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Abstract

This paper presents an approach to 3-D diffusion tensor image (DTI) reconstruction from multi-

slice diffusion weighted (DW) magnetic resonance imaging acquisitions of the moving fetal brain. 

Motion scatters the slice measurements in the spatial and spherical diffusion domain with respect 

to the underlying anatomy. Previous image registration techniques have been described to estimate 
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the between slice fetal head motion, allowing the reconstruction of 3-D a diffusion estimate on a 

regular grid using interpolation. We propose Approach to Unified Diffusion Sensitive Slice 

Alignment and Reconstruction (AUDiSSAR) that explicitly formulates a process for diffusion 

direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution 

modeling to iteratively deconvolve the effects of the imaging point spread function using the 

multiple views provided by thick slices acquired in different anatomical planes. The algorithm is 

implemented using a multi-resolution iterative scheme and multiple real and synthetic data are 

used to evaluate the performance of the technique. An accuracy experiment using synthetically 

created motion data of an adult head and a experiment using synthetic motion added to sedated 

fetal monkey dataset show a significant improvement in motion-trajectory estimation compared to 

a state-of-the-art approaches. The performance of the method is then evaluated on challenging but 

clinically typical in utero fetal scans of four different human cases, showing improved rendition of 

cortical anatomy and extraction of white matter tracts. While the experimental work focuses on 

DTI reconstruction (second-order tensor model), the proposed reconstruction framework can 

employ any 5-D diffusion volume model that can be represented by the spatial parameterizations 

of an orientation distribution function.

Index Terms

Diffusion tensor image (DTI); fetal imaging; motion-estimation; multi slice MR; reconstruction

I. Introduction

Fetal brain diffusion imaging is emerging as a new and valuable tool to assist in the clinical 

evaluation of pregnancies. The use of slice based measurements of scalar diffusion 

properties of the fetal brain has allowed the mapping of the developmental trajectory of 

white matter tissue properties in utero [1]–[4]. In challenging clinical conditions, in utero 

diffusion weighted (DW) magnetic resonance imaging (MRI) has been shown to provide a 

valuable marker for acute hypoxic ischemic fetal brain lesions [5], [6]. More recently it has 

been used in the mapping of abnormalities of the laminar structure of the fetal brain in 

Cobbelstone complex [7]. Berman [8] also reported higher diffusivity in parietal white 

matter and the thalamus in fetuses with congenital heart defects when compared to controls. 

In addition to scalar microstructural properties from postmortem studies of the fetal brain, 

full 3-D diffusion direction and tractography measurements have illustrated the possibility of 

mapping the development of white matter connectivity using MRI [9], [10]. This research 

has motivated the first attempts at in utero diffusion tensor based tractography studies [11], 

[12] that have shown the possibility of mapping the emergence of white matter connections 

in utero in cases of limited fetal head motion. However for practical clinical applications, 

more robust approaches that can deal with fetal head motions are required to allow reliable 

estimation of tissue microstructure. In this work, we address the problem using 

postprocessing to estimate slice to slice motions of fetal head anatomy occurring during 

multi-slice DW acquisitions. Here we implicitly assume that the use of a fast echo planar 

imaging (EPI) acquisition freezes within-slice motion for the majority of cases. Signal 

corruption arising from within-slice motion such as spin history effects are then addressed 

by a robust model fitting. The key challenge is then to estimate the changes in position and 
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orientation of the DW slices with respect to the underlying anatomy, and to then form a 

regularly sampled estimate of the diffusion profile across the fetal brain volume for the 

motion scattered slice data.

Fetal motion, limited spatial resolution and low signal-to-noise (due to the distance to the 

coils and the use of 1.5T imaging in clinical fetal studies) are the biggest challenges for the 

successful application of diffusion MRI to study the fetal brain in utero. Typical resolutions 

of clinical multi-slice diffusion weighted imaging (DWI) in adult studies are 2 × 2 × 2 mm 

or 1 × 1 × 4 mm which make low resolution a major limiting factor given the small scale of 

the anatomy studied.

A. Between Slice Motion Estimation and Reconstruction From Multi-Slice Diffusion MRI

Unlike adult MRI, where techniques such as optical tracking [13] or navigator echoes can be 

used to update the scanner measurement coordinates during imaging to compensate for 

motion, accurate fetal head motion estimation is more challenging because of the scale of 

the motion and the problem of localizing motion signal to the fetal head. As a result, 

methods for fetal head motion estimation have focussed on postprocessing of multi-slice 

data. For conventional structural studies, clinical imaging has employed fast multi-slice 

snapshot acquisitions. Registration-based structural volume reconstruction of fetal brain 

anatomy from these rapid 2-D MR sequences was first proposed by Rousseau et al. [14] and 

later by Jiang et al. [15]. Rousseau et al. suggested to alternate between volume 

reconstruction through Gaussian weighted averaging (GWA) with an anisotropic kernel and 

rigid slice-to-volume registration by maximizing the normalized mutual information (NMI) 

[16] between slices and the reconstructed volume, while Jiang et al. used B-spline regression 

for reconstruction and cross correlation to drive the registration. A limitation with these 

methods is that it is difficult to gain any knowledge on the convergence of the combined 

system as it alternates between the two independently formulated problems of volume 

reconstruction and slice alignment. Kim et al. [17] circumvented this problem by estimating 

relative motion between slices using intersection-driven-registration to align 2-D slices, 

which was followed by a single image reconstruction step.

Unlike the simple case of multi-slice MRI, a DW MRI sequence collects a set of N + 1 slice 

stacks  = {S0, S1, …, SN} that, under ideal conditions, are related through the Stejskal-

Tanner (ST) equation

(1)

to the underlying diffusion of water at a given location in the brain, where b is a sequence 

dependent constant (specifying the diffusion sensitivity), Di is the apparent diffusion 

coefficient (magnitude of the diffusion in the gi direction), S0 is the nondiffusion weighting 

(nDW) volume, and  is nonattenuated signal, T2 is an intrinsic tissue property, and TE is 

the echo time. Thus, given a diffusion model, D(·) and a sufficient number of DW volumes, 

{Si}, it is possible to reconstruct a diffusion volume with an orientation distribution function 

(ODF) describing the diffusion in each voxel for a given b-value. Motion between 
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acquisition of the individual slices corrupts the spatial and spherical correspondence in the 

image coordinate system and thus the relationship in (1).

