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ABSTRACT
One of the key steps in Network-on-Chip (NoC) based design
is spatial mapping of cores and routing of the communication
between those cores. Known solutions to the mapping and
routing problem first map cores onto a topology and then
route communication, using separated and possibly conflict-
ing objective functions. In this paper we present a unified
single-objective algorithm, called Unified MApping, Routing
and Slot allocation (UMARS). As the main contribution we
show how to couple path selection, mapping of cores and
TDMA time-slot allocation such that the network required
to meet the constraints of the application is minimized. The
time-complexity of UMARS is low and experimental results
indicate a run-time only 20% higher than that of path se-
lection alone. We apply the algorithm to an MPEG decoder
System-on-Chip (SoC), reducing area by 33%, power by 35%
and worst-case latency by a factor four over a traditional
multi-step approach.

Categories and Subject Descriptors: B.4.3 [In-
put/Output and Data Communications]: Interconnections –
Topology

General Terms: Design, Algorithms, Performance

Keywords: System-on-Chip, Network-on-Chip, Quality-of-
Service, Mapping, Routing

1. INTRODUCTION
Systems-on-Chip (SoC) grow in size with the advance of

semiconductor technology enabling integration of dozens of
cores on a chip. The continuously increasing number of cores
calls for a new communication architecture as traditional ar-
chitectures are inherently non-scalable, making communica-
tion a bottleneck [1, 21].

System architectures are shifting towards a more
communication-centric methodology [21]. Growing SoC com-
plexity makes communication subsystem design as important
as computation subsystem design [2]. The communication
infrastructure must efficiently accommodate the communi-
cation needs of the integrated computation and storage ele-
ments. In application domains such as multi-media process-
ing, the bandwidth requirements are already in the range of
several hundred Mbps and are continuously growing [17].
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Networks-on-Chip (NoC) have emerged as the design
paradigm for design of scalable on-chip communication ar-
chitectures, providing better structure and modularity [1, 3,
7, 21]. Although NoCs solve the interconnect scalability is-
sues, SoC integration is still a problem.

To enable cores to be designed and validated indepen-
dently, computation and communication must be decou-
pled [20]. Decoupling requires well defined communication
services [13]. Service guarantees are essential in many SoCs
as numerous application domains require real-time perfor-
mance [20]. Quality-of-Service (QoS) guarantees enable in-
dependent design and validation of every part of the SoC
by ensuring that real-time application requirements are met
under all circumstances [7].

Creating a NoC-based system with guaranteed services re-
quires efficient mapping of cores and distribution of NoC re-
sources. Design choices include core port to network port
binding, routing of communication between cores and allot-
ment of network channel capacity over time. These choices
have significant impact on energy, area and performance met-
rics of the system.

Existing solutions rely on a multi-step approach where
mapping is carried out before routing [7, 12, 19]. Routing
and mapping objectives do hereby not necessarily coincide.
The routing phase must adhere to decisions taken in the map-
ping phase which invariably limits the routing solution space.
Mapping therefore significantly impacts energy and perfor-
mance metrics of the system [12].

We propose a unified algorithm, called Unified MApping,
Routing and Slot allocation (UMARS), that couples map-
ping, path selection and time-slot allocation, using a single
consistent objective. The time-complexity of UMARS is low
and experimental results indicate a run-time only 20% higher
than that of path selection alone. We apply the algorithm
to an MPEG decoder SoC, reducing area by 33%, power by
35% and worst-case latency by a factor four over a traditional
multi-step approach.

The problem domain is described in Section 3 and formal-
ized in Section 4. The UMARS algorithm, which solves the
unified allocation problem under application constraints, is
described in Section 5. Experimental results are shown in
Section 6. Finally, conclusions are drawn in Section 7.

2. RELATED WORK
QoS routing objectives are discussed in [9, 22] and impli-

cations with common-practice load-balancing solutions are
addressed in [16]. In addition to spatial, temporal character-
istics are included in path selection in [8, 10].

The problem of mapping cores onto NoC architectures is
addressed in [7, 11, 12, 17, 18, 19].

In [11] a branch-and-bound algorithm is used to map cores
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onto a tile-based architecture, aiming to minimize energy
while bandwidth constraints are satisfied. Static xy rout-
ing is used in this work. In [12] the algorithm is extended to
route with the objective of balancing network load.

