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A Unified Approach for the Design of 2-D Digital
Filters via Semidefinite Programming

W.-S. Ly, Fellow, IEEE

Abstract—This paper attempts to demonstrate that a modern setting; 2) to show a new approach known as SDP relaxation
optimization methodology known as semidefinite programming can be used to design near-optimal 2-D FIR filters with discrete
(SDP) can be served as the algorithmic core of a unified design (such as sum-of-power-of-two) coefficients with considerably

tool for a variety of two-dimensional (2-D) digital filters. Rep- . d desi ffici d with mixed-int
resentative SDP-based designs presented in the paper incluge'MProved design einiciency compared with mixed-integer-pro-

minimax and weighted least-squares designs of FIR filters with gramming-based design methods; and 3) to illustrate the suit-
continuous and discrete coefficients, and minimax design of stable ability of SDP for filter design problems by demonstrating that
separable-denominator IIR filters. Our studies are motivated by g variety of constraints on amplitude/phase responses in certain
the fact that SDP as a subclass of convex programming can be frequency regions and on stability (for IIR filters), that are often

solved efficiently using recently developed interior-point methods tered i filter desi bl b ted
and, more importantly, constraints on amplitude/phase responses enconiered in many niter design probiems, can be colvene

in certain frequency regions and on stability (for IIR filters), that ~ into linear matrix inequalities (LMI) which are basic compo-
are often encountered in many filter design problems, can be nents of SDP.

formulated in a natural way as linear matrix inequalities (LMI) One-dimensional (1-D) FIR filter design problems in relation
which allow SDP to apply. Design examples for each class of filters 1, - ex optimization (SDP in particular) have been considered

are included to demonstrate that SDP-based methods can in many . b . inl d with © itud
cases be useful in producing optimal or near-optimal 2-D filters 1N [26], but paper [26] is mainly concerned with “magnitude

with reduced computational complexity. response” of the filters, and IIR filters and 2-D filters are not the
Index Terms—Constrained optimization, digital filters, semidef- subject of study. Early version of several resqlts presented in this
inite programming, stability. paper was presented at recent ISCAS meetings [27]-[29].

The paper is organized as follows. In Section I, a brief
overview of SDP is given. The overview outlines primal and
|. INTRODUCTION dual SDP problems, and the necessary and sufficient conditions
NUMBER of methods for the design of two-dimensionafor both the primal and dual solutions to exist. Section Il deals
(2-D) digital filters have been developed during the pa¥tith 2-D FIR filters where two design problems, i.e., minimax
three decades [1]-[25]. These design techniques are quitedgisign of linear-phase filters and weighted least-squares
verse, and often times a specific technique that works well fgesign of nonlinear-phase filters with equiripple passbands
a certain type of filters may not be suitable for other classes @fd peak-constrained stopbands (ERPPCS) are considered. In
filters. Itis therefore desirable to have a unified approach avafection IV, the design of FIR filters with sum-of-power-of-two
able that is based on a single analytical machinery to carry ¢&P2) coefficients is investigated using an SDP relaxation
a variety of designs which at the very least considerably sifSDPR) technique. In Section V, we demonstrate that sepa-
plifies code preparation for the designs. This paper attempts'éple-denominator IR filters with guaranteed stability can
demonstrate that a modern optimization methodology know& designed by using an alternating SDP method. Design
assemidefinite programmin(SDP) can be served as the algoexamples for each class of filters are included to illustrate that
rithmic core of such a unified design tool for a wide variety oBDP-based methods can in many cases be useful in producing
2-D digital filters. optimal or near-optimal 2-D filters with reduced computational
The purposes of the present paper are three-fold: 1) to demeéamplexity.
strate the ability of SDP as a unified design tool. Although, due In the rest of the paper, boldfaced quantities denote
to space limitation, only a few representative designs can be digatrices and vectorsI represents identity matrix of
cussed in detail here, it would become immediately apparéfpropriate dimension,diag{ai,...,a,} denotes a di-
after going through one design formulation or two that the popgonal matrix with a;,...,a, as its diagonal,w, and
ular weighted least-squares (WLS) and minimax designs of 242 denote normalized passband and stopband edges, re-
FIR and stable IIR filters that approximate arbitrarily given anspectively, and2 denotes the base frequency band, i.e.,
plitude and phase responses can be accomplished in an SBP= {(w1,w2) : =7 <wy <7, —7 < wy < 7).
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constraints that depend on design variablsely[30]. Anim- The necessary and sufficient conditions Xrand(y, S) to
portant class of SDP problems can be described as be the solutions of the SDP problem in (2) and (3), respectively,
L T are the so-called Karush—-Kuhn—Tucker (KKT) conditions given
minimize ¢*x (1a) below
subjectto: F(x) >0 (1b) p
n 1A +85S=0C (5a)
F(x)=Fo+ Y zF; (1c) ;
i=1 A-X=1, fori=1,....p (5b)
wherex = [z --- z,], F; € R™*"(i =0,...,n) are given SX =0 (5¢)
symmetric matrices arlB(x) = 0 denotes thaF(x) is positive X >0, S>o0. (5d)

semidefinite atx. Note that the constraint matrik(x) in (1) . ) o ) )
is affine with respect to (w.r.t.)x. SDP includes both linear Efficient primal-dual interior-point methods for solving (5) have

and quadratic programming as special cases, and it repres@fgh developedinthe past several years [30], [31]. Another inte-
a broad and important class of convex programming problef{@r-point method, developed by Nemirovski and Gahinet [35],
[30]. More importantly, many interior-point methods, whicH36], generates iterates using orthogonal projection of certain
have proven efficient for linear programming, have recent sitive define matrix onto a linear subspace characterized by
been extended to SDP [30], [31]. Efficient and user-friendl@f‘? constraint operator. Th(_a algorithm hgs proven efficient and
software implementations of various SDP algorithms af@ined popularity through its MATLAB implementation as a
available. In particular we mention the LMI Control Toolboxc0re algorithm for the LMI toolbox [32].