Jiang et al. [18] were the first to extend the structural registration-based reconstruction to 

DWI acquisitions by 1) reconstructing a nDW volume [15], 2) registering of the DW slices 

to the reconstructed nDW volume using NMI, and finally 3) fitting a second-order tensor 

diffusion model to the scattered data. However, they reported that the fractional anisotropy 

estimation for the in utero fetal brain was not robust due to low signal-to-noise ratio (SNR). 

Oubel et al. [19] suggested a spatial and spherical approximation framework to form a 

regularly sampled 5-D image. The nDW and the DW slices were registered separately using 

NMI to their own common reference, and the two sets of registrations were brought into the 

same coordinate system by global linear registration between the resulting nDW and DW 

reconstructions. A diffusion volume was then reconstructed by fitting spatio-angular radial 

basis functions (RBFs), which were defined as the product of a spatial RBF and an angular 

RBF, to the scattered diffusion data. A limitation of the techniques of [18] and [19] is that 

they do not take the resolution of the acquired slices into account when reconstructing a 

diffusion volume, which implicitly limits the resolution of the reconstructed diffusion 

volume.

B. Resolution Enhancement From Multiple Diffusion MRI Acquisitions

In conventional MRI, super resolution reconstruction (SR), that aims to solve the inverse 

problem of optimal image formation from multiple acquisitions, was introduced by both 

Gholipour et al. [20] who used the mean-squared-difference (MSD) to drive the slice-to-

volume registration, and by Rousseau et al. [21] who used NMI. Recently, Fogtmann et al. 

[22] proposed an unified approach for between-slice-motion estimation and SR 

reconstruction of conventional structural images, where both problems are solved by 

minimizing the same robust fit functional.

SR approaches to DWI rely on multiple (likely anisotropic) DW acquisitions that are 

spatially located in a way that allows for the recovery of a high-resolution representation of 

the underlying anatomy. Scherrer et al. [23] proposed SR reconstruction from orthogonal 

anisotropic DW acquisitions by 1) volume-to-volume registration between the nDW volume 

and each of the DW volumes, 2) resampling of the DW volumes using Kriging to correct for 

the rotation in the rigid slice transformation, and 3) applying the SR technique in [20] on 

each sensitivity direction separately. The application of this technique is likely to fail in fetal 

diffusion MRI as it only accounts for between-volume-motion and neglects between-slice-

motion. The acquisition time of each DW volume is typically around 10 s on a 1.5T clinical 

scanner, and in such a timeframe, the fetal head can exhibit appreciable motion. The SR 

approach in [23] accounts for the slice resolution but employs a sequence of independent 3-

D reconstructions (one for each diffusion sensitivity direction), rather than a full 5-D 

reconstruction of the scattered diffusion data and thereby does not exploit correlation 

between diffusion sensitivity directions.

Fogtmann et al. Page 4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



C. Unifying 3-D Image Formation and Slice Alignment

To address these limitations we propose a unified formulation which employs the Skejtal–

Tanner equation and an image acquisition model to build a fit function between the 

estimated motion of the subject, the estimated underlying anatomy (high-resolution 

representation) and the acquired DWI data. By maximizing the fit with respect to subject 

motion and the reconstruction, we obtain a 5-D SR reconstruction framework from scattered 

DW slice data. This explicitly accounts for the change in diffusion measurement direction of 

a slice relative to the other slices, as its orientation with respect to the reconstruction frame 

is adapted. In this work, we model the 5-D diffusion volume by spatially parametrizing the 

rank two tensor model with a linear spline so that we focus on diffusion tensor imaging 

(DTI) with the data.

The proposed approach has similarities to the approaches in [18], [19], and [23] but differs 

significantly in a number of aspects and in its more general formulation. To obtain an initial 

motion estimate we apply a registration concept similar to that of [19] where the motion 

estimates for the nDW and DW slices are obtained independently using a structural 

registration-based approach separately on the set of nDW and a set of DW slices. The 

applied 5-D diffusion model also spatially parametrizes the second-order tensor model as in 

[18], but with the difference that we represent the tensors in Log-Euclidean space which 

avoids negative estimates of diffusion. In contrast to [18] and [19], the proposed unified 

approach models the spatial resolution of the DW slices which enables the estimation of a 

higher resolution diffusion representation of the underlying anatomy. While Scherrer et al. 

[23] performs SR reconstruction on DWI acquisitions, our method distinguishes itself from 

that of Scherrer et al. as it reconstructs a high-resolution 5-D diffusion volume instead of a 

sequence of independent 3-D reconstructions of each diffusion sensitivity direction.

To summarize, the novelties of the paper are the unification of the diffusion sensitive 

registration and the 5-D diffusion volume estimation as well as the SR estimation of the 5-D 

diffusion volume. Although this work is not the first to perform registration of diffusion 

volumes (examples include [24] and [25]), but to the best of our knowledge this is the first 

method described to align DW slices to a diffusion volume using a unified model-based 

reconstruction formulation. Although the application focus of this work is fetal imaging, the 

suggested approach is not limited to this application.

II. Slice Positioning, Diffusion Sensitivity, and Motion

A. Spatial Coordinate Systems

Under optimal conditions MR scanners collect multi-slice DWI data uniformly in both the 

spherical and the spatial domains, allowing spatially local and independent diffusion 

estimation through the ST equation. In practice, each scan consists of a number of multi-

frame stacks of 2-D DW and nDW images (slices), where each frame has it own diffusion 

sensitivity direction or no diffusion sensitivity. Each slice has its own 3-D mm coordinate-

system slice mm (Fig. 2), where the center of the slice is placed in the origin of the 

coordinate-system in the xy-plane. This slice mm coordinate-system has a corresponding 2-D 

voxel coordinate-system slice vox which accounts for the in-plane sampling rate (voxel 
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size). The intended anatomically consistent 3-D coordinate frame of the underlying anatomy 

is then denoted as ref mm. In the simplest case, it is simply the scanner coordinate system, 

but it may then be adjusted to a global reorientation to standardized anatomical coordinates 

(AC-PC) collective corrections of the slice stacks away from their intended location. The 

init mm coordinate-system is the initial reference coordinate system.

