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A Unified Approach for the Design of 2-D Digital
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Abstract—This paper attempts to demonstrate that a modern
optimization methodology known as semidefinite programming
(SDP) can be served as the algorithmic core of a unified design
tool for a variety of two-dimensional (2-D) digital filters. Rep-
resentative SDP-based designs presented in the paper include
minimax and weighted least-squares designs of FIR filters with
continuous and discrete coefficients, and minimax design of stable
separable-denominator IIR filters. Our studies are motivated by
the fact that SDP as a subclass of convex programming can be
solved efficiently using recently developed interior-point methods
and, more importantly, constraints on amplitude/phase responses
in certain frequency regions and on stability (for IIR filters), that
are often encountered in many filter design problems, can be
formulated in a natural way as linear matrix inequalities (LMI)
which allow SDP to apply. Design examples for each class of filters
are included to demonstrate that SDP-based methods can in many
cases be useful in producing optimal or near-optimal 2-D filters
with reduced computational complexity.

Index Terms—Constrained optimization, digital filters, semidef-
inite programming, stability.

I. INTRODUCTION

A NUMBER of methods for the design of two-dimensional
(2-D) digital filters have been developed during the past

three decades [1]–[25]. These design techniques are quite di-
verse, and often times a specific technique that works well for
a certain type of filters may not be suitable for other classes of
filters. It is therefore desirable to have a unified approach avail-
able that is based on a single analytical machinery to carry out
a variety of designs which at the very least considerably sim-
plifies code preparation for the designs. This paper attempts to
demonstrate that a modern optimization methodology known
assemidefinite programming(SDP) can be served as the algo-
rithmic core of such a unified design tool for a wide variety of
2-D digital filters.

The purposes of the present paper are three-fold: 1) to demon-
strate the ability of SDP as a unified design tool. Although, due
to space limitation, only a few representative designs can be dis-
cussed in detail here, it would become immediately apparent
after going through one design formulation or two that the pop-
ular weighted least-squares (WLS) and minimax designs of 2-D
FIR and stable IIR filters that approximate arbitrarily given am-
plitude and phase responses can be accomplished in an SDP
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setting; 2) to show a new approach known as SDP relaxation
can be used to design near-optimal 2-D FIR filters with discrete
(such as sum-of-power-of-two) coefficients with considerably
improved design efficiency compared with mixed-integer-pro-
gramming-based design methods; and 3) to illustrate the suit-
ability of SDP for filter design problems by demonstrating that
a variety of constraints on amplitude/phase responses in certain
frequency regions and on stability (for IIR filters), that are often
encountered in many filter design problems, can be converted
into linear matrix inequalities (LMI) which are basic compo-
nents of SDP.

One-dimensional (1-D) FIR filter design problems in relation
to convex optimization (SDP in particular) have been considered
in [26], but paper [26] is mainly concerned with “magnitude
response” of the filters, and IIR filters and 2-D filters are not the
subject of study. Early version of several results presented in this
paper was presented at recent ISCAS meetings [27]–[29].

The paper is organized as follows. In Section II, a brief
overview of SDP is given. The overview outlines primal and
dual SDP problems, and the necessary and sufficient conditions
for both the primal and dual solutions to exist. Section III deals
with 2-D FIR filters where two design problems, i.e., minimax
design of linear-phase filters and weighted least-squares
design of nonlinear-phase filters with equiripple passbands
and peak-constrained stopbands (ERPPCS) are considered. In
Section IV, the design of FIR filters with sum-of-power-of-two
(SP2) coefficients is investigated using an SDP relaxation
(SDPR) technique. In Section V, we demonstrate that sepa-
rable-denominator IIR filters with guaranteed stability can
be designed by using an alternating SDP method. Design
examples for each class of filters are included to illustrate that
SDP-based methods can in many cases be useful in producing
optimal or near-optimal 2-D filters with reduced computational
complexity.

In the rest of the paper, boldfaced quantities denote
matrices and vectors, represents identity matrix of
appropriate dimension, denotes a di-
agonal matrix with as its diagonal, and

denote normalized passband and stopband edges, re-
spectively, and denotes the base frequency band, i.e.,

.