[32], SeDuMi [33], and SDPT3 Toolbox [34], all of which

work with MATLAB. lll. DESIGN OFNONRECURSIVEFILTERS
Another class of SDP problems, that is also relevant to theLet the transfer function of a 2-D FIR digital filter be
subject of the present paper, can be described as Ni—1Ny—1
minimize C-X (2a) H(z,22) = Z Z hijz 'zy” = 2] Hzy
subjectto: A; - X =10, fori=1,2,....p (2b) =0 =0 .
X >0 5 where Ny and Ny are odd integers,

- ( C) Z1 :A[]_ Zl_l N Z;(Al_l)]T,ZQ — [1 Z2—1 . Z;(]\‘z—l)]T,
whereC, X, A, are symmetric matrices andenotes the matrix andH € R >Nz In what follows we describe SDP-based
inner product defined by methods for the minimax design of linear phase FIR filters

(in Section IlI-A) and weighted least-squares design of
A - B = trace(AB) nonlinear phase FIR filters with equirriple passbands and

for symmetric matrice andB. We stress that essentially theP&ak-constrained stopbands (ERPPCS) in Section llI-B.
two SDP problems in (2) and (1) are related to each other RS
primal anddual problems. To see this, note that if the problem™
in (2) is referred to as the primal SDP problem, then its dual is T0 derive a compact expression for the transfer function of a
given by [31] linear phase2-D FIR filter, we partitionH as

H;; hp His

Minimax Design of Linear-Phase FIR Filters

o T
maximize bpy (3a) o I, h» Dl
subjectto: > 4A;+S=C (3b) Hz hs Hs;

=1 where H;;,Hi3,H3;, H3z € R™*™ hyy, hy €

S=0 (30) RanI,hgl,hgg S RnQXl,hQQ € Rn = (N1 — 1)/2,

- b,]T. The slack andnz = (N2 — 1)/2. Now, if the FIR filter is assumed to have
’ Jinear-phase response with normalized constant group delay
(711, 712), then
Hj3 = flipud(Hs3), Ha; = flipir(Has)
p H,; = flipud(fliplr H33))
subjectto: C—Y 4A; = 0 hi» = flipud(hsz,) and hi; = fliplr (hl;)

=1

wherey = [ -+ yp]" andb = [b; -
variableS in (3b) and (3c) can be eliminated to obtain an equi
alence of (3) as

maximize b’y

where flipud and fliplr represent the operations of flipping a

which can, in iurn, be converted to the minimization prablem matrix upside down and from left to right, respectively, and the

minimize — by (4a) frequency response of the filter is given by
L — o i(niwitnaw:) T
subjectto: C— Y yA; = 0 (4b) H(wy,wp) = e ci (wi)Hez(w2)
i=1 wherec;(w;) = [1 cosw; --- cosnuw;]T fori =1and 2, and

Obviously, with substitutiong +— x, —b —— ¢, C —— Fy,

Ho | P2 2hi,
and—A,; — F;, (4) becomes the SDP problem in (1). o )

2].’132 4H33
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Consequently, the minimax design of a linear-phase 2-D FHbjectto certain constraints (to be specified shortly). Unlike the
filter can be obtained as the solution of the optimization probledesign problem in Section IlI-A, here the filter to be designed is
6) notconstrained to have linear phase response. Consequently the

minimizegmaximize;,,, ..vcole(wy,w ) .
He (e wo)cal (W, w2)] desired frequency respon&g(w;, w=) is allowed to be general

where with arbitrary amplitude and phase responses. By writing
e(wr,w2) = W(wi, wa) [ef (wi)Hea(wa) — Ag(wr, we)] H(wi,ws) = [er(wy) — jsi(wi)]TH](ca(w2) — jsa(ws)]
and Ag(wy,ws) is the desired amplitude response. Evidently, c;(w;) =[1 cosw; --- cos(N; — Dw;]¥ i=1,2
problem in (6) is equivalent to siwi) =[0 sinw; - sin(N; — Dw]? i=1,2
minimize & (7a)  Hy(wi,ws) = Hp(wy,ws) — jH; (w1, wa)

subject to: ¢*(wi,wa) <6 for (wi,w2) €. (7b) e compute

Let h be the column vector generated by stacking the colum

2
ﬁ —{eTHe — <THe, —
of H from its first column to the last column, then (1,02) = Hy(wr, w2)|” = (Cl He; —s; Hs; H”)

A N 2
e(wy,wa) = hTCw(wl, wz) — Agw(wi, w2) (8) + (C{HSQ + S{HCQ — HZ) .

wherec,,(w1,w2) is the column vector whose components arRiow, leth be the column vector formed by orderly stacking the
given by columns of coefficient matriH. Then, one can write
Chny +i{w1,w2) = cosiwy coshwy fOr0<i <ny,0 <k <ny cF(wi)Hea(wz) = hTe(wy, ws)

Adgw(wi, w2) = W(wr,w2)Ag(wr, wa) sT(w1)Hsy(ws) = hTs(wy, wo)
Hence, the constraint in (7b) becomes clT(wl)ﬂSQ(wg) =h"a(wy,ws)
§ = [(W" cw(wy, wa) — Agw(wr, w2)]? >0 s1 (w1)Hez(wz) = ! v(wy, w2)

for (w1,w2) € 2 (9) wherethe components of vectasss, u andv are given, respec-

which is equivalent to (10) shown at the bottom of the pagg\,/ely’ by

for (w1, w2) € Q. Note that matriX*(wy, w2) in (10) isaffine CrNy +i(w1,ws) = cosiwy cos kwo
w.rt. dgsign pa(ametér and thg scalar' au?dliiary varila}bﬁe_A SkNy i (W1, w2) = siniw sin kws
discretized version of the positive semidefinite condition in (10)
is Qi Uk +i (W1, W2) = costwy sin kws
is given by ( )= L
VN +i\W1,W2) = sin Lwl COS KW
F(x) = ding {T, ), (,080)) 2 0
(x) = diag y D(wy ™, wy™) w12 - for0 <i< N, —1,0 < k < Ny — 1. Hence, we have
(11)

here the se{(w w{"). 1 < i < M} f ficienty |2 T Halwn el = (e 2 )~ K
where the se w1 ,w2 <4< orms a sufficiently h? _H2 (14
dense grid in regiof?, andx = [§ h*]" is a vector of dimen- Hh (utv) a9
sion1+(n1+1)(n2+41). Taking the above analysis into accounthich leads (13) to
a discretized version of the optimization problem in (7) can be e2=h"Qh—2n"q+r (15a)

formulated as

where
minimize ¢’x (12a) -
subject to: F(x) ~0 (12b) :/ QW(W17W2)Y(W17W2)Y (w17w2)dw1 dwo (15b)
wherec =[1 0 --- 0]" andF(x) is defined by (11) and (10). q= / W (w1, w2 )b(wr, wa) dwr dws (15¢)
Since matrixF'(x) is affine w.r.t.x, (12) is an SDP problem. Q