In scanner coordinates, the acquired data are regularly positioned, as can be observed from 

the evenly spaced and parallel slices in Fig. 1(a) and the regularly spiked spherical 

histogram of the diffusion sensitivity directions in Fig. 1(c). For a sufficiently fast 

acquisitions such as single shot EPI, within-slice motion can be mostly neglected (or slice 

measurements excluded during robust model fitting), and the spatial and the underlying 

problem limited to estimating the true slice positioning and orientation in the anatomy. Due 

to subject motion, the slices do not correspond to the underlying anatomy [as illustrated by 

the mismatch between the head surface and head outlines in Fig. 1(a)]. To allow for a 

meaningful and geometrically correct reconstruction, the slices must be mapped to a 

consistent anatomical coordinate frame ref mm accounting for slice location [Fig. 1(b)] and 

diffusion measurement orientation [Fig. 1(d)]. The slices, when correctly mapped to the 

underlying anatomy, are no longer regularly spaced or parallel to each other causing the 

DWI data to become scattered in both the spherical (orientation) and the spatial domains in 

the reference anatomical coordinate system, as illustrated in Fig. 1. An interesting 

observation from Fig. 1(d) is that in this reference anatomical coordinate system, the DWI 

sensitivity can be significantly scattered in the spherical domain forming a dense sampling 

of the diffusion profile from repeated collection of only a small number of diffusion 

directions. This scattering means that a 5-D diffusion volume model, which spans both the 

spherical and spatial domain, would be more appropriate to approximate the acquired data.

B. Spatial Transformations

A set of DW slices is typically acquired with different spatial locations and different 

gradient-sensitization directions fixed in some global coordinate system. Thus, if the patient 

moves during acquisition, the slices are perturbed relative to the patient in both the spherical 

and spatial domain. In the case of rigid motion, we can correct the spatial location, x, with 

the rigid transformation

(2)

where  are the transformation parameters and y are the corrected spatial 

locations. Assuming that the diffusion measurement direction of the slice, g, has been 

mapped to the slice coordinate system, we can compute the corrected direction with

(3)

DW image geometry within each slice may also be corrupted by eddy-current effects that 

induce in-plane shearing, magnification and/or translation. In cases of severe eddy-current 

distortion, the simple rigid-motion may be inadequate to map the slices accurately to a 
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common anatomical coordinate system. Within the slice alignment process, it is possible to 

account for eddy-current effects by replacing the rigid transformation of a slice with a more 

general linear transformation

(4)

where  are the transformation parameters of the slice, and S is a scale-

skewness matrix. As we make use of an eddy current nulling acquisition for most of the 

diffusion data acquired, this effect is negligible and we will not consider it in the following 

experiments. For the rest of the paper, we will use the short notation ϕk(x) = ϕ(x; pk) for the 

transformation of the kth slice.

We let  define the transformation of the kth slice to the init mm coordinate-system and let 

the estimated slice motion of the kth slice be given by , which maps the slice from init 

mm to ref mm. The combined slice transformation from the slice mm coordinate-system to 

the ref mm coordinate-system is denoted ϕk (Fig. 2). The set of slice motion transformations 

ordered over time can be termed a motion-trajectory. As all the transformations are linear, 

we can introduce a homogenous mapping matrix Mk which maps between slice vox of the 

kth slice and ref vox. The mapping matrix Mk is an important element to ensure a stable 

discretization.

III. Modeling Diffusion From Scattered DW Measurements

Jiang et al. [18] used a rank 2 tensor image (DTI) model where the tensor elements were 

parameterized spatially with a cubic B-spline. This is a simple and intuitive model that can 

be evaluated at a moderate computational cost. Potential problems with this representation 

are that the Euclidean averaging of tensors tends to introduce swelling effects, and the 

estimated tensors may become negative-definite (i.e., negative diffusion in certain 

directions) and therefore not physically meaningful. The 5-D spatio-angular RBF diffusion 

model in [19] is constructed from the Kronecker product between spatial Gaussian and 

angular geodesic distance RBFs. This is an elegant way of combining the spatial and 

spherical domains, and thus avoiding issues with averaging tensors. However, the angular 

RBF model is not rotation-invariant, which implies that the resulting diffusion volume 

estimate might be significantly biased by the chosen knots in the spherical domain so that 

the fewer the knots the larger the bias. In addition, the RBF model still allows physically 

implausible negative diffusion, and is computationally more expensive than the spatial 

parameterization of the rank 2 tensor. Here, we therefore prefer a model similar to that of 

Jiang et al., by generalizing their model. Let Γ(g,q) be an ODF that is defined by the 

parameters q and that describes diffusion in the direction g. Given an ODF, we define the 

diffusion at the spatial location y by

(5)

where b is any set of spatial basis functions, g is the diffusion direction, w are the weight 

parameters/coefficients that define the diffusion volume, and W = [w]K×L is the diffusion 
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image parameter matrix of size K × L (where K is the number of ODF parameters, and L is 

the number of basis functions). In the case of the cubic B-spline parameterized rank 2 tensor 

model, b contains the evaluation of the cubic B-spline coefficients (mostly zero elements, 

and a maximum 64 nonzero elements), and is the rank 2 tensor model, i.e.,

(6)

which is simplest and most widely used ODF, but is considered insufficient to model 

diffusion in adult studies [26], where imaging times can allow high angular resolution 

acquisitions to separate complex crossing fiber structures.

In fetal imaging, the underlying anatomy is much simpler and the number of specific 

directions that can be acquired is limited by fetal motion, imaging field strength, and 

acquisition time.

For this reason this work focuses on the rank 2 tensor model. However, we would like to 

emphasize that the approach presented in this paper is not limited to a specific ODF model. 

In contrast to Jiang et al., we represent the tensor in Log-Euclidean space which guarantees 

only positive diffusion, i.e.,

(7)

where exp is the matrix exponential.

To ensure a fast evaluation we apply a linear spline model with uniformly spaced knots. A 

3-D point y = [y0, y1, y2]T can be normalized by eight knots surrounding it to give ŷ = [ŷ0, 

ŷ1, ŷ2]. With  defining the set of knot points surrounding y and  defining those that do 

not, we have

(8)

and

(9)

IV. Unified Motion-Estimation and Reconstruction in MRI

In this section, we present a general approach (not limited to diffusion MRI) which unifies 

motion estimation and reconstruction into a single formulation. This is essentially a 

generalization of the structural reconstruction approach we presented in [22]. Let I denote 

the underlying image intensity map that we are trying to reconstruct. In the case of diffusion 
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MRI, we have I = D. An approximation to the underlying image and an estimate of the 

motion-trajectory of the subject can be computed through the maximum a posteriori (MAP) 

estimate

(10)

where  is the set of N slices and  is the motion-trajectory 

represented by the set of individual slice motion transformations. Assuming statistical 

independence between the noise of the acquired slices and independent image and motion 

priors, the problem simplifies to

(11)

where  is the likelihood function, p(I) is the image prior and p( ) is the motion 

prior.

