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Abstract

Background: Sequencing of both healthy and disease singletons yields many novel and low frequency variants of
uncertain significance (VUS). Complete gene and genome sequencing by next generation sequencing (NGS)
significantly increases the number of VUS detected. While prior studies have emphasized protein coding variants,
non-coding sequence variants have also been proven to significantly contribute to high penetrance disorders, such
as hereditary breast and ovarian cancer (HBOC). We present a strategy for analyzing different functional classes of
non-coding variants based on information theory (IT) and prioritizing patients with large intragenic deletions.

Methods: We captured and enriched for coding and non-coding variants in genes known to harbor mutations that
increase HBOC risk. Custom oligonucleotide baits spanning the complete coding, non-coding, and intergenic
regions 10 kb up- and downstream of ATM, BRCA1, BRCA2, CDH1, CHEK2, PALB2, and TP53 were synthesized for
solution hybridization enrichment. Unique and divergent repetitive sequences were sequenced in 102 high-risk,
anonymized patients without identified mutations in BRCA1/2. Aside from protein coding and copy number
changes, IT-based sequence analysis was used to identify and prioritize pathogenic non-coding variants that
occurred within sequence elements predicted to be recognized by proteins or protein complexes involved in
mRNA splicing, transcription, and untranslated region (UTR) binding and structure. This approach was
supplemented by in silico and laboratory analysis of UTR structure.

Results: 15,311 unique variants were identified, of which 245 occurred in coding regions. With the unified IT-
framework, 132 variants were identified and 87 functionally significant VUS were further prioritized. An intragenic
32.1 kb interval in BRCA2 that was likely hemizygous was detected in one patient. We also identified 4 stop-gain
variants and 3 reading-frame altering exonic insertions/deletions (indels).

Conclusions: We have presented a strategy for complete gene sequence analysis followed by a unified framework
for interpreting non-coding variants that may affect gene expression. This approach distills large numbers of
variants detected by NGS to a limited set of variants prioritized as potential deleterious changes.

Keywords: Information theory, Hereditary breast and ovarian cancer, Transcription factor binding, RNA-binding
protein, Prioritization, Variants of uncertain significance, Splicing, Non-coding, Next-generation sequencing

* Correspondence: progan@uwo.ca
EJM and NGC should be considered to be joint first authors.
1Department of Biochemistry, Schulich School of Medicine and Dentistry,
Western University, London, ON N6A 2C1, Canada
2Department of Computer Science, Faculty of Science, Western University,
London N6A 2C1, Canada
Full list of author information is available at the end of the article

© 2016 Mucaki et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Mucaki et al. BMC Medical Genomics  (2016) 9:19 

DOI 10.1186/s12920-016-0178-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-016-0178-5&domain=pdf
mailto:progan@uwo.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Advances in NGS have enabled panels of genes, whole

exomes, and even whole genomes to be sequenced for

multiple individuals in parallel. These platforms have be-

come so cost-effective and accurate that they are begin-

ning to be adopted in clinical settings, as evidenced by

recent FDA approvals [1, 2]. However, the overwhelming

number of gene variants revealed in each individual has

challenged interpretation of clinically significant genetic

variation [3–5].

After common variants, which are rarely pathogenic,

are eliminated, the number of VUS in the residual set re-

mains substantial. Assessment of pathogenicity is not

trivial, considering that nearly half of the unique variants

are novel, and cannot be resolved using published litera-

ture and variant databases [6]. Furthermore, loss-of-

function variants (those resulting in protein truncation

are most likely to be deleterious) represent a very small

proportion of identified variants. The remaining variants

are missense and synonymous variants in the exon, sin-

gle nucleotide changes, or in frame insertions or dele-

tions in intervening and intergenic regions. Functional

analysis of large numbers of these variants often cannot

be performed, due to lack of relevant tissues, and the

cost, time, and labor required for each variant. Another

problem is that in silico protein coding prediction tools

exhibit inconsistent accuracy and are thus problematic

for clinical risk evaluation [7–9]. Consequently, many

HBOC patients undergoing genetic susceptibility testing

will receive either an inconclusive (no BRCA variant

identified) or an uncertain (BRCA VUS) result. The

former has been reported in up to 80 % of cases and

depends on the number of genes tested [10]. The occur-

rence of uncertain BRCA mutations varies greatly (as

high as 46 % in African American populations and as

low as 2.1 %) among tested individuals depending on the

laboratory and the patient’s ethnicity [11–13]. The in-

consistency in diagnostic yield is significant, considering

that HBOC accounts for 5–10 % of all breast/ovarian

cancer [14, 15].

One strategy to improve variant interpretation in patients

is to reduce the full set of variants to a manageable list of

potentially pathogenic variants. Evidence for pathogenicity

of VUS in genetic disease is often limited to amino acid

coding changes [16, 17], and mutations affecting splicing,

transcriptional activation, and mRNA stability tend to be

underreported [18–24]. Splicing errors are estimated to

represent 15 % of disease-causing mutations [25], but may

be much higher [26, 27]. The impact of a single nucleotide

change in a recognition sequence can range from insignifi-

cant to complete abolition of a protein binding site. Aber-

rant splicing events causing frameshifts often disrupt

protein function; in-frame changes are dependent on gene

context. The complexity of interpretation of non-coding

sequence variants benefits from computational approaches

[28] and direct functional analyses [29–33] that may each

support evidence of pathogenicity.

Ex vivo transfection assays developed to determine the

pathogenicity of VUS predicted to lead to splicing aberra-

tions (using in silico tools) have been successful in identify-

ing pathogenic sequence variants [34, 35]. IT-based analysis

of splicing variants has proven to be robust and accurate

(as determined by functional assays for mRNA expression

or binding assays) at analyzing splice site (SS) variants, in-

cluding splicing regulatory factor binding sites (SRFBSs),

and in distinguishing them from polymorphisms in both

rare and common diseases [36–39]. However, IT can be ap-

plied to any sequence recognized and bound by another

factor [40], such as with transcription factor binding sites

(TFBSs) and RNA-binding protein binding sites (RBBSs).

IT is used as a measure of sequence conservation and is

more accurate than consensus sequences [41]. The individ-

ual information (Ri) of a base is related to thermodynamic

entropy, and therefore free energy of binding, and is mea-

sured on a logarithmic scale (in bits). By comparing the

change in information (ΔRi) for a nucleotide variation of a

bound sequence, the resulting change in binding affinity

is ≥ 2ΔRi, such that a 1 bit change in information will result

in at least a 2-fold change in binding affinity [42].

IT measures nucleotide sequence conservation and

does not provide information on effects of variants on

mRNA secondary (2°) structure, nor can it accurately

predict effects of amino acid sequence changes. Associa-

tions of structural changes in untranslated regions

(UTR) of mRNA with disease justifies including pre-

dicted effects of these changes on 2° structure in the

comprehensive analysis of sequence variants [43]. Other

in silico methods have attempted to address these defi-

ciencies. For example, Halvorsen et al. (2010) introduced

an algorithm called SNPfold, which computes the potential

effect of a single nucleotide variant (SNV) on mRNA 2°

structure [20]. Predictions made by SNPfold can be tested

by the SHAPE assay (Selective 2’-Hydroxyl Acylation ana-

lyzed by Primer Extension) [44], which provides evidence

for sequence variants that lead to structural changes in

mRNA by detection of covalent adducts in mRNA.

The implications of improved VUS interpretation are

particularly relevant for HBOC due to its incidence and the

adoption of panel testing for these individuals [45, 46]. It

has been suggested that patients with a high risk profile re-

ceiving uninformative results would imply that deleterious

variants lie in untested regions of BRCA1/2, untested genes,

or are unrecognized [47, 48]. This is also supported by

studies where families with linkage to BRCA1/2 had no de-

tectable pathogenic mutation (however it is noteworthy

that detection rates of BRCA mutations in families with

documented linkage to these loci appears to vary by ascer-

tainment, inclusion criteria, and technology used to identify
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the mutations) [49, 50]. The concept of non-BRCA gene

association has been demonstrated by the identification of

low-to-moderate risk HBOC genes, and variants within

coding and non-coding regions affecting splicing and regu-

latory factor binding [51, 52]. Consequently, VUS, which in-

clude rare missense changes, other coding and non-coding

changes in all of these genes, greatly outnumber the catalog

of known deleterious mutations [53].

Here, we develop and evaluate IT-based models to

predict potential non-coding sequence mutations in

SSs, TFBSs, and RBBSs in 7 genes sequenced in their

entirety. These models were used to analyze 102 an-

onymous HBOC patients who did not exhibit known

BRCA1/2 coding mutations at the time of initial test-

ing, despite meeting the criteria for BRCA genetic

testing. The genes are: ATM, BRCA1, BRCA2, CDH1,

CHEK2, PALB2, and TP53, and have been reported to

harbor mutations that increase HBOC risk [54–76].

We apply these IT-based methods to analyze variants

in the complete sequences of coding, non-coding, and

up- and downstream regions of the 7 genes. In this

study, we established and applied a unified IT-based

framework, first filtering out common variants, then

to “flag” potentially deleterious ones. Then, using

context-specific criteria and information from the

published literature, we prioritized likely candidates.

Methods
Design of tiled capture array for HBOC gene panel

Nucleic acid hybridization capture reagents designed from

genomic sequences generally avoid repetitive sequence

content to avoid cross hybridization [77]. Complete gene

sequences harbor numerous repetitive sequences, and an

excess of denatured C0t-1 DNA is usually added to

hybridization to prevent inclusion of these sequences [78].