—_ 2
B. Weighted Least-Squares Design of FIR Filters With h= / o W(wr,w2)| Ha(wr, w2)|” dwr dwe (15d)
ERPPCS with

1) Objective Function:The design objective in this case is

to determine a transfer functial (1, z2) that minimizes the
weighted least-squares error b(wi,wz) = Hy (w1, wa)[c(wr, wa) — s(wi, w2)]

1%%4 H H 2 g d + Hi(wy,w2)[u(wy, wz) + v(wy,wa)].
2= //Q (W1 )| H (w1 w2) = Ha(wr, w)[" deoy dws For a fixed pair of frequenciegu, w2) in 2, the integrand in

(13) (15b) is a rank-one positive semidefinite matrix. Since 3et

Y (w1,w2) = [e(wr,ws) — s(wr,w2)u(wr,ws) + v{wr,ws)]

§ ¥y (wy, w2) = Adw(wi,w2) | (10)

Tlwnw2) =1 pre w,0) — Ave(wrw2) 1 s
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contains a rich variety of frequency pairs; ,w-), the integral respectively, whergl,, 32, v1, and~y, are scalar functions of
(sum) of these positive semidefinite matrices in (15b) always',w>) defined by
leads to a full-rank, hence positive definite, ma#}xin practi-

cally every filter design problem. Therefokg,in (15a) is glob- M (wi,wa2) = b [e(wr, w2) — s(wr, w2)]
ally convex w.r.th. Yolwi,ws) = hTTu(wr, we) 4+ v(wr, ws)]
2) Constraints: To achieve ERPPCS, it is imposed that B(wy,ws) = (w1, wa) — Ha(wr, w2)
|H(wi,w2) — Hy(wy,w2)|2 <6, for (wi,ws) €Q, (16a) Pa(wr, wa) = ya(wr,w2) — Hi(wr,w2)
and The linear matrix inequality (LMI) constraints in (22) and (23)
|H (w1, w2)]? <8, for (wy,ws) € Q, (16b) can be expressed, respectively, in compact form as
where Qﬁ" = {(w@, wéi)), 1 € ¢ £ kyandQ, = ®>-0 (24a)
_{(w@, w;), kp+1<i<k,+k,}aresets (_)f dense _grid pointsith
in the passbands and stopbands, respectively. Using (14), these X X
constraints can be expressed as & = diag {@ (wil),wél)) N (wikp),wékp))} (24b)
[0 (c — ) — Hal? + [0 (u+v) — Hif? and
<6, for(wi,we) €, (17a) ¥=0 Gt (kD) (25a)
and ‘Ilzdiag{\ll(wlp JWws ),...,
L' (c— )P + M (u+v)]? <6, for (w1, ws) € Q. x & (w§kp+’“a>,w§kp+’“a>)} . (25b)
(17b)
By defining an augmented vector
3) An SDP Formulation of the Design Problerhet 6 be an 1
upper bound oé; in (15a), i.e. 66 0
- - x=|2 and c= | . (26)
e =hTQh —2hTq+k < 6. (18) ba :
h 0

Minimizing e then amounts to minimizing the bouhdh (18). . . ) )
This simply means that the weighted least-squares design witf? Auite clear that the design problem at hand can be formu-

ERPPCS can be formulated as lated as the optimization problem
e e . T
minimize § (19a) mu?lmlze ¢x (272)
subject to: constraints ifi8), (17a), (17b).  (19b) subjectto: F(x) = 0 (27b)
Note that with
F(x) = diag{l'y, P, P}. 27c
ey = hTQh _ 2th T (X) 1%8{ 0,?, } ( )
= ||Q1/2h — Q—1/2q||2 _ (||Q—1/2q||2 — k) Since matriced’, @, ¥ depend on variable vectar affinely,
(27) is an SDP problem.
thus (18) is equivalent to We conclude this section with a remark that by including the
constraint bounds, andé, as a part of the design parameters
1/2 A2 > 20 P e . )
d+r1— Q7 h—4g[">0 (20)  (see (26)), these bounds asptimizedtogether with the filter
, coefficients for given filter orders, frequency weights, and pass-
whereq = Q~/2q andx; = ||q||> — « are respectively a d d yweld P

g | . Y < band/stopband regions. This is considered as one of the features
c;ns;[]ar;é victor(jan : a fconstant scalar. It is easy to verify ﬂbef'ihe proposed design formulation that distinguishes itself from
(20) holds if and only i most existing least-squares designs.

8+ k1 hTQl/Q _ élT
Iy= {th 4 I = 0. (21) C. Examples
o _ The method proposed in Section IlI-A was applied to design
Furthermore, the constraints in (17a) and (17b) are equivalenttgcularly symmetric (CS) lowpass and diamond-shaped linear-

phase FIR filters with ordefN N) = (7,7),(11,11),...,and

R (23,23). For the CS low [ [
. B ,23). pass filters, the following parameters
P(wr,wo) = /? (1) (1) = 0, for (wy, wa) € €,(22) were usedw, = 0.4257,w, = 0.5757, W(wi,w2) = 11in