A. Likelihood Function

As the noise in MR modulus imaging data transferred from the scanner is Rician distributed 

[27] the optimal likelihood function is

where I0 is the zeroth-order Bessel function, σ is the noise level, and  is the 

expected value of the ith acquired slice, Sk, given the underlying image, I, and the slice 

motion transformation, . Note that the type of the reconstruction is governed by the 

expected slice value, .

The noise level is unfortunately unknown and, unlike adult head studies, can be significantly 

spatially varying in abdominal imaging where the distance between the anatomy and the 

coils can vary significantly. The noise therefore needs to be estimated simultaneously with 

the image and transformation parameters. Additional motion artifacts such as spin history, 

within slice motion artifacts on the diffusion and residual slice registration errors might also 

corrupt the Rician noise model. We therefore use the robust Huber likelihood function in the 

model fitting procedure to reduce the number of parameters to be estimated and to increase 

the robustness to within-slice motion artifacts. The Huber likelihood function is given by
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where γ(x) is a masking image function approximately separating the fetal brain from the 

surrounding maternal tissue, and  is the Huber loss function, i.e., for otherwise.

B. Image Prior

The prior term p(I) which asserts knowledge on the image volume in the form of an 

uncertainty distribution. Most biological image reconstruction applications apply some form 

of spatial homogeneity prior such as smoothness [23] or total variation [28]. In this work, 

the prior term we use in (11) is

(12)

for nDW reconstruction and

(13)

for DW reconstruction, where α determines the strength of the prior and ∇y is the spatial 

gradient operator. The use of the Huber norm ensures a piecewise smooth reconstructed 

image that is allowed to have local sharp transitions that can represent tissue boundaries, 

despite the penalty of the gradient operator. The prior is a mixture of a total variation and a 

quadratic gradient prior, and it can be converted into the form

(14)

where w are the parameters of I (or D), L is the Tikhonov matrix and ||a||h, δ = Σi (ai) is the 

Huber norm.

C. Motion Prior

A simple model of fetal motion is the random walk model [29] where the motion is modeled 

by a succession of random rigid transformations. Assuming that the slices are temporally 

ordered from the timing of the DICOM data files that account for slice interleaves, the 

motion transformation of the kth slice can be computed by , where  is 

drawn from some random distribution. Given such a model, a reasonable prior would be

(15)
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where β determines the strength of the prior and d measures the distance between the two 

transformations. Assuming that the parameters, pk, of the Δϕk are drawn from an 

independent normal distribution, we can define the distance between the transformations 

with

(16)

As fetal motion is in general smooth with occasionally large abrupt motions, the Euclidean 

distance measure will not always produce a meaningful evaluation of the disparity. Instead, 

we apply the Huber norm

(17)

This motion prior was introduced for fetal imaging by Fogtmann et al. [22] as an alternative 

to motion parameterization in registration-based reconstruction in structural MRI.

V. Modeling the Image Point-Spread Function and Its Deconvolution

A challenge for the successful application of diffusion MRI on fetuses is the limited spatial 

resolution of the acquired DWI slices, especially given the significantly smaller fetal brain 

and the relatively low signal level in abdominal imaging which leads to the acquisition of 

multiple thick slices. To make use of the repeated acquisition of data with different slice 

orientations it is essential to incorporate a deconvolution component to the process of image 

formation. Simply assuming that slice voxels are simple points in space with no spatial 

distribution of sensitivity (as in [18], [19]), slices can be simulated from a diffusion volume 

and a motion-trajectory directly from the ST equation, i.e.,

(18)

where S0 is the nDW volume and  (Fig. 2). This model however limits 

the resolution of the reconstructed volume to the resolution of the acquired data by 

dismissing the point spread function. To improve the resolution, we model the slice profile 

and the in-plane point spread function with a 3-D Gaussian kernel (as in Jiang et al. [15]), 

i.e.,

(19)

If Sk is a nDW slice it can then be simulated directly from the DW volume using

(20)
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A stable discretization of the convolution in (19) and (20) is vital to ensure a stable 

optimization of (11). In this work, we discretize the convolution with the Gaussian kernel 

using the midpoint quadrature rule in slice vox. This discretization demands that the 

sampling is sufficiently dense 1) to represent the multi-dimensional Gaussian and 2) not to 

jump over or miss too many voxel (knots) S0 in and D. We empirically determined that a 

sufficient sample spacing can be computed by

(21)

where  is the ith column of Mk (see Fig. 2) and Σ is the slice resolution in slice vox. The 

first argument to the min function ensures that the discretized Gaussian kernel sufficiently 

represents the Gaussian shape, and the last argument ensures that the sampling spacing in 

slice vox correspond to no more than half the voxel size in Ref vox, which sufficiently limits 

the number of missed voxels.

VI. Implementation

The implementation computes the MAP estimate in (11) using a gradient-based numerical 

optimization strategy that alternates between optimizing the motion-trajectory parameters 

while freezing the diffusion image parameters, and vice versa. We apply the L-BFGS[30] 

method with analytic first-order derivatives to solve (11) in a LOG-MAP configuration, i.e.,

(22)

In practice, this means that alternating between the problems

(23)

and

(24)

However, unlike the methods in [18], [19], [23], the same criteria are being optimized for 

both the motion estimation and reconstruction steps. Thus, the approach is unified and 

diffusion sensitivity is explicitly incorporated within the criteria.

The optimization problem is highly nonlinear, and thus good initial estimates of the motion-

trajectory and the diffusion volume must be provided to achieve a globally optimal solution 

to (22). Fig. 3 outlines the key steps in the algorithm. The data is initially loaded into the 

SLIMMER tool [31] to obtain an initial setup. A nDW volume is then estimated using a 
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structural motion estimation and reconstruction approach similar to that in [22], and an 

initial motion-trajectory for the DW slices is estimated with the registration concept of [19]. 

The next step is an initial robust DTI reconstruction as explained in Section VI-C, which is 

subsequently used to initialize the proposed DTI reconstruction. This is followed by two 

cycles of motion estimation and DTI reconstruction as described in Section VI-D.

A. nDW Volume Reconstruction Using Multi Resolution Refinement

To reconstruct a nDW volume we solve the problem in (11) with a slice profile model [(20)] 

that is similar to the approach in [22]. A combined multi-scale and multi-resolution 

technique is applied to minimize the chance of falling into a local minima. Slices are down-

sampled using an image pyramid scheme, and the problem is initially solved at the lowest 

resolution. The solution of the previous level is then continuously used to initialize the 

solution of current level until full resolution is reached. During the lower resolution step, the 

image reconstruction step is replaced with GWA [14].