RepeatMasker software completely masks all repetitive

and low-complexity sequences [79]. We increased se-

quence coverage in complete genes with capture probes

by enriching for both single-copy and divergent repeat

(>30 % divergence) regions, such that, under the correct

hybridization and wash conditions, all probes hybridize

only to their correct genomic locations [77]. This step was

incorporated into a modified version of Gnirke and col-

leagues’ (2009) in-solution hybridization enrichment

protocol, in which the majority of library preparation,

pull-down, and wash steps were automated using a

BioMek® FXP Automation Workstation (Beckman

Coulter, Mississauga, Canada) [80].

Genes ATM (RefSeq: NM_000051.3, NP_000042.3),

BRCA1 (RefSeq: NM_007294.3, NP_009225.1), BRCA2

(RefSeq: NM_000059.3, NP_000050.2), CDH1 (RefSeq:

NM_004360.3, NP_004351.1), CHEK2 (RefSeq: NM_

145862.2, NP_665861.1), PALB2 (RefSeq: NM_024675.3,

NP_078951.2), and TP53 (RefSeq: NM_000546.5, NP_

000537.3) were selected for capture probe design by tar-

geting single copy or highly divergent repeat regions

(spanning 10 kb up- and downstream of each gene rela-

tive to the most upstream first exon and most down-

stream final exon in RefSeq) using an ab initio approach

[77]. If a region was excluded by ab initio but lacked a

conserved repeat element (i.e. divergence > 30 %) [79],

the region was added back into the probe-design se-

quence file. Probe sequences were selected using PICKY

2.2 software [81]. These probes were used in solution

hybridization to capture our target sequences, followed

by NGS on an Illumina Genome Analyzer IIx (Add-

itional file 1: Methods).

Genomic sequences from both strands were captured

using overlapping oligonucleotide sequence designs cover-

ing 342,075 nt among the 7 genes (Fig. 1). In total, 11,841

oligonucleotides were synthesized from the transcribed

strand consisting of the complete, single copy coding, and

flanking regions of ATM (3513), BRCA1 (1587), BRCA2

(2386), CDH1 (1867), CHEK2 (889), PALB2 (811), and

TP53 (788). Additionally, 11,828 antisense strand oligos

were synthesized (3497 ATM, 1591 BRCA1, 2395 BRCA2,

1860 CDH1, 883 CHEK2, 826 PALB2, and 776 TP53). Any

intronic or intergenic regions without probe coverage are

most likely due to the presence of conserved repetitive el-

ements or other paralogous sequences.

For regions lacking probe coverage (of ≥ 10 nt, N = 141;

8 in ATM, 26 in BRCA1, 10 in BRCA2, 29 in CDH1, 36 in

CHEK2, 15 in PALB2, and 17 in TP53), probes were se-

lected based on predicted Tms similar to other probes,

limited alignment to other sequences in the transcriptome

(<10 times), and avoidance of stable, base-paired 2° struc-

tures (with unaFOLD) [82, 83]. The average coverage of

these sequenced regions was 14.1–24.9 % lower than other

probe sets, indicating that capture was less efficient,

though still successful.

HBOC samples for oligo capture and high-throughput

sequencing

Genomic DNA from 102 patients previously tested for

inherited breast/ovarian cancer without evidence of a pre-

disposing genetic mutation, was obtained from the Molecu-

lar Genetics Laboratory (MGL) at the London Health

Sciences Centre in London, Ontario, Canada. Patients

qualified for genetic susceptibility testing as determined by

the Ontario Ministry of Health and Long-Term Care

BRCA1 and BRCA2 genetic testing criteria [84] (see Add-

itional file 2). The University of Western Ontario research

ethics board (REB) approved this anonymized study of

these individuals to evaluate the analytical methods pre-

sented here. BRCA1 and BRCA2 were previously analyzed

by Protein Truncation Test (PTT) and Multiplex Ligation-

dependent Probe Amplification (MLPA). The exons of sev-

eral patients (N = 14) had also been Sanger sequenced. No
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pathogenic sequence change was found in any of these in-

dividuals. In addition, one patient with a known pathogenic

BRCA variant was re-sequenced by NGS as a positive

control.

Sequence alignment and variant calling

Variant analysis involved the steps of detection, filtering,

IT-based and coding sequence analysis, and prioritization

(Fig. 2). Sequencing data were demultiplexed and aligned to

the specific chromosomes of our sequenced genes (hg19)

using both CASAVA (Consensus Assessment of Sequen-

cing and Variation; v1.8.2) [85] and CRAC (Complex Reads

Analysis and Classification; v1.3.0) [86] software. Align-

ments were prepared for variant calling using Picard [87]

and variant calling was performed on both versions of the

aligned sequences using the UnifiedGenotyper tool in the

Genome Analysis Toolkit (GATK) [88]. We used the rec-

ommended minimum phred base quality score of 30, and

Fig. 1 Capture Probe Coverage over Sequenced Genes. The genomic structure of the 7 genes chosen are displayed with the UCSC Genome
Browser. Top row for each gene is a custom track with the “dense” visualization modality selected with black regions indicating the intervals
covered by the oligonucleotide capture reagent. Regions without probe coverage contain conserved repetitive sequences or correspond to
paralogous sequences that are unsuitable for probe design
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results were exported in variant call format (VCF; v4.1). A

software program was developed to exclude variants called

outside of targeted capture regions and those with quality

scores < 50. Variants flagged by bioinformatic analysis (de-

scribed below) were also assessed by manually inspecting

the reads in the region using the Integrative Genomics

Viewer (IGV; version 2.3) [89, 90] to note and eliminate ob-

vious false positives (i.e. variant called due to polyhomonu-

cleotide run dephasing, or PCR duplicates that were not

eliminated by Picard). Finally, common variants (≥1 % allele

frequency based on dbSNP 142 or > 5 individuals in our

study cohort) were not prioritized.

IT-based variant analysis

All variants were analyzed using the Shannon Human

Splicing Mutation Pipeline, a genome-scale variant

analysis program that predicts the effects of variants on

mRNA splicing [91, 92]. Variants were flagged based on

criteria reported in Shirley et al. (2013): weakened nat-

ural site ≥ 1.0 bits, or strengthened cryptic site (within

300 nt of the nearest exon) where cryptic site strength is

equivalent or greater than the nearest natural site of the

same phase [91]. The effects of flagged variants were fur-

ther analyzed in detail using the Automated Splice Site

and Exon Definition Analysis (ASSEDA) server [38].

Exonic variants and those found within 500 nt of an

exon were assessed for their effects, if any, on SRFBSs

[38]. Sequence logos for splicing regulatory factors (SRFs)

(SRSF1, SRSF2, SRSF5, SRSF6, hnRNPH, hnRNPA1,

ELAVL1, TIA1, and PTB) and their Rsequence values (the

mean information content [93]) are provided in Caminsky

et al. (2015) [36]. Because these motifs occur frequently in

Fig. 2 Framework for the Identification of Potentially Pathogenic Variants. Integrated laboratory processing and bioinformatic analysis procedures
for comprehensive complete gene variant determination and analysis. Intermediate datasets resulting from filtering are represented in yellow and
final datasets in green. Non-bioinformatic steps, such as sample preparation are represented in blue and prediction programs in purple. Sequencing
analysis yields base calls for all samples. CASAVA [85] and CRAC [86] were used to align these sequencing results to hg19. GATK [88] was used to call
variants from this data against GRCh37 release of the reference human genome. Variants with a quality score < 50 and/or call confidence score < 30
were eliminated along with variants falling outside of our target regions. SNPnexus [112–114] was used to identify the genomic location of the variants.
Nonsense and indels were noted and prediction tools were used to assess the potential pathogenicity of missense variants. The Shannon Pipeline [91]
evaluated the effect of a variant on natural and cryptic SSs, as well as SRFBSs. ASSEDA [38] was used to predict the potential isoforms as a result of
these variants. PWMs for 83 TFs were built using an information weight matrix generator based on Bipad [106]. Mutation Analyzer evaluated the effect
of variants found 10 kb upstream up to the first intron on protein binding. Bit thresholds (Ri values) for filtering variants on software program outputs
are indicated. Variants falling within the UTR sequences were assessed using SNPfold [20], and the most probable variants that alter mRNA
structure (p < 0.1) were then processed using mFold to predict the effect on stability [83]. All UTR variants were scanned with a modified
version of the Shannon Pipeline, which uses PWMs computed from nucleotide frequencies for 28 RBPs in RBPDB [109] and 76 RBPs in
CISBP-RNA [110]. All variants meeting these filtering criteria were verified with IGV [89, 90]. *Sanger sequencing was only performed for
protein truncating, splicing, and selected missense variants
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unspliced transcripts, only variants with large information

changes were flagged, notably those with a) ≥ 4.0 bit

decrease, i.e. at least a 16-fold reduction in binding site

affinity, with Ri,initial ≥ Rsequence for the particular factor

analyzed, or b) ≥ 4.0 bit increase in a site where Ri,final ≥ 0

bits. ASSEDA was used to calculate Ri,total, with the option

selected to include the given SRF in the calculation. Vari-

ants decreasing Ri,total by < 3.0 bits (i.e. 8-fold) were pre-

dicted to potentially have benign effects on expression,

and were not considered further.

Activation of pseudoexons through creating/strengthen-

ing of an intronic cryptic SS was also assessed [94].

Changes in intronic cryptic sites, where ΔRi > 1 bit and

Ri,final ≥ (Rsequence – 1 standard deviation [S.D.] of Rsequence),

were identified. A pseudoexon was predicted if a

pre-existing cryptic site of opposite polarity (with

Ri > [Rsequence - 1 S.D.]) and in the proper orientation

for formation of exons between 10–250 nt in length

was present. In addition, the minimum intronic dis-

tance between the pseudoexon and either adjacent

natural exon was 100 nt. The acceptor site of the

pseudoexon was also required to have a strong

hnRNPA1 site located within 10 nt (Ri ≥ Rsequence)

[38] to ensure accurate proofreading of the exon

[37].