L2 both passband and stopband. For the diamond shaped filters, the

and _ design parameters agg, = 0.87,w, = 7, and

. ba M Y2

P(w,w)=|m 1 0
72 0 1

for (wy,w2) € ©2,(23) 1, for (wi,ws) € 8,

w, for (wy,ws) € Q,

W (w1, w2) = {
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TABLE |
COMPARISON OF THEPROPOSEDMETHOD WITH THE METHOD IN [14]: CIRCULARLY SYMMETRIC LOWPASSFILTERS
N Maximum ripple CPU time in seconds Number of grid points
Passband | Stopband | Proposed method | Method in [14] | M, M,
7 0.2026 0.2348 3.06 14.41 50 279
11| 0.1247 0.1591 5.87 27.51 50 279
15| 0.0822 0.1115 10.47 53.01 50 279
19| 0.0549 0.0830 20.34 102.47 50 279
23| 0.0397 0.0578 39.22 199.62 50 279
TABLE I
COMPARISON OF THEPROPOSEDMETHOD WITH THE METHOD IN [14]: DIAMOND -SHAPED L OWPASSFILTERS
N Maximum ripple CPU time in seconds Number of grid points
Passband | Stopband | Proposed method | Method in [14] | M, M,
7 0.2468 0.2477 1.07 9.94 25 81
11| 0.1212 0.1293 1.44 17.05 25 81
15| 0.0782 0.0794 2.08 31.82 25 81
19| 0.0469 0.0487 7.13 92.41 36 121
23 | 0.0298 0.0319 20.24 276.74 49 169
qod .
o Q"’ """"
0
-20 '” "’ "\\\\
*1aa ) ' '
\ Q ‘
‘40 \ \ 5
l g\ ‘
A \M
-50 Ry \
I ‘ 1)
60 T ’ L 0\’ i
1 " ' '
A ‘ ﬁ / i “ , 'l -~
l ’ ’} ' J ‘ /i | hr . 0L
‘ ’N 5
Fig. 1. Amplitude response (in decibels) of the diamond-shaped linear-phase FIR filter of order (23, 23).

wherew = 1for N = 7and11,w = 0.8 for N = 15,w = 0.6 putations (see Tables | and Il). As a representative design, the
for N = 19, andw = 0.4 for N = 23. The maximum ripples in amplitude response of the diamond-shaped FIR filter of order
passband and stopband, and the CPU time used on a Pentiun{88623) is shown in Fig. 1.

for a MATLAB implementation of the algorithm to accomplish
the designs are given in Tables | and Il Also listed in the ta-
bles are the number of grid points used in the passifa#gd
and stopband/,, ) with M = M,, + M,. For comparison pur-
poses, the same sets of filters were designed using the method ifihe primary reason we are interested in digital filters with
[14], which is based on some conjugate direction methods. Aiscrete coefficients, especially sum-of-power-of-two (SP2)
can be observed, both methods yield the same designs, butdbefficients, is that they admit fast implementation that requires
SDP-based method required considerably less amount of caro-multiplications but simple superposition of shifted versions

IV. DESIGN OF NONRECURSIVE FILTERS WITH
DISCRETE COEFFICIENTS
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of the input [37]-[43]. In this section, we describe 8DP In words, coefricients{dgj)} are obtained as SP2 bounds of
relaxation(SDPR) algorithm for the design of 2-D FIR digitalform (30) that areclosestto {hij)}- As will be demonstrated
filters with SP2 coefficients. The method consists of foypy Section IV-D, however, performance of this suboptimal de-
steps, namely: (i) design of a 2-D FIR filter wittontinuous  sjgn js often unsatisfactory. To obtain an improved design, we

coefficients that approximates a desired frequency responsgsceed by denoting the midpoint of each interfedt}, ;5] as

(ii) formulation of the design of a 2-D FIR filter with SP2 4 (di; +d;,)/2 and a half of the interval length ds; =

coefficients (based on the continuous-coefficient filter obtain ' 2
in Step (i)) as a{—1, 1}-optimization problem; (i) SDPR of ?%Z“ —d;;)/2. The SP2 upper and lower bounds andd;; can

m) . o o

the {—1, 1}-optimization problem formulated in Step (ii); andihen be selected aéj +bijbi; with by; = 1andb;; = —1,re-
(iv) derivation of a binary solution of thé—1, 1}-optimization spectively. Hence_the_frequenc_y response of discrete-coefficient
problem using the SDPR solution obtained from Step (iiif;!R transfer function in (28) with
Since the design problem involved in Step (i) has largely been dii = d™ 4 b5, (32)

. . .. . vy T Yy (N %]
addressed in Section Ill, we shall focus on Steps (ii)—(iv) of the
method in the rest of the section. Specifically, we assume tltan be expressed as
a linear-phase 2-D FIR transfer functidii.(z;, z2) of order
(IN; —1, N2 —1) with continuous coefficients has been designed
by minimizing the WLS erroe; in (13) for a desired frequency \yhere
response ;(w:,w-), and thatd . (w1, w2) = cf (w1)H.ca(w2)
whereH, = {hgj)},ci(wi) =[1 cosw; --- cosnsw;]T with Alwy,w2) = Ap(w1,w2) +¢f (w1)(Bo A)cy(wa)  (33)
n; = (N7 — 1)/2 and: = 1,2.

H(wy w) = efj("l“’l"'"z“’z)A(wl,wg)

where Ay, (w1, ws) = ef (w1)Dynca(ws) with Dy, = {d{7},
A. Weighted Least-Squarés 1, 1}-Optimization andB o A denotes the pointwise product B = {b;;} and
A = {é;}. Since the second term on the right-hand side of

Let the frequency response of linear-phase FIR filter digh (33) is linear w.r.t{b;;}, we can write

crete coefficientbe given by
. _ T
H(C(J1, CUQ) — e—](n1w1 +n2w2)C{(W1)DC2(WQ) (28) A(CU1, w?) - Arn,(wla w?) + b V(wla W, A) (34)
whereb = [bog b1o -+ bn,0 bor -+ bnyn,]’ is obtained by

whereD = {d;;} and eachd;, is represented withn;, orderly stacking the columns &, andv is a column vector of

\E)V%ws;\-/c;f—two (P2) terms. Thus for laudgetof M P2-terms, dimensionV = (ny +1)(np-+1) determined by (w1 ), e5(wn),
andA. In the light of (34), the WLS objective function in (13)
Z Zmij -y (29) can be written as
=0 j=0 es = bTQb +2bTq + & (35)

Further, assume that the P2-terms used in the representatio,Qf e

{d;;} are constrained to within a given range, say, betvésén

and2~% with L < U. Under these circumstances, eaghin Q= // W(wy,w2)v(wy, wa, AV (Wi, we, A)
2