B. Initial DW Motion Estimation

An initial estimate of the motion-trajectory is computed from the DW slices using the DW 

registration concept by Oubel et al. [19]. Oubel et al. compute the motion-trajectory by 

matching the DW slices to a common scalar volume which is reconstructed from the DW 

slices and the current estimate of the motion-trajectory. The reconstructed scalar DW 

volume is subsequently registered to the nDW volume to bring the estimated motion-

trajectories into the same coordinate frame. We apply the same structural registration 

approach as for the nDW volume estimation with the slight difference that only GWA is 

used for reconstruction. In this work, we test both NMI as in [19] and MSD to drive the 

registration. It is our experience that the SSD dissimilarity measure works better in almost 

all instances. This claim will be supported later in the experimental section, Section VII.

C. Initial DTI Reconstruction

One potential problem with the Rician and the Huber likelihood functions is that they make 

the optimization problem nonlinear [32]. A robust alternative, which can be applied to 

compute an initial estimate, D, is the log-linear least-squared-difference (LLLSD) likelihood 

function

(25)

The LLLSD likelihood with the second-order tensor representation in (6) yields a quadratic 

optimization problem for the reconstruction which is convex and easy to solve. The tensor 

matrices are subsequently converted to the Log Euclidean representation in (7)—in case of 

negative-definite tensors the eigenvalues of the tensor are replaced by a small but positive 

number.
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D. Diffusion Sensitive Slice-to-Volume Registration

After the initial estimates have been computed, the algorithm first alternates between slice-

to-volume registration with (18) and diffusion volume reconstruction (cycle 1). Finally, it 

alternates between slice-to-volume registration with (19), and diffusion volume 

reconstruction (cycle 2). In conjunction with the multi resolution image reconstruction, the 

motion prior is initially set high at the lowest image resolution to estimate the slowest 

motion components. As the image resolution is increased, the weight of the motion prior is 

halved between each level allowing the recovery of faster, discontinuous movements. This 

procedure forms one cycle of optimization. In practice, the use of the initial estimation and 

efficient optimization means that the algorithm converges quickly to the solution, taking 

around two iterations in cycle 1 and a single iteration in cycle 2. We set the motion prior 

weight at this step to half of the weight of the motion prior weight used to compute the 

initial motion-trajectory of the DW slices. The alignment problem is such that the coordinate 

system ref mm is floating and may drift in relation to init mm, where the initial brain mask 

was defined. Drifting is eliminated by enforcing the geometric mean { } of to be the 

identity transformation during the optimization. The ref vox coordinate frame defines the 

voxel resolution of the reconstruction by specifying the voxel dimension and size in relation 

to the ref mm coordinate system.

E. Parameter Selection and Algorithm Configuration

There are five parameters α, β, δ1, δ2, δ3, which have to be chosen prior to the optimization. 

We set the parameters δ1 and δ2 to 20%–30% of the dynamic range of DW slices, while 

good values for α and β are dependent on the noise level of the acquired data and the 

number of acquired stacks. We therefore obtain α and β empirically for each dataset. We 

typically set δ3 to 0.5 mm and 0.5° or lower.

The algorithm is implemented in C++ using a standard open-source shared memory 

OpenMP framework for multi-threading as the problem is highly parallelizable. The 

problem is computationally expensive to solve due to the slice resolution modeling. For a 

typical clinical study consisting of 5–6 DWI image stacks with 10–20 diffusion sensitivity 

directions, the implementation described here requires approximately 3 h to compute the 

entire solution running on a 24-CPU (Intel Xeon 1.87 GHz) machine. The computation time 

is mostly dependent on the amount of data and the relationship between the slice resolution 

and reconstruction resolution.

VII. Methods for Experimental Evaluation of Algorithm

A. Evaluation of Slice Registration Accuracy

The aim of this experiment is to examine the fine scale accuracy of the slice alignment 

process with respect to a known estimate. This is not feasible using actual in utero imaging, 

due to the possible presence of motion in any living fetal study (arising for example from 

maternal breathing, as well as fetal motion). Here, we made use of a single high quality adult 

diffusion study as a basis for slice registration accuracy experiments. This was acquired on a 

3T Siemens Trio scanner using a single shot EPI sequence with 60 noncollinear diffusion 

gradient measurement directions with imaging parameters b = 700 s/mm2, TE = 108 ms, TR 
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= 8000 ms. This has an isotropic voxel resolution of 2.2 × 2.2 × 2.2 mm and high signal to 

noise in comparison to abdominal fetal studies at 1.5T. This reference data was used to 

create multiple synthetic multi-slice datasets created to simulate acquisition with known 

head trajectories and interleaves. Thick slices were formed from this isotropic resolution 

data using a model of the slice profile of typical fetal scans. A total of nine approximately 

orthogonal DWI stacks (three axial, three sagittal, and three coronal) were simulated from a 

given motion-trajectory with 20 noncollinear diffusion gradient directions with b = 700 

s/mm2, a voxel size of 2.5 × 2.5 × 5 mm and an interleave of 2. Rician distributed noise was 

added to the simulated slices with standard deviation of 15 (where grey and white matter 

have intensities of around 200 and 400 in the b = 0) to form the higher level of noise seen in 

1.5T abdominal imaging. To faithfully evaluate the performance of the slice alignment we 

apply a random walk model to simulate fetal head motion, where a motion-trajectory is 

generated by sampling a random rigid transformation from a Gaussian distribution for every 

slice. The full motion of the kth slice in time was then computed by composing the random 

transformation of the slice with the transformations of the k − 1 previous slices. Ten 

artificial multi-stack studies were generated with five different levels of motion (0.5, 0.75, 

1.0, 1.25, 1.5 std. in mm/degrees) and two studies for each level. An example of a simulated 

slice stack is shown in Fig. 4.