In [17, 18, 19] a heuristic improvement method is used. An
initial mapping is derived with objectives such as minimiz-
ing communication delay, area or power dissipation. This is
succeeded by routing according to a predefined routing func-
tion. Routing and evaluation is repeated for pair-wise swaps
of nodes in the topology, thereby exploring the design space
in search for an efficient mapping. In [19] the algorithm inte-
grates physical planning and QoS guarantees. Design space
exploration is improved with a robust tabu search.

In all these approaches [11, 12, 17, 18, 19], multiple map-
ping and routing solutions are evaluated iteratively to mit-
igate the negative effects mapping decisions may have on
routing.

A greedy non-iterative algorithm is presented in [7]. Map-
ping is done based on core clustering whereafter communica-
tion is routed using static xy routing.

Known mapping and routing algorithms that incorporate
QoS guarantees [10, 19] assume static communication flows,
where traffic does not vary with input data.

In this work, our methodology unifies the three resource
allocation phases: spatial mapping of cores, spatial routing
of communication, and the restricted form of temporal map-
ping that assigns time-slots to these routes. We consider the
communication real-time requirements, and guarantee that
application constraints on bandwidth and latency are met.
The proposed solution is fundamentally different from [7, 11,
12, 17, 18, 19] in that mapping is no longer done prior to
routing but instead during it. However, we compare UMARS
only to [7], and a more extensive comparison with traditional
algorithms [11, 12, 17, 18, 19] is of value.

3. PROBLEM DESCRIPTION
We assume that the application is mapped onto cores. The

bandwidth and latency constraints of the application flows
are determined beforehand by means of static analysis or
simulation.

Our problem is to: 1) map those cores onto any given
NoC topology, 2) statically route the communication and
3) allocate TDMA time-slots on network channels so that
application constraints are met. Services are provided on the
level of flows where a flow is a sequence of packets being sent
from a source to a destination. Regular, as well as irregular
topologies are supported to enable dedicated solutions.

Two important requirements can be identified and the onus
is, in both cases, on the mapping and routing phases. Firstly,
the constraints of individual flows must be satisfied. These
constraints must hence be reflected in the selection of map-
ping, path and time slots such that proper resources are re-
served. Secondly, all flows must fit within the available net-
work resources. Failure in allocating a flow is attributable
to non-optimal previous allocations or insufficient amounts
of network resources. This calls for conservation of the finite
pool of resources, namely the channels and their time-slots.

This paper shows how path selection can be extended to
span also mapping and time-slot allocation. This enables
the aforementioned requirements to be formulated as path
selection constraints and optimization goals.

4. PROBLEM FORMULATION
The application is characterized by an application graph.

Definition 1. An application graph is a directed multi-
graph, A(P, F ), where the vertices P represent the set of

cores, and the arcs F represent the set of flows between cores.
More than a single flow is allowed to connect a given pair of
cores and no core is isolated. Each flow f ∈ F is associated
with a minimum bandwidth constraint measured in number
of slots, b(f), and a maximum latency constraint, l(f). Let
s(f) denote the source node of f and d(f) destination node.

To be able to constrain mapping according to physical lay-
out requirements, we group the cores in P and map groups
instead of individual cores. UMARS is thereby forced to
map certain cores to the same spatial location. The map-
ping groups correspond to a partition PM of P , where the
elements of PM are jointly exhaustive and mutually exclusive.
The equivalence relation this partition corresponds to, con-
siders two elements in P to be equal if they must be mapped
to the same spatial location. The equivalence class of a core
p is hereafter denoted by [p].

NoCs are represented by interconnection network graphs.

Definition 2. An interconnection network graph I is a
strongly connected directed multigraph, I(N, C). The set
of vertices N is composed of three mutually exclusive sub-
sets, NR, NNI and NP containing routers, network interfaces
(NI) and core mapping nodes as shown in Figure 1. The latter
are dummy nodes to allow unmapped cores to be integrated
in the interconnection graph. The number of core mapping
nodes is equal to the number of core subsets to be mapped,
|NP | = |PM |.