D can be expressed as
X dwl dUJQ

dij = Z b,(jj)Z_qim (30) q= /AZW(%,WQ)E(%, wa2)V(wy, w2, A)dw dws
k=1

N - B(wi,w2) = Ap(wr, w2) — Ag(wi,w2)
wherebé”) e{-1,1} andq,(j]) are integers betweehandU.
Given a continuous-coefficient desigH.(w,ws), term
budget{m;;}, and rangd L, U}, theleastSP2 upper bound; ;
andlargestSP2 lower bound, ; for each continuous coefficient minimize, c(_1,1;b7 Qb + 2b%q. (36)
hgj) can be readily determined such thit < hgj) < d; _ .
with bothd;; andd,; being of the form (30)andin each open Since the components 6} a_ndq take_,- r(_eal vglues while as-
7 sumes integer (binary) entries, (36) im&ed integer program-

interval (d;;,d;;), no SP2 numbers of form (30) exist for >~ - )
ming(MIP) problem, which is a well-known NP-hard combina-

given budgefm;;}. . A
Having determined;; andd,;, an immediatsuboptimable- torial optimization problem [43].

sign of 2-D FIR filter with SP2 coefficients can be constructeg A Semidefinite Programming Relaxation of Problem (36)
as '

and a WLS design off (w;, w2) with SP2 coefficients can now
be formulated as

i (rysonbrigin) T The relevance of SDP to the design problem at hand lies in

Hy(wi wo) =™/« ey (w1)Dsea(w2)  (31@)  the fact that the MIP problem in (36) can ktaxedto an SDP
whereD, = {d(f)} with problem S0 as to obtain an app_roxmate sqluh_on which is of
* good quality and can be solved in polynomial time. Goemans
and Williamson [44] was among the first to obtain an SDP

4@ = [y, i diy = P < B~ (31b) . .
K d otherwise relaxation solution of the MAX-CUT problem—a well-known

2440
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integer quadratic programming problem in graph theor¥hisindicates thatthe solution of the SDP problem in (40) under
Following [44], SDP relaxations of various combinatorial opthe above-mentioned conditions Q]is a good approximation
timization problems have been reported in graph optimizatioof, the solution of the problem in (39). It should be stressed that
network management and scheduling [31]. In what followfsr filter design problems, the conditions imposedQ@rare, in

we present an SDP-relaxation-based solution to our desiggneral, not satisfied, and a tight-dependent lower bound of

problem. v* has not been available. As will be demonstrated in Section
First, we replace design variable in (36) by x = IV-E, nevertheless, our design practice seems to indicate that
[z1 - zn]' and express the problem as suboptimal designs with satisfactory performance can be ob-
tained through Goemans-Williamson SDP relaxation.
minimize x?Qx 4+ 2x%q (37a)
subjectto: z2=1 forl1<i< N (37b) C. A Binary Solution of Problem (37)

Having solved the SDP problem in (39) f&t, there are two
where constraints; € {—1,1} have been expressed as thgynroaches that can be used to generate a binary solution for the
equality constraints in (37b). If we define matd = xx*, problem in (37). The first approach is based on the structure of
then the objective function in (37a) can be written as X in (38), i.e., ifX is the solution of (39), ther can be obtained
from its last column immediately. This observation suggests a

trace(QX) straightforward approach as follows. LXt be the solution of
where (40), then, a suboptimal solution of (37) is obtained as
. N X x = sign(X*(1: N,N +1)) (42)
(38 x[F3] e

whereX*(1 : N, N + 1) denotes the vector formed by the first

Further notice thak is positive semidefinite and tha = xx” V' components of the last column &f". _ _
if and only if rank(X) = 1. Therefore, the problem in (37) is At the cost of more computations, a better binary solution

equivalent to can be obtained using the eigen-decomposition of maXrix
i.e., X* = UAUT, whereU is an orthogonal matrix and
minimize trace(QX) (39a) is a diagonal matrix with the eigenvaluesXf on its diagonal
subject toX = 0 (39b) in decreasing order. It is well known that an optimal rank-one

R . . kol * 3 _ - - T
X,=1 forl<i<N 41 (390) approxmgtlon ofX* in thg 2-norm sgrlse is given b)\y(ul.ul ,
. where A, is the largest eigenvalue &* andu; is the eigen-
rank(X) = 1. (39d)  yvector associated with;. If we denote the vector formed by

. . . . first v ts ofi; by u and the last t of
An SDP relaxation of (39) is obtained by neglecting the rantgeb;rz coin;ponen S Ol Dyt and the fast component o
1 N+1, 1.C.

constraint in (39d) while keeping the remaining two constraints,

which leads to the minimization problem w — { a }
. CLun
minimize trace(QX) (40a) .
subject to: X0 (40b) then, the optimal rank-one approximationXf can be written

Xiu=1 forl<i< N+ 1L (40c)

~~T ~
< uu Uy
X* ~ )\111111{ = )\1 |: N+l :|

If we define uyp0’ uR,
~ ~T ~
A; = diag{0,...,0,1,0,...,0} _ N {X{& Xl}
i (41) u?\"-l-l X? 1

then, the constraints in (40c) can be expressei;aX = 1for Wherex; = u/uyi. SinceA, > 0, by comparing the above
i=1,...,N 41, and the problem in (40) fits perfectly in with equation withX in (38), we see that vector; is a reasonable

that of (2). Hence the problem in (40) is an SDP promem_%oproximation ofk* in terms of their signs. Therefore, a binary
relaxation of the MIP problem in (37). solution of the problem in (37) can be generated as

If we denote the minimum values of the objective functions
in problems (39) and (40) by* and~*, respectively, then be- = {
cause the feasible region of the problem in (39) is a subset of the

feasible region of the problem in (40), we have < p*. Fur- - . . .

thefmore, it has been shown [45] that if the d[agonal elemel%:%é An Efficient SDPF_Q Sglutlon Yla Duallt¥ _ _

of Q are all zero and the off-diagonal element€pére allnon-  Although polynomial-time primal-dual interior-point algo-

negative, them* > 0.878 56,.*. Therefore, we have rithms [30], [31] can be applied to the SDP problem in (40),
numerical difficulties may arise because of the involvement of

