
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 1, JANUARY 2006 111

A Unified Approach for Fault Tolerance and
Dynamic Power Management in Fixed-Priority

Real-Time Embedded Systems
Ying Zhang and Krishnendu Chakrabarty, Senior Member, IEEE

Abstract—This paper investigates an integrated approach for
achieving fault tolerance and energy savings in real-time em-
bedded systems. Fault tolerance is achieved via checkpointing,
and energy is saved using dynamic voltage scaling (DVS). The
authors present a feasibility analysis for checkpointing schemes
for a constant processor speed as well as for variable processor
speeds. DVS is then carried out on the basis of the feasibility
analysis. The authors incorporate important practical issues such
as faults during checkpointing, rollback recovery time, memory
access time, and energy needed for checkpointing, as well as
DVS and context switching overhead. Numerical results based
on real-life checkpointing data and processor data sheets show
that compared to fault-oblivious methods, the proposed approach
significantly reduces power consumption and guarantees timely
task completion in the presence of faults.

Index Terms—Checkpointing, dynamic voltage scaling (DVS),
fault tolerance, real-time scheduling.

I. INTRODUCTION

MANY embedded systems in use today rely on dynamic
power management (DPM) techniques, where the op-

erating system (OS) is responsible for managing system-level
power consumption. There are two main types of DPM tech-
niques. The first includes selective shut-off or slow down of
system components that are idle or underutilized [1]. The sec-
ond, termed as dynamic voltage scaling (DVS), refers to the
dynamic control of the supply voltage level for the various com-
ponents in a system [2]. DVS has emerged as a popular solution
to the problem of reducing power consumption during system
operation [3]–[5]. Many embedded processors such as the Intel
XScale PXA260 [6], the Motorola 6805 [7], the Transmeta
Crusoe [8], and the AMD K-6 [9] are now equipped with the
ability to dynamically scale the processor frequency by adjust-
ing the operating voltage.

A large number of embedded systems are also designed for
real-time use [10], where a missed deadline can result in ca-

Manuscript received August 26, 2003; revised March 8, 2004. This work was
supported by the Defense Advance Research Projects Agency (DARPA) and
administered by the Army Research Office under Emergent Surveillance Plexus
MURI Award DAAD19-01-1-0504. Parts of this paper were presented at the
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
San Jose, CA, 2003, and at the IEEE/ACM Design, Automation and Test in
Europe (DATE) Conference, Paris, France, 2004. This paper was recommended
by Associate Editor R. Gupta.

Y. Zhang is with Guidant Corporation, St. Paul, MN 55112 USA.
K. Chakrabarty is with Department of Electrical and Computer Engineering,

Duke University, Durham, NC 27708 USA (e-mail: krish@ee.duke.edu).
Digital Object Identifier 10.1109/TCAD.2005.852657

tastrophic consequences. When DVS is employed to achieve
energy saving for real-time systems, a reduction in voltage re-
sults in a corresponding drop in the processor speed, hence
the capability of the system to meet task deadlines might be
undermined [11]. A number of techniques have been proposed
recently to balance real-time responsiveness with low-energy
task execution [12]–[15].

Embedded systems are often deployed in harsh operational
environments. Many of these systems tend to be situated at
remote and inaccessible locations; hence, repair and mainte-
nance are often difficult and sometimes even impossible. This
necessitates the use of fault-tolerant techniques.

Fault-tolerant computing refers to the correct execution of
user programs and system software in the presence of faults
[16]. It is typically achieved through task reexecution or com-
ponent redundancy. In real-time embedded systems, it is nec-
essary to ensure that task reexecution does not jeopardize
the timely completion of tasks. Fault tolerance is typically
achieved in real-time systems through online fault detection
[17], checkpointing, and rollback recovery [18], [19]. Fig. 1
illustrates checkpointing and rollback recovery. At each check-
point, the system saves its state in a secure device. When a fault
is detected, the system rolls back to the most recent checkpoint
and resumes normal execution.

Checkpointing increases the task execution time, and in the
absence of faults, it might cause a missed deadline for a task
that completes on time without checkpointing. In the presence
of faults, however, checkpointing prevents the need for task
restarts and increases the likelihood of a task completing on
time with the correct result. Frequent checkpointing reduces
reexecution time due to faults but increases task execution time.
On the other hand, infrequent checkpointing has less impact on
task execution in the absence of faults but increases the amount
of reexecution that must be performed after a fault is detected.
Therefore, the checkpointing interval, i.e., the duration between
two consecutive checkpoints, must be carefully chosen to bal-
ance checkpointing cost (the time needed to perform a single
checkpoint) with the reexecution time.

There are three main reasons for combining DPM with fault
tolerance in real-time embedded systems. Increased die temper-
atures due to higher processor speeds create thermal stresses
on the die and result in more transient faults during system
operation. In order to mitigate reliability problems caused by
high die temperatures, we can either lower energy consumption
through DPM techniques such as DVS or adopt fault tolerance

0278-0070/$20.00 © 2006 IEEE

112 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 1, JANUARY 2006

Fig. 1. Illustration of checkpointing and rollback recovery.

techniques such as checkpointing. Better still, a combination of
DVS and checkpointing can be used to reduce energy consump-
tion and improve the run time reliability of the system.

The second reason for combining DVS with adaptive check-
pointing is motivated by the need to meet task deadlines in
real-time systems. Checkpointing provides an effective method
to reduce reexecution time in the presence of faults. DVS can
also be used to enhance fault tolerance in a real-time system.
If faults occur frequently, the processor speed can be scaled up
dynamically (within limits imposed by higher die temperatures)
and more slack can be provided to the task, which allows
more time for rollback recovery. Hence, a combination of
checkpointing and DVS can be used to increase the likelihood
of timely task completion in the presence of faults and trade off
energy with fault tolerance.

The third motivation arises from shrinking process technolo-
gies in the nanotechnology realm. Lower processor voltages
are likely to lead to lower noise margins and more transient
faults caused in part by single-event upsets [26]. Hence, a DPM
framework, in which DVS techniques are tied to system-level
fault tolerance, are of particular interest for embedded systems.

DPM and fault tolerance for embedded real-time systems
have largely been studied as separate problems in the literature.
DVS techniques for power management do not consider fault
tolerance [3]–[5], [12]–[15], and checkpoint placement strate-
gies for fault tolerance do not address DPM [20]–[22]. It is
only recently that an attempt has been made to combine fault
tolerance with DPM [23], [24].

In [23], adaptive checkpointing is combined with DVS for
soft real-time systems. In [24], the analysis is based on the
earliest-deadline-first (EDF) scheduling strategy; however, a
number of simplifying assumptions are made, e.g., a task is
subject to at most one fault occurrence before its deadline and
always resumes execution after rollback with the maximum
processor speed. In addition, it is assumed in [24] that the
processor is capable of adjusting its speed continuously in the
range [Smin, Smax], the checkpointing cost is dependent on
processor speed, and the state restoration cost is zero. Finally,
faults during checkpointing and state restoration are not con-
sidered in [24], task priorities are assumed to be dynamic, and
simulation results are presented only for simple task sets and
hypothetical processor models.

In contrast to [24], this paper focuses on fixed-priority real-
time systems and relaxes the restriction that no faults occur
during checkpointing and state restoration. Although the EDF
policy is used in some real-time systems, fixed-priority assign-
ments are adopted in many real-time scheduling algorithms of

practical interest due to their low overhead and predictability
[25]. The number of fault occurrences in this paper is not lim-
ited to one, and voltage scaling and state restoration costs are in-
corporated in the analysis. Simulation results are presented for
benchmark task sets and commercial embedded processors with
a discrete set of voltage/speed settings. Typical parameters used
in the simulation experiments are based on realistic scenarios.

The integrated approach presented here provides fault toler-
ance and DPM in hard real-time embedded systems. Feasibility
tests for fixed-priority real-time systems with checkpointing
under constant processor speed are presented first. We consider
job-oriented feasibility tests, in which the goal is to tolerate k
fault occurrences for each job, where an appropriate value of
k is determined based on the task execution time and typical
fault arrival rates. Hyperperiod-oriented feasibility tests are
then presented, in which the goal is to tolerate up to k fault oc-
currences in a hyperperiod. The value of k in this case depends
on the length of the hyperperiod and typical fault arrival rates.
Following this, we extend these feasibility tests to variable-
speed processors. The above feasibility analyses provide the
criteria under which checkpointing can provide fault tolerance
and real-time guarantees. Based on the feasibility analyses re-
sults, an on-line dynamic speed-scaling scheme is developed to
reduce energy during task execution by exploiting the available
slack. The proposed approach is compared with a recent fault-
oblivious DVS scheme, referred to as voltage scaling for low
power (VSLP) [5], in the presence of fault occurrences.

It was assumed throughout that faults are intermittent or
transient in nature and that permanent faults are handled
through manufacturing testing or field testing techniques [27].
Typical examples of transient faults include errors caused by
cosmic rays and high-energy particles in nanotechnology with
shrinking processes [26]. We assume that these faults affect
the processor either during normal operation or during memory
writes for checkpointing. In the latter case, the fault makes the
checkpoint invalid.

The rest of the paper is organized as follows. Section II
discusses practical issues related to checkpointing and DVS in
real-time embedded systems. These include the size of check-
points, the type of stable storage for the checkpoints, memory
access time and power models, and the time and power needed
for voltage scaling. Section III provides off-line feasibility
analysis for checkpointing under constant processor speed in
real-time systems. Section IV extends these results to a system
with a variable-speed processor. Experimental results based on
representative parameter values from Section II are presented
in Section V, and Section VI presents conclusions.

II. PRACTICAL ISSUES IN CHECKPOINTING AND DVS

This section reviews some practical issues for checkpointing
and DVS in real-time embedded systems. The goal here is not
to present a comprehensive survey of checkpointing and DVS,
for which the reader is referred to [1], [11], and [28]. Rather,
the objective here is to identify practical issues and parameter
values that must be considered for analysis and for meaningful
simulation experiments. While prior work on DVS has some-
times been based on realistic processor models, the cost of

ZHANG AND CHAKRABARTY: FAULT TOLERANCE AND DYNAMIC POWER MANAGEMENT IN EMBEDDED SYSTEMS 113

voltage scaling (time and power) has largely been ignored.
This paper addresses this issue for several real-time benchmark
task sets and commercial embedded processors. These practical
considerations provide a realistic basis for the work on system
modeling, analysis, and experiments.