The set of arcs C is composed of two mutually exclusive
subsets, CR and CP containing physical network channels
and virtual mapping channels. Channels in CR interconnect
nodes in NR and NNI according to the physical router net-
work architecture. Channels in CP interconnect every node
in NP to all nodes in NNI .

More than a single physical channel is allowed to con-
nect a given pair of routers. However, an NI nNI is al-
ways connected to a single router through one egress channel
cE(nNI) ∈ CR and one ingress channel cI(nNI) ∈ CR, as
depicted in Figure 1.

The time division of network channel capacity is governed
by slot tables. These tables are used to set up pipelined
virtual circuits and divide bandwidth between flows [20]. A
slot table is a sequence of elements in T = F ∪{∅}. Slots are
either occupied by a flow f ∈ F or empty, represented by ∅.
The number of residual slots in a slot table t is denoted σ(t).
The same slot table size ST is used throughout the entire
network.

Each channel c ∈ C is associated with the bandwidth not
yet reserved (residual bandwidth) measured in number of
slots, β(c), and a slot table, t(c). Let s(c) denote the source
node of c and d(c) destination node.

As residual bandwidth and slot tables change over itera-
tions, I is subscripted with an index. I0 denotes the initial
network where β(c) = ST and every slot in t(c) is empty for
every channel c ∈ C.

Definition 3. A path π ∈ seq C from source ns ∈ N to
destination nd ∈ N is a non-empty sequence of channels
〈c1, . . . , ck〉 such that:

1. d(ci) = s(ci+1) for k = 1 . . k − 1

2. s(head π) = ns and d(last π) = nd.

A path π = 〈c1, . . . , ck〉 is associated with an aggregated
slot table t(π). Every channel slot table t(ci), i = 1 . . k, is
shifted cyclically i − 1 steps left and a slot in t(π) is empty
iff it is empty in all shifted slot tables [20].
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Figure 1: Iteration and successive refinement of mapping and interconnection network

Definition 4. For a source and destination node ns, nd ∈
N , Π(ns, nd) is the set of all possible paths from ns to nd.

The NIs and core mapping nodes together form the set of
mappable nodes NM = NNI ∪ NP as shown in Figure 1(a).
NM contains all nodes to which the elements of PM can be
mapped. We define a mapping function, mapi : PM → NM ,
that maps sets of cores (the elements in PM ) to mappable
nodes. Like I, this function is iterated over, hence the index.
Our starting point is an initial mapping, map0, where every
[p] ∈ PM is mapped to a unique nP ∈ NP .

As seen in Figure 1(a), the range of map0 initially covers
only NP . As the algorithm progresses (b), the range of mapi

covers both NP and NNI partially. Successive iterations of
mapi progressively replace elements of NP with elements of
NNI until a final mapping is derived (c), where the range of
mapk contains elements of NNI exclusively.

Let the set of mapped cores P ′
i denote those elements of

P where mapi([p]) ∈ NNI . From our definition of map0 it
follows that P ′

0 = ∅.

4.1 UMARS contribution
We now introduce a major change from previous work and

formulate mapping and path selection problem as a pure path
selection problem.

Given an interconnection network I0 and an application
graph A, we must select a path π for every flow f ∈ F such
that bandwidth (1) and latency (2) requirements of the flow
are met without overallocating the network channels (3).

bandwidth of t(π) ≥ b(f) (1)

latency of t(π) ≤ l(f) (2)

β(c) ≥ 0, ∀c ∈ C (3)

The theory required to derive worst-case bandwidth and
latency from a slot table is covered in [5].

5. UNIFIED MAPPING AND ROUTING
The outmost level of UMARS is outlined in Algorithm 5.1

and briefly introduced here, whereafter further explanations
follow in Sections 5.1 and 5.2.

UMARS iterates over the monotonically decreasing set of
unallocated flows F ′

i and never back-tracks to reevaluate an
already allocated flow, as seen in Step 2a. This results in a
low time-complexity at the expense of optimality. The flow f
is selected based on the current mapping mapi and network
Ii. When a path π is selected for f in Step 2b, the first
and last channel implicitly determine what NI s(f) and d(f)
should be mapped to respectively. Time-slots are allocated to

f on π whereafter mapi and Ii are refined to reflect the new
state. The procedure is repeated until all flows are allocated.