0.878 56" < v* < p*. a large number of variables even for filters of moderate order:

sign(a), if uygs >0
—sign(it), if uyiy <0 (43)
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For a linear-phase 2-D filter of ordéfV; — 1, N» — 1), the di- Because of (47d), the entire central path lies in the interior of
mension of vectoxk in (37) isN = (Ny + 1)(V, + 1)/4, thus  the feasible region and, as — 0, the path converges to the
the number of variables iX in the relaxed SDP problem (40)solution sety*, S*,X*) of (45). This in conjunction with the
is (N 4+ 1)N/2. With N; = N, = 19, for example, problem fact (derived from (47c)) that

(40) involves as many as 5050 variables. It should be stressed

that this “dimensionality” problem is quite common in SDP-re- X(r) =787Hr) (48)
laxation based treatment of many combinational optimization

problems [46]. In what follows, we present a method that firsuggests an approximate solution of (40) as

deals with the dual of the problem, which involve considerably .

less number of variables, and then converts the solution of the X =781 (49)
dual problem to that of the original problem.

It follows from Section I that the dual of (40) is given by ~[Of Some sufficiently smak- > 0, whereS* is obtained from

(46). In order forX in (49) to satisfy the equality conditions in

minimize — by (44a) (45b),X is modified with a scaling matrifI as
N41 .
subjectto: Q— > A, = 0 (44b) X =TII(s*)'I1 (50a)
i=1
. where
wherey = [y1 --- ynii]t, b =[1 --- 1]¥, Qs defined in
(38) andA,; are defined in (41). Note that the dual problem in II= diag{é’iﬂ, ey ,l\/il} (50b)

(44) involves onlyN + 1 variables. Interior-point methods, such
as the projective methods proposed by Nemirovski and Gahinet
[35], [36], that do not use a primal-dual solution setting, can be
used to solve (44) efficiently. Here, we pre- and post-multipliI so that the modifiedX in

To obtain the solution of the primal SDP problem in (40), wgs0a) remainsymmetri@nd positive definite. Note that because

need a bit of analysis on the KKT conditions in (5). setbe of the equality constraints (45b), the parameten (49) has
the solution of the dual problem (44), then the KKT conditionseen absorbed by the scaling matfixin (50).

¢; = theith diagonal compnent ¢8*)~!. (50c)

become In summary, the steps for designing a linear-phase 2-D FIR
N+l filter with SP2 coefficients are as follows.
Y A +8 =Q (45a) 1) Design a linear-phase 2-D FIR filter with continuous co-
i=1 efficientsH, = {hgj)}.

A X"=1 for1<i<N+1 (45b) 2) For a given term budgdtn,; } and range{L, U}, find
S*X* = 0 (45¢) least SP2 upper bount); and largest SP2 lower bound
d;; for gachhgj). Computedg") = (di; + d;;)/2 and
bij = (dij — di;)/2.
3) Compute matrix and vectory in (35) and form matrix
Q using (38).

X*=0, S"=0. (45d)

From (45a), we have

N1 4) Solving SDP problem (44) and denote its solutioryty
S*=Q-— Z A, (46) 5) ComputeS* using (46).
im1 X

6) ComputeX using (50).
Sincey™ is obtained from ainterior-point iterative algorithm ~ 7) Obtainx using (42) or (43).
(such as the projective method), it can only be a (good) approx-8) Seth = x and compute the coefficient matdx = {d;; }
imate solution of (45) which is in thiaterior of the feasible using (32).
region. Consequently, matr&* remains positive definite. This .
approximateness &* entails some modifications of (45c) andE' Design Examplfes _
in this regard, we recall the conceptagntral pathin the inte- ~ The SDP relaxation (SDPR) method described above was ap-
rior-point optimization theory. The central path is defined asRlied to design linear phase circularly symmetric lowpass 2-D

parameterized sdty (), S(r),f((r), for 7 > 0} which satis- FIRfilters of ordef N —1, N—1) with SP2 coefficients folV =
fies the modified KKT conditions 3,5,7 ...,31. The prototype (continuous-coefficient) FIR fil-

ters were designed to minimize the WLS error in (13) with the

N+1 . . .
‘ ‘ A following design parameters;, = 0.57,w, = 0.77, W = 1in
; w(r)Ai+8(7) =Q (47a) both passband and stopbadd= 0,V = 12, and the average

number of P2 terms per coefficient was set to 2.03et N <

R 23,2.4 for N = 25,27, and 2.6 forN = 29,31. The designs

S(r)X(r) =71 (47¢)  obtained were compared with the suboptimal designs character-
S(r) -0 and X(r)>0. (47d) izedby (31), the optimal designs with SP2 coefficients obtained

A, X*(r)=1 for1<i<N+1 (47b)
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TABLE Il
COMPARISONS OFVARIOUS DESIGNS

N | Design (31) | SDPR (error/CPU) | MIP (error/CPU) WLS

31 0.1431 0.1375/0.03 0.1375/0.00 0.1339

51 0.0790 0.0769/0.06 0.0769/0.11 0.0768

7| 0.0292 0.0281/0.11 0.0279/37.90 0.0272

9 0.0130 0.0095/0.33 0.0095/2.50e3 0.0094
11 | 0.0078 0.0061/0.54 0.0059/6.74e5 0.0056
13 | 0.0039 0.0017/1.21 — 0.0016
15 | 0.0017 0.0011/2.34 - 0.0010
17 | 0.8457e—3 | 0.4381e—3/4.59 — 0.4028e—3
19 | 0.3669e—3 | 0.2138e—3/7.53 — 0.1613e—3
21 [ 0.2134e—3 | 0.1279¢—3/12.85 — 0.1036e—3
23 [ 0.1172e—3 | 0.0537e—3/23.92 — 0.0335e—3
25 [ 0.5393e—4 | 0.2837e—4/48.61 — ’ 0.2080e—4
27 | 0.3374e—4 | 0.1467e—4/97.45 — 0.0924e—4
29 | 0.3195e—4 | 0.0794e—4/181.33 — 0.0389¢—4
31 [ 0.2378e—4 | 0.0566e—4/303.87 — 0.0252e—4

using MIP, and the WLS designs with continuous coefficientathere

All the designs are performed using a Pentium866 where the al- n m
gorithms involved were implemented using MATLAB 5. The re- bz, 2) = Z Z I
sults are summarized in Table 11l where the four types of designs i=0 k=0

are labeled as Design (31), SDPR, MIP, and WLS, respectively. d(z1,20) = f(z1)g(22)