Next, variants affecting the strength of SRFs were ana-

lyzed by a contextual exon definition analysis of ΔRi,total.

The context refers to the documented splicing activity of

an SRF. For example, TIA1 has been shown to be an in-

tronic enhancer of exon definition, so only intronic sites

were considered. Similarly, hnRNPA1 proofreads the 3’

SS (acceptor) and inhibits exon recognition elsewhere

[95]. Variants that lead to redundant SRFBS changes (i.e.

one site is abolished and another proximate site [≤2 nt]

of equivalent strength is activated) were assumed to have

a neutral effect on splicing. If the strength of a site

bound by PTB (polypyrimidine tract binding protein)

was affected, its impact on binding by other factors was

analyzed, as PTB impedes binding of other factors with

overlapping recognition sites, but does not directly en-

hance or inhibit splicing itself [96].

To determine effects of variants on transcription factor

(TF) binding, we first established which TFs bound to the

sequenced regions of the gene promoters (and first exons)

in this study by using ChIP-seq data from 125 cell types

(Additional file 1: Methods) [97]. We identified 141 TFs

with evidence for binding to the promoters of the genes

we sequenced, including c-Myc, C/EBPβ, and Sp1, shown

to transcriptionally regulate BRCA1, TP53, and ATM,

respectively [98–100]. Furthermore, polymorphisms in

TCF7L2, known to bind enhancer regions of a wide var-

iety of genes in a tissue-specific manner [101], have been

shown to increase risk of sporadic [102] and hereditary

breast [103], as well as other types of cancer [104, 105].

IT-based models of the 141 TFs of interest were de-

rived by entropy minimization of the DNase accessible

ChIP-seq subsets [106]. Details are provided in Lu R,

Mucaki E, and Rogan PK (BioRxiv; http://dx.doi.org/

10.1101/042853). While some data sets would only yield

noise or co-factor motifs (i.e. co-factors that bind via

tethering, or histone modifying proteins [107]), tech-

niques such as motif masking and increasing the num-

ber of Monte Carlo cycles yielded models for 83 TFs

resembling each factor’s published motif. Additional file

3: Table S1 contains the final list of TFs and the models

we built (described below) [108].

These TFBS models (N = 83) were used to scan all var-

iants called in the promoter regions (10 kb upstream of

transcriptional start site to the end of IVS1) of HBOC

genes for changes in Ri. Binding site changes that

weaken interactions with the corresponding TF (to Ri ≤

Rsequence) are likely to affect regulation of the adjacent

target gene. Stringent criteria were used to prioritize the

most likely variants and thus only changes to strong

TFBSs (Ri,initial ≥ Rsequence), where reduction in strength

was significant (ΔRi ≥ 4.0 bits), were considered. Alterna-

tively, novel or strengthened TFBSs were also considered

sources of dysregulated transcription. These sites were

defined as having Ri,final ≥ Rsequence and as being the

strongest predicted site in the corresponding genomic

interval (i.e. exceeding the Ri values of adjacent sites un-

altered by the variant). Variants were not prioritized if

the TF was known to a) enhance transcription and IT

analysis predicted stronger binding, or b) repress tran-

scription and IT analysis predicted weaker binding.

Two complementary strategies were used to assess the

possible impact of variants within UTRs. First, SNPfold

software was used to assess the effect of a variant on 2°

structure of the UTR (Additional file 1: Methods) [20].

Variants flagged by SNPfold with the highest probability of

altering stable 2° structures in mRNA (where p-value < 0.1)

were prioritized. To evaluate these predictions, oligonucleo-

tides containing complete wild-type and variant UTR se-

quences (Additional file 4: Table S2) were transcribed

in vitro and followed by SHAPE analysis, a method that

can confirm structural changes in mRNA [44].

Second, the effects of variants on the strength of RBBSs

were predicted. Frequency-based, position weight matrices

(PWMs) for 156 RNA-binding proteins (RBPs) were ob-

tained from the RNA-Binding Protein DataBase (RBPDB)

[109] and the Catalog of Inferred Sequence Binding Prefer-

ences of RNA binding proteins (CISBP-RNA) [110, 111].

These were used to compute information weight matrices

(based on the method described by Schneider et al. 1984;

N = 147) (see Additional file 1: Methods) [40]. All UTR

variants were assessed using a modified version of the

Shannon Pipeline [91] containing the RBPDB and CISBP-

RNA models. Results were filtered to include a) variants
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with |ΔRi| ≥ 4.0 bits, b) variants creating or strengthening

sites (Ri,final ≥Rsequence and the Ri,initial < Rsequence), and c)

RBBSs not overlapping or occurring within 10 nt of a stron-

ger, pre-existing site of another RBP.

Exonic protein-altering variant analysis

The predicted effects of all coding variants were assessed

with SNPnexus [112–114], an annotation tool that can

be applied to known and novel variants using up-to-date

dbSNP and UCSC human genome annotations. Variants

predicted to cause premature protein truncation were

given higher priority than those resulting in missense (or

synonymous) coding changes. Missense variants were

first cross referenced with dbSNP 142 [115]. Population

frequencies from the Exome Variant Server [116] and

1000Genomes [117] are also provided. The predicted

effects on protein conservation and function of the

remaining variants were evaluated by in silico tools:

PolyPhen-2 [118], Mutation Assessor (release 2) [119, 120],

and PROVEAN (v1.1.3) [121, 122]. Default settings were

applied and in the case of PROVEAN, the “PROVEAN

Human Genome Variants Tool” was used, which includes

SIFT predictions as a part of its output. Variants predicted

by all four programs to be benign were less likely to have a

deleterious impact on protein activity; however this did not

exclude them from mRNA splicing analysis (described

above in IT-Based Variant Analysis). All rare and novel

variants were cross-referenced with general mutation data-

bases (ClinVar [123, 124], Human Gene Mutation Database

[HGMD] [125, 126], Leiden Open Variant Database

[LOVD] [127–134], Domain Mapping of Disease Mutations

[DM2] [135], Expert Protein Analysis System [ExPASy]

[136] and UniProt [137, 138]), and gene-specific databases

(BRCA1/2: the Breast Cancer Information Core database

[BIC] [139] and Evidence-based Network for the Interpret-

ation of Germline Mutant Alleles [ENIGMA] [140]; TP53:

International Agency for Research on Cancer [IARC]

[141]), as well as published reports to prioritize them for

further workup.

Variant classification

Flagged variants were prioritized if they were likely to

encode a dysfunctional protein (indels, nonsense

codon > 50 amino acids from the C-terminus, or abo-

lition of a natural SS resulting in out-of-frame exon

skipping) or if they exceeded established thresholds

for fold changes in binding affinity based on IT (see

Methods above). In several instances, our classification

was superseded by previous functional or pedigree

analyses (reported in published literature or data-

bases) that categorized these variants as pathogenic or

benign.

Positive control

We identified the BRCA1 exon 17 nonsense variant

c.5136G >A (chr17:41215907C >T; rs80357418; 2-5A)

[142] in the sample that was provided as a positive control.

This was the same mutation identified by the MGL as

pathogenic for this patient. We also prioritized another

variant in this patient (Table 1) [143].

Variant validation

Protein-truncating, prioritized splicing, and selected

prioritized missense variants were verified by Sanger

Table 1 Prioritized variants in the positive control

Gene mRNA
Protein

rsID
(dbSNP
142)

Category Consequence Ref

BRCA1 c.5136G > A rs80357418 Nonsense 151 AA short [142]

p.Trp1712Ter

BRCA2 c.3218A > G rs80358566 SRFBS Repressor action
of hnRNPA1 at
this site abolished
(5.2 to 0.4 bits).
Blocking action of
PTB removed as
site is abolished
(5.5 to -7.5 bits)
and may uncover
binding sites of
other SRFs.

p.Gln1073Arg

Missense Listed in ClinVar
as conflicting
interpretations
(likely benign,
unknown) and in
BIC as unknown
clinical
importance. 2 in
silico programs
called deleterious.
The variant
occurs between
repeat motifs
BRC1 and BRC2 of
BRCA2, a region in
which pathogenic
missense
mutations have
not yet been
identified.

[143]

SRFBS Repressor action
of hnRNPA1 at
this site abolished
(5.2 to 0.4 bits).
Blocking action of
PTB removed as
site is abolished
(5.5 to -7.5 bits)
and may uncover
binding sites of
other SRFs.
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sequencing. Primers of PCR amplicons are indicated

in Additional file 5: Table S3.

Deletion analysis

Junctional read detection

Potential large rearrangements were detected with

BreakDancer software [144], which identifies novel

genomic rearrangements based on the respective

orientation and distance between ends of the same

read (and exceeding the lengths of NGS library inserts).

This approach can, in theory, approximately localize dele-

tions, duplications, or other types of breakpoints within

exons, introns, and regulatory regions (eg. promoters) that

could affect gene expression and function. We required at

least 4 reads per suspected rearrangement in a sample

separated by >700 nt, with each end mapping to proxim-

ate genomic reference coordinates to infer a potential de-

letion. Synthetic and cost limitations in the maximum

genomic real estate covered by the capture reagent led to

a tradeoff between extending the span of captured gen-

omic intervals and higher tiling densities over shorter se-

quences, ie. exons, to achieve the level of coverage to

reliably detect deletions based on read counts alone.

Prioritization based on potential hemizygosity

Our complete gene enrichment strategy with independ-

ent capture of both genomic strands enabled and facili-

tated development of a new algorithm to identify

potential hemizygous genomic intervals in these individ-

uals. In each subject, we first searched for contiguous

long stretches (usually > > 1 kb) of non-polymorphic seg-

ments with diminished repetitive element content

(<10 %), which is consistent with the possibility of these

regions harboring a deletion. Then, we determined the

likelihood of homo- or hemizygosity by comparing the

degree of heterozygosity of variants in each of these in-

tervals in for an individual with all of the other individ-

uals sequenced with this protocol in this population.