II. A B RIEF OVERVIEW OF SDP

SDP is a relatively new optimization methodology, that is pri-
marily concerned with minimizing a linear or convex quadratic
objective function subject to linear matrix inequality (LMI) type
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constraints that depend on design variablesaffinely[30]. An im-
portant class of SDP problems can be described as

(1a)

subject to: (1b)

(1c)

where are given
symmetric matrices and denotes that is positive
semidefinite at . Note that the constraint matrix in (1)
is affine with respect to (w.r.t.) . SDP includes both linear
and quadratic programming as special cases, and it represents
a broad and important class of convex programming problems
[30]. More importantly, many interior-point methods, which
have proven efficient for linear programming, have recently
been extended to SDP [30], [31]. Efficient and user-friendly
software implementations of various SDP algorithms are
available. In particular we mention the LMI Control Toolbox
[32], SeDuMi [33], and SDPT3 Toolbox [34], all of which
work with MATLAB.

Another class of SDP problems, that is also relevant to the
subject of the present paper, can be described as

(2a)

subject to: for (2b)

(2c)

where are symmetric matrices anddenotes the matrix
inner product defined by

for symmetric matrices and . We stress that essentially the
two SDP problems in (2) and (1) are related to each other as
primal anddual problems. To see this, note that if the problem
in (2) is referred to as the primal SDP problem, then its dual is
given by [31]

(3a)

subject to: (3b)

(3c)

where and . The slack
variable in (3b) and (3c) can be eliminated to obtain an equiv-
alence of (3) as

subject to:

which can, in turn, be converted to the minimization problem

(4a)

subject to: (4b)

Obviously, with substitutions ,
and , (4) becomes the SDP problem in (1).

The necessary and sufficient conditions forand to
be the solutions of the SDP problem in (2) and (3), respectively,
are the so-called Karush–Kuhn–Tucker (KKT) conditions given
below

(5a)

for (5b)

(5c)

(5d)

Efficient primal-dual interior-point methods for solving (5) have
been developed in the past several years [30], [31]. Another inte-
rior-point method, developed by Nemirovski and Gahinet [35],
[36], generates iterates using orthogonal projection of certain
positive define matrix onto a linear subspace characterized by
the constraint operator. The algorithm has proven efficient and
gained popularity through its MATLAB implementation as a
core algorithm for the LMI toolbox [32].

III. D ESIGN OFNONRECURSIVEFILTERS

Let the transfer function of a 2-D FIR digital filter be

where and are odd integers,
,

and . In what follows we describe SDP-based
methods for the minimax design of linear phase FIR filters
(in Section III-A) and weighted least-squares design of
nonlinear phase FIR filters with equirriple passbands and
peak-constrained stopbands (ERPPCS) in Section III-B.

A. Minimax Design of Linear-Phase FIR Filters

To derive a compact expression for the transfer function of a
linear phase2-D FIR filter, we partition as

where
,

and . Now, if the FIR filter is assumed to have
linear-phase response with normalized constant group delay

, then

and

where flipud and fliplr represent the operations of flipping a
matrix upside down and from left to right, respectively, and the
frequency response of the filter is given by

where for and 2, and
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Consequently, the minimax design of a linear-phase 2-D FIR
filter can be obtained as the solution of the optimization problem

(6)

where

and is the desired amplitude response. Evidently,
problem in (6) is equivalent to

(7a)

subject to: for (7b)

Let be the column vector generated by stacking the columns
of from its first column to the last column, then

(8)

where is the column vector whose components are
given by

for

Hence, the constraint in (7b) becomes

for (9)

which is equivalent to (10) shown at the bottom of the page,
for . Note that matrix in (10) is affine
w.r.t. design parameter and the scalar auxiliary variable. A
discretized version of the positive semidefinite condition in (10)
is given by

(11)

where the set forms a sufficiently
dense grid in region , and is a vector of dimen-
sion . Taking the above analysis into account,
a discretized version of the optimization problem in (7) can be
formulated as

(12a)

subject to: (12b)

where and is defined by (11) and (10).
Since matrix is affine w.r.t. , (12) is an SDP problem.