From a known trajectory, motion estimation errors are traditionally quantified using the root 

mean squared (rms) measure. For multi-slice fetal studies we can formulate this measure as

(26)

where ϕref is the reference or ground truth transformation, ϕest is the estimated 

transformation, ϕdft is a transformation which accounts for global drifting of the solution, Ω 

is the slice domain where the rms error is computed, and finally γ is a masking 

approximately separating rigid fetal brain and maternal tissue. Given a set of motion 

estimates, we can compute the drifting by solving 

 We evaluate a summary of the accuracy 

using the mean of the slice rms errors which we denote MSRMS. We also evaluate the mean 

voxel distance (MVD) defined by

(27)

The MSRMS measure may be polluted by outlier slices that incorrectly fall outside the mask 

during the motion estimation. The positioning of these slices is purely determined by the 

motion-prior, and the positioning of neighboring slices in the mask that drive this prior. The 

magnitude of the errors for these slices are not directly meaningful as they do not contribute 

to the reconstruction within the mask, but they do however represent lost data. As such we 
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exclude these slices from the computation of MSRMS, and separately compute the fraction 

of lost data

(28)

where H is the unit step function. MSRMS and MVD are both sensitive to outliers but 

MSRMS is more sensitive, as all slices contribute equally to the MSRMS value 

independently of the intersection with the mask, and specifically because slices with a small 

mask intersection are more likely to become outliers. Thus a small difference between the 

values of MSRMS and MVD indicates that there are only a few outliers, and a large 

difference in the values of MSRMS and MVD indicate that outliers significantly influence 

the performance.

B. Evaluation of Slice Registration Precision and Capture Range for In Utero Anatomy

The aim of this experiment is to evaluate the capability to recover different scales of slice 

alignment in the presence of confounding maternal anatomy around the fetal head. As the 

emphasis is not fine scale accuracy, but anatomic realism, we have used an animal study as a 

basis for the motion experiments. Diffusion MRI data were acquired from two sedated (1% 

isoflurane) macaque fetuses in utero at gestational ages 85, 110, and 135 days (of a total 

gestational term of 165 days) using a Siemens 3T Tim Trio scanner at the Oregon National 

Primate Research Center. These gestational ages correspond approximately to human 

postmenstrual ages of 21, 27, and 33 weeks, respectively [33]. Each study consisted of nine 

axial, nine coronal, and nine sagittal single shot EPI sequences with eddy current 

compensation along 20 noncollinear diffusion gradient directions with b = 500 s/mm2, TE = 

93 ms and TR = 5000 ms. The slice resolution for all the studies was 1.125 × 1.125 × 2.000 

mm3. The primary source of motion was due to maternal breathing. We selected the second 

time point of the dataset as it was the least influenced by maternal breathing motion and the 

gyrification pattern at this gestational period reasonably represents the level of anatomical 

complexity for early human clinical studies. The study was truncated to contain only the first 

nine of the 27 stacks to create a dataset with clinically realistic extent.

A direct approach to evaluating the precision and capture range of the motion estimation is 

to examine the slice motion parameters obtained by applying the approach with different 

starting estimates and evaluating the distributions of solutions. As with the accuracy 

experiment, a random walk model was applied to produce ten perturbed initialization studies 

with five different levels of slice perturbation (0.5, 0.75, 1.0, 1.25, 1.5 std. in mm/degrees) 

and two repetitions. To quantitatively evaluate the precision we evaluated the same 

measures used in the accuracy evaluation described previously.

C. Evaluation of SR Reconstruction to Isotropic Voxel Resolution

To investigate final image quality and the ability to estimate diffusion at isotropic voxel 

resolution from the highly anisotropic 3 mm slices, all sets of macaque monkey scans were 

reconstructed to form a 0.75 mm isotropic DTI volume with the unified approach with MSD 
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motion initialization. To compute the reconstructions, we used the parameters β = 1e − 2, δ3 

= ∞, δ1 = δ2 = 40 (approximately 20% of the dynamic range of S0), and α = 3e5. α is set to a 

low value since the number of data sets larger. The motion prior δ3 is set to infinity as the 

primary subject motion is caused by relatively slow and smooth maternal breathing.

D. Practical Evaluation on Clinically Typical In Utero Human Fetal Data

Because of the possibly more challenging nature of typical clinical data in humans (lower 

signal level from 1.5T imaging, larger motion), we applied the proposed method to a set of 

unsedated clinical studies acquired at Seattle Children’s hospital using a 1.5T Siemens 

Avanti scanner at Seattle. Each consisting of 4–5 single shot EPI sequences using eddy 

current compensation pulse sequences. Subject information and imaging parameters are 

included in Table I, and selected DWI stacks for each subject are displayed in Fig. 5. The 

fourth fetus studied was the most neurologically normal with only an initial diagnosis of 

mild ventriculomegaly. The variation in scan contrast and quality is illustrated in Fig. 5, and 

arises because of variations in signal strength due to coil and fetal positioning in different 

clinical studies.

VIII. Experimental Results

A. Results of Slice Registration Accuracy

The results of the accuracy experiments using synthetically corrupted adult imaging data are 

summarized in Table II, and the best results for each study are underlined. A key 

observation from Table II is that there is a large and consistent drop in both MSRMS and 

MVD between the initialization (zeroth iteration) and the first iteration in all cases. This 

clearly motivates the use of the diffusion sensitive registration. Between the 2–3 iterations, 

we also observe a large and consistent drop in MSRMS and MVD, which indicates that 

modeling slice resolution in the slice registration improves the registration. Furthermore, the 

SSD motion initialization provided equal or superior performance in all studies compared to 

NMI, which confirms the expectation that making use of our knowledge of the problem and 

enforcing direct agreement of diffusion measurements provides a more unique alignment 

criteria. Another interesting observation is that there is no consistent improvement in 

MSRMS and MVD between 1–2 iterations for NMI, while the SSD studies for larger 

motions than 0.5 show improvement. The amount of lost data tends to drop between the 

initialization and the first iteration and then slightly grows. This slight growth can be 

explained by outliers close to the edge of the mask that are gradually being pushed outside 

the brain match region to reduce intensity disagreements. For the SSD initializations, the 

MSRMS values are generally 50% larger than the MVD values. This suggests that the 

outliers are corrupting the MSRMS and MVD measures to a large extent.

To statistically evaluate whether the improvement between two successive iterations is 

significant we applied a nonpara-metric paired permutation (PP) test with the null 

hypothesis, that the two sets of rms errors have the same mean, and the alternative 

hypothesis, that the latest iteration has a smaller mean. 50 000 permutations were used to 

compute the p-value for the PP test using the full set of rms errors. The PP test revealed 

significant (given a 0.05-level) reductions in mean rms between successive iterations for all 
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SSD studies except for the first study, between the first and second iteration, which had the 

lowest initial motion level. For the NMI studies, the mean rms was significantly reduced 

between the 0–1 and 2–3 iterations. The null hypothesis cannot be rejected for the middle 

motion levels between the 1–2 iterations as they have larger p-values than 0.05. Significant 

reductions (given a 0.05-level) in the dispersion of the rms error were observed between the 

0–1 iterations and the 2–3 iterations in all studies using NMI-based motion initialization. 