Regions containing haplotype blocks in strong linkage dis-

equilibrium (LD; from HapMap [145]) were then excluded

as candidate deletion intervals. Some individuals without a

deletion are expected to be non-polymorphic, because de-

tection of heterozygosity depends on genomic length of

the region, marker informativeness, and the level of LD

for those markers. We required that > 80 % of the control

individuals be heterozyogous for at least two well-

distributed loci within these intervals. Highly informative

SNPs with a random genomic distribution in the controls

(and other public databases) and which were non-

polymorphic in the individual with the suspected deletion

were weighted more heavily in inferring potential hemi-

zygosity. This analysis was implemented using a Perl script

that identified the most likely intervals of hemizygosity,

which were then crossreferenced with the corresponding

genomic intervals in HapMap.

Results
Capture, sequencing, and alignment

The average coverage of capture region per individual

was 90.8x (range of 53.8 to 118.2x between 32 samples)

with 98.8 % of the probe-covered nucleotides having ≥

10 reads. Samples with fewer than 10 reads per nucleo-

tide were re-sequenced and the results of both runs were

combined. The combined coverage of these samples

was, on average, 48.2x (±36.2).

The consistency of both library preparation and capture

protocols was improved from initial runs, which signifi-

cantly impacted sequence coverage (Additional file 1:

Methods). Of the 102 patients tested, 14 had been previ-

ously Sanger sequenced for BRCA1 and BRCA2 exons.

Confirmation of previously discovered SNVs served to

assess the methodological improvements introduced during

NGS and ultimately, to increase confidence in variant

calling. Initially, only 15 of 49 SNVs in 3 samples were

detected. The detection rate of SNVs was improved to

100 % as the protocol progressed. All known SNVs (N =

157) were called in subsequent sequencing runs where

purification steps were replaced with solid phase reversible

immobilization beads and where RNA bait was transcribed

the same day as capture. To minimize false positive variant

calls, sequence read data were aligned with CASAVA and

CRAC, variants were called for each alignment with GATK,

and discrepancies were then resolved by manual review.

GATK called 14,164 unique SNVs and 1147 indels. Only

3777 (15.3 %) SNVs were present in both CASAVA and

CRAC-alignments for at least one patient, and even fewer

indel calls were concordant between both methods (N =

110; 6.2 %). For all other SNVs and indels, CASAVA called

6871 and 1566, respectively, whereas CRAC called 13,958

and 110, respectively. Some variants were counted more

than once if they were called by different alignment pro-

grams in two or more patients. Intronic and intergenic vari-

ants proximate to low complexity sequences tend to

generate false positive variants due to ambiguous align-

ment, a well known technical issue in short read sequence

analysis [146, 147], contributing to this discrepancy. For

example, CRAC correctly called a 19 nt deletion of BRCA1

(rs80359876; also confirmed by Sanger sequencing) but

CASAVA flagged the deleted segment as a series of false-

positives (Additional file 6: Figure S1). For these reasons, all

variants were manually reviewed.

IT-based variant identification and prioritization

Natural SS variants

The Shannon Pipeline reported 99 unique variants in nat-

ural donor or acceptor SSs. After technical and frequency
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filtering criteria were applied, 12 variants remained (Add-

itional file 7: Table S4). IT analysis allowed for the

prioritization of 3 variants, summarized in Table 2.

First, the novel ATM variant c.3747-1G >A

(chr11:108,154,953G >A; sample number 7-4 F) abolishes

the natural acceptor of exon 26 (11.0 to 0.1 bits). ASSEDA

reports the presence of a 5.3 bit cryptic acceptor site 13 nt

downstream of the natural site, but the effect of the variant

on a pre-existing cryptic site is negligible (~0.1 bits). The

cryptic exon would lead to exon deletion and frameshift

(Fig. 3a). ASSEDA also predicts skipping of the 246 nt exon,

as the Ri,final of the natural acceptor is now below Ri,minimum

(1.6 bits), altering the reading frame. Second, the novel

ATM c.6347 + 1G >T (chr11:108188249G >T; 4-1 F) abol-

ishes the 10.4 bit natural donor site of exon 44 (ΔRi = -18.6

bits), and is predicted to cause exon skipping. Finally, the

previously reported CHEK2 variant, c.320-5A >T

(chr22:29,121,360 T >A; rs121908700; 4-2B) [148] weakens

the natural acceptor of exon 3 (6.8 to 4.1 bits), and may

activate a cryptic acceptor (7.4 bits) 92 nt upstream of the

natural acceptor site which would shift the reading frame

(Fig. 4). A constitutive, frameshifted alternative isoform of

CHEK2 lacking exons 3 and 4 has been reported, but skip-

ping of exon 3 alone is not normally observed.

Variants either strengthening (N = 4) or slightly weaken-

ing (ΔRi < 1.0 bits; N = 4) a natural site were not prioritized.

In addition, we rejected the ATM variant (c.1066-6 T >G;

chr11:108,119,654 T >G; 4-1E and 7-2B), which slightly

weakens the natural acceptor of exon 9 (11.0 to 8.1 bits).

Although other studies have shown leaky expression as a

result of this variant [149], a more recent meta-analysis

concluded that this variant is not associated with increased

breast cancer risk [150].

Cryptic SS activation

Two variants produced information changes that could

potentially impact cryptic splicing, but were not priori-

tized for the following reasons (Table 2). The first vari-

ant, novel BRCA2 deletion c.7618-269_7618-260del10

(chr13:32931610_32931619del10; 7-4A) strengthens a

cryptic acceptor site 245 nt upstream from the natural

acceptor of exon 16 (Ri,final = 9.4 bits, ΔRi = 5.5 bits). Be-

ing 5.7-fold stronger than the natural site (6.9 bits), two

potential cryptic isoforms were predicted, however the

exon strengths of both are weaker than the unaffected

natural exon (Ri,total = 6.6 bits) and thus neither were pri-

oritized. The larger gap surprisal penalties explain the

differences in exon strength. The natural donor SS may

still be used in conjunction with the abovementioned

cryptic SS, resulting in an exon with Ri,total = 3.5 bits. Al-

ternatively, the cryptic site and a weak donor site 180 nt

upstream of the natural donor (Ri = 0.7 vs 1.4, cryptic

and natural donors, respectively) result in an exon with

Ri,total = 6.5 bits. The second variant, BRCA1 c.548-

293G > A (chr17:41249599C > T; 7-3E), creates a weak

cryptic acceptor (Ri,final = 2.6 bits, ΔRi = 6.2 bits) 291 nt

upstream of the natural acceptor for exon 8 (Ri = 0.5).

Although the cryptic exon is strengthened (final Ri,total =

6.9 bits, ΔRi = 14.7 bits), ASSEDA predicts the level of

expression of this exon to be negligible, as it is weaker

than the natural exon (Ri,total = 8.4 bits) due to the in-

creased length of the predicted exon (+291 nt) [38].

Pseudoexon formation

The Shannon Pipeline initially reported 1583 unique var-

iants creating or strengthening intronic cryptic sites. We

prioritized 5 variants, 1 of which is novel (BRCA2

c.8332-805G > A; 7-3 F), that were within 250 nt of a

pre-existing complementary cryptic site and have an

hnRNPA1 site within 5 nt of the acceptor (Table 2). If

used, 3 of these pseudoexons would lead to a frame-

shifted transcript.

SRF binding

Variants within 500 nt of an exon junction and all exonic

variants (N = 4015) were investigated for their potential ef-

fects on affinity of sites to corresponding SRFs [38]. IT

analysis flagged 54 variants significantly altering the

strength of at least one binding site (Additional file 8:

Table S5). A careful review of the variants, the factor af-

fected, and the position of the binding site relative to the

natural SS, prioritized 36 variants (21 novel), of which 4

are in exons and 32 are in introns. As an example, a novel

CHEK2 exon 2 variant c.69C >A (p.Gly23=) is predicted

to increase the strength of an hnRNP A1 site (0.7 to 5.3

bits) and decrease total exon strength (ΔRi,total = -5.7 bits).

A similar type of exonic variant in FANCM, which was

predicted to create an exonic hnRNP A1 site by IT, has

been shown to bind this exonic repressor and induce exon

skipping [37].

TF binding

We assessed SNVs with models of 83 TFs experimentally

shown to bind (Additional file 3: Table S1) upstream or

within the first exon and intron of our sequenced genes

(N = 2177). Thirteen variants expected to significantly

affect TF binding were flagged (Additional file 9: Table

S6). The final filtering step considered the known function

of the TF in transcription, resulting in 5 variants (Table 2)

in 6 patients (one variant was identified in two patients).

Four of these variants have been previously reported

(rs5030874, rs552824227, rs17882863, rs113451673) and

one is novel (c.-8895G > A; 7-4B).

UTR structure and protein binding

There were 364 unique UTR variants found by sequen-

cing. These variants were evaluated for their effects on

mRNA 2° structure (including that of splice forms with
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Table 2 Variants prioritized by IT analysis

Patient
ID

Gene mRNA rsID (dbSNP 142) Information Change Consequencef or Binding Factor
Affected

Ri,initial Ri,final ΔRi or Ri
e

Allele Frequency (%)d (bits) (bits) (bits)

Abolished Natural SS

7-4 F ATM c.3747-1G > Aa Novel 11.0 0.1 −10.9 Exon skipping and use of alternative
splice forms

4-1 F ATM c.6347 + 1G > Tb Novel 10.4 −8.3 −18.6 Exon skipping

Leaky Natural SS

4-2B CHEK2 c.320-5 T > Aa rs121908700 6.8 4.1 −2.7 Leaky splicing with intron inclusion

0.08

Activated Cryptic SS

7-3E BRCA1 c.548-293G > A rs117281398 −12.1 2.6 14.7 Cryptic site not expected to be used.
Total information for natural exon is
stronger than cryptic exon.0.74

7-4A BRCA2 c.7618-269_7618-260del10 Novel 3.9 9.4 5.5 Cryptic site not expected to be used.
Total information for natural exon is
stronger than cryptic exon.