Algorithm 5.1 Allocation of all flows F

1. Let the set of unallocated flows F ′
0 = F

2. While F ′
i 
= ∅:

(a) Get flow arg maxf∈F ′′ b(f)

(b) Select a path π ∈ Π(s(f), d(f))

(c) F ′
i+1 = F ′

i \ {f}

5.1 Flow traversal order
We order flows by bandwidth requirements as it: 1) helps

in reducing bandwidth fragmentation [16], 2) is important
from an energy consumption and resource conservation per-
spective since the benefits of a shorter path grow with com-
munication demands [12], 3) gives precedence to flows with
a more limited set of possible paths [12].

Ordering by b(f) alone may affect resource consumption
negatively as clusters of communicating cores are disre-
garded. Consideration is taken by limiting the selection to
flows having s(f) or d(f) mapped to a node in NNI . As a
result, every cluster of communicating cores have their flows
allocated in sequence. A similar approach is used in [17, 18]
where the next core is selected based on communication to
already mapped cores.

Due to the nature of the least-cost path selection algo-
rithm, explained in Section 5.2.2, we restrain the domain
even more and only consider flows where s(f) ∈ P ′

i . This
restriction can be removed if path selection is done also in
the reverse direction, from destination to source.

The next flow is chosen according to Equation (4), where
f ∈ F ′′

i iff f ∈ F ′
i ∧ s(f) ∈ P ′

i . When the latter condition is
not fulfilled by any flow, the entire F ′

i is used as domain.

arg max
f∈F ′′

b(f) (4)

5.2 Path selection
When a flow f is chosen, we proceed to Step 2b of Algo-

rithm 5.1 and select a path for f . This is done according to
Algorithm 5.2, briefly presented here, followed by in-depth
discussions in Sections 5.2.1 through 5.2.5.

Path selection for f is composed of three major tasks:
1) Speculative bandwidth reservations for f are restored in
Steps 1 and 2 to have Ii reflect what resources are available to
f prior to its allocation. Speculative reservations are required
as interdependent flows are not allocated simultaneously and
are further discussed in Section 5.2.1. 2) A path from s(f)
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Algorithm 5.2 Path selection for a given f

1. If s(f) ∈ P ′
i , restore bandwidth reservation on egress

channel by adding �b(f) to β(cE(mapi([s(f)])))

2. If d(f) ∈ P ′
i , restore bandwidth reservation on ingress

channel by adding �b(f) to β(cI(mapi([d(f)])))

3. Select a constrained least-cost path πs from
mapi([s(f)]) to the router nR ∈ NR with lowest
cost. Arity is used to distinguish between routers with
equal cost.

4. If s(f) /∈ P ′
i , then

(a) Refine mapi+1 = mapi ⊕ {[s(f)] �→ d(head πs)}
(b) Reserve egress bandwidth for all flows emanating

from [s(f)] by subtracting
P

fE∈FE
�b(fE) from

β(cE(d(head πs))) where fE ∈ FE iff s(fE) ∈
[s(f)] and fE 
= f

(c) Reserve ingress bandwidth for all flows inci-
dent to [s(f)] by subtracting

P
fI∈FI

�b(fI) from

β(cI(d(head πs))) where fI ∈ FI iff d(fI) ∈ [s(f)]

5. Select a constrained least-cost path πd from d(last πs)
to mapi([d(f)])

6. If d(f) /∈ P ′
i , then

(a) Refine mapi+1 = mapi ⊕ {[d(f)] �→ s(last πd)}
(b) Reserve egress bandwidth for all flows emanating

from [d(f)] by subtracting
P

fE∈FE
�b(fE) from

β(cE(s(last πd))) where fE ∈ FE iff s(fE) ∈ [d(f)]

(c) Reserve ingress bandwidth for all flows inci-
dent to [d(f)] by subtracting

P
fI∈FI

�b(fI) from

β(cI(s(last πd))) where fI ∈ FI iff d(fI) ∈ [d(f)]
and fI 
= f

7. Select a constrained set of slots TS in t(π) for the com-
plete path π = πs � πd and update t(c), ∀c ∈ π. Do
a final bandwidth reservation by subtracting |TS | from
β(c), ∀c ∈ π.

to d(f) is selected in Steps 3 and 5, a procedure elaborated
on in Section 5.2.2. If s(f) or d(f) are not yet mapped to
NIs, these steps include refinement of mapi, which is covered
in Section 5.2.4. If mapi is refined, then bandwidth reserva-
tions are made on ingress and egress channels for flows other
than f now having their source or destination mapped to an
NI. 3) Time-slots are selected and reserved on the resulting
path π, as discussed in Section 5.2.5.