A. Stable Storage

Checkpoints need to be saved to stable storage. Stable storage
must ensure that the recovery data persist through the tolerated
faults [29]. Embedded systems have limited memory, and most
of them do not contain a hard disk acting as a nonvolatile stor-
age. In addition to static random access memory (SRAM) and
dynamic RAM (DRAM), read-only memory (ROM) and flash
memory are also used as a nonvolatile storage for embedded
systems. Since an ROM is a read-only device, it cannot be used
for saving checkpoints. Flash memory offers the highest capac-
ity, followed by DRAM and SRAM. However, flash memory
also suffers from the highest access time, followed by DRAM
and SRAM [30].

SRAM in embedded systems is normally used for frequently
accessed and time-critical storage such as caches and register
files. Its typical capacity is in the order of kilobytes. In [31],
it is shown that even a small game program such as Raptoids
on a Palm handheld device can have a checkpoint size of
2.897 kB. Due to its limited capacity, SRAM is of limited use
for checkpointing in embedded systems.

DRAM is used as a main memory in embedded systems
while flash memory is used for storing boot images and other
nonvolatile data, both with a capacity of tens of megabytes.
Flash memory reads at almost DRAM speeds, but writes 10 to
100 times slower [30]. For example, reading a 64-kB block
takes 4.3 ms while writing a 64-kB block takes 178.3 ms for a
2-MB flash memory. The large access time, especially for write
operations, limits the use of flash memory as a stable storage
for short-duration real-time tasks. In summary, DRAM is more
appropriate for storing checkpoints in real-time embedded
systems.

B. Saving of a Checkpoint

The checkpoint of a process corresponding to a task includes
a copy of the process’s state (including the program counter
and stack pointers), operating system state (mainly the state
of the open file table), and the data state (the process’s stack
and data segments) [32]. There are two types of checkpoints
in embedded systems. Full checkpointing refers to the writing
of the entire address space to a stable storage during each
checkpoint. In contrast, incremental checkpointing reduces data
volume by writing only the pages of the address space that have
been modified since the previous checkpoint. This set of pages
is determined using the dirty bit maintained by the memory
management hardware in each page table entry [29].

In the case of full checkpointing, only the most recent check-
point data need to be retained for recovery; older ones may
be deleted. For incremental checkpointing, old checkpoint files
cannot be automatically deleted because the program’s data
state is spread out over many checkpoint files [32]. In real-time

embedded systems, hardware resources are scarce; it is there-
fore undesirable to introduce extra hardware overhead to main-
tain the page table necessary for incremental checkpointing.
Hence, full checkpointing is more viable despite the drawback
that relatively longer time is needed to read/write the data for a
single checkpoint.

The size of a checkpoint depends strongly on the task set.
For example, computation-intensive applications such as matrix
operations produce large checkpoints with sizes in the order of
megabytes [32]. Due to this reason, it is hard to characterize the
checkpoint size with a single numerical value. Many embedded
systems are targeted for real-time control in response to sensor
inputs; hence, it is expected that the data volume for such
applications is not too large. Furthermore, resource constraints
in embedded systems limit the data volume. The only source
available to in the literature that describes checkpoint size for
embedded systems is [31]. It provides checkpointing data for
games on Palm handheld devices. The checkpoint size ranges
from 0.497 to 2.897 kB. In the absence of additional literature,
we use [31] as a basis and assume that the checkpoint size is of
the order of a few kilobytes.

C. Fault Arrival Rate

As indicated in [33], the typical fault arrival rate that must be
tolerated in safety-critical real-time systems is in the range of
10−10 to 10−5 /h. However, for systems that operate in harsh
environments, the fault arrival rate can be much higher, in
the range of 10−2 to 102 /h [34]. For example, in an orbiting
satellite, the number of errors caused by protons and cosmic
ray ions was measured to be as high as 35 in a 15-min interval,
which amounts to 140/h [35]. Clearly, any embedded system
cannot ensure system safety under such harsh environments
without employing fault-tolerant techniques; the proposed tech-
nique is therefore targeted at such systems. Moreover, the fault
arrival rates reported in [33] are for older process technologies.
Higher transient fault arrival rates can be expected for newer
technologies that operate at lower voltages and provide less
noise margin.

It is important to know the typical fault arrival rate for a
specific real-time task set since it provides the basis for the
k-fault-tolerant requirement. Given a fault arrival rate λ and
a task execution interval t, the mean number of faults that
arrive during the interval is λt. Suppose the number of faults
to be tolerated deterministically during this interval is k. If k
is much smaller than λt, a sophisticated fault-tolerant scheme
with its associated overhead is not appropriate. On the other
hand, if k is much larger than λt, a fault-tolerant scheme that
provides deterministic real-time guarantee may not exist. In
order to target a system with reasonable real-time performance
with fault tolerance, the value of k can be taken to be a small
multiple of λt, e.g., 2λt ≤ k ≤ 3λt.

Prior work on checkpointing is usually based on the assump-
tions that no faults occur during checkpointing and that the
state restoration time is zero. These assumptions are unrealistic
in practice, especially for high fault arrival rates and if the
checkpointing time is not negligible due to a large checkpoint
data size.

114 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 1, JANUARY 2006

D. Cost of Voltage Scaling

The voltage scaling cost for DVS in real-time embedded
systems has attracted relatively little attention in prior work
on task scheduling and DPM. It is now recognized, however,
that these costs cannot be ignored for real-time and power-
constrained embedded systems [12].

Four typical real-time task sets are described in [12]: a ge-
neric avionics platform (GAP), an inertial navigation system
(INS), a computerized numerical control (CNC), and a flight
control system. The execution times for the tasks range from
35 to 720 µs for CNC, 1 to 9 ms for GAP, 1.18 to 100.28 ms
for INS, and 10 to 60 ms for flight control. In [36], some
task sets for real-time multimedia applications are presented.
The typical execution times for those tasks range from 1.4 to
50.4 ms. We therefore see that the execution times of tasks
in real-time applications range from microseconds to millisec-
onds. As discussed next, the execution times of these tasks must
be viewed in the context of typical voltage scaling overheads.

The voltage scaling costs for embedded processors have
been documented in a number of recent papers. The worst
case voltage transition time for the ARM8 microprocessor core
ranges from 10 [37] to 520 µs [38]. The time taken by a Power
personal computer (PC)-embedded processor to switch between
0.9 and 1.95 V is 105 µs [39]. The StrongArm 1100 processor
takes 250 µs to switch from a 1.5-V supply voltage to a 1.23-V
supply voltage [40].

We note that the voltage scaling time is in the order of
hundreds of microseconds for typical embedded processors.
Hence, for short-duration real-time tasks such as CNC, where
the execution time is also in the order of tens of microseconds,
it might be counterproductive to employ DVS. The relative
DVS time penalty is so high for CNC that the energy savings
due to DVS are counterbalanced by the adverse impact on
real-time responsiveness due to voltage scaling times. Most
papers in the DVS literature that use CNC as a benchmark
do not consider this issue. Even for longer-duration real-time
tasks (with an execution time greater than 1 ms), the consid-
eration of DVS overheads leads to more accurate conclusions.
In this paper, we incorporate the times and energy overheads
due to voltage scaling in the general theoretical framework.
We also include these considerations in the simulations based
on real-time benchmark task sets and commercial embedded
processors.

III. FEASIBILITY ANALYSIS UNDER CONSTANT SPEED

We are given a set Γ = {τ1, τ2, . . . , τn} of n periodic
real-time tasks, where task τi is modeled by a tuple τi =
(Ti,Di, Ei). The elements of the tuple are defined as follows:
Ti is the period of τi and Di is its deadline (Di ≤ Ti), and
Ei is the execution time of τi under fault-free conditions. Let
the time required to store a checkpoint be Cs and the time
required to retrieve a checkpoint be Cr. We make the following
assumptions related to task execution and fault arrivals: 1) the
task set Γ is scheduled using fixed-priority methods such as
the rate-monotonic scheme or the deadline-monotonic scheme
[25]; 2) the task set Γ is schedulable under fault-free conditions;

3) the priority of tasks is in decreasing order of the index i,
i.e., task τi has higher priority than task τj if i < j; 4) each
instance of the task is released at the beginning of the period;
5) the checkpointing intervals for the same task are equal; and
6) faults are detected as soon as they occur.

In [41], a feasibility analysis is provided under the as-
sumption that two successive faults arrive with a minimum
interarrival time TF . This implies that the time between the
occurrences of two faults is at least TF . This assumption is not
practical for realistic applications, where the fault occurrence
can be bursty or memoryless. For example, it is difficult to
obtain a minimum interarrival time for a typical Poisson arrival
process. Therefore, we focus here on tolerating up to a given
number of faults during task execution. No additional assump-
tion is made regarding fault arrivals.

Since the task set is periodic, the total execution time is
infinite if we consider an unlimited number of periods. We
therefore need to identify an appropriate k-fault-tolerant condi-
tion for a shorter time duration. Here, we provide two solutions
corresponding to two different fault-tolerance requirements.
One is to tolerate k faults for each job, termed as job-oriented
fault tolerance; the other is to tolerate k faults within a hyper-
period (defined as the least common multiple of all the task
periods [25]), termed as hyperperiod-oriented fault tolerance. In
practical situations, the choice of an appropriate fault tolerance
criterion can be made based on the needs of the real-time
application and a realistic fault arrival rate.

The rest of this section is organized as follows. Section III-A
considers k fault tolerance for a single job. Section III-B
reviews feasibility analysis based on time-demand analysis for
a task set under fault-free conditions [25]. This analysis is
extended in Section III-C to incorporate fault arrivals under
the job-oriented fault model. Finally, Section III-D analyzes a
hyperperiod-oriented fault tolerance for a task set.