Pseudoexon formation due to activated acceptor SS

7-3 F BRCA2 c.8332-805G > A Novel −9.3 5.4 5.6e 6065/211/592f

7-3D CDH1 c.164-2023A > G rs184740925 −6.6 4.3 6.5e 61,236/224/1798f

0.3

5-3H CDH1 c.2296-174 T > A rs565488866 7.3 8.5 5.0e 1175/50/124f

0.02

Pseudoexon formation due to activated donor SS

3-6A BRCA1 c.212 + 253G > A rs189352191 4.1 6.7 5.2e 186/63/1250f

0.08

5-2G BRCA2 c.7007 + 2691G > A rs367890577 4.7 7.2 7.7e 2589/103/5272f

0.02

Affected TFBSs

7-4B BRCA1 c.-8895G > A Novel 10.9 −0.2 −11.1 GATA-3 (GATA3)

5-3E CDH1 c.-54G > C rs5030874 1.7 12.0 10.4 E2F-4 (E2F4)

7-4E 0.16

5-2B PALB2 c.-291C > G rs552824227 12.1 −1.3 −13.4 GABPα (GABPA)

0.1

7-2 F TP53 c.-28-3132 T > C rs17882863 −6.3 10.9 17.2 RUNX3 (RUNX3)

0.3

4-1A TP53 c.-28-1102 T > C rs113451673 5.1 12.3 7.2 E2F-4 (E2F4)

0.4 8.0 12.9 4.8 Sp1 (SP1)

Affected RBBSs

7-4G ATM c.-244 T > A rs539948218 9.8 −19.9 −29.7 RBFOX

c.-744 T > A 0.04

c.-1929 T > A

c.-3515 T > A

5-3C CDH1 c.*424 T > A Novel −20.3 9.6 29.9 SF3B4

8.2 1.8 −6.4 CELF4

7-2E CHEK2 c.-588G > A rs141568342 10.9 3.7 −7.2 BX511012.1

4-3C.5-4G CHEK2 c.-345C > Tc rs137853007 3.3 11.4 8.2 SF3B4
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alternate UTRs in the cases of BRCA1 and TP53)

through SNPfold, resulting in 5 flagged variants (Table 3),

all of which have been previously reported.

Analysis of three variants using mFOLD [83] revealed

likely changes to the UTR structure (Fig. 5). Two variants

with possible 2° structure effects were common (BRCA2

c.-52A >G [N = 26 samples] and c.*532A >G [N = 40])

and not prioritized. The 5’ UTR CDH1 variant c.-71C >G

(chr16:68771248C >G; rs34033771; 7-4C) disrupts a

double-stranded hairpin region to create a larger loop

structure, thus increasing binding accessibility (Fig. 5a and

b). Analysis using RBPDB and CISBP-RNA-derived IT

models suggests this variant affects binding by NCL

(Nucleolin, a transcription coactivator) by decreasing

binding affinity 14-fold (Ri,initial = 6.6 bits, ΔRi = -3.8 bits)

(Additional file 10: Table S7). This RBP has been shown to

bind to the 5’ and 3’ UTR of p53 mRNA and plays a role

in repressing its translation [151].

In addition, the TP53 variant c.*485G >A (NM_000546.5:

chr17:7572442C >T; rs4968187) is found at the 3’ UTR

and was identified in two patients (4-2E and 5-4A). In silico

mRNA folding analysis demonstrated this variant disrupts a

Table 2 Variants prioritized by IT analysis (Continued)

3-1A TP53 c.-107 T > C rs113530090 10.5 4.5 −6.0 ELAVL1

4-1H c.-188 T > C 0.72

4-2H TP53 c.*1175A > C rs78378222 10.7 4.1 −6.6 KHDRBS1

7-2 F c.*1376A > C 0.26

c.*1464A > C
aConfirmed by Sanger sequencing
bAmbiguous Sanger sequencing results
cPrioritized under missense change and was therefore verified with Sanger sequencing. Variant was confirmed
dIf available
e
Ri of site of opposite polarity in the pseudoexon
fConsequences for pseudoexon formation describe how the intron is divided: “new intron A length/pseudoexon length/new exon B length

None of the variants have been previously reported by other groups with the exception of CHEK2 c.320-5T>A [148]

Fig. 3 Predicted Isoforms and Relative Abundances as a Consequence of ATM splice variant c.3747-1G > A. Intronic ATM variant c.3747-1G > A
abolishes (11.0 to 0.1 bits) the natural acceptor of exon 26 (total of 63 exons). a ASSEDA predicts skipping of the natural exon (Ri,total from 14.5 to
3.6 bits [a 1910 fold decrease in exon strength]; isoform 7) and/or activation of a pre-existing cryptic acceptor site 13 nt downstream (Ri,total for
cryptic exon = 9.0 bits; isoform 1) of the natural site leading to exon truncation. The reading frame is altered in both mutant isoforms. The other
isoforms use weak, alternate acceptor/donor sites leading to cryptic exons with much lower total information. b Before the mutation, isoform 7 is
expected to be the most abundant splice form. c After the mutation, isoform 1 is predicted to become the most abundant splice form and the
wild-type isoform is not expected to be expressed
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G/C bond of a loop in the highest ranked potential mRNA

structure (Fig. 5c and d). Also, SHAPE analysis showed a

difference in 2° structure between the wild-type and mutant

(data not shown). IT analysis with RBBS models indicated

that this variant significantly increases the binding affinity

of SF3B4 by > 48-fold (Ri,final = 11.0 bits, ΔRi = 5.6 bits)

(Additional file 10: Table S7). This RBP is one of four sub-

units comprising the splice factor 3B, which binds upstream

of the branch-point sequence in pre-mRNA [152].

The third flagged variant also occurs in the 3’ UTR of

TP53 (c.*826G > A; chr17:7572,101C > T; rs17884306),

and was identified in 6 patients (2-1A, 7-1B, 5-2A.7-1D,

Fig. 4 Predicted Isoforms and Relative Abundances as a Consequence of CHEK2 splice variant c.320-5 T > A. Intronic CHEK2 variant c.320-5 T > A
weakens (6.8 to 4.1 bits) the natural acceptor of exon 3 (total of 15 exons). a ASSEDA reports the weakening of the natural exon strength (Ri,total
reduced from 13.2 to 10.5 bits), which would result in reduced splicing of the exon otherwise known as leaky splicing. A pre-existing cryptic acceptor
exists 92 nt upstream of the natural site, leading to a cryptic exon with similar strength to the mutated exon (Ri,total = 10.0 bits). This cryptic exon would
contain 92 nt of the intron. b Before the mutation, isoform 1 is expected to be the only isoform expressed. c After the mutation, isoform 1 (wild-type)
is predicted to become relatively less abundant and isoform 2 is expected to be expressed, although less abundant in relation to isoform 1

Table 3 Variants predicted by SNPfold to affect UTR structure

Classa Patient ID Gene mRNA UTR
position

rsID (dbSNP 142) Ranke p-
valueAllele Frequency (%)d

F In 26 patients BRCA2b c.-52A > G 5’ UTR rs206118 2/900 0.002

14.86

F In 40 patients BRCA2b c.*532A > G 3’ UTR rs11571836 239/2700 0.089

19.75

P 7-4C CDH1c c.-71C > G 5’ UTR rs34033771 69/600 0.115

0.56

F 4-2E TP53b c.*485G > A 3’ UTR rs4968187 169/4500 0.038

5-4A 5.11

F 2-1A, 7-1B, 5-2A.7-1D, 7-2B, 7-2F TP53b c.*826G > A 3’ UTR rs17884306 371/4500 0.082

7-4C 5.71
aF:Flagged; P:Prioritized
bLong Range UTR SNPfold Analysis
cLocal Range SNPfold Analysis
dIf available
eRank of the SNP, in terms of how much it changes the mRNA structure compared to all other possible mutations
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7-2B, 7-2 F, and 7-4C). It disrupts a potential loop struc-

ture, stabilizing a double-stranded hairpin, and possibly

making it less accessible (Fig. 5e and f). Analysis using

RBPDB-derived models suggests this variant could affect

the binding of both RBFOX2 and SF3B4 (Additional file

10: Table S7). A binding site for RBFOX2, which acts as

a promoter of alternative splicing by favoring the inclu-

sion of alternative exons [153], is created (Ri,final = 9.8

bits; ΔRi = -6.5 bits). This variant is also expected to sim-

ultaneously abolish a SF3B4 binding site (Ri,final = -20.3

bits; ΔRi = -29.9 bits).

RBPDB- and CISBP-RNA-derived information model

analysis of all UTR variants resulted in the prioritization

of 1 novel, and 5 previously-reported variants (Table 2).

No patient within the cohort exhibited more than one

prioritized RBBS variant.

To evaluate the background rate of prioritizing vari-

ants flagged by this method, all 5’ and 3’ UTR SNVs in

dbSNP144 for the 7 genes sequenced (excluding those

already flagged in Table 3) were evaluated by SNPfold

and our RBP information models. Of 1207 SNVs, only

10 were prioritized with both methods, which results in

a background rate of 0.83 %.

Exonic variants altering protein sequence

Exonic variants called by GATK (N = 245) included in-

sertions, deletions, nonsense, missense, and synonymous

changes.