5.2.1 Bandwidth reservation
When s(f) for a flow f is mapped to an NI, the commu-

nication burden placed on the ingress and egress channels of
the NI is not determined by f only. As every p in [s(f)] is
fixed to this NI, the aggregated communication burden of all
flows incident to those cores is placed on the ingress channel.
The egress channel similarly has to accommodate all flows
emanating from those cores. When d(f) is mapped, all flows
to or from [d(f)] must be accounted for accordingly.

Failing to acknowledge the above might result in overal-
location of network resources. Numerous flows, still not al-
located, may be forced to use the ingress and egress chan-
nel due to an already fixed mapping. An NI would thereby
be associated with an implicit load, not accounted for when
evaluating possible paths. We make this load explicit by
exploiting knowledge of ingress-egress pairs. Although we
have no knowledge of exactly what time slots will be needed
by future flows, we can estimate the bandwidth required by

�b(f) and incorporate average load β(c) in the cost function,
further discussed in Section 5.2.3.

Steps 1 and 2 of Algorithm 5.2 restore the speculative reser-
vations for f on egress and ingress channel to have Ii reflect
what resources are available prior to its allocation.

The corresponding bandwidth reservations on egress and
ingress channels are carried out in Steps 4b, 4c and Steps 6b,
6c for source and destination NI respectively.

5.2.2 Selecting constrained least-cost path
Steps 3 and 5 of Algorithm 5.2 select a constrained least-

cost path using Dijkstra’s algorithm.
Two minor modifications are done to the standard relax-

ation procedure, where πp denotes the partial path from s(f)
to the current node: 1) Search space is pruned by discarding
emanating channels where β(c) < b(f) or σ(t(πp � 〈c〉)) <
b(f). Channels that cannot meet bandwidth constraints are
thereby omitted. 2) As the final path must contain only
physical network resources, channels in CP may only be the
first or last element of a path. Hence, if d(last πp) ∈ NP

then all emanating channels are discarded.
The NI architecture requires a path to incorporate at least

one physical channel as packets cannot turn around inside an
NI. From a least-cost perspective the best path from an NI
to itself would be the empty path and we force the algorithm
into leaving the NI by doing path selection in two steps.

The first part of the path πs is selected in Step 3 of Al-
gorithm 5.2. We start at s(f) and find the router with the
lowest cost. If several such routers exist, then arity is used
to distinguish between them. Routing flexibility is thereby
maximized and the flows with the highest communication
volume have their s(f) and d(f) mapped to NIs connected
to high arity routers as suggested in [18].

The second part of the path πd is selected in Step 5, start-
ing where πs ended. From there we continue to the location
where d(f) is currently mapped. The complete path is then
just the two parts concatenated, π = πs � πd.

Deriving π as two separate least-cost parts might, without
further care, lead to a path which is not the least-cost path
in Π(s(f), d(f)) as minimization is done on the parts in iso-
lation. However, if a flow f has s(f) ∈ P ′

i then there is only
one possible least-cost router and hence only one possible πs.
As this πs is a part of any path in Π(s(f), d(f)) and πd is a
least-cost path, π must be a least-cost path in Π(s(f), d(f)).
We therefore prefer allocating flows where s(f) ∈ P ′

i , as dis-
cussed in Section 5.1.

5.2.3 Choice of cost function
The cost function plays a critical role in meeting the re-

quirements discussed in Section 3. It therefore reflects both
resource availability and resource utilization. We select a
path with a low contention (high probability of successful al-
location) and at the same time try to keep the path length
short, not to consume unnecessarily many resources. Similar
heuristics are suggested in [14, 15, 22].