It should be mentioned that for the SDPR designs, both (42) ! ‘

and (43) were examined to obtained the binary solutioasd, Fla) =247 firt T with fo =1
as expected, the rank-one approximation based approach (i.e., =0
(43)) yielded consistently better designs. The results included
in the SDPR column of the table were obtained using (43). For
the SDPR and MIP designs, we also include the CPU time (in
seconds) used (see the second figures in the SDPR and Kfisl71 andr; are integers witl) < r, < n and0 < ry < m.
columns of the table) as a measure of design efficiency. Due tpis formofd(z1, z) is convenient to preserve a certain number
the exceedingly long CPU time required by the MIP-based gef poles at the origin as !t might be beneficial for the design of
signs, we were only able to include the design data for five lowgfveral types of digital filters [48]. The frequency response of
order designs. From the table it is observed that compared filter can now be written as

T2
g(z) = 257" " gizh* ™", withgo =1
=0

the MIP-based designs the SDPR-based designs offered nearly H(wy,ws) = b(ws, wa) (52)
optimal performance with considerably reduced computational d(w1,w2)
complexity. where
bwi,wz) = Z Z byje (i thws)i (53)
V. DESIGN OFRECURSIVEFILTERS =0 k=0

T T
Our focus in this section is on weighted minimax design of d(wi,w2) = <Z fz‘@_“wl> <Z gz‘@_“wz> - (54)
stable 2-D IIR filters. Throughout the section the IIR filters =0 i=0
are assumed to hageparable denominatard his assumption For the sake of description simplicity, we only consider the case
simply imposes a constraint on the type of IIR filters being = m andr; = r, = r. With straightforward modifications,
guadrantally symmetri¢d7]. Nevertheless this class of filtersour design algorithm can be applied to the cases whetem
is broad enough to cover practically all types of IIR filters thaandr; # 2. The notation shown in the equation at the bottom
have been found useful in image/video and other 2-D DSP ay-the page will be adopted in the rest of the section.
plications.
B. The Design Problem
A. Notation The design problem considered here is to findstable
H(z1,22) that best approximates a given 2-D frequency
Let the transfer function of a 2-D IR d|g|tal filter be denoteq'espor]se‘E[d(w17 CUQ) in We|ghted minimax sense. Name'y’
by H(z, z2) solves the constrained optimization problem

b(z1, 22) minimizef g, Mmaximize_r<u, w,<x|e(wi,w2)| (55a)

H(z1,22) = (21, 22) (51) subjectto:  H(zy, z0) is stable (55b)



LU: A UNIFIED APPROACH FOR THE DESIGN OF 2-D DIGITAL FILTERS 823

where D. An lterative SDP Formulation

First, we re-formulate the minimax problem in (55) as
e(wr,wa) = W (wr, w)[H(ws, ws) — Ha(wr,ws)].  (55€) P (55)

minimize & (62a)

C. Stability Constraints subject to: [e(wr,w2)|? < 6 (62b)
The filter in (51) is stable if and only if(z) andg(»,) are J(2) #0, for|z| 21 (62c)
stable 1-D polynomials, i.e., their zeros are strictly inside the g(z2) #0, for|z|>1 (62d)

unit circle. If we define the canonical matrices
where the upper boundlwill be treated as aauxiliary design

= = - —=f ] variable. Next we write the constraint in (62b) as
1 0
Df = . . (56) W2
B : |e(wr,wo) P = —5—|b— fgHal> < 6 (63)
i 10 | | f12]g]?
and g —gy e —gu T where for the simplicity of writing the dependence of functions
1 ! 2 0” W.b, f,g, and H; on wy,w-. has been omitted. Note that the
D, = ) i (57) term f,Hyin (63) isnonlinearw.r.t. the design variables. This
B : makes it difficult to convert the problem into a SDP problem
L 1 U because the square of the tefgf; in magnitude is no longer

) ) ) quadratic A remedy for this technical difficulty is to use an
then, an irreducible transfer functioz1, z2)/f(z1)g(22) rép-  aiteratingiteration scheme as described below.
resents a stable IIR.2—D filter if and only |.f bQIhf andDg. are  gyppose a stable paitfo(z1), go(#2) }, has been chosen. For
stable, i.e., the maximum modulus of their eigenvalues is strictly, iteration index: > 1 (63) suggests to first solve the fol-

less than 1. From the well known Lyapunov theory [49], it fo'rowing constrained problem fdKz,, z,) and a stablgf(z, ):
lows thatD ; andD,, are stable if and only if there exist positive

definite matrice®® andQ such that minimize & (64a)
W2
_DTL subjectto: —————|b— fgr_1Hy|* < 6 (64b
P DfPDf =0 (58) | |fk71|2|gk71|2| fgk 1 d| = ( )
and flz1) #£0 for|z|>1 (64c)
Q-D]QD, > 0. (59)

Let the polynomialf(»>;) obtained by solving (64) be denoted

It can be readily verified that (58) and (59) hold if and only if by fx(#1). We seek to find a stablg.(z2) and aby (#1, #2) that
solves the constrained problem