Between the 1–2 iterations significant reductions in rms dispersion were observed only for 

larger motion levels (≥1.25). A similar pattern for the rms dispersion can be observed for the 

SSD studies with the exceptions that a p-value of 0.98 for the first study at motion level 1.25 

does not support a rejection of the null hypothesis, and that the 1.00 studies have a 

significant reduction in rms dispersion.

Fig. 4 (right most column) shows three plots of the rms errors against the mask intersection 

in voxels for the first study for motion levels 0.50, 1.00, and 1.50. The plots largely support 

the previous observations that both the rms mean and dispersion are significantly reduced 

between the iterations. Also, slices with a mask intersection less than 1000 voxels have a 

drastically worse performance than slices with larger mask intersection. This is not 

surprising because slices close to the surface of the brain have less data to guide the 

registration, and will also generally have a larger initial rms due to the larger distance from 

the center of rotation of the head. A conservative estimate from Fig. 4 would be that the 

mean rms error without outliers would be approximately 50% less those values recorded in 

Table II. To summarize the results of this experiment, we can conclude that the approach 

produced motion estimates with sub-voxel accuracy for a slice resolution of 2.5 × 2.5 × 5 

mm.

B. Results of Slice Registration Precision and Capture Range of In Utero Anatomy

The results of this experiment using synthetically corrupted macaque fetal data (Table III) 

show a continuous improvement in precision measured in terms of MSRMS and MVD 

between successive iterations. Similar to the accuracy experiments, the MSRMS and MVD 

numbers in Table III clearly favor the SSD initialization compared to NMI initialization. 

There appears to be a larger drop in precision going between motion levels 1.00 and 1.25 for 

the SSD studies. This could be due to statistical fluctuation. Our investigation thus far has 

not provided another answer.

Similarly, we apply an Ansari–Bradley (AB) test to examine whether the dispersion in rms 

errors is significantly reduced between successive iterations. For the AB test, the null 

hypothesis is that the rms errors are identically distributed, and the alternative hypothesis is 

that the rms dispersion for the first iteration is greater than for the later iteration. All PP and 

AB test statistics on the rms errors favored the alternative hypothesis given a significance 

level of 0.01 which indicate that each iteration significantly improves the precision. The LD 

measure tends to increase between the 2–3 iterations, which is likely due to slices close to 

the boundary with weak matches getting pushed out of the mask. The least amount of lost 

data in the majority of cases is observed after the second iteration.

Taking a slice resolution of 1.125 × 1.125 × 3.000 mm3 and outlier pollution of the MSRMS 

and MVD measures into consideration it is reasonable to conclude that the approach has 
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subvoxel precision for perturbation levels 0.5, 0.75, and 1.00. Also, it is unlikely in practice 

that fetal motion can approach the perturbation level of 1.00 given the fast slice acquisition 

speed which for this dataset was approximately four slices per second.

To illustrate the effect of the slice perturbations on the reconstruction and to relate MSRMS 

to reconstruction quality we show the motion corrected and nonmotion corrected FA maps 

for the first study with SSD initialization of each motion level in Fig. 6 (Top). The two first 

rows of images contain axial and sagittal views of the FA maps for the nonmotion corrected 

DTI reconstructions, and the last two rows contain axial and sagittal views of the FA maps 

for the motion corrected DTI reconstructions. The first column corresponds to the 

unperturbed initialization while the last five columns correspond to motion levels of 0.50, 

0.75, 1.00, 1.25, and 1.50. From the first column we observe that the FA maps of the 

nonmotion and motion corrected reconstructions are almost identical that indicates that the 

subject motion under acquisition was, as assumed, limited. We also observe from the first 

two rows of FA maps that the perturbations had a major negative impact on the nonmotion 

corrected DTI reconstructions, and that only the FA map for the smallest perturbation level 

delineate any useful white matter structures or cortical diffusion anisotropy, with a big fall in 

quality occurring at a motion level of 0.75. The first four FA maps of the last two rows are 

similar, and we can conclude that MSRMS values of around 0.6 mm appear to have limited 

effect on the reconstruction quality. The FA maps for the last two motion levels provide a 

lower quality reconstruction than the previous motion levels. The cortical anisotropy is 

especially weakened while the larger primary white matter structures are less negatively 

affected.

C. Results of SR Reconstruction to Isotropic Voxel Resolution

Fig. 6 (Bottom) shows FA maps color-coded with the direction of the first principal 

component of the tensor and overlaid on a T2-weighted reconstruction for each time point 

study. The three rows correspond to the three gestational ages examined, and the first three 

columns contain selected axial, sagittal and coronal views. The fourth column shows coronal 

views of the directional FA maps computed from one of the diffusion datasets with one slice 

plane using an ordinary least-square and voxel-wise DTI reconstruction. The final column 

shows the Log-Euclidean average of the DTI reconstructions of all stacks after they have 

been mapped to the same coordinate system neglecting motion. Even with sedation, maps 

obtained using a single dataset without motion estimation (fourth column in the lower 

portion of Fig. 6) do not provide information suitable for quantitative analysis of 

development within white matter or the cerebral cortex. This firstly shows that the quality of 

the individual fetal data was generally low, even given the sedation. The FA maps of the 

average DTI reconstructions of all stacks displayed in the fifth column of Fig. 6 (bottom) 

reveal some key structures including the corpus callosum. In contrast the reconstruction and 

slice motion estimation provide both improved signal to noise and better spatial resolution 

than is available from the individual raw datasets or a simple combination of the raw 

datasets as acquired.

As expected, cortical FA decreases from maximums of around 0.8 to virtually zero over the 

period spanned by the three time points. The reduction in cortical FA is highlighted at the 

Fogtmann et al. Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



top of Fig. 7, which shows the brain surfaces color-coded with the FA values for all three 

time points for the first monkey. The reduction in cortical FA observed here corresponds 

closely to the reduction previously reported in analyses of postmortem fetal brains obtained 

from nonhuman primate subjects obtained at this stage of gestational development [34], 

[35]. Tractography analyses using Fiber Assignment by Continuous Tracking [36] (FACT) 

was also performed, to explore the development of the corpus callosum using a manually 

selected seed region drawn around the midline plane of the corpus callosum in the T2W 

image at each time point. Results are displayed in the lower part of Fig. 7. In contrast to the 

case within the cerebral cortex, extracted white matter tracts using FACT become more 

discernible over time, changing from mostly simple straight tracts through and perpendicular 

to the corpus callosum (left, 85 days), to the inclusion of the splenium tracts (middle, 110 

days), and finally to a white matter tracts resembling that which can be observed in an adult 

brain (right, 135 days). This can be a result of increasing water diffusion anisotropy with 

gestational age. Note that these tracts do not represent physical nerve fibers but only 

trajectories through the data that could run in the directions of actual nerve fibers.