Double objective path optimization in general is an in-
tractable problem [9]. Combining objectives in one cost func-
tion allows for tractable algorithms at the cost of optimal-
ity. We therefore use a linear combination of the two cost
measures, where two constants Γc and Γh control the im-
portance (and normalization) of contention and hop-count
respectively.

Contention is traditionally incorporated by making chan-
nel cost inversely proportional to residual bandwidth, 1

β(c)
,

thereby considering only average load. When using pipelined
virtual circuits [20], average load is not reflecting what re-
sources are available to the current flow. Not even the slot
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table t(c) itself provides an accurate view. We exploit knowl-
edge of the partial path πp traversed so far and determine
contention cost for a channel c by how much t(c) reduces the
amount of available slots compared to t(πp) if c is traversed.
Available bandwidth is incorporated by taking the maximum
of the two as contention measure, according to Equation (5).

Γc max {SL − β(c), σ(t(πp)) − σ(t(πp � 〈c〉))} + Γh (5)

Channels in CP must not contribute to the path cost, as
they are not physical interconnect components. We therefore
make them zero-cost channels.

5.2.4 Refining mapping function
When a path πs has been selected for a flow f , we check

in Step 4 of Algorithm 5.2, whether s(f) is not yet mapped
to an NI. If not, πs decides the NI to which the core is to be
mapped. We therefore refine the current mapping function
with the newly determined mapping to a node in NNI as
seen in Step 6a. This refinement is fixed and every core in
[s(f)] is now in P ′

i .
Correspondingly we check if d(f) is not yet mapped to an

NI in Step 6 and if not, refine the mapping according to πd

in Step 6a.

5.2.5 Resource reservation
When the entire path π is determined in Step 7 of Algo-

rithm 5.2, we deduce the slots available to f by looking at
t(π). From the empty slots we select a set of slots TS such
that bandwidth and latency requirements of f are met [5].
All channels c ∈ π are then updated with a new t(c) and
β(c). Slot tables hereafter reflect what slots are reserved to
f and β(c) is updated with the actual number of slots used.

5.3 Algorithm termination
With each refinement of the mapi, zero, one or two addi-

tional sets of cores will be mapped to elements of NNI instead
of NP , hence P ′

i+1 ⊇ P ′
i , as depicted in Figure 1.

Theorem 1. ∃k such that all cores are mapped to NIs,
P ′

k = P .

Proof. When a flow is f allocated, mapi will be refined
so that s(f) and d(f) are guaranteed to be in P ′

i . Hence, for
every allocated flow f /∈ F ′

i we know that s(f), d(f) ∈ P ′
i .

When all flows are allocated F ′
k = ∅, s(f) and d(f), ∀f ∈ F

will be in P ′
k. As no isolated cores are allowed in A it follows

that P = P ′
k.

5.4 Algorithm complexity
Due to the greedy nature of UMARS the time-complexity

is very low, as seen in Equation (6). The expression is dom-
inated by the first term that is attributable to Dijkstra’s al-
gorithm, used for path selection. Experiments indicate that
algorithm run-time is only 20% higher than that of load-
balancing path selection alone.

O(|F |(|C| + |N | log |N |)) + O(|F |(|F | + |P | + ST )) (6)

6. EXPERIMENTAL RESULTS
A cost function where Γc = 1 and Γh = 1 is used

throughout the experiments. Those values favor contention-
balancing over hop-count as the slot table size is an order
of magnitude larger than network diameter in all use-cases.
All results are compared with the traditional multi-step al-
gorithm in [7], referred to as original.

For comparison, only mesh topologies are evaluated. For
a given slot table size ST , all unique n × m router networks
with less than 25 routers were generated in increasing size

order. For every such router network, up to three NIs were
attached to each router until all application flows were allo-
cated, or allocation failed. Slot table size was incremented
until allocation was successful.

Each design was simulated during 3 × 106 clock cycles in
a flit-accurate SystemC simulator of our NoC, using traffic
generators to mimic core behavior.

The mpeg use-case is a MPEG codec SoC, further described
in Section 6.2. The uniform use-case features all-to-all com-
munication with 20 cores and a total aggregated bandwidth
of 750 Mbps per core. The remaining use-cases are internal
designs, all having a hot-spot around a limited set of cores.