B. Weighted Least-Squares Design of FIR Filters With
ERPPCS

1) Objective Function:The design objective in this case is
to determine a transfer function that minimizes the
weighted least-squares error

(13)

subject to certain constraints (to be specified shortly). Unlike the
design problem in Section III-A, here the filter to be designed is
notconstrained to have linear phase response. Consequently the
desired frequency response is allowed to be general
with arbitrary amplitude and phase responses. By writing

we compute

Now, let be the column vector formed by orderly stacking the
columns of coefficient matrix . Then, one can write

where the components of vectors and are given, respec-
tively, by

for . Hence, we have

(14)

which leads (13) to

(15a)

where

(15b)

(15c)

(15d)

with

For a fixed pair of frequencies in , the integrand in
(15b) is a rank-one positive semidefinite matrix. Since set

(10)
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contains a rich variety of frequency pairs , the integral
(sum) of these positive semidefinite matrices in (15b) always
leads to a full-rank, hence positive definite, matrixin practi-
cally every filter design problem. Therefore,in (15a) is glob-
ally convex w.r.t. .

2) Constraints: To achieve ERPPCS, it is imposed that

for (16a)

and

for (16b)

where and
are sets of dense grid points

in the passbands and stopbands, respectively. Using (14), these
constraints can be expressed as

for (17a)

and

for

(17b)

3) An SDP Formulation of the Design Problem:Let be an
upper bound of in (15a), i.e.

(18)

Minimizing then amounts to minimizing the boundin (18).
This simply means that the weighted least-squares design with
ERPPCS can be formulated as

(19a)

subject to: constraints in (19b)

Note that

thus (18) is equivalent to

(20)

where and are respectively a
constant vector and a constant scalar. It is easy to verify that
(20) holds if and only if

(21)

Furthermore, the constraints in (17a) and (17b) are equivalent to

for (22)

and

for (23)

respectively, where , and are scalar functions of
defined by

The linear matrix inequality (LMI) constraints in (22) and (23)
can be expressed, respectively, in compact form as

(24a)

with

(24b)

and

(25a)

(25b)

By defining an augmented vector

and ...
(26)

it is quite clear that the design problem at hand can be formu-
lated as the optimization problem

(27a)

subject to: (27b)

with

(27c)

Since matrices depend on variable vector affinely,
(27) is an SDP problem.

We conclude this section with a remark that by including the
constraint bounds and as a part of the design parameters
(see (26)), these bounds areoptimizedtogether with the filter
coefficients for given filter orders, frequency weights, and pass-
band/stopband regions. This is considered as one of the features
of the proposed design formulation that distinguishes itself from
most existing least-squares designs.

C. Examples

The method proposed in Section III-A was applied to design
circularly symmetric (CS) lowpass and diamond-shaped linear-
phase FIR filters with order , and

. For the CS lowpass filters, the following parameters
were used: in
both passband and stopband. For the diamond shaped filters, the
design parameters are , and

for
for
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TABLE I
COMPARISON OF THEPROPOSEDMETHOD WITH THE METHOD IN [14]: CIRCULARLY SYMMETRIC LOWPASSFILTERS

TABLE II
COMPARISON OF THEPROPOSEDMETHOD WITH THE METHOD IN [14]: DIAMOND-SHAPED LOWPASSFILTERS

Fig. 1. Amplitude response (in decibels) of the diamond-shaped linear-phase FIR filter of order (23, 23).

where for and for
for , and for . The maximum ripples in
passband and stopband, and the CPU time used on a Pentium866
for a MATLAB implementation of the algorithm to accomplish
the designs are given in Tables I and II Also listed in the ta-
bles are the number of grid points used in the passband
and stopband with . For comparison pur-
poses, the same sets of filters were designed using the method in
[14], which is based on some conjugate direction methods. As
can be observed, both methods yield the same designs, but the
SDP-based method required considerably less amount of com-

putations (see Tables I and II). As a representative design, the
amplitude response of the diamond-shaped FIR filter of order
(23, 23) is shown in Fig. 1.

IV. DESIGN OF NONRECURSIVEFILTERS WITH

DISCRETECOEFFICIENTS

The primary reason we are interested in digital filters with
discrete coefficients, especially sum-of-power-of-two (SP2)
coefficients, is that they admit fast implementation that requires
no multiplications but simple superposition of shifted versions
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of the input [37]–[43]. In this section, we describe anSDP
relaxation(SDPR) algorithm for the design of 2-D FIR digital
filters with SP2 coefficients. The method consists of four
steps, namely: (i) design of a 2-D FIR filter withcontinuous
coefficients that approximates a desired frequency response;
(ii) formulation of the design of a 2-D FIR filter with SP2
coefficients (based on the continuous-coefficient filter obtained
in Step (i)) as a -optimization problem; (iii) SDPR of
the -optimization problem formulated in Step (ii); and
(iv) derivation of a binary solution of the -optimization
problem using the SDPR solution obtained from Step (iii).
Since the design problem involved in Step (i) has largely been
addressed in Section III, we shall focus on Steps (ii)–(iv) of the
method in the rest of the section. Specifically, we assume that
a linear-phase 2-D FIR transfer function of order

with continuous coefficients has been designed
by minimizing the WLS error in (13) for a desired frequency
response , and that
where with

and .