A. Feasibility Analysis for a Single Job

We first consider the case of a single job. Suppose the check-
pointing interval is ∆ = E/(m+ 1), where m is the number
of checkpoints inserted equidistantly during the computation
time to tolerate k faults in one job. The objective here is to find
the optimal checkpointing interval to minimize the worst case
response time in case of faults.

The total execution time of the job can be divided into
three categories: effective computation (the time when the job
performs real computation), checkpoint saving, and checkpoint
retrieval. Based on this classification, we can further divide
the occurrences of the k faults during task execution. Suppose
k1 faults occur during checkpointing saving, k2 faults occur
during checkpoint retrieval, and k3 faults occur during effective
computation, where k = k1 + k2 + k3; see Fig. 2. Whenever
a fault occurs during job execution or checkpoint saving, the
system rolls back to the most recent checkpoint and restores the
system state. As a result, the maximum time penalty due to a
fault during job execution is ∆+ Cr, as indicated in Fig. 2(c).
Similarly, the maximum time penalty due to a fault during
checkpoint saving is ∆+ Cs + Cr, as indicated in Fig. 2(a).
If a fault occurs during state restoration, the system will roll

ZHANG AND CHAKRABARTY: FAULT TOLERANCE AND DYNAMIC POWER MANAGEMENT IN EMBEDDED SYSTEMS 115

Fig. 2. Illustration of fault occurrence. (a) Fault during checkpoint saving. (b) Fault during state restoration. (c) Fault during job execution.

back to the checkpoint and attempt to restore state until it is
successful, as demonstrated in Fig. 2(b) (the state restoration
time is enlarged in order to show the effect of fault occurrence).
Hence, the maximum time penalty due to a fault during check-
point retrieval is Cr.

The response time R for the job is composed of five terms:
1) the fault-free job execution time E; 2) the total time for
saving m checkpoints mCs; 3) the additional penalty due to
k1 faults during checkpoint saving k1(∆ + Cs + Cr); 4) the
additional penalty due to k2 faults during state restoration
k2Cr; and 5) the additional penalty due to k3 faults during job
execution k3(∆ + Cr). Hence, the response time is expressed
as R = E + (m+ k1)Cs + (k1 + k3)∆ + kCr. It can be seen
that the worst case response time is obtained when k1 = k
and k2 = k3 = 0. This means that all k faults occur at the
end of checkpoint saving. Replacing ∆ with E/(m+ 1), the
worst case response time Rworst case is further expressed as
Rworst case(m) = E + k(Cs + Cr) +mCs + kE/(m+ 1). In
this expression, E, k, Cs, and Cr are constants, and m is a
variable. We are aiming to find the optimal value of m such
that Rworst case is minimized. To satisfy the deadline constraint,
they must have Rworst case(m) ≤ D.

The minimum value of Rworst case(m) is obtained for m =√
kE/Cs − 1. Let ‖√kE/Cs − 1‖ denote the value of m

from the pair {�√kE/Cs − 1�, �
√

kE/Cs − 1	} that mini-
mizes Rworst case. Furthermore, since m is a nonnegative in-
teger, we have m∗ = max{‖√kE/Cs − 1‖, 0}. Let f(m∗) =
Rworst case(m∗)−D.

If f(m∗) ≤ 0, there exist equidistant checkpointing schemes
for k fault tolerance, and the response time is minimum when
m0 checkpoints are inserted. If f(m∗) > 0, then no equidistant
checkpointing schemes exist for tolerating up to k faults.
Example 1: For a hypothetical real-time job with parameters

Cs = 10, Cr = 10, k = 1, E = 9000, and D = 10 000, we get
m∗ = 29 and f(m∗) = −390. This implies that there exists an
equidistant checkpointing scheme to tolerate a single fault for
this job, and the worst case response time is minimized when
29 checkpoints are inserted. Now we change k from one to
three, i.e., the system is required to tolerate up to three faults.
Then, we get m∗ = 51 and f(m∗) = 89.23. Since f(m∗) > 0,

no equidistant checkpointing scheme exists to tolerate up to
three faults for this job.

B. Feasibility Analysis for a Task Set Under
Fault-Free Condition

Here, we examine the feasibility of a task set under fault-free
conditions. The feasibility analysis is based on time-demand
analysis for fixed-priority scheduling [25]. The steps in the
analysis are as follows.

1) Compute the response time Ri for τi according to the
equation: Ri = Ei +

∑i−1
h=1�Ri/Th�Eh. Here, Th and

Eh are the period and the execution time of a task τh with
higher priority than τi. This equation can be solved by
forming the following (delete) recurrence relation:

R
(j+1)
i = Ei +

i−1∑
h=1

⌈
R

(j)
i

Th

⌉
Eh. (1)

2) The iteration is terminated either when R
(j+1)
i = R

(j)
i

and R
(j)
i ≤ Di for some j or when R

(j+1)
i > Di, which-

ever occurs sooner. In the former case, τi is schedulable;
in the later case, τi is not schedulable.

According to [25], the time complexity of the time-demand
analysis for each task is O(nR), where R is the ratio of the
largest period to the smallest period.

C. Job-Oriented Fault Tolerance: Tolerating
k Faults in Each Job

In order to tolerate k faults in each task instance (job), it
is required that all tasks can meet their deadlines under the
condition that at most k faults occur during the execution of
each job. This case needs to be considered for task sets with
longer duration tasks and for systems with higher fault arrival
rates such that one or more faults can be expected during each
job execution.

Under the worst case condition, the additional time due
to checkpointing and recovery should be incorporated. When

116 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 1, JANUARY 2006

there are mj equidistant checkpoints for each instance of τj ,
we have

Ri =
[
Ei + k(Cs + Cr) +miCs +

kEi

mi + 1

]

+
i−1∑
h=1

⌈
Ri

Th

⌉ [
Eh + k(Cs + Cr) +mhCs +

kEh

mh + 1

]
.

Let ψi(mi) = Ei + k(Cs + Cr) +miCs + kEi/(mi + 1).
Then, Ri = ψi(mi) +

∑i−1
h=1�Ri/Th�ψh(mh). To minimize

all response times Ri(1 ≤ i ≤ n), ψi(mi)(1 ≤ i ≤ n) must be
minimized. We have m∗

i = max{‖
√

kEi/Cs − 1‖, 0}, (1 ≤
i ≤ n). Then, the recurrence equation can be employed as

R
(j+1)
i = ψi (m∗

i) +
i−1∑
h=1

⌈
R

(j)
i

Th

⌉
ψh (m∗

h) .

When R
(j+1)
i = R

(j)
i and R

(j)
i ≤ Di for some j, τi is sched-

ulable; when R
(j+1)
i > Di, τi is not schedulable. The overall

time complexity of this procedure is O(n2R), where R is the
ratio of the largest period to the smallest period.
Example 2: Consider a hypothetical task set composed of

two tasks, τ1 = (60, 25, 7) and τ2 = (80, 47, 8), and let k = 3,
Cs = Cr = 1. Then, m∗

1 = 4 and m∗
2 = 4. After applying the

recurrence equation, we get the response times R1 = 21.2 < 25
and R2 = 44.0 < 47. Thus, checkpointing is feasible for this
task set if up to three faults occur during each job. Next, the
case of k = 4 is examined. For this case, m∗

1 = 4 and m∗
2 = 5.

The response times are R1 = 24.6 < 25 and R2 = 50.9 > 47.
As a result, checkpointing is not feasible if up to four faults
need to be tolerated for each job.

D. Hyperperiod-Oriented Fault Tolerance: Tolerating
k Faults in a Hyperperiod

An algorithm is presented in [41] to determine the check-
pointing interval under the following assumptions.

1) Two successive faults arrive with a minimum interarrival
time TF .

2) The time cost to retrieve a checkpoint is assumed to be
zero, i.e., Cr = 0.

3) All checkpoints are assumed to be fault-free, i.e., no faults
can occur during checkpoint saving and retrieval.

Let Fj , 1 ≤ j ≤ i, be the extra computation time needed by
τj , 1 ≤ j ≤ i, if one fault occurs during its execution. Here, Fj

is also the checkpointing interval for τj . When there are mj

equidistant checkpoints for τj , the response time Ri for τi is
expressed in [41] as

Ri = (Ei +miCs) +
i−1∑
h=1

⌈
Ri

Th

⌉

×(Eh +mhCs) +
⌈
Ri

TF

⌉
max
1≤j≤i

{Fj}

where Fj = Ej/(mj + 1).

The checkpoint is examined starting from high-priority tasks
to low-priority tasks. For each task τj , the algorithm tries to
reduce the response time by reducing the maximum additional
computation time, i.e., max1≤j≤i{Fj}. The details of the steps
in [41] are as follows.

1) Initially, mi = 0 for 1 ≤ i ≤ n.
2) Starting from the highest priority task τ1, calculate the

minimum number of checkpoints m1 required to make
it schedulable.

3) In decreasing order of task priorities, calculate the re-
sponse time Ri of task τi. If Ri ≤ Di, move to the
next task; otherwise, Ri needs to be reduced further. The
only way to reduce Ri is to add more checkpoints to
decrease the reexecution time caused by faults, i.e., Fj ,
for 1 ≤ j ≤ i. In fact, the parameter max1≤j≤i{Fj} is
relevant here and should be reduced. Thus, the task τ ∗

that contributes the most to the task reexecution time is
found and one more checkpoint is added to τ ∗. Then,
Ri is recalculated. This process is repeated until either
Ri ≤ Di or the updated value of the response time is
greater than the previous iteration, i.e., Ri > Ri−1.

This algorithm is based on the restrictive assumption that
two successive faults arrive with a minimum interarrival time
TF . In addition, while the schedulability test in [41] provides
useful guidelines on task schedulability in the presence of
faults, a drawback of this work is that two key issues that affect
schedulability are not addressed.

1) Checkpoints are added to higher-priority tasks in certain
iterations in order to satisfy deadline constraints for all
the tasks. These higher-priority tasks, however, have met
their deadline in earlier iterations. The addition of more
checkpoints to them inevitably changes their response
times. As a result, it is necessary to trace back to recal-
culate their response times and adjust their checkpoints.
This issue has not been addressed in [41].