Protein-truncating variants

We identified 3 patients with different indels (Table 4).

One was a PALB2 insertion c.1617_1618insTT

(chr16:23646249_23646250insAA; 5-3A) in exon 4, pre-

viously reported in ClinVar as pathogenic. This mutation

results in a frameshift and premature translation termin-

ation by 626 residues, abolishing domain interactions

with RAD51, BRCA2, and POLH [137]. We also identi-

fied two known frameshift mutations in BRCA1:

c.4964_4982del19 in exon 15 (chr17:41222949_412229

67del19; rs80359876; 5-1B) and c.5266_5267insC in

Fig. 5 Predicted Alteration in UTR Structure Using mFOLD for Variants Flagged by SNPfold. Wild-type and variant structures are displayed, with
the variant indicated by a red arrow. a Predicted wild-type structure of CDH1 5’UTR surrounding c.-71. b Predicted CDH1 5’UTR structure due to
c.-71C > G variant. c Predicted wild-type TP53 3’UTR structure surrounding c.*485. d Predicted TP53 5’UTR structure due to c.*485G > A variant. e
Predicted wild-type TP53 3’UTR structure surrounding c.*826. f Predicted TP53 5’UTR structure due to c.*826G > A variant. §SHAPE analysis revealed
differences in reactivity between mutant and variant mRNAs, confirming alterations to 2° structure
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exon 19 (chr17:41209079_41209080insG; rs397507247;

5-3C) [148, 154]. Both are indicated as pathogenic

and common in the BIC Database due to the loss of one

or both C-terminal BRCT repeat domains [137]. Trunca-

tion of these domains produces instability and impairs nu-

clear transcript localization [155], and this bipartite

domain is responsible for binding phosphoproteins

that are phosphorylated in response to DNA damage

[156, 157].

We also identified 4 nonsense mutations, one of which

was novel in exon 4 of PALB2 (c.1042C > T; chr

16:23646825G > A; 4-4D). Another in PALB2 has been

previously reported (c.1240C > T; chr16:23646627G > A;

rs180177100; 7-3A) [58]. As a consequence, functional

domains of PALB2 that interact with BRCA1, RAD51,

BRCA2, and POLH are lost [137]. Two known nonsense

mutations were found in BRCA2, c.7558C > T in exon

15 [158] and c.9294C > G in exon 25 [159]. The first

(chr13:32930687C > T; rs80358981; 7-1G) causes the loss

of the BRCA2 region that binds FANCD2, responsible

for loading BRCA2 onto damaged chromatin [160]. The

second (chr13:32968863C > G, rs80359200; 4-4A) does

not occur within a known functional domain, however

the transcript is likely to be degraded by nonsense medi-

ated decay [161].

Missense

GATK called 61 missense variants, of which 18 were

identified in 6 patients or more and 19 had allele fre-

quencies > 1.0 % (Additional file 11: Table S8). The 40

remaining variants (15 ATM, 8 BRCA1, 9 BRCA2, 2

CDH1, 2 CHEK2, 3 PALB2, and 1 TP53) were assessed

using a combination of gene specific databases, pub-

lished classifications, and 4 in silico tools (Additional

file 12: Table S9). We prioritized 27 variants, 2 of which

were novel. None of the non-prioritized variants were

predicted to be damaging by more than 2 of 4

conservation-based software programs.

Variant classification

Initially, 15,311 unique variants were identified by

complete gene sequencing of 7 HBOC genes. Of these,

132 were flagged after filtering, and further reduced by IT-

based variant analysis and consultation of the published

literature to 87 prioritized variants. Figure 6 illustrates the

decrease in the number of unique variants per patient at

each step of our identification and prioritization process.

The distribution of prioritized variants by gene is 34 in

ATM, 13 in BRCA1, 11 in BRCA2, 8 in CDH1, 6 in

CHEK2, 10 in PALB2, and 5 in TP53 (Additional file 13:

Table S10), which are categorized by type in Table 5.

Table 4 Variants resulting in premature protein truncation

Patient
ID

Gene Exon mRNA Protein rsID (dbSNP 142) ClinVard,e,f Details Ref

Allele Frequency (%)c

Insertions/Deletions

5-1B BRCA1 15 of 23 c.4964_4982del19a rs80359876 6d; Pathogenic/likely pathogenice;
Familial breast and breast-ovarian cancer,
Hereditary cancer-predisposing syndromef.

STOP at p.1670 -

p.Ser1655Tyrfs 193 AA short

5-3C BRCA1 19 of 23 c.5266_5267insCa rs397507247 13d; Pathogenic, risk factore;
Familial breast, breast-ovarian,
and pancreatic cancer, Hereditary
cancer-predisposing syndromef.

STOP at p.1788 [148, 154]

p.Gln1756Profs 75 AA short

5-3A PALB2 4 of 13 c.1617_1618insTTa - 1d; Pathogenice; Hereditary
cancer-predisposing syndromef.

STOP at p.561 -

p.Asn540Leufs 626 AA short

Stop Codons

7-1G BRCA2 15 of 27 c.7558C > Tb rs80358981 5d; Pathogenice; Familial breast, and
breast-ovarian cancer, Hereditary
cancer-predisposing syndromef.

899 AA short [158]

p.Arg2520Ter

4-4A BRCA2 25 of 27 c.9294C > Ga rs80359200 3d; Pathogenice; Familial breast
and breast-ovarian cancerf.

321 AA short [159]

p.Tyr3098Ter

7-3A PALB2 4 of 13 c.1240C > Ta rs180177100 3d; Pathogenice; Familial breast cancer,
Hereditary cancer-predisposing syndromef.

773 AA short [58]

p.Arg414Ter

4-4D PALB2 4 of 13 c.1042C > Ta Novel - 839 AA short -

p.Gln348Ter
aConfirmed by Sanger sequencing
bNot confirmed by Sanger sequencing
cIf available
dNumber of submissions
eClinical significance
fCondition(s)

Mucaki et al. BMC Medical Genomics  (2016) 9:19 Page 14 of 25



Three prioritized variants have multiple predicted roles:

ATM c.1538A >G in missense and SRFBS, CHEK2

c.190G >A in missense and UTR binding, and CHEK2

c.433C > T in missense and UTR binding. Of the 102

patients that were sequenced, 72 (70.6 %) exhibited at

least one prioritized variant, and some patients harbored

more than one prioritized variant (N = 33; 32 %).

Additional file 14: Table S11 presents a summary of all

flagged and prioritized variants for patients with at least

one prioritized variant.

Prioritization of potential deletions

Using BreakDancer, none of the individuals analyzed exhib-

ited large rearrangements that met the level of stringency

Fig. 6 Ladder Plot Representing Variant Identification and Prioritization. Each line is representative of a different sample in each sequencing run
(a-e), illustrating the number of unique variants at important steps throughout the variant prioritization process. The left-most point indicates the
total number of unique variants. The second point represents the number of unique variants remaining after common (>5 patients within cohort
and/or≥ 1.0 % allele frequency) and false-positive variants were removed. The right-most point represents the final number of unique. No variants
were prioritized in the following patients: 2-1A, 2-5A, 2-6A, 3-2A, 3-3A, 3-4A, 3-5A, 3-8A, 4-1B, 4-2C, 4-2 F, 4-3B, 4-3D, 4-4B, 4-4E, 5-1G, 5-1H, 5-3D,
5-4C, 5-4D, 5-4 F, 5-4G, 5-4H, 7-1B, 7-1C, 7-1D, 7-1H, 7-2B, 7-2C, 7-2H, 7-3H, 7-4A, 7-4D, 7-4H. The average number of variants per patient at each
step is indicated in a table below each plot, along with the percent reduction in variants from one step to another

Table 5 Summary of prioritized variants by gene

Indel Nonsense Missense Natural Splicing Cryptic Splicing Pseudoexon SR Factor TF UTR Structure UTR Binding Total

ATM 0 0 14 2 0 0 18 0 0 1 34 a

BRCA1 2 0 2 0 0 1 7 1 0 0 13

BRCA2 0 2 3 0 0 2 4 0 0 0 11

CDH1 0 0 2 0 0 2 1 1 1 1 8

CHEK2 0 0 2 1 0 0 3 0 0 2 6 a

PALB2 1 2 3 0 0 0 3 1 0 0 10

TP53 0 0 1 0 0 0 0 2 0 2 5

Total 3 4 27 3 0 5 36 5 1 6

Three variants were prioritized under multiple categories: ATM chr11:108121730A > G (missense and SRFBS), CHEK2 chr22:29121242G > A (missense, UTR binding),

and CHEK2 chr22:29130520C > T (missense, UTR binding)
a Counts represent the number of unique variants identified (i.e. a variant is not counted twice if it appeared in multiple individuals)
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required, but a small intragenic rearrangement in BRCA1

was identified and confirmed by Sanger sequencing. At-

tempts to detect deletions with BreakDancer only flagged

single, non-contiguous paired-end reads, rather than a

series of reads clustered within the same region within the

same individual, which would be necessary to indicate the

presence of a true deletion or structural rearrangement.

After prioritizing individuals for potential hemizygosity in

the sequenced regions, potential deletions were detected in

BRCA2 and CDH1. Patient UWO5-4D exhibited a non-

polymorphic 32.1 kb interval in BRCA2, spanning introns 1

to 13, that was absent from all of the other individuals

(chr13:32890227-32922331). Haploview (hapmap.org)

showed very low levels of LD in this region. The potential

deletion may extend further downstream, however the

presence of a haploblock, covering the entire sequenced

interval beyond exon 11, with significant LD precludes de-

lineation of the telomeric breakpoint. We also flagged a

non-polymorphic 2.6 kb interval near the 3’ end of CDH1

in 6 individuals (UWO3-5, UWO4-2C, UWO4-4E,

UWO4-4 F, UWO4-2G, UWO5-2H). This is a low LD re-

gion spanning chr16:68861286-68863887 that includes

exons 14 and 15, and is polymorphic in all of the other in-

dividuals sequenced. CDH1 mutations are characteristically

present in families with predisposition to gastric cancer,

however breast cancer frequently co-occurs [69]. A study of

CDH1 deletions in inherited gastric cancer identified two

families with deletions that overlap the intervals prioritized

in the present study [162].