A. Weighted Least-Squares -Optimization

Let the frequency response of linear-phase FIR filter withdis-
crete coefficientsbe given by

(28)

where and each is represented with
power-of-two (P2) terms. Thus for abudgetof P2-terms,
we have

(29)

Further, assume that the P2-terms used in the representation of
are constrained to within a given range, say, between

and with . Under these circumstances, eachin
can be expressed as

(30)

where and are integers betweenand .
Given a continuous-coefficient design , term

budget , and range , theleastSP2 upper bound
andlargestSP2 lower bound for each continuous coefficient

can be readily determined such that
with both and being of the form (30),and in each open
interval , no SP2 numbers of form (30) exist for a
given budget .

Having determined and , an immediatesuboptimalde-
sign of 2-D FIR filter with SP2 coefficients can be constructed
as

(31a)

where with

if
otherwise

(31b)

In words, coefficients are obtained as SP2 bounds of

form (30) that areclosestto . As will be demonstrated
in Section IV-D, however, performance of this suboptimal de-
sign is often unsatisfactory. To obtain an improved design, we
proceed by denoting the midpoint of each interval as

and a half of the interval length as
. The SP2 upper and lower bounds and can

then be selected as with and , re-
spectively. Hence the frequency response of discrete-coefficient
FIR transfer function in (28) with

(32)

can be expressed as

where

(33)

where with ,
and denotes the pointwise product of and

. Since the second term on the right-hand side of
(33) is linear w.r.t. , we can write

(34)

where is obtained by
orderly stacking the columns of, and is a column vector of
dimension determined by ,
and . In the light of (34), the WLS objective function in (13)
can be written as

(35)

where

and a WLS design of with SP2 coefficients can now
be formulated as

(36)

Since the components of and take real values while as-
sumes integer (binary) entries, (36) is amixed integer program-
ming(MIP) problem, which is a well-known NP-hard combina-
torial optimization problem [43].

B. A Semidefinite Programming Relaxation of Problem (36)

The relevance of SDP to the design problem at hand lies in
the fact that the MIP problem in (36) can berelaxedto an SDP
problem so as to obtain an approximate solution which is of
good quality and can be solved in polynomial time. Goemans
and Williamson [44] was among the first to obtain an SDP
relaxation solution of the MAX-CUT problem—a well-known



820 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 6, JUNE 2002

integer quadratic programming problem in graph theory.
Following [44], SDP relaxations of various combinatorial op-
timization problems have been reported in graph optimization,
network management and scheduling [31]. In what follows
we present an SDP-relaxation-based solution to our design
problem.

First, we replace design variable in (36) by
and express the problem as

(37a)

subject to: for (37b)

where constraints have been expressed as the
equality constraints in (37b). If we define matrix ,
then the objective function in (37a) can be written as

where

(38)

Further notice that is positive semidefinite and that
if and only if . Therefore, the problem in (37) is
equivalent to

(39a)

subject to: (39b)

for (39c)

(39d)

An SDP relaxation of (39) is obtained by neglecting the rank
constraint in (39d) while keeping the remaining two constraints,
which leads to the minimization problem

(40a)

subject to: (40b)

for (40c)

If we define

(41)

then, the constraints in (40c) can be expressed as for
, and the problem in (40) fits perfectly in with

that of (2). Hence the problem in (40) is an SDP problem—a
relaxation of the MIP problem in (37).