2) It is necessary to determine a bound on the number of
checkpoints beyond which the addition of checkpoints
does not improve schedulability. In other words, we need
a criterion that can declare a task set infeasible with a
given number of checkpoints even though an arbitrary
number of additional checkpoints can be added. In [41],
the schedulability test concludes that τi is not schedulable
once Ri increases during the addition of checkpoints.
However, this does not always hold. We present a coun-
terexample below.

Example 3: Consider two hypothetical tasks τ1 = (100, 18,
7.999) and τ2 = (101, 21, 8), and let TF = 102, Cs = 0.1, and
Cr = 0. We follow the steps from [41] as shown below.

1) Initially, m1 = m2 = 0, and F1 = 7.999, F2 = 8;
2) Next, τ1 is examined: R1 = 15.998 < 18. No check-

points are needed for τ1. Thus, m1 = m2 = 0;
3) Next, τ2 is examined: R2 = 23.999 > 21. Since F2 >

F1, one checkpoint is added to τ2, thus m1 = 0 and m2 =
1. Then, F1 = 7.999, F2 = 4, and max1≤j≤2{Fj} =
7.999. We recalculate the response time R2 = 24.098 >
23.999. According to [41], τ2 is not schedulable. How-
ever, this is not correct. We continue the above step and

ZHANG AND CHAKRABARTY: FAULT TOLERANCE AND DYNAMIC POWER MANAGEMENT IN EMBEDDED SYSTEMS 117

find F1 > F2, then one more checkpoint is added to τ1;
as a result, m1 = 1 and m2 = 1. Then, F1 = 7.999/(1 +
1) = 3.9995, F2 = 4, andmax1≤j≤2{Fj} = 4. We recal-
culate the response time of τ1 and τ2 : R1 = 12.0985 <
18 and R2 = 20.199 < 21, which implies that both tasks
are schedulable.

It is required here that the tasks meet their deadlines under
the condition that at most k faults occur during a hyperperiod.
Furthermore, as indicated in Section II, in order to make the
model more practical for real-time embedded systems, the two
restrictive assumptions of zero state-restoration time and fault-
free checkpointing are removed. Based on the schedulability
test in [41], we incorporate the state-restoration time, take
into account faults during checkpointing, and solve the two
aforementioned problems as follows.

The response time Ri for τi is expressed as

Ri = (Ei +miCs) +
i−1∑
h=1

⌈
Ri

Th

⌉
(Eh +mhCs)

+ k(Cs + Cr) + k max
1≤j≤i

{Fj}

where Fj = Ej/(mj + 1).
The problem of recalculating response times due to the

addition of checkpoints to higher-priority tasks can be solved
using a recursive method. Any time the number of checkpoints
for a task is increased, all the lower-priority tasks need to be
reexamined. The second problem is more complicated since the
response time Ri for task τi does not decrease monotonically
when more checkpoints are added to higher-priority tasks. Sup-
pose that inmax1≤h≤i{Fh} we find that task τh1 contributes the
most to the response time Ri and add one more checkpoint to
τh1. After recalculating Ri, we might find that Ri has increased.
In this situation, it cannot be simply claimed that the task is not
schedulable, as has been shown in Example 3.

We solve the second problem by determining a bound on
the number of checkpoints such that if the task set cannot be
made schedulable using this number of checkpoints it cannot be
scheduled by adding more checkpoints. Both the checkpointing
cost and the timing constraints must be taken into account.
1) Bound Based on Checkpointing Tradeoffs: The effect of

adding more checkpoints is twofold. First, it increases the
execution time due to the checkpoint saving cost, which runs
contrary to the goal of reducing the response time. On the other
hand, it decreases reexecution due to a fault, which helps in
reducing the response time. Suppose the task execution time
is E and m checkpoints have already been added. If another
checkpoint is now added, the reduction of reexecution time
under the k-fault-tolerance requirement is simply

kE

(m+ 1)
− kE

(m+ 2)
=

kE

[(m+ 1)(m+ 2)]
.

We combine the two impacts of checkpointing on the reexe-
cution time to define the tradeoff function tr(m) as tr(m) =
Cs − kE/[(m+ 1)(m+ 2)]. If tr(m) < 0, then adding one
more checkpoint can potentially reduce the response time;

Fig. 3. Advanced checkpointing procedure.

Fig. 4. Recursive checkpointing procedure.

otherwise, it is not helpful since it increases the task reexecution
time due to the k faults.

For each task τi with mi checkpoints, the tradeoff function
tri(mi) is determined. Let m′

i be the number of checkpoints
beyond which the addition of more checkpoints does not reduce
the response time. To determine m′

i, we need to solve the equa-
tion tri(m′

i) = 0. Solving this equation obtains m′
i = (−3 +√

1 + 4kEi/Cs)/2 for 1 ≤ i ≤ n. Since m′
i ≥ 0, we further

express it as m′
i = max{�(−3 +

√
1 + 4kEi/Cs)/2	, 0} for

1 ≤ i ≤ n. This gives an upper bound on the number of check-
points, which is based on the tradeoff function.
2) Bound Based on Timing Constraints: Under fault-free

conditions, the response time R0
i for task τi can be easily

obtained. After incorporating the checkpoint saving cost and
timing constraints, we have R0

i +miCs ≤ Di, which implies
that mi ≤ (Di −R0

i)/Cs. Let m#
i = �(Di −R0

i)/Cs	.
Combining the two bounds, we define m∗

i = min{m′
i,m

#
i }

(1 ≤ i ≤ n). Then, m∗
i is a tighter upper bound on the number

of checkpoints required to make τi schedulable.
A checkpointing algorithm ADV-CP for off-line feasibility

analysis is described in Fig. 3, which takes as an input para-
meter the real-time task set Γ. Line 1 initializes the parameters.
The number of all checkpoints is set to 0. The bounds for all
tasks are calculated. All tasks are initially set unschedulable.
Line 2 calls the recursive checkpointing subroutine CP to add
checkpoints from τ1 to τn.

The recursive checkpointing procedureCP(p, q) is described
in Fig. 4, where p and q are the lowest and highest indexes for
the task subset under consideration. Line 1 checks the deadline
constraint to see if the current number of checkpoints can
make the task subset schedulable. Line 2 checks to see if the
bounds for the task subset are exceeded. If so, the whole task
set is unschedulable and the recursive checkpointing should be
exited. Line 3 further improves the feasibility of tasks from τp

to τq. Line 3.1 calculates Rj . If the deadline cannot be met for
τj using the current number of checkpoints, Line 3.2 adds more
checkpoints to higher priority tasks or to τj itself. Line 3.2.1
finds the task τh that contributes most to the task reexecution

118 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 1, JANUARY 2006

time. Line 3.2.2 adds one more checkpoint to τh, and Line 3.2.3
recalculates the reexecution time due to τh. Finally, Line 3.2.4
employs the procedure CP for tasks from τh to τj .

The time complexity for the feasibility test and the check-
pointing procedure can be analyzed as follows. The computa-
tion of m∗

i for all the tasks takes O(n2R) in the worst case.
(Recall that R is the ratio of the largest period to the smallest
period.) Each time a checkpoint is added, the response time
for lower-priority tasks needs to be recalculated. Hence, the
recursive execution of CP(p, q) takes O(n2R)

∑n
i=1 m

∗
i . Let

M ∗ =
∑n

i=1 m
∗
i . Here, M ∗ is a constant dependent on the

timing parameters of the task set. Adding all the costs together,
the overall complexity of O(n2RM ∗) is obtained. Furthermore,
we note that the complexity can be reduced if they can make
M ∗ as small as possible. That is why they combine both
the tradeoff function and the timing constraints to obtain a
relatively tight bound for m∗

i .

IV. FEASIBILITY ANALYSIS WITH DVS

Here, we are given a variable-speed processor, which is
equipped with l speeds f1, f2, . . . , fl. In addition, fi < fj if i <
j. We are also given a set Γ = {τ1, τ2, . . . , τn} of n periodic
real-time tasks, where task τi is modeled by a tuple τi =
(Ti,Di, Ei). The elements of the tuple are defined as follows:
1) Ti is the period of τi and Di is its deadline (Di ≤ Ti);
2) Ei is the number of computation cycles of τi under fault-
free conditions.

We note here that although the processor is equipped with
variable speeds, CPU scaling does not affect the cost of check-
point saving and state restoration. The reason for this is that
checkpointing is essentially a memory-access operation; check-
pointing costs and state restoration costs are determined by the
read and write costs, and these are independent of the processor
speed. As in Section III, we use Cs and Cr to denote the time
needed for checkpoint saving and data retrieval, respectively.
Furthermore, we assume that the energy cost for saving one
checkpoint is ξcs and the energy cost for retrieving one set of
checkpoint data is ξcr. We incorporate the DVS penalty due
to the time and energy needed for speed switch. We assume
that a single speed switch incurs a time cost of tss and energy
consumption of ξss.

Given clock frequency f for a commercial embedded pro-
cessor, its corresponding power consumption P (f) can be
found in the data sheets. For a task with N single-cycle
instructions, the energy consumption can be expressed as
E(N, f) = P (f)∗N/f .

In the proposed scheme, speed scaling can be done for a par-
ticular application, i.e., all tasks for the application are assigned
the same speed, or at the task level, i.e., different tasks can be
assigned different speeds. Speed scaling can also be carried out
at the job level, i.e., different jobs for a task can have different
speeds. Let s(τi) : τi → fj(1 ≤ i ≤ n, 1 ≤ j ≤ l) denote the
speed scaling function, which maps a task τi to speed fj .

The primary objective here is to meet task deadlines de-
terministically, even though k faults occur, either during the
execution of a job in the job-oriented model or during a hyper-
period in the hyperperiod-oriented model. A secondary goal is

to minimize energy consumption. First, we need to identify the
appropriate time duration to evaluate the energy consumption.
They consider the hyperperiod as the time duration. Second,
the criterion of minimizing energy consumption needs to be
clarified. Based on the application requirement, we can choose
either a best case or a worst case energy consumption value.
By best case, we refer to the results obtained under the fault-
free condition, while worst case refers to the results obtained
when all k faults occur. This paper focuses on minimizing
energy consumption under the worst case condition during a
hyperperiod. Let the hyperperiod be denoted by Ht and the
number of checkpoints for τi be denoted by mi.