Comparison to combined annotation dependent

depletion

The analysis and prioritization of non-coding variants

can also be accomplished using Combined Annotation

Dependent Depletion (CADD; [163]), which uses

known and simulated variants to compute a C-score,

an ad hoc measure of how deleterious is likely to be.

The suggested C-score cutoff is between 10 and 20,

though it is stated that any selected cutoff value would

be arbitrary (http://cadd.gs.washington.edu/info). This

contrasts with information-based methods, which are

based on thermodynamically-defined thresholds. To

directly compare methods, CADD scores were ob-

tained for all prioritized or flagged SNVs. Half of pri-

oritized variants met this cutoff (C > 10), while only

28.6 % of flagged variants did the same. All prioritized

nonsense variants (4/4) and 26/27 missense variants

had strong C-scores. Prioritized non-coding variant cat-

egories that correlated well with CADD include natural

splicing variants (4/4), UTR structure variants (1/1), and

RBPs (4/6). Weakly correlated variants included those af-

fecting SRFBPs (5/36), TFBS (2/5), and pseudoexon acti-

vating variants (0/5). Missense mutations comprised 75 %

of the flagged variants with C > 10. The aforementioned

flagged splicing variant ATM c.1066-6 T >G also exceeded

the threshold C value (C = 11.9). Meanwhile, the flagged

TP53 variant, shown by SHAPE analysis to alter UTR

structure, did not (C = 5.3). Despite consistency between

some variant categories, the underlying assumptions of

each approach probably explain why these results differ

for non-coding variants. The limited numbers validated,

deleterious non-coding variants also contributes to the ac-

curacy of these predictions [163].

Variant verification

We verified prioritized protein-truncating (N = 7) and spli-

cing (N = 4) variants by Sanger sequencing (Tables 2 and 4,

respectively). In addition, two missense variants (BRCA2

c.7958 T >C and CHEK2 c.433C >T) were re-sequenced,

since they are indicated as likely pathogenic/pathogenic in

ClinVar (Additional file 12: Table S9). All protein-

truncating variants were confirmed, with one exception

(BRCA2 c.7558C >T, no evidence for the variant was

present for either strand). Two of the mRNA splicing muta-

tions were confirmed on both strands, while the other two

were confirmed on a single strand (ATM c.6347 + 1G >T

and ATM c.1066-6 T >G). Both documented pathogenic

missense variants were also confirmed.

Discussion

NGS technology offers advantages in throughput and

variant detection [126], but the task of interpreting the

sheer volume of variants in complete gene or genome

data can be daunting. The whole genome of a Yoruban

male contained approximately 4.2 million SNVs and 0.4

million structural variants [164]. The variant density in

the present study (average 948 variants per patient) was

5.3-fold lower than the same regions in HapMap sample

NA12878 in Illumina Platinum Genomes Project (5029

variants) [165]. The difference can be attributed primar-

ily to the exclusion of polymorphisms in highly repetitive

regions in our study.

Conventional coding sequence analysis, combined with

an IT-based approach for regulatory and splicing-related

variants, reduced the set to a manageable number of pri-

oritized variants. Unification of non-coding analysis of di-

verse protein-nucleic acid interactions using the IT

framework accomplishes this by applying thermodynamic-

based thresholds to binding affinity changes and by select-

ing the most significant binding site information changes,

regardless of whether the motifs of different factors

overlap.

Previously, rule-based systems have been proposed for

variant severity classification [166, 167]. Functional valid-

ation and risk analyses of these variants are a prerequisite

for classification, but this would not be practical to accom-

plish without first limiting the subset of variants analyzed.

With the exception of some (but not all [37]) protein
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truncating variants, classification is generally not achiev-

able by sequence analysis alone. Only a minority of vari-

ants with extreme likelihoods of pathogenic or benign

phenotypes are clearly delineated because only these types

of variants are considered actionable [166, 167]. The pro-

posed classification systems preferably require functional,

co-segregation, and risk analyses to stratify patients.

Nevertheless, the majority of variants are VUS, especially

in the case of variants occurring beyond exon boundaries.

Of the 5713 variants in the BIC database, the clinical sig-

nificance of 4102 BRCA1 and BRCA2 variants are either

unknown (1904) or pending (2198), and only 1535 have

been classified as pathogenic (Class 5) [168]. Our results

cannot be considered equivalent to validation, which usu-

ally include expression assays [36] or the use of RNA-seq

data [169] (splicing), qRT-PCR [170] (transcription),

SHAPE analysis (mRNA 2° structure) [44], or binding as-

says to determine functional effects of variants. Classifica-

tion of VUS in BRCA1 and BRCA2 by the ENIGMA

Consortium addresses mRNA splicing and missense vari-

ants. Criteria define risk based on whether the variant oc-

curs within a protein structural domain, the impact on

protein function, and the segregation pattern of variant

with disease in pedigrees [171]. These guidelines cannot

be fully implemented here for several reasons: a) patients

were anonymized in this study, precluding segregation

analysis, b) the splicing mutation guideline does not take

into account predicted leaky or cryptic SS mutations, nor

other non-canonical changes that have been demonstrated

to alter the expression of these and numerous other genes,

c) conserved domains have not been identified in regions

of the proteins encoded by these genes, especially BRCA2,

where many missense mutations reside, and d) the guide-

lines are currently silent as to the potential impact of

regulatory variants affecting splicing, RNA stability, and

transcriptional regulation.

While the miRNA variant prediction program mrSNP

[172] was used to evaluate all of the 3’ UTR variants, 41.4 %

of the variants were predicted to alter the stability of the

miRNA-target mRNA duplex for at least one miRNA

expressed in breast tissue. However, only 2 of these interac-

tions could be confirmed using TarBase [173], and these

variants could not be prioritized for disruption of miRNA

regulation. Other post-transcriptional processes, including

miRNA regulation, that were not addressed in this study,

may also be amenable to such IT-based modeling. With the

proposed approach, functional prediction of such variants

could precede or at least inform the classification of VUS.

It is unrealistic to expect all variants to be functionally

analyzed, just as it may not be feasible to assess family

members for a suspected pathogenic variant detected in a

proband. The prioritization procedure reduces the chance

that significant variants have been overlooked. Capturing

coding and non-coding regions of HBOC-related genes,

combined with the framework for assessing variants, bal-

ances the need to comprehensively detect all variation in a

gene panel with the goal of identifying variants likely to be

phenotypically relevant.

The location of variants in relation to known protein

domains was documented in this study, but was not dir-

ectly incorporated into our prioritization method. The

locations and impact of splicing mutations in BRCA1

and BRCA2 were mapped to the known functional do-

mains of the encoded proteins [174]. A high concentra-

tion of variants predicted to result in splicing changes

occurred in the BRCT, RING finger, and NLS domains

of BRCA1. However, BRCA2 variants were generally

concentrated outside of known functional domains

(aside from the C-terminal domain). Because of these in-

consistencies, domain-mapping was not integrated with

IT based prioritization. However, where adequate infor-

mation on structure-function relationships is available

(eg. TP53), we suggest that such analysis be carried out

subsequent to IT-based variant prioritization.

Non-coding variants

Although coding variants are typically the sole focus of a

molecular diagnostic laboratory (with the exception of the

canonical dinucleotide positions within SS), non-coding

mutations have long been known to be disease causing

[19, 36, 175–183]. In this study, variant density in non-

coding regions significantly exceeded exonic variants by >

60-fold, which, in absolute terms, constituted 1.6 % of the

15,311 variants. This is comparable to whole genome se-

quencing studies, which typically result in 3-4 million vari-

ants per individual, with < 2 % occurring in protein coding

regions [184]. IT analysis prioritized 3 natural SS, 36

SRFBS, 5 TFBS, and 6 RBBS variants and 5 predicted to

create pseudoexons. Two SS variants in ATM (c.3747-

1G >A and c.6347 + 1G > T) were predicted to completely

abolish the natural site and cause exon skipping. A

CHEK2 variant (c.320-5A > T) was predicted to result in

leaky splicing.

The IT-based framework evaluates all variants on a

common scale, based on bit values, the universal unit

that predicts changes in binding affinity [185]. A variant

can alter the strength of one or a “set” of binding sites;

the magnitude and direction of these changes is used to

rank their significance. The models used to derive infor-

mation weight matrices take into account the frequency

of all observed bases at a given position of a binding

motif, making them more accurate than consensus se-

quence and conservation-based approaches [36].

IT has been widely used to analyze natural and cryptic

SSs [36], but its use in SRFBS analysis was only intro-

duced recently [38]. For this reason, we assigned conser-

vative, minimum thresholds for reporting information

changes. Although there are examples of disease-causing
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variants resulting in small changes in Ri [174, 186–192],

the majority of deleterious splicing mutations that have

been verified functionally, produce large information

changes. Among 698 experimentally verified deleterious

variants in 117 studies, only 1.96 % resulted in < 1.0 bit

change [36]. For SRFBS variants, the absolute informa-

tion changes for deleterious variants ranged from 0.2 to

17.1 bits (mean 4.7 ± 3.8). This first application of IT in

TFBS and RBBS analysis, however, lacks a large refer-

ence set of validated mutations for the distribution of in-

formation changes associated with deleterious variants.