If we denote the minimum values of the objective functions
in problems (39) and (40) by and , respectively, then be-
cause the feasible region of the problem in (39) is a subset of the
feasible region of the problem in (40), we have . Fur-
thermore, it has been shown [45] that if the diagonal elements
of are all zero and the off-diagonal elements ofare all non-
negative, then . Therefore, we have

This indicates that the solution of the SDP problem in (40) under
the above-mentioned conditions onis a good approximation
of the solution of the problem in (39). It should be stressed that
for filter design problems, the conditions imposed onare, in
general, not satisfied, and a tight-dependent lower bound of

has not been available. As will be demonstrated in Section
IV-E, nevertheless, our design practice seems to indicate that
suboptimal designs with satisfactory performance can be ob-
tained through Goemans-Williamson SDP relaxation.

C. A Binary Solution of Problem (37)

Having solved the SDP problem in (39) for, there are two
approaches that can be used to generate a binary solution for the
problem in (37). The first approach is based on the structure of

in (38), i.e., if is the solution of (39), then can be obtained
from its last column immediately. This observation suggests a
straightforward approach as follows. Let be the solution of
(40), then, a suboptimal solution of (37) is obtained as

(42)

where denotes the vector formed by the first
components of the last column of .
At the cost of more computations, a better binary solution

can be obtained using the eigen-decomposition of matrix,
i.e., , where is an orthogonal matrix and
is a diagonal matrix with the eigenvalues of on its diagonal
in decreasing order. It is well known that an optimal rank-one
approximation of in the 2-norm sense is given by ,
where is the largest eigenvalue of and is the eigen-
vector associated with . If we denote the vector formed by
the first components of by and the last component of

by , i.e.

then, the optimal rank-one approximation of can be written
as

where . Since , by comparing the above
equation with in (38), we see that vector is a reasonable
approximation of in terms of their signs. Therefore, a binary
solution of the problem in (37) can be generated as

if
if

(43)

D. An Efficient SDPR Solution via Duality

Although polynomial-time primal-dual interior-point algo-
rithms [30], [31] can be applied to the SDP problem in (40),
numerical difficulties may arise because of the involvement of
a large number of variables even for filters of moderate order:
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For a linear-phase 2-D filter of order , the di-
mension of vector in (37) is , thus
the number of variables in in the relaxed SDP problem (40)
is . With , for example, problem
(40) involves as many as 5050 variables. It should be stressed
that this “dimensionality” problem is quite common in SDP-re-
laxation based treatment of many combinational optimization
problems [46]. In what follows, we present a method that first
deals with the dual of the problem, which involve considerably
less number of variables, and then converts the solution of the
dual problem to that of the original problem.

It follows from Section II that the dual of (40) is given by

(44a)

subject to: (44b)

where is defined in
(38) and are defined in (41). Note that the dual problem in
(44) involves only variables. Interior-point methods, such
as the projective methods proposed by Nemirovski and Gahinet
[35], [36], that do not use a primal-dual solution setting, can be
used to solve (44) efficiently.

To obtain the solution of the primal SDP problem in (40), we
need a bit of analysis on the KKT conditions in (5). Let be
the solution of the dual problem (44), then the KKT conditions
become

(45a)

for (45b)

(45c)

(45d)

From (45a), we have

(46)

Since is obtained from aninterior-point iterative algorithm
(such as the projective method), it can only be a (good) approx-
imate solution of (45) which is in theinterior of the feasible
region. Consequently, matrix remains positive definite. This
approximateness of entails some modifications of (45c) and
in this regard, we recall the concept ofcentral pathin the inte-
rior-point optimization theory. The central path is defined as a
parameterized set , for which satis-
fies the modified KKT conditions

(47a)

for (47b)

(47c)

and (47d)

Because of (47d), the entire central path lies in the interior of
the feasible region and, as , the path converges to the
solution set of (45). This in conjunction with the
fact (derived from (47c)) that

(48)

suggests an approximate solution of (40) as

(49)

for some sufficiently small , where is obtained from
(46). In order for in (49) to satisfy the equality conditions in
(45b), is modified with a scaling matrix as

(50a)

where

(50b)

the th diagonal compnent of (50c)

Here, we pre- and post-multiply so that the modified in
(50a) remainssymmetricand positive definite. Note that because
of the equality constraints (45b), the parameterin (49) has
been absorbed by the scaling matrixin (50).

In summary, the steps for designing a linear-phase 2-D FIR
filter with SP2 coefficients are as follows.

1) Design a linear-phase 2-D FIR filter with continuous co-
efficients .

2) For a given term budget and range , find
least SP2 upper bound and largest SP2 lower bound

for each . Compute and
.