The offline feasibility analysis with DVS provides two im-
portant pieces of information: first, it provides the feasibility
analysis under the worst case scenario; second, it provides static
results such as speed assignment and checkpoint interval, which
can be further used for online adjustment during task execution.

A. Job-Oriented Fault Tolerance With DVS

We first neglect the voltage switching cost in the analysis.
The objective here is to highlight the impact of checkpointing
on fault tolerance and of DVS on energy saving. Following this,
we incorporate the switching cost and provide the formulation
based on the most realistic scenario.

Without the voltage switching cost, the worst case response
time for task τi can be expressed as

Ri =

[
Ei + kEi

mi+1

s(τi)
+ k(Cs + Cr) +miCs

]

+
i−1∑
h=1

⌈
Ri

Th

⌉ [
Eh + kEh

mh+1

s(τh)
+ k(Cs + Cr) +mhCs

]
. (2)

The total energy consumption Π during one hyperperiod can
be expressed as

Π=
n∑

i=1

Ht

Ti

[
E
(
Ei+

kEi

mi + 1
, s(τi)

)
+ k(ξcs+ξcr)+miξcs

]
.

(3)

To minimize all response times, we must have m∗
i =

max(‖√kEi/(s(τi)Cs)− 1‖, 0), 1 ≤ i ≤ n. As a feasibility
test, the recurrence equation can be employed as

R
(j+1)
i =

[
Ei + kEi

m∗
i
+1

s(τi)
+ k(Cs + Cr) +m∗

iCs

]

+
i−1∑
h=1

⌈
R

(j)
i

Th

⌉ [
Eh + kEh

m∗
h
+1

s(τh)
+ k(Cs + Cr) +m∗

hCs

]
.

If R(j+1)
i = R

(j)
i and R

(j)
i ≤ Di for some j, τi is schedula-

ble; if R(j+1)
i > Di, τi is not schedulable.

Since the optimal number of checkpoints depends on the
speed assignment, we first need to choose the appropriate pro-
cessor speeds. After that, they can calculate the optimal number

ZHANG AND CHAKRABARTY: FAULT TOLERANCE AND DYNAMIC POWER MANAGEMENT IN EMBEDDED SYSTEMS 119

of checkpoints, insert these values in (2), and carry out the
feasibility test.
1) Application-Level Speed Scaling—All Tasks Have the

Same Speed: Here, all tasks have the same speed f ∗ and
s(τ1) = s(τ2) = · · · = s(τn) = f ∗, where f ∗ ∈ {f1, f2, . . . ,
fl}. Then, (2) is simplified as

R
(j+1)
i =

[
Ei + kEi

m∗
i
+1

f ∗ + k(Cs + Cr) +m∗
iCs

]

+
i−1∑
h=1

⌈
R

(j)
i

Th

⌉ [
Eh + kEh

m∗
h
+1

f ∗ + k(Cs + Cr) +m∗
hCs

]
.

For each given speed f ∗, in order to minimize all re-
sponse times, we must have m∗

i = max(‖
√

kEi/(f ∗Cs)− 1‖,
0), 1 ≤ i ≤ n. The iterative method described in Section III-A
can be used here. To examine the feasibility for each task, all
possible speeds have to be examined. There are l possibilities
in total. The lowest speed that satisfies the timing constraints is
selected to minimize energy consumption.
2) Task-Level Speed Scaling—Different Tasks Can Have

Different Speeds: To obtain an optimal solution, a straight-
forward solution is to use an exhaustive search method.
Since each task can be run at l speeds, there are ln possi-
ble speed combinations for n tasks. Given a speed assign-
ment, in order to minimize all response times, we must have
m∗

i = max(‖
√

kEi/(s(τi)Cs)− 1‖, 0), 1 ≤ i ≤ n. The feasi-
bility test is performed according to (2). Meanwhile, the energy
consumption is calculated from (3). The speed combination
that satisfies the timing constraints with the minimum energy
consumption is chosen as the optimal solution.

Finally, the voltage switching cost is incorporated. The dif-
ficulty in modeling this cost accurately is that exact switching
events can only be known after the schedule is obtained; hence,
it is not possible to characterize it during offline feasibility
analysis. Therefore, we make two conservative assumptions.
First, it was assumed that there is always a voltage switching
between two consecutive jobs and that the time and energy
costs for voltage switching are tss and ξss. Second, context
switching due to preemption is taken into account. We assume
that voltage switching occurs when a lower-priority task is
preempted by a higher-priority task. As discussed in [25], each
job preempts at most one job. Hence, the maximum number
of preemptions for a job is bounded by the number of higher-
priority jobs. Furthermore, since each preemption leads to two
context switches, the voltage switching cost for one preemption
should be multiplied by a factor of two, so the time and
energy costs for voltage switching incurred by a single higher-
priority job are 2tss and 2ξss. Adding the costs incurred by

voltage switching between consecutive jobs (tss and ξss) and
job preemption (2tss and 2ξss), the maximum time and energy
costs for voltage switching incurred by a single higher-priority
job are 3tss and 3ξss, respectively. As a result, (2) and (3) are
reexpressed as the equations shown at the bottom of the page.

The methods for application-level and task-level speed scal-
ing can still be used here. If the task set can be scheduled under
this conservative assumption, it is guaranteed that the task set
can be scheduled under any voltage switching scenario.

B. Hyperperiod-Oriented Fault Tolerance With DVS

As in Section IV-A, initially we do not consider the voltage
switching cost. Without the voltage switching cost, the worst
case response time for task τi can be expressed as

Ri =
[

Ei

s(τi)
+miCs

]
+

i−1∑
h=1

⌈
Ri

Th

⌉[
Eh

s(τh)
+mhCs

]

+ k(Cs + Cr) + k max
1≤j≤i

{Fj} (4)

where Fj = Ej/[s(τj)(mj + 1)].
The total energy consumption during one hyperperiod is

expressed as

Π =
n∑

i=1

Ht

Ti
[E(Ei, s(τi)) +miξcs] + k(ξcs + ξcr)

+ kE(F ∗s(τ ∗), s(τ ∗)) . (5)

Here, τ ∗ is the task with the longest checkpointing interval,
F ∗ represents its checkpointing interval, and s(τ ∗) represents
its corresponding speed assignment.
1) Application-Level Speed Scaling—All Tasks Have the

Same Speed: Here, all tasks have the same speed f ∗ and
s(τ1) = s(τ2) = · · · = s(τn) = f ∗, where f ∗ ∈ {f1, f2, . . . ,
fl}. Then, (4) is simplified to

Ri =
[
Ei

f ∗ +miCs

]
+

i−1∑
h=1

⌈
Ri

Th

⌉ [
Eh

f ∗ +mhCs

]

+ k(Cs + Cr) + k max
1≤j≤i

{Fj}

where Fj = Ej/[f ∗(mj + 1)].
For each given speed f ∗, the feasibility of the task set is

examined using the method in Section III-B. If it is schedulable,
the corresponding number of checkpoints for each task can be
obtained. The energy consumption is calculated from (5). The
lowest speed that satisfies the timing constraints is selected to
minimize energy consumption.




Ri =
[

Ei+
kEi

mi+1

s(τi)
+ k(Cs + Cr) +miCs

]
+

∑i−1
h=1

⌈
Ri

Th

⌉ [
Eh+

kEh
mh+1

s(τh) + k(Cs + Cr) +mhCs + 3tss

]

Π =
n∑

i=1

Ht
Ti

[
E
(
Ei + kEi

mi+1 , s(τi)
)
+ k(ξcs + ξcr) +miξcs + 3ξss

]

120 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 1, JANUARY 2006

2) Task-Level Speed Scaling—Different Tasks Can Have
Different Speeds: To obtain an optimal solution, a straightfor-
ward solution is to use an exhaustive method. Since each task
can be run at l speeds, there are ln possible speed combinations
for n tasks. For each speed combination, the feasibility test is
performed according to (4). The method in Section III-B is
employed and the corresponding number of checkpoints is ob-
tained. Energy consumption is calculated from (5). The speed
combination that satisfies the timing constraints with the mini-
mum energy consumption is chosen as the optimal solution.

Next, the voltage switching cost is incorporated. As in the
job-oriented case, the switching cost between two jobs and the
switching cost due to preemption are incorporated. Based on
this, (4) and (5) are reexpressed as




Ri =
[

Ei

s(τi)
+miCs

]
+

i−1∑
h=1

⌈
Ri

Th

⌉ [
Eh

s(τh) +mhCs + 3tss
]

+ k(Cs + Cr) + k max
1≤j≤i

{Fj}

Π =
n∑

i=1

Ht
Ti
[E(Ei, s(τi)) +miξcs + 3ξss] + k(ξcs + ξcr)

+ kE(F ∗s(τ ∗), s(τ ∗))

.

The methods for application-level and task-level speed scal-
ing can again be used here. If the task set can be scheduled
under this conservative assumption, it is guaranteed that the
task set can be scheduled under any other voltage switching
scenario.

C. Heuristic Method Based on a Genetic Algorithm (GA)

As expected, the exhaustive method for task-level speed
scaling is very time consuming. For instance, we carried out
simulation for a real-time application composed of 17 tasks
with three variable speeds. The exhaustive search method ex-
amined all 317 speed combinations and took 63 h of CPU time
on a Pentium IV PC with a 1.4-GHz processor and 256-MB
memory. It is therefore obvious that the exhaustive method can
only be applied to moderate-sized problem instances. When the
size of the task set or the number of processor speeds is large,
a heuristic method needs to be employed to obtain accept-
able performance with low computation cost. Heuristics based
on GAs have been used to solve a number of combina-
torial search problems. We use a GA-based heuristic here for
task-level speed scaling. It is applicable for both job- and
hyperperiod-oriented cases. The solution is approximate. Alter-
native heuristic approaches can also be developed to solve this
problem. However, since the focus of this paper is not on the
comparison between heuristic approaches, an investigation into
other heuristic techniques is left for future work.

