are

indicated in bold (P < 0Æ01).

●

●

nM
D

S
−

2

nMDS−1

C. foetidissima

C. microcarpa

C. pseudociliata

C. pseudocuneata

C. rhamnoides

Stress < 0·001

Fig. 2. Interspecific similarities in ‘unified’ niche overlap between five

alpine plant species incorporating two functional traits: (1) surface

leaf area (continuous data) and (2) elevation (categorical data). Simi-

larities are represented graphically as non-metric multi-dimensional

scaling. Ellipses encircle species occupying niches that were not identi-

fied as significantly different using null model tests.
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similarities in elevational distribution of these species appears

to result in similar local realized niches.

Deciding what a resource is, how each resource is subdi-

vided, and how many resources to include in analyses of niche

overlap is often subjective. Each of these decisions can have

large effects on how species relate to one another in modelled

niche space. For example, if microhabitats were subdivided

into two categories (alive vs. dead coral), two species occupy-

ing live coral would have an overlap of 1; however, if these two

species use different live coral microhabitats they would have

an overlap of 0 if the different microhabitats were distin-

guished. Further, when multiple axes are included, some axes

may be considered more important than others; this raises the

issue of weighting. For example, if two fish species eat the same

food, but one is nocturnal while the other is diurnal, it may be

appropriate to down-weight the axis describing food source

relative to the axis describing period of activity (see formulas

8–10:Mouillot et al. 2005). Unfortunately, there are no general

rules for determining which axis to include and how it should

be subdivided or weighted; these issues need to be informed

by the researcher’s knowledge of the specific study system

and their relevance to the coexistence of the species in question.

We used null models to compare niche overlap between spe-

cies. Although null models are viewed as a useful tool for

revealing pattern (or lack thereof) in natural communities, the

choice of appropriate null models has been highlighted as a

critical issue in null model analysis (Gotelli 2001). In practice,

it is often difficult to decide what constitutes a truly null, purely

statistical model. For example, it is difficult to be certain that

some biological interactions that may have shaped the data are

not woven into the null model (Harvey et al. 1983). Lawlor

(1980) developed four randomization algorithms that are com-

monly used to construct null models. These algorithms differ

in whether utilizations are reshuffled or replaced by a random

number, and in whether the zeros in the matrix are retained or

not. Both decisions have implications for the structure of the

null community, and affect the power of the test (Gotelli &

Graves 1996). The properties of these randomization tech-

niques have previously been explored (see Winemiller & Pian-

ka 1990; Kobayashi 1991), and have identified Lawlor’s (1980)

RA3 as the best existing algorithm for use in resource overlap

null models. Like Lawlor’s RA3 algorithm, our approach

scrambles zeros, retaining the original total amount of each

resource utilized; however, there is a fundamental difference

between our randomization procedure and RA3. Lawlor’s

RA3 reallocates pooled resource usages for each species,

whereas our approach reallocates resource use for each indi-

vidual. Because our approach does not assume all individuals

of a species act alike (i.e., incorporates individual variation), it

seems most powerful for tests determining how individuals of

different species differ in their distribution along a niche axis.

Although null models can be used to establish whether

observed niche overlap ismore or less than expected by chance,

it is still difficult to infer the mechanism(s) responsible for such

patterns. For example, high niche overlap may reflect intense

competition for shared resources or, alternatively, a surplus of

resources and the absence of competition (Glasser & Price

1988). Both scenarios have been revealed in experimental field

studies of competition (Schoener 1983). It is not our intention

to provide insights into the underlying causes of a given degree

of niche overlap, but to outline and illustrate our approach in

calculating unified niche overlap incorporating measures of

different types.

Although we illustrated the implementation of our unified

indices of niche overlap by examining interspecific overlap, it is

also worth noting that our methodology can also be used to

test for intraspecific temporal or spatial niche shifts by quanti-

fying differences in niche overlap for a single species between

different places or times. With this new approach, we have

developed the ideas of Slobodchikoff & Schulz (1980) to calcu-

late overlap across several niche dimensions incorporating bin-

ary, categorical, ratio, proportion, percent, count and

electivity data. We have also devised null model tests to assess

statistical differences in niche overlap between pairs of species,

and if species within a community are evenly distributed

across, or clustered within niche space.
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Dolédec, S., Chessel, D. & Gimaret-Carpentier, C. (2000) Niche separation in

community analysis: a newmethod.Ecology, 81, 2914–2927.

Dueser, R.D. & Shuggart, H.H. (1979) Niche pattern in a forest-floor small-

mammal fauna.Ecology, 60, 108–118.

Elton, C. (1927)Animal Ecology. Sidgwick and Jackson, London.

Garnier, E., Shipley, B., Roumet, C. & Laurent, G. (2001) A standardized pro-

tocol for the determination of specific leaf area and leaf dry matter content.

Functional Ecology, 15, 688–695.

Geange, S.W. (2010) Effects of larger heterospecifics and structural refuge on

the survival of a coral reef fish, Thalassoma hardwicke.Marine Ecology Pro-

gress Series, 407, 197–207.

Glasser, J.W. & Price, H.J. (1988) Evaluating expectations deduced from expli-

cit hypotheses aboutmechanisms of competition.Oikos, 51, 57–70.

Gotelli, N.J. (2000)Nullmodel analysis of species co-occurrence patterns.Ecol-

ogy, 81, 2606–2621.

Gotelli, N.J. (2001) Research frontiers in null model analysis.Global Ecology &

Biogeography, 10, 337–343.

Gotelli, N.J. & Graves, G.R. (1996)Null Models in Ecology. Smithsonian Insti-

tute Press,WashingtonD.C.

Green, R.H. (1971) A multivariate statistical approach to the Hutchinsonian

niche: bivalvemolluscs of Central Canada.Ecology, 52, 544–556.

Gregory, S.D. &Macdonald, D.W. (2009) Prickly coexistence or blunt compe-

tition? Opuntia refugia in an invaded rodent community. Oecologia, 159,

225–236.

Grinnell, J. (1917) The niche relationships of the California Thrasher. The Auk,

34, 427–433.

Harmelin-Vivien, M.L. (1979) Ichtyofaune des récifs coralliens de Tuléar
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Appendix 2. Species distributions across niche space.

Appendix 3.Variance of niche overlaps in relation to the mean.

Appendix 4. Source code and three examples for the calculation of

multivariate niche overlap incorporating data of different types, with

associated null model tests of (i) differential use of niche space bymul-

tiple species; and (ii) even distribution of species across niche space.
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