3) Compute matrix and vector in (35) and form matrix
using (38).

4) Solving SDP problem (44) and denote its solution by.
5) Compute using (46).
6) Compute using (50).
7) Obtain using (42) or (43).
8) Set and compute the coefficient matrix

using (32).

E. Design Examples

The SDP relaxation (SDPR) method described above was ap-
plied to design linear phase circularly symmetric lowpass 2-D
FIR filters of order with SP2 coefficients for

. The prototype (continuous-coefficient) FIR fil-
ters were designed to minimize the WLS error in (13) with the
following design parameters: in
both passband and stopband, , and the average
number of P2 terms per coefficient was set to 2.0 for

for , and 2.6 for . The designs
obtained were compared with the suboptimal designs character-
ized by (31), the optimal designs with SP2 coefficients obtained
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TABLE III
COMPARISONS OFVARIOUS DESIGNS

using MIP, and the WLS designs with continuous coefficients.
All the designs are performed using a Pentium866 where the al-
gorithms involved were implemented using MATLAB 5. The re-
sults are summarized in Table III where the four types of designs
are labeled as Design (31), SDPR, MIP, and WLS, respectively.
It should be mentioned that for the SDPR designs, both (42)
and (43) were examined to obtained the binary solutionsand,
as expected, the rank-one approximation based approach (i.e.,
(43)) yielded consistently better designs. The results included
in the SDPR column of the table were obtained using (43). For
the SDPR and MIP designs, we also include the CPU time (in
seconds) used (see the second figures in the SDPR and MIP
columns of the table) as a measure of design efficiency. Due to
the exceedingly long CPU time required by the MIP-based de-
signs, we were only able to include the design data for five lower
order designs. From the table it is observed that compared with
the MIP-based designs the SDPR-based designs offered nearly
optimal performance with considerably reduced computational
complexity.

V. DESIGN OFRECURSIVEFILTERS

Our focus in this section is on weighted minimax design of
stable 2-D IIR filters. Throughout the section the IIR filters
are assumed to haveseparable denominators. This assumption
simply imposes a constraint on the type of IIR filters being
quadrantally symmetric[47]. Nevertheless this class of filters
is broad enough to cover practically all types of IIR filters that
have been found useful in image/video and other 2-D DSP ap-
plications.

A. Notation

Let the transfer function of a 2-D IIR digital filter be denoted
by

(51)

where

with

with

and and are integers with and .
This form of is convenient to preserve a certain number
of poles at the origin as it might be beneficial for the design of
several types of digital filters [48]. The frequency response of
the filter can now be written as

(52)

where

(53)

(54)

For the sake of description simplicity, we only consider the case
and . With straightforward modifications,

our design algorithm can be applied to the cases where
and . The notation shown in the equation at the bottom
of the page will be adopted in the rest of the section.

B. The Design Problem

The design problem considered here is to find astable
that best approximates a given 2-D frequency

response in weighted minimax sense. Namely,
solves the constrained optimization problem

(55a)

subject to: is stable (55b)
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where

(55c)

C. Stability Constraints

The filter in (51) is stable if and only if and are
stable 1-D polynomials, i.e., their zeros are strictly inside the
unit circle. If we define the canonical matrices

...
...

(56)

and

...
...

(57)

then, an irreducible transfer function rep-
resents a stable IIR 2-D filter if and only if both and are
stable, i.e., the maximum modulus of their eigenvalues is strictly
less than 1. From the well known Lyapunov theory [49], it fol-
lows that and are stable if and only if there exist positive
definite matrices and such that

(58)

and

(59)

It can be readily verified that (58) and (59) hold if and only if

(60)

and

(61)

respectively. As will be seen in the next section, the LMI con-
straints in (60) and (61) are of convenience to use in an SDP-
based design, because the design parameters in the denominator
polynomials and appearaffinely.

D. An Iterative SDP Formulation

First, we re-formulate the minimax problem in (55) as

(62a)

subject to: (62b)

for (62c)

for (62d)

where the upper boundwill be treated as anauxiliary design
variable. Next we write the constraint in (62b) as

(63)

where for the simplicity of writing the dependence of functions
and on has been omitted. Note that the

term in (63) isnonlinearw.r.t. the design variables. This
makes it difficult to convert the problem into a SDP problem
because the square of the term in magnitude is no longer
quadratic. A remedy for this technical difficulty is to use an
alternatingiteration scheme as described below.