6.1 Evaluation experiments
Silicon area requirements are based on the model presented

in [6], assuming a 0.13 μm CMOS process. Figure 2 shows
that area requirements can be significantly reduced. Up to
33% in total area reduction is observed for the experiment
applications. Slot table sizes are reduced why the buffer re-
quirements, analytically derived as described in [7], decrease,
and area savings up to 31% are observed for the NIs. The
router network is reduced between 30% and 75%, but the
impact on total area is much smaller.
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Figure 2: Comparison of area requirements.

The relative energy consumption of the router network,
calculated according to the model in [4] is depicted in Fig-
ure 3. As the application remains the same and essentially
the same bits are being communicated, the savings in en-
ergy consumption is attributable to flows being allocated
on paths with fewer hops. There is a clear correlation be-
tween energy saving ratio and relative reduction in number
of routers. However, as the smaller router network is used
more extensively, energy is reduced less than the number of
routers.
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Figure 3: Comparison of energy consumption.

Figure 4 shows the average utilization of channels emanat-
ing from NIs and routers respectively. As expected, utiliza-
tion increase as router network size is reduced and UMARS
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consequently improves both NI and router utilization. Time-
division-multiplexed circuits imply bandwidth discretization,
leading to inevitable over-allocation and complicating the
task of achieving high utilization. This together with un-
balanced hot-spot traffic, leaving some parts of the network
lightly loaded and others congested, lead to inherent low uti-
lization in some of the example use-cases. Note that utiliza-
tion is only to be optimized after all constraints are met.
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Figure 4: Comparison of NoC resource utilization.

6.2 An MPEG application
An existing MPEG codec SoC with 16 cores constitutes

our design example and results are shown in Table 1. The
architecture uses a single external SDRAM with three ports
to implement all communication between cores. A total of
42 flows tie the cores together. Using the design flow pre-
sented in [7] (clustered mapping, xy routing and greedy slot
allocation) results in a 2 × 3 mesh, referred to as clustering
in Table 1, with a total estimated area of 2.35 mm2. For
comparison, a naive mapping with one core partition per NI
is almost double in size, whereas the worst-case write latency
remains more or less unaffected.

A manually optimized mapping manages to reduce the net-
work area with 21% and an almost four-fold reduction of the
average worst-case write latency is observed [7].

UMARS arrives at a mesh of equal size to what is achieved
using the manually optimized mapping. Fewer NIs are
needed leading to reductions in router area. Smaller buffer
requirements, attributable to less bursty time-slot allocation,
results in reduced NI area. Total area is reduced by 17%
and average worst-case latency by 4% compared to the op-
timized handcrafted design. The solution is achieved in less
than 100 ms on a 500 MHz Solaris UltraSparc IIe. Only a
20% increase in run-time is observed when compared to pure
load-balancing path selection, without mapping and slot al-
location.

Table 1: Comparison of MPEG NoCs
NI Router Total Area Avg wc

Generation Mesh Slots area area area diff latency

clustering 2x3 128 1.83 0.51 2.35 ref 1570 ns
naive 3x6 128 2.17 2.32 4.49 +91% 1583 ns

optimized 1x3 8 1.51 0.35 1.86 −21% 399 ns
UMARS 1x3 8 1.26 0.32 1.57 −33% 383 ns

7. CONCLUSION AND FUTURE WORK
In this work we have presented the UMARS algorithm

which integrates the three resource allocation phases: spa-
tial mapping of cores, spatial routing of communication and
TDMA time-slot assignment. The algorithm is decomposed
into a hierarchical structure where mapping is no longer done

prior to routing but instead during it. UMARS improves
over existing mapping and routing algorithms by using a sin-
gle consistent objective-function.

The time-complexity of UMARS is low and experimental
results indicate a run-time only 20% higher than that of path
selection alone.

We apply the algorithm to an MPEG decoder SoC, im-
proving area 33%, power 35% and worst-case latency by a
factor four over a traditional multi-step approach.

The importance of the flow traversal order and the ob-
jective function are not yet fully evaluated and both play a
critical role in improving on the moderate results achieved in
some use-cases.

To allow a more extensive design space exploration for both
mapping and routing, UMARS can be extended to a k-path
algorithm, enabling a trade-off between complexity and op-
timality.
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