We choose a GA based on two reasons. First, they are
targeting a multiobjective optimization problem for which re-
searchers have often used GAs by formulating the problem in
terms of two-priority optimizations. The primary objective here
is to meet task deadlines deterministically, even though k faults
occur, either during the execution of a job in the job-oriented
model or during a hyperperiod in the hyperperiod-oriented
model. A secondary goal is to minimize energy consumption.

Fig. 5. Heuristic search based on GA.

Among various randomized search algorithms, GAs and simu-
lated annealing algorithms (SAs) have been deemed in the lit-
erature to be appropriate for multiobjective optimization [42].
Second, a simple implementation of SA deals with only one
solution at a time, and no information from previous moves is
used to guide the selection of new moves [43]. In contrast to SA,
GA maintains a pool of solutions instead of a single solution
and allows communication between solutions via crossover and
mutation. In this way, GA is better equipped to escape the local
minima and use information from previous moves.

The GA is divided into two stages: application-level popula-
tion generation and task-level heuristic search. The procedure
is described in Fig. 5. Each chromosome αi is a n-dimensional
vector (vi1, vi2, . . . , vin), where n is the number of tasks and
vij is the corresponding speed for task τj . Furthermore, αi is
viable if the task set can be scheduled under the corresponding
speed assignment, otherwise it is not viable. Procedure Init(Γ)
initializes the search space (chromosome population). One
chromosome is initially generated using the computationally
feasible application-level speed scaling method. This is to
ensure that the initial population always includes a schedulable
solution if such a solution exists. The other chromosomes are
generated randomly. The initial population Ω is composed of
these chromosomes. Procedure GA(Ω) applies crossover and
mutation operators to Ω based on the fitness values. The op-
erations are repeated for a predefined number of generations Q.
The fitness value fit(αi) is defined as follows.

1) If αi is not viable: fit(αi) = rand(), where rand() is a
uniform random function that returns a value between
0 and 1.

2) If αi is viable, we need to make sure that it has a higher
probability to be chosen compared to the case when it is
not viable. In the scheme, for the sake of simplicity, we
design a function with two terms for this case: fit(αi) =
A+ C ×B/Energy(αi), in which A, B, and C are
constants, and Energy(αi) is the energy consumption
for the task set under chromosome αi. The constants are
determined as follows.
a) Constant A needs to be greater than 0.5 to ensure a

greater probability than the uniform distribution.
b) Constant C is set to (1−A) to make sure that the

fitness value ranges from A to 1.

ZHANG AND CHAKRABARTY: FAULT TOLERANCE AND DYNAMIC POWER MANAGEMENT IN EMBEDDED SYSTEMS 121

c) Constant B is set to the value of the energy con-
sumption under fault-free conditions using some well-
known schemes such as VSLP.

d) A chromosome αi with low-energy consumption
Energy(αi) has a high fitness value, which makes it
more likely to be selected.

The choice of the value for A is based on preprocessing
using a large number of experiments. It has to tradeoff between
task feasibility and energy consumption. If A is too small
(i.e., slightly greater than 0.50), then energy consumption plays
a more important role and the difference between a viable
chromosome and that which is not viable is not significant; if
A is too large, then the effect of energy consumption becomes
small in the selection procedure. Based on experiments with
random task sets, we choose A = 0.6 and C = 0.4 for the
GA-based algorithm.

The mutation and crossover operators used in the procedure
are defined as follows.

1) Crossover: find an index randomly; then one child keeps
the information of its parent to the left of the index and
fills the right with the other parent chromosome, and the
other child keeps the information of its parent to the
right of the index and fills the left with the other parent
chromosome.

2) Mutation: choose a certain number of bits from two
children randomly and replace them with a different
information.

The choices for the number of generations Q and the pop-
ulation size P are also based on experiments. For the bench-
marks in this paper, Q = 1000 yields good results. The value
of P depends on the size of the task set and on the number of
speeds.

The complexity of this heuristic method is linear with the
number of generations Q and the population size P . In the
17-task, three-speed example for which the exhaustive method
took 63 h, the heuristic method takes only 3 min. While the
proposed GA-based technique is found to yield good results in
Section V, it is particularly difficult to establish a theoretical
basis that explains its effectiveness for this problem. By their
very nature, it is very hard to theoretically justify the suitability
of GAs for a given optimization problem, or explain analyti-
cally why they work well. As a result, it is typical in the area
of evolutionary algorithms to demonstrate the suitability of a
GA-based approach for a problem experimentally.

D. Job-Level Online Speed Scaling

As discussed in Sections IV-A and IV-B, the speed assign-
ment and the checkpointing interval are determined via off-line
feasibility analysis. A static sequence of jobs is obtained and
their parameters such as release times and execution times are
known a priori under the worst case. However, if only such
static measures are used during run time, it will not be possible
to make use of idle intervals. Clearly, further energy saving is
possible through additional online speed scaling.

The on-line speed scaling procedure, done at the job level,
is adaptive with respect to fault occurrence. It makes use of

a simple run-time adaptation mechanism. The key features of
this procedure are: 1) once a job completes, the release time of
the next job is adjusted dynamically during run time and 2) the
processor is run at an appropriate speed such that the current job
completes either before its deadline or before the static release
time of the next job, whichever is sooner.

V. NUMERICAL RESULTS

This section compares the performance of the energy-aware
fault-tolerance scheme with the DVS technique proposed in
[5], referred to as VSLP. In the absence of any published
experimental results on energy-aware fault tolerance, we are
only able to compare the approach with DVS schemes that
do not consider fault occurrences. On the other hand, current
fault-tolerant schemes do not incorporate DVS, which makes
them energy inefficient. We therefore compare the approach
with fault-tolerant schemes that do not consider energy. The
goal here is to highlight the impact of fault occurrences on a
fault-oblivious DVS scheme and quantify the energy saving of
the scheme over a DVS-oblivious checkpointing scheme.

We use the following notation to refer to the various types
of fault tolerance and energy-aware fault tolerance schemes:
1) JFTC: job-oriented fault tolerance under constant speed;
2) JFTA: job-oriented fault tolerance with application-level
speed scaling; 3) JFTT: job-oriented fault tolerance with task-
level speed scaling; 4) HFTC: hyperperiod-oriented fault tol-
erance under constant speed; 5) HFTA: hyperperiod-oriented
fault tolerance with application-level speed scaling; and
6) HFTT: hyperperiod-oriented fault tolerance with task-level
speed scaling.

Since the VSLP scheme presented in [5] does not provide
fault tolerance, we assume that it simply reexecutes a job
when a fault occurs. As for the DVS-oblivious constant-speed
schemes (JFTC and HFTC), it was assumed that the tasks are
executed under the highest processor speed. Furthermore, since
JFTA is a special case of JFTT and HFTA is a special case
of HFTT, the other schemes were compared with the JFTT and
HFTT schemes. For both cases, we first show that JFTT and
HFTT can schedule task sets even when the VSLP cannot do
so, that these schemes can save more energy via checkpointing
in the presence of faults, and finally that these schemes can also
save energy via DVS compared to the DVS-oblivious schemes.

Two low-power embedded processors were chosen for the
experiments: the Intel XScale PXA260 [6] and the Trans-
meta Crusoe [8]. The parameter values that are listed in data
sheets were used. The frequencies, voltages, and correspond-
ing power consumptions for these processors are listed in
Table I.

We evaluate the schemes on three real-life task sets. These
task sets include a CNC task set [44], an inertial navigation
system (INS) task set [45], and a generic aviation platform
(GAP) task set [46], respectively. The characteristics of the
three task sets are listed in Table II. The task execution times
for these task sets are assumed for a nominal CPU frequency
of 200 MHz.

The choices of k are based on the characteristics of the task
sets and typical fault arrival rates. For the job-oriented case, the

122 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 1, JANUARY 2006

TABLE I
PROCESSOR FREQUENCIES, VOLTAGES, AND POWER [6], [8]

TABLE II
CHARACTERISTICS OF THE BENCHMARKS

TABLE III
JFTT PERFORMANCE COMPARISON USING INTEL XScale

typical value of k should be relatively small since each task
instance is short. It is therefore enough to require that each
task instance tolerate one fault (k = 1). Therefore, we choose
k = 1 for INS and GAP. In addition, since the execution times
and periods for CNC are extremely short, it is impractical to
incorporate job-oriented fault tolerance for this task set. For the
hyperperiod-oriented case, since a hyperperiod can be as long
as hundreds of seconds, it is reasonable to choose a larger value
of k. For example, the hyperperiod for GAP is 118 s. If we
assume that the fault arrival rate is as high as 140/h, as in [34],
then the number of faults during this hyperperiod can be as high
as 5. In the experiments for the hyperperiod-oriented case, we
therefore set the values of k to 1, 2, and 4 for CNC, INS, and
GAP, respectively.

Based on the discussion in Section II, it was assumed that
the checkpoint size is 5 kB and that checkpoint data are saved
in DRAM. Based on the typical access speeds of DRAM
described in Section II, the time to read or write a checkpoint
of size 5 kB is assumed to be 0.4 ms. We choose a power
consumption value of 400 mW for the DRAM [47]. Hence,
the energy consumption for saving or retrieving a checkpoint is
160 µJ. In addition, based on data provided in the literature in
[37]–[40], it was assumed that a single DVS transition takes
100 µs and consumes 30 µJ. We further classify the simulation
into two categories: zero DVS cost and nonzero DVS cost. This
classification is done in order to highlight the effect of DVS
cost on the task set feasibility and the energy consumption. For
some processors, it has been reported that task execution can
proceed concurrently with voltage scaling [48]; hence, we also
consider the case of zero voltage switching time.

Since the number of tasks for CNC and INS is relatively
small, the simulation results for CNC and INS are obtained
using the exhaustive search method. The simulation results for
GAP are obtained using the heuristic method. Typical DVS

costs due to context switching have also been considered in
these experiments.