The release of new ChIP-seq datasets will enable IT

models to be derived for TFs currently unmodeled and

will improve existing models [193].

Pseudoexon activation results in disease-causing muta-

tions [194], however such consequences are not custom-

arily screened for in mRNA splicing analysis. IT analysis

was used to detect variants that predict pseudoexon for-

mation and 5 variants were prioritized. Previously, we

have predicted experimentally proven pseudoexons with

IT (Ref 42: Table 2, No #2; and Ref 195: Table 2, No #7)

[42, 195]. Although it was not possible to confirm priori-

tized variants in the current study predicted to activate

pseudoexons because of their low allele frequencies,

common intronic variants that were predicted to form

pseudoexons were analyzed. We then searched for evi-

dence of pseudoexon activation in mapped human EST

and mRNA tracks [196] and RNA-seq data of breast

normal and tumour tissue from the Cancer Genome

Atlas project [15]. One of these variants (rs6005843) ap-

peared to splice the human EST HY160109 [197] at

the predicted cryptic SS and is expressed within the

pseudoexon boundaries.

Variants that were common within our population

sample (i.e. occurring in > 5 individuals) and/or common

in the general population (>1.0 % allele frequency) re-

duced the list of flagged variants substantially. This is

now a commonly accepted approach for reducing candi-

date disease variants [166], based on the principle that

the disease-causing variants occur at lower population

frequencies. Variants occurring in > 5 patients all either

had allele frequencies above 1.0 % or, as shown previ-

ously, resulted in very small ΔRi values [198].

The genomic context of sequence changes can influence

the interpretation of a particular variant [36]. For example,

variants causing significant information changes may be

interpreted as inconsequential if they are functionally re-

dundant or enhancing existing binding site function (see

IT-Based Variant Analysis for details). Our understanding

of the roles and context of these cognate protein factors is

incomplete, which affects confidence in interpretation of

variants that alter binding. Also, certain factors with im-

portant roles in the regulation of these genes, but that do

not bind DNA directly or in a sequence-specific manner

(eg. CtBP2 [199]), could not be included. Therefore, some

variants may have been incorrectly excluded.

Prioritization of potential deletions

Although individuals can be prioritized based on poten-

tial hemizygosity, this does not definitively identify dele-

tions. Nevertheless, it should be possible to prioritize

those individuals worthy of further detailed diagnostic

workup. It has not escaped our attention that the

weighted probabilities obtained from this analysis could

be represented and formalized using the same units of

Shannon information (in bits) as the other sequence

changes we have described, analogous to single or multi-

nucleotide gene variants predicted to affect nucleic acid

binding sites. Full development and validation of this

method is in progress.

Coding sequence changes

We also identified 4 nonsense and 3 indels in this cohort.

In one individual, a 19 nt BRCA1 deletion in exon 15

causes a frameshift leading to a stop codon within 14 co-

dons downstream. This variant, rs80359876, is considered

clinically relevant. Interestingly, this deletion overlaps two

other published deletions in this exon (rs397509209 and

rs80359884). This raises the question as to whether this

region of the BRCA1 gene is a hotspot for replication er-

rors. DNA folding analysis indicates a possible 15 nt long

stem-loop spanning this interval as the most stable pre-

dicted structure (data not shown). This 15 nt structure oc-

curs entirely within the rs80359876 and rs397509209

deletions and partially overlaps rs80359884 (13 of 15 nt of

the stem loop). It is plausible that the 2° structure of this

sequence predisposes to a replication error that leads to

the observed deletion.

Missense coding variants were also assessed using mul-

tiple in silico tools and evaluated based on allele fre-

quency, literature references, and gene-specific databases.

Of the 27 prioritized missense variants, the previously re-

ported CHEK2 variant c.433G > A (chr22:29121242G >A;

rs137853007) stood out, as it was identified in one patient

(4-3C.5-4G) and is predicted by all 4 in silico tools to have

a damaging effect on protein function. Accordingly, Wu

et al. (2001) demonstrated reduced in vitro kinase activity

and phosphorylation by ATM kinase compared to the

wild-type CHEK2 protein [200], presumably due to the

variant’s occurrence within the forkhead homology-

associated domain, involved in protein-phosphoprotein

interactions [201]. Implicated in Li-Fraumeni syndrome,

known to increase the risk of developing several types of

cancer including breast [202, 203], the CHEK2: c.433G >

A variant is expected to result in a misfolded protein that

would be targeted for degradation via the ubiquitin-

proteosome pathway [204]. Another important mis-

sense variant is c.7958 T > C (chr13:32,936,812 T > C;
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rs80359022; 4-4C) in exon 17 of BRCA2. Although

classified as being of unknown clinical importance in

both BIC and ClinVar, it has been classified as patho-

genic based on posterior probability calculations [205].

It is unlikely that all prioritized variants are pathogenic

in patients carrying more than one prioritized variant.

Nevertheless, a polygenic model for breast cancer suscep-

tibility, whereby multiple moderate and low-risk alleles

contribute to increased risk of HBOC may also account

for multiple prioritized variants [206, 207]. There was a

significant fraction of patients (29.4 %) in whom no vari-

ants were prioritized. This could be due to a) the inability

of the analysis to predict a variant affecting the binding

sites analyzed, b) a pathogenic variant affecting a function

that was not analyzed or in a gene that was not sequenced,

c) a large rearrangement/deletion where both breakpoints

occur beyond the captured genomic intervals (which is

unlikely, as this would have been observed as an extended

non-polymorphic sequence), or d) the significant family

history was not due to heritable, but instead to shared en-

vironmental influences.

BRCA coding variants were found in individuals who

were previously screened for lesions in these genes, sug-

gesting this NGS protocol is a more sensitive approach

for detecting coding changes. However, previous testing

of a number of these patients had been predominantly

based on PTT and MLPA, which have lower sensitivity

for detecting mutations than sequence analysis. Never-

theless, we identified 2 BRCA1 and 2 BRCA2 variants

predicted to encode prematurely truncated proteins.

Fewer non-coding BRCA variants were prioritized

(15.7 %) than expected by linkage analysis [49], however

this presumes at least 4 affected breast cancer diagnoses

per pedigree, and, in the present study, the number of

affected individuals per family was not known.

Prioritization of a variant does not equate with pathogen-

icity. Some prioritized variants may not increase risk, but

may simply modify a primary unrecognized pathogenic

mutation. A patient with a known BRCA1 nonsense vari-

ant, used as a positive control, was also found to possess an

additional prioritized variant in BRCA2 (missense variant

chr13:32911710A >G), which was flagged by PROVEAN

and SIFT as damaging, as well as flagged for changing an

SRFBS for abolishing a PTB site (while simultaneously

abolished an exonic hnRNPA1 site). This variant has been

identified in cases of early onset prostate cancer and is con-

sidered a VUS in ClinVar [143]. Similarly, variants priori-

tized in multiple patients may act as risk modifiers rather

than pathogenic mutations. A larger cohort of patients with

known pathogenic mutations would be necessary to calcu-

late a background/basal rate of falsely flagged variants.

Other groups have attempted to develop comprehen-

sive approaches for variant analysis, analogous to the

one proposed here [208–210]. While most employ high-

throughput sequencing and classify variants, either the

sequences analyzed or the types of variants assessed tend

to be limited. In particular, non-coding sequences have

not been sequenced or studied to the same extent, and

none of these analytical approaches have adopted a com-

mon framework for mutation analysis.

Our published oligonucleotide design method [77]

produced an average sequence coverage of 98.8 %. The

capture reagent did not overlap conserved highly repeti-

tive regions, but included divergent repetitive sequences.

Nevertheless, neighboring probes generated reads with

partial overlap of repetitive intervals. As previously re-

ported [147], we noted that false positive variant calls

within intronic and intergenic regions were the most

common consequence of dephasing in low complexity,

pyrimidine-enriched intervals. This was not alleviated by

processing data with software programs based on differ-

ent alignment or calling algorithms. Manual review of all

intronic or intergenic variants became imperative. As

these sequences can still affect functional binding ele-

ments detectable by IT analysis (i.e. 3’ SSs and SRFBSs),

it may prove essential to adopt or develop alignment

software that explicitly and correctly identifies variants

in these regions [147]. Most variants were confirmed

with Sanger sequencing (10/13), and those that could

not be confirmed are not necessarily false positives. A

recent study demonstrated that NGS can identify vari-

ants that Sanger sequencing cannot, and reproducing se-

quencing results by NGS may be worthwhile before

eliminating such variants [211].

Conclusions

Through a comprehensive protocol based on high-

throughput, IT-based and complementary coding

sequence analyses, the numbers of VUS can be re-

duced to a manageable quantity of variants, prioritized

by predicted function. While exonic variants corre-

sponded to a small fraction of prioritized variants,

there is considerably more evidence for their patho-

genicity because clinical sequencing has concentrated

in these regions. Our sequencing approach illustrates

the importance of sequencing non-coding regions of

genes to establish pathogenic mutations not already

evident from changes in the amino acid based genetic

code. We suggest our approach for variant flagging

and prioritization bridges the phase between high-

throughput sequencing, variant detection with the

time-consuming process of variant classification, in-

cluding pedigree analysis and functional validation.

Subsequent to completion of the present study, ethics

approval was obtained for a similar analysis of con-

sented patients with clinical information. This work

has since been described elsewhere [212].
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Availability of supporting data

Variants will be deposited with the ENIGMA Consor-

tium (www.enigmaconsortium.org), which is a desig-

nated organization for curation of HBOC mutations

and which is charged with protection of genetic priv-

acy of participants. Additionally, all likely pathogenic

variants were submitted to ClinVar (submission ID:

SUB1332053) while other novel variants were submit-

ted to dbSNP (ss1966658584-1966658622).
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