P! D
[ D} Pf} =0 (60) minimize & (65a)
2
and ; . 2
subject to: b— fugHy|* <6 (65b
Q' Dy “ 0 (61) : |fk71|2|gk71|2| koHdl (65b)
D] Q g(z2) #0 for|z| >1 (65¢)

respectively. As will be seen in the next section, the LMI conFhe iterations described above are similar in spirit to the
straints in (60) and (61) are of convenience to use in an SD®teiglitz-McBride (SM) scheme which finds applications in
based design, because the design parameters in the denomirsystem identification and adaptive filtering [50]. The difference

polynomialsf(z1) andg(z2) appeasffinely. between (64), (65) and the SM scheme is that the SM scheme
b=[bow bio - b bor - bun]t
f=01 fo - fI"
g=[n g - Qr]T
c(wi,wz)=[1 coswy -+ cosnwi; coswy--- cos(nwi + an)]T
s(wi,w2) =[0 sinw; --- sinnw; sinwy---  sin(nw; +nws)]t
ci(w;) = [cosw; -+ cosrw;]t fori=1,2
si(wi) = [sinw; - -~ sinrw;]? fori=1,2
Hy(wy,w2) = He(wr, we) — jH; (w1, wa)
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iterates a least-squares objective function while each of (64)At the k-th iteration the constrained optimization problem in
and (65) involves an iterative constraint in a minimax design.(64) can now be formulated as
With straightforward manipulations it can be verified that the

constraint in (64b) can be expressed as a parameterized LMI minimize &"x (69a)
constraint subject to: F)’“(&) 0 } =0 (69b)
P(6,x,w1,w2) = 0 (66)
wherex is the augmented variable defined by
where
[ 6 ai CLQ] ) 6 0
®(6,x,w1,w2)=|agz 1 0O X = LJ =|b|, e=]. (69c)
as 0 1 f .
0
with

and®,(x) > 0is a discrete implementation of (66) on a set of
a1 = x% ¢y — Hy, frequencies{(wjfm),wg’")), for1 < m < M} in a frequency

ar = xTsy, — H, region of interest

X = b} P(x) = diag{‘i’(f(, wil),wél)), P ()A(,w](LM), wéM)>} .
| f
o r cw} (69d)
—
L Yo Since both®, (x) andSx(x) depend onx affinely, (69) is an
s — | Sw SDP problem.
» | Vaw By a similar analysis, it can be verified that the companion
o — W(wy,ws) optimization problem in (65) at thie-th iteration can be formu-
k — .
| fre—1(w1)gr—1(w2)| lated as an SDP problem:
Co = wie(wi,wa),  Sw = wis(wy, w2) minimize &%y (70a)
u, = —c1{w1)Ha1 +s1(wi)Hez b [ 0 . —0b
Vo = —C1(w1)Haz — s1(wi1)Her subject to: |: 0 Tk(y):| =0 (70b)

H,, = wy[H dy—1 — Hiep1]
Ha2 = rLUk[Hrekfl + Hidkfl]

o
dro1 =1+gji_jci(ws2) y = {6} =|b (70c)
er—1 = 8i_151(w2). Y g

where

We see that matri@ (8, x, w;, w») depends on design parameand matricesl; (y) andT (y) are defined in a manner similar
tersé andx affinely, and the stability off,_;(z) andgx_1(z) to that of®,(x) andS;(x), respectively.
obtained from thek — 1)th iteration assures a well-defined .
weighting factorwy,. E. The Algorithm

Concerning the stability constraint in (64c), it follows from Given a desired frequency respor$g(w;, w2), a weighting
Section 5.C that for a stabl&_;(z;) there exists &,_; > 0 function W (w,w>), and filter order(n, r), one chooses a pair

that satisfies the Lyapunov equation of convenient initial vector§, andg, (for examplef, = 0 and
. go = 0). Next, one solves the SDP problems in (69) and then
Pr1-Dj PraiDy =1 (67) (70)fork = 1, and evaluates, = ||xx—xx_1||+|lyr—yr_1|-

) , . , o If £ is less then a prescribed tolerarge¢hen theby,, gi. (from
whereDy, _, is the canonical matrix (56) with £, inits first - o yan4e, (from x;,) are deemed as the optimal solution for the

row, andL is ther x i identify matrix. It now follows from (60) jesign problem. Otherwise the algorithm proceeds by solving
that a natural stability constraint fgi.(z; ) is (69) and then (70) fok = 2, etc.

_ [Pl D;

DY P, — I =0 (68) F. A Design Example

Sk(X)
As an example, we applied the above algorithm to design a
whereDy is defined by (56) and > 0 is a small scalar intro- circular symmetric, lowpass IIR filter of ordér., ) = (12, 8)
duced to control the stability margin ¢f(z1). SinceSy(x) de- with w, = 0.57,w, = 0.7x, and linear phase response in the
pends orD ; and hencex affinely, (68) is an LMI. Also notice passband with group delay in both directions being 7.5 sam-
that the positive define matri¥®,_, in (68) is obtained from ples. A total of M = 759 grid points were used with 190
(67), hence (68) is “constrained” AR, _,. As a result, (68) points in the passband and 569 points in the stopband. With
is asufficient(but not necessary) constraint for the stability of = 0.03,7 = 10712, W (w1, w-) = 1 in the union of the pass-
fu(21). band and stopband regions ald(w;,w;) = 0 elsewhere, it
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[20]. The SVD-based method was applied to design.a) =
(12,12) lowpass circularly symmetric stable IR filter with the
same passband and stopband edges. The method started with
designing a linear phase FIR filter of ordgt, K') and a stable

We have attempted to show that SDP has the potential to serve
as the optimization engine of a unified design tool for a wide
: range of 2-D digital filters. SDP is not only equipped with an
1 ever-growing family of interior-point solution algorithms but
N offers the designer a natural setting in which many filter design
~0 problems can be formulated.

oy : [IR filter of order (12, 12) was obtained by using the balanced
10 W approximation method. We tried a number of prototype FIR
A ///llll" ,’ ’ ‘i\“‘ h\, ‘ filters with K varying from 22 to 32, and the best result was
20 . ;1// ' mm ‘\“ W obtained withK = 26 which yields a stable IR filter whose
L “’ " \ ‘ L maximum amplitude deviation in passband and stopband were
.30 grlll \“\“ \ 0.0578 and 0.0612, respectively, and the maximum relative de-
I/““\ “ ',\lp \m {f l ' ' ‘ ‘ ,;.f\ ol ' viation in group delay was 0.0861.
-40 /['0 '\‘ ‘\"I, QX $ '\ i\
A ..w, ! { '/A‘.'.a"
/ "l f"w \,’m//u”w AM u i /OQ'l' “ \\ ' ‘\ V1. CONCLUSION
Rl

; n\"\\ () 'l A \\\‘
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