Suppose a stable pair, , has been chosen. For
an iteration index , (63) suggests to first solve the fol-
lowing constrained problem for and a stable

(64a)

subject to: (64b)

for (64c)

Let the polynomial obtained by solving (64) be denoted
by . We seek to find a stable and a that
solves the constrained problem

(65a)

subject to: (65b)

for (65c)

The iterations described above are similar in spirit to the
Steiglitz-McBride (SM) scheme which finds applications in
system identification and adaptive filtering [50]. The difference
between (64), (65) and the SM scheme is that the SM scheme

for

for
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iterates a least-squares objective function while each of (64)
and (65) involves an iterative constraint in a minimax design.

With straightforward manipulations it can be verified that the
constraint in (64b) can be expressed as a parameterized LMI
constraint

(66)

where

with

We see that matrix depends on design parame-
ters and affinely, and the stability of and
obtained from the th iteration assures a well-defined
weighting factor .

Concerning the stability constraint in (64c), it follows from
Section 5.C that for a stable there exists a
that satisfies the Lyapunov equation

(67)

where is the canonical matrix (56) with in its first
row, and is the identify matrix. It now follows from (60)
that a natural stability constraint for is

(68)

where is defined by (56) and is a small scalar intro-
duced to control the stability margin of . Since de-
pends on and hence affinely, (68) is an LMI. Also notice
that the positive define matrix in (68) is obtained from
(67), hence (68) is “constrained” by . As a result, (68)
is asufficient(but not necessary) constraint for the stability of

.

At the -th iteration the constrained optimization problem in
(64) can now be formulated as

(69a)

subject to: (69b)

where is the augmented variable defined by

...
(69c)

and is a discrete implementation of (66) on a set of
frequencies , for in a frequency
region of interest

(69d)

Since both and depend on affinely, (69) is an
SDP problem.

By a similar analysis, it can be verified that the companion
optimization problem in (65) at the-th iteration can be formu-
lated as an SDP problem:

(70a)

subject to: (70b)

where

(70c)

and matrices and are defined in a manner similar
to that of and , respectively.

E. The Algorithm

Given a desired frequency response , a weighting
function , and filter order , one chooses a pair
of convenient initial vectors and (for example, and

). Next, one solves the SDP problems in (69) and then
(70) for , and evaluates .
If is less then a prescribed tolerance, then the (from

) and (from ) are deemed as the optimal solution for the
design problem. Otherwise the algorithm proceeds by solving
(69) and then (70) for , etc.

F. A Design Example

As an example, we applied the above algorithm to design a
circular symmetric, lowpass IIR filter of order
with , and linear phase response in the
passband with group delay in both directions being 7.5 sam-
ples. A total of grid points were used with 190
points in the passband and 569 points in the stopband. With

in the union of the pass-
band and stopband regions and elsewhere, it
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(a)

(b)

Fig. 2. (a) Amplitude responses (in decibels) of the IIR filter. (b) Group delay
in passband.

took the proposed algorithm 16 iterations and 13.446 K sec-
onds of CPU time to converge to a solution whose amplitude
and phase (in passband) responses are depicted in Fig. 2. The
maximum modulus of the poles of was
0.8238, and the maximum amplitude deviation in passband and
stopband were 0.0315 and 0.0319, respectively. The maximum
relative deviation in group delay in passband was 0.0886. The
proposed method was compared with the SVD-based method

[20]. The SVD-based method was applied to design a
lowpass circularly symmetric stable IIR filter with the

same passband and stopband edges. The method started with
designing a linear phase FIR filter of order and a stable
IIR filter of order (12, 12) was obtained by using the balanced
approximation method. We tried a number of prototype FIR
filters with varying from 22 to 32, and the best result was
obtained with which yields a stable IIR filter whose
maximum amplitude deviation in passband and stopband were
0.0578 and 0.0612, respectively, and the maximum relative de-
viation in group delay was 0.0861.

VI. CONCLUSION

We have attempted to show that SDP has the potential to serve
as the optimization engine of a unified design tool for a wide
range of 2-D digital filters. SDP is not only equipped with an
ever-growing family of interior-point solution algorithms but
offers the designer a natural setting in which many filter design
problems can be formulated.
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