A. JFTT Results Based on Data Sheets
of the Intel XScale Processor

The simulation results for zero voltage-scaling cost are
shown in Table III. The last two columns of the table show the
energy saving of JFTT compared to VSLP and JFTC, respec-
tively. In the table, E13 = (E1 − E3)/E1 × 100% and E23 =
(E2 − E3)/E2 × 100%. It can be seen that JFTT saves as much
as 17% more energy compared to VSLP. The performances of
JFTC and JFTT are comparable. This is because JFTT has to
often run at the highest processor speed to ensure timely task
completion. As a result, the energy saving is not so significant.

Next, we assume nonzero DVS cost. The performance com-
parisons are also shown in Table III. From Table III, it can be
seen that JFTT saves approximately 15% more energy com-
pared to VSLP. The performances of JFTT and JFTC are once
again comparable.

B. JFTT Results Based on Data Sheets
of the Transmeta Crusoe Processor

Since the Transmeta Crusoe processor consumes more power
compared to the Intel XScale processor, the checkpointing
energy is relatively small in this case compared to the task
execution energy. The performance gain of JFTT over VSLP
is therefore more significant in this case. Furthermore, since the
power consumption varies more for different processor speeds,
it is expected that JFTT can achieve more energy saving than
the DVS-oblivious JFTC scheme.

The simulation results for zero DVS cost are shown in
Table IV. It can be seen that JFTT performs significantly better

ZHANG AND CHAKRABARTY: FAULT TOLERANCE AND DYNAMIC POWER MANAGEMENT IN EMBEDDED SYSTEMS 123

TABLE IV
JFTT PERFORMANCE COMPARISON USING TRANSMETA CRUSOE

TABLE V
HFTT PERFORMANCE COMPARISON USING INTEL XScale

TABLE VI
HFTT PERFORMANCE COMPARISON USING TRANSMETA CRUSOE

than VSLP. For example, the energy saving for GAP is as high
as 33.2%. Next, we compare JFTT and JFTC. As expected,
JFTT saves much more energy. For example, JFTT saves 51.9%
energy over JFTC for INS. This is because JFTT can scale
down the processor speed more often when faults occur less
frequently.

Finally, we examine the case of nonzero DVS cost. The
performance comparisons are also shown in Table IV. JFTT
saves up to 33.6% energy compared to VSLP and up to 51.6%
energy compared to JFTC.

C. HFTT Results Based on Data Sheets
of the Intel XScale Processor

The performance comparison for zero DVS cost is shown in
Table V. In the table, “NF” denotes that the task set cannot
be feasibly scheduled. HFTT performs better than VSLP and
HFTC in all cases. First, HFTT saves more energy when all
schemes are feasible. The energy saving for HFTT over VSLP
is as high as 53.9%, and it is as high as 15.6% over HFTC.
Second, HFTT and HFTC tolerate more faults compared to
VSLP. For example, when k is greater than one for INS and
GAP, VSLP is not feasible while both HFTT and HFTC still
guarantee the feasibility.

The performance comparison for nonzero DVS cost is also
shown in Table V. HFTT saves as much as 49.9% in energy

compared to VSLP. The performances of HFTT and HFTC
are comparable.

D. HFTT Results Based on Data Sheets
of the Transmeta Crusoe Processor

The performance comparison for zero DVS cost is shown in
Table VI. HFTT outperforms VSLP and HFTC in all cases. The
energy saving for HFTT over VSLP is as high as 79.0%, and it
is as high as 45.7% over HFTC.

The performance comparison for nonzero DVS cost is also
shown in Table VI. HFTT saves as much as 77.3% in energy
over VSLP, and as much as 42.1% in energy over HFTC.

To further demonstrate the performance of the three schemes,
we show the performance comparison for nonzero DVS cost
for the GAP benchmark in Fig. 6. The energy consumption is
normalized according to the value of the energy consumption
for HFTT when k = 1. It is noticed that VSLP can only
tolerate up to two faults, beyond that it is not feasible. In ad-
dition, it consumes much more energy than HFTC and HFTT.
Between HFTC and HFTT, HFTT always achieves more
energy consumption.

The performance of the GA-based heuristic is compared
to simple alternatives. First, we use the constant slowdown
scheme as a baseline and compare it to the GA-based heuris-
tic. Constant slowdown corresponds to the application-level

124 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 1, JANUARY 2006

Fig. 6. Performance comparison for GAP using Transmeta Crusoe (nonzero
DVS cost).

TABLE VII
COMPARISON OF THE GA-BASED HEURISTIC WITH CONSTANT

SLOWDOWN SCHEMES (TRANSMETA CRUSOE

PROCESSOR AND NONZERO DVS COST)

TABLE VIII
COMPARISON OF THE GA-BASED HEURISTIC WITH RANDOM SELECTION

(HFTT, TRANSMETA CRUSOE PROCESSOR, AND NONZERO DVS COST)

speed-scaling scheme (JFTA for the job-oriented scheme and
HFTA for the hyperperiod-oriented scheme). For such a
scheme, the lowest speed that satisfies the timing constraints
is selected for all tasks. The comparison between the constant
slowdown scheme and the GA-based heuristic is shown in
Table VII. Let E03 = (E0 − E3)/E0 × 100%. We find that
for the GAP benchmark, GA-based JFTT can achieve 15.0%
energy savings over the constant slowdown scheme (JFTA) and
GA-based HFTT can achieve as much as 26.8% energy savings
over the constant slowdown scheme (HFTA). The CPU time
for the GA-based heuristic is in the order of minutes, while the
CPU time for the constant slowdown scheme is in the order of
seconds. Compared to constant slowdown, the CPU time for
the GA-based heuristic is slightly higher but the energy saving
is significant.

Next, we have compared the GA-based heuristic to a random
selection method. In the latter case, we use the same initial set
of chromosomes used in the GA-based heuristic and randomly
select one of these chromosomes. Thus, they do not apply
the mutation and the crossover operations. The performance
comparison between the GA-based heuristic and the random
selection method for HFTT is shown in Table VIII. The results
show that the mutation and crossover operations can lead to
measurable energy savings in a single hyperperiod over the
random selection method. Over several hyperperiods, the en-
ergy savings can be significant. The CPU times for both the
GA-based heuristic and the random selection scheme are in the
order of minutes.

VI. CONCLUSION

A unified approach for achieving fault tolerance and en-
ergy savings in embedded systems has been presented. Fault
tolerance is achieved via checkpointing and energy is saved
using dynamic voltage scaling (DVS). We have presented
feasibility-of-scheduling tests for checkpointing schemes under
both constant processor speed and variable processor speed.
Two feasibility tests have been developed for application-level
and task-level speed scaling, respectively. A heuristic method
based on a GA has been proposed to reduce computational
complexity. We have presented numerical results for two com-
mercial embedded processors—the Intel XScale PXA260 and
the Transmeta Crusoe—using real-time benchmark task sets
and realistic values of parameters such as checkpointing cost,
memory access time and power consumption, and voltage
scaling cost. The values of these parameters have been derived
from processor data sheets. As part of a future work, We
are developing alternative heuristic methods to improve the
GA-based heuristic approach.

ACKNOWLEDGMENT

The authors thank the reviewers for their valuable sugges-
tions that have improved the content and presentation of the
paper.

REFERENCES

[1] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design techniques
for system-level dynamic power management,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 8, no. 3, pp. 299–316, Jun. 2000.

[2] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava,
“Power optimization of variable-voltage core-based systems,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 18, no. 12,
pp. 1702–1714, Dec. 1999.

[3] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynamically
variable voltage processors,” in Proc. Int. Symp. Low Power Electronics
and Design, Monterey, CA, 1998, pp. 197–202.

[4] Y. Shin, K. Choi, and T. Sakurai, “Power optimization of real-time embed-
ded systems on variable speed processors,” in Proc. Int. Conf. Computer-
Aided Design, San Jose, CA, 2000, pp. 365–368.

[5] G. Quan and X. Hu, “Energy efficient fixed-priority scheduling for real-
time systems on variable voltage processors,” in Proc. Design Automation
Conf., Las Vegas, NV, 2001, pp. 828–833.

[6] Intel PXA26x Processor Family Electrical, Mechanical, and Thermal
Specification Datasheet. [Online]. Available: http://developer.intel.com/
design/pca/applicationsprocessors/datashts/27864002.pdf

[7] Motorola 6805 Processor. [Online]. Available: http://www.motorola.com
[8] Transmeta LongRun Power Management—Dynamic Power Management

for Crusoe Processors. [Online]. Available: http://www.transmeta.com/
pdf/white_papers/paper_mfleischmann_17jan01.pdf

[9] AMD PowerNow! Technology. [Online]. Available: http://www.amd.
com/epd/processors/6.32bitproc/8.amdk6fami/x24404/24404a.pdf

[10] J. Stankovic, “Misconceptions about real-time computing,” IEEE Com-
puter, vol. 21, no. 10, pp. 10–19, Oct. 1988.

[11] N. K. Jha, “Low power system scheduling and synthesis,” in Proc. Int.
Conf. Computer-Aided Design, San Jose, CA, 2001, pp. 259–263.

[12] Y. Shin and K. Choi, “Power conscious fixed priority scheduling for hard
real-time systems,” in Proc. Design Automation Conf., New Orleans, LA,
1999, pp. 134–139.

[13] G. Qu “What is the limit of energy saving by dynamic voltage scal-
ing?” in Proc. Int. Conf. Computer-Aided Design, San Jose, CA, 2001,
pp. 560–563.

[14] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles, “Energy efficient map-
ping and scheduling for DVS enabled distributed embedded systems,”
in Proc. Design, Automation and Test Europe Conf., Paris, France, 2002,
pp. 514–521.

[15] R. Jejurikar and R. Gupta, “Energy aware task scheduling with task
synchronization for embedded real time systems,” in Proc. Int. Conf.

ZHANG AND CHAKRABARTY: FAULT TOLERANCE AND DYNAMIC POWER MANAGEMENT IN EMBEDDED SYSTEMS 125

Compilers, Architecture and Synthesis Embedded Systems, Grenoble,
France, 2002, pp. 164–169.

[16] D. Siewiorek and R. Swarz, Reliable Computer Systems: Design and
Evaluation. Natick, MA: A. K. Peters, Ltd., 1998.

[17] K. G. Shin and Y.-H. Lee, “Error detection process—Model, design and
its impact on computer performance,” IEEE Trans. Comput., vol. C-33,
no. 6, pp. 529–540, Jun. 1984.

[18] K. M. Chandy, J. C. Browne, C. W. Dissly, and W. R. Uhrig, “Analytic
models for rollback and recovery strategies in data base systems,” IEEE
Trans. Softw. Eng., vol. 1, no. 1, pp. 100–110, Mar. 1975.

[19] D. K. Pradhan and N. H. Vaidya, “Roll-forward and rollback recovery:
Performance reliability trade-off,” IEEE Trans. Comput., vol. 46, no. 3,
pp. 372–378, Mar. 1997.

[20] K. Shin, T. Lin, and Y. Lee, “Optimal checkpointing of real-time tasks,”
IEEE Trans. Comput., vol. 36, no. 11, pp. 1328–1341, Nov. 1987.

[21] A. Ziv and J. Bruck, “An on-line algorithm for checkpoint placement,”
IEEE Trans. Comput., vol. 46, no. 9, pp. 976–985, Sep. 1997.

[22] S. W. Kwak, B. J. Choi, and B. K. Kim, “An optimal checkpointing-
strategy for real-time control systems under transient faults,” IEEE Trans.
Reliab., vol. 50, no. 3, pp. 293–301, Sep. 2001.

[23] Y. Zhang and K. Chakrabarty, “Energy-aware adaptive checkpointing
in embedded real-time systems,” in Proc. Design, Automation and Test
Europe Conf., Munich, Germany, 2003, pp. 918–923.

[24] R. Melhem, D. Mosse, and E. N. Elnozahy, “The interplay of power man-
agement and fault recovery in real-time systems,” IEEE Trans. Comput.,
vol. 53, no. 2, pp. 217–231, Feb. 2004.

[25] J. W. Liu, Real-Time Systems. Upper Saddle River, NJ: Prentice-Hall,
2000.

[26] E. Dupont, M. Nicolaidis, and P. Rohr, “Embedded robustness IPs for
transient-error-free ICs,” IEEE Des. Test. Comput., vol. 19, no. 3, pp. 54–
68, May–Jun. 2002.

[27] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing.
Norwell, MA: Kluwer, 2000.

[28] E. N. Elnozahy, Y. M. Wang, and D. B. Johnson, “A survey of rollback-
recovery protocols in message-passing systems,” ACM Comput. Surv.,
vol. 34, no. 3, pp. 375–408, Sep. 2002.

[29] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, “The performance of
consistent checkpointing,” in Proc. Symp. Reliable Distributed Systems,
Houston, TX, 1992, pp. 39–47.

[30] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantita-
tive Approach. San Mateo, CA: Morgan Kaufmann, 2002.

[31] C.-Y. Lin, S.-Y. Kuo, and Y. Huang, “A checkpointing tool for Palm
operating system,” in Proc. Dependable Systems and Networks, Göteborg,
Sweden, 2001, pp. 71–76.

[32] J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent
checkpointing under Unix,” in Proc. Usenix Technical Conf., New
Orleans, LA, 1995, pp. 213–223.

[33] C. M. Krishna and A. D. Singh, “Reliability of checkpointed real-time
systems using time redundancy,” IEEE Trans. Reliab., vol. 42, no. 3,
pp. 427–435, Sep. 1993.

[34] S. Punnekkat, A. Burns, and R. Davis, “Probabilistic scheduling guaran-
tees for fault-tolerant real-time systems,” in Proc. Int. Conf. Dependable
Computing Critical Applications, San Jose, CA, 1999, pp. 361–378.

[35] A. Campbell, P. McDonald, and K. Ray, “Single event upset rates in
space,” IEEE Trans. Nucl. Sci., vol. 39, no. 6, pp. 1828–1835, Dec. 1992.

[36] D. Shin, S. Lee, and J. Kim, “Intra-task voltage scheduling for low-energy
hard real-time applications,” IEEE Des. Test. Comput., vol. 18, no. 2,
pp. 20–30, Mar.–Apr. 2001.

[37] T. Pering, T. Burd, and R. Broderson, “The simulation and evaluation
of dynamic voltage scaling algorithms,” in Proc. Int. Symp. Low Power
Electronics and Design, Monterey, CA, 1998, pp. 76–81.

[38] T. Burd and R. Broderson, “Design issues for dynamic voltage scaling,”
in Proc. Int. Symp. Low Power Electronics and Design, Rapallo, Italy,
2000, pp. 9–14.

[39] K. Nowka, G. Carpenter, E. M. Donald, H. Ngo, B. Brock, K. Ishii,
K. Nguyen, and J. Burns, “A 0.9 V to 1.95 V dynamic voltage-scalable
and frequency-scalable 32b PowerPC processor,” in Proc. IEEE Int. Solid-
State Circuits Conf., San Francisco, CA, 2002, pp. 340–341.

[40] D. Grunwald, P. Levis, C. Morrey, III, M. Neufeld, and K. Farkas, “Poli-
cies for dynamic clock scheduling,” in Proc. Symp. Operating Systems
Design and Implementation, San Diego, CA, 2000, pp. 73–86.

[41] S. Punnekkat, A. Burns, and R. Davis, “Analysis of checkpointing for
real-time systems,” Real-Time Syst. J., vol. 20, no. 1, pp. 83–102,
Jan. 2001.

[42] R. P. Dick, “Multiobjective synthesis of low-power real-time distrib-
uted embedded systems,” Ph.D. dissertation, Dept. Elect. Eng., Princeton
Univ., Princeton, NJ, Nov. 2002.

[43] E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines.
Chichester, U.K.: Wiley, 1989.

[44] N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi, and H. Shin, “Visual
assessment of a real-time system design: Case study on a CNC controller,”
in Proc. Real-Time Systems Symp., Washington, DC, 1996, pp. 300–310.

[45] D. Katcher, H. Arakawa, and J. Strosnider, “Engineering and analysis
of fixed priority schedulers,” IEEE Trans. Softw. Eng., vol. 19, no. 9,
pp. 920–934, Sep. 1993.

[46] D. C. Locke, D. Vogel, and T. Mesler, “Building a predictable avionics
platform in Ada: A case study,” in Proc. Real-Time Systems Symp., San
Antonio, TX, 1991, pp. 181–189.

[47] T. Simunic, L. Benini, P. Glynn, and G. D. Micheli, “Event-driven power
management,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 20, no. 7, pp. 840–857, Jul. 2001.

[48] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen, “A
dynamic voltage scaled microprocessor system,” IEEE J. Solid-State
Circuits, vol. 35, no. 11, pp. 1571–1580, Nov. 2000.

Ying Zhang received the B.S. and M.S. degrees
in electronic engineering from Tsinghua University,
Beijing, China, in 1997 and 1999, respectively, and
the Ph.D. degree in electrical and computer engineer-
ing from Duke University, Durham, NC, in 2004.

He is currently a Senior Software engineer with
the Research and Development Department, Guidant
Corporation, St. Paul, MN. His research interests
include real-time scheduling, low-power design, and
fault tolerance.

Krishnendu Chakrabarty (S’92–M’96–SM’00)
received the B.Tech. degree from the Indian Insti-
tute of Technology, Kharagpur, India, in 1990, and
the M.S.E. and Ph.D. degrees, all from the Univer-
sity of Michigan, Ann Arbor, in 1992 and 1995,
respectively.

He is currently an Associate Professor of Elec-
trical and Computer Engineering at Duke Univer-
sity, Durham, NC. From 2000 to 2002, he was also
a Mercator Visiting Professor at the University of
Potsdam, Germany. He is a coauthor of two books,

Microelectrofluidic Systems: Modeling and Simulation (Boca Raton, FL: CRC
Press, 2002) and Test Resource Partitioning for System-on-a-Chip (Norwell,
MA: Kluwer, 2002), and the Editor of SOC (System-on-a-Chip) Testing for
Plug and Play Test Automation (Norwell, MA: Kluwer, 2002). He is also
a coauthor of the forthcoming book Scalable Infrastructure for Distributed
Sensor Networks (London, U.K.: Springer). He has published over 190 papers
in journals and refereed conference proceedings, and he holds a U.S. patent
in integrated circuit testing. His current research projects include design and
testing of system-on-chip integrated circuits, embedded real-time systems, dis-
tributed sensor networks, design automation of microfluidics-based biochips,
and microfluidics-based chip cooling.

Dr. Chakrabarty is the recipient of the National Science Foundation Early
Faculty (CAREER) Award, the Office of Naval Research Young Investigator
Award, the Best Paper Award at the 2001 Design, Automation and Test in
Europe (DATE) Conference, and the Humboldt Research Fellowship, awarded
by the Alexander von Humboldt Foundation, Germany. He is a Distinguished
Visitor of the IEEE Computer Society from 2005 to 2007. He is an Asso-
ciate Editor of the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN

OF INTEGRATED CIRCUITS AND SYSTEMS, an Associate Editor of IEEE
TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS,
an Editor of the Journal of Electronic Testing: Theory and Applications
(JETTA), and an Associate Editor for the ACM Journal on Emerging Technolo-
gies in Computing Systems. He serves on the Editorial Board of Sensor Letters
and the Journal of Embedded Computing. He serves as a Subject Area Editor
for the International Journal of Distributed Sensor Networks. He has also
served as an Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS II: ANALOG AND DIGITAL SIGNAL PROCESSING. He is a Member
of ACM and ACM SIGDA, and a Member of Sigma Xi. He serves as Vice Chair
of Technical Activities of the IEEE Test Technology Technical Council and is
a Member of the program committees of several IEEE/ACM conferences and
workshops. He served as the Tutorial Cochair for the 2005 IEEE International
Conference on VLSI Design and is a designated Program Cochair for the 2005
IEEE Asian Test Symposium.