D. Results of Practical Evaluation on Clinically Typical In Utero Human Fetal Data

All subjects were reconstructed to form a DTI volume using the proposed unified slice 

motion estimation approach to a 1 mm isotropic voxel resolution. To visually evaluate the 

between slice motion correction, Fig. 8 displays slice stack views of the second subject scan 

before and after motion estimation, and three selected slice intersections before and after 

motion estimation. The red line in Fig. 8 indicates the intersection of the slice with the mask 

that determines the boundary between the fetal head and maternal tissues. Comparing the 

noncorrected and corrected slice views in Fig. 8, a convincing improvement in alignment is 

apparent for the selected slices. The green circles highlight areas with an initial volume 

alignment mismatch that is corrected after slice motion estimation. The final reconstructions 

are shown in Fig. 9. The DTI reconstruction of case 2 supports the diagnosis of ACC, while 

the DTI reconstruction of case 1 only partially supports the initial diagnosis of ACC with the 

identification of a small band of connective diffusion in the region of the corpus callosum. 

From the directionally color-coded FA map on the first row of Fig. 9, it appears that the first 

subject has a thinner than normal corpus callosum. Case 3 suffers from severe VM but a 

close examination of the third row of Fig. 9 reveals that the fetus has clear a corpus 

callosum, along with other expected tracts. Due to the enlarged ventricles, white matter 

tracts closely wrap around the ventricles. The DTI reconstruction of the fourth case, with 

relatively normal brain anatomy (initial diagnosis as mild VM) as shown in Fig. 9 exhibits 

clear and detailed white matter structure typical of this age, as well as a radial diffusion 

pattern in the cortical plate (also visible in the other fetuses). Examination of the results 

using volume and no motion estimation, shown on the right two columns, clearly support the 

use of slice registration in the case of clinical imaging with, in particular, case 1 and 3 

showing delineation of the corpus callosum that was not visible in the reconstructions 

without slice alignment.

To further evaluate the performance on clinical data we applied a standard ROI seed based 

FACT tractography to examine the corpus callosum connectivity in a comparison of the 

mild VM case (4) and the case with confirmed agenesis of the corpus callosum (case 2). For 
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the mild VM case 4, shown in Fig. 10(a), the improvement provided by slice motion 

correction in the connectivity measurement is clearly visible from tracts emerging from the 

ROI placed in the anterior corpus callosum that conform better to that expected in this 

region. Comparison between the tractography of the whole corpus callosum in the two cases, 

shown in Fig. 10(b), reveals only a small number of random voxel traces from the corpus 

callosum extracted in case 2, while a clear whole corpus callosum connectivity model is 

extracted from case 4.

IX. Discussion

This paper presented a new method for diffusion weighted slice motion estimation and 3-D 

isotropic DTI reconstruction specifically aimed at the challenging problem of fetal brain 

imaging. The key novelties of the approach are a unified reconstruction-alignment 

formulation yielding a diffusion sensitive slice registration model, and the incorporation of 

point spread function deconvolution into the 3-D image reconstruction. This allows the 

formation of 3-D datasets with isotropic spatial resolution from multiple slice scattered DWI 

acquisitions in different anatomical planes.

A. Evaluation of Unified Model Based Diffusion Sensitive Slice Alignment

In the current literature, there exists no gold standard for the validation of data alignment in 

diffusion MRI. Haselgrove et al. [37], Nielsen et al. [38], and Rohde et al. [39] performed 

visual comparisons to assess differences, which we have also used in this paper. Visual 

comparisons however can be biased by the observer and a more objective comparison 

should be done by comparing quantitative measures computed from the estimated results. A 

simple quantitative measure of DTI quality is to evaluate the mean FA in the cerebrospinal 

fluid (CSF), assuming that the FA should be zero if measurements are correctly aligned, or 

alternatively the standard deviation of the CSF diffusion signal. However, a low or 

consistent value does not guarantee alignment accuracy of all regions of all slices, since they 

may not contain CSF, or the CSF may be assigned a consistently incorrect FA value in the 

case of minimizing its standard deviation. In contrast, Nielsen et al. [38] proposed to use the 

entropy of the FA over the entire brain to evaluate the performance under the assumption 

that the misalignment of DW slices presents it-self as a noisy measurement of the diffusion 

signal. However, we and others [19] have found this is not robust to more severe 

misregistration, and over-fitted tensor maps (e.g. reconstruction with no image prior) may 

exhibit good entropy values. Because fetal imaging itself may always contain some amount 

of unknown motion, an alternative is to use simply adult data acquired with and without 

motion, allowing a comparison of the final motion corrected dataset to the nonmotion data. 

However, this suffers from the presence of significant geometric susceptibility artifacts 

which change as the head moves, making the problem of slice correction more complex than 

the case in most fetal studies.

Here, we instead chose to make use of different carefully created simulations to evaluate 

slice alignment estimates, using a combination of stationary adult and sedated fetal data to 

examine accuracy and capture range in the presence of confounding maternal anatomy. 

These experiments have advantages and disadvantages: A major issue with synthetic data is 

obviously the fact that it is not possible to model every possible aspect that might that 
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appear in real data: The compositional nature of the random walk may not capture all types 

of motion well. The approach though avoids any bias by using a sampling from a lower 

dimensional parametric model which is itself then used in the registration process. There is 

however still the possibility for bias in the use of the random walk model to both simulate 

and recover motion. However, we ensured the use of a consistent model for all methods in 

the comparison so that no method is favored, leaving only the possibility for over estimating 

the capability of the approach to deal with real motion.

Our set of focussed experiments looking at accuracy of thick slice alignment, and precision 

of slice alignment when estimating motion within maternal anatomy have allowed us to 

compare similarity measures and to meaningfully evaluate accuracy and final reconstruction 

quality with respect to key real world factors. The accuracy results indicate it is reasonable 

to conclude that the diffusion sensitive registration (column “3,” Table II) significantly 

improves the registration accuracy compared to the (state-of-the-art) structural-based 

registration approach that closely matches that of Oubel et al. using NMI (column “0,” 

Table II). The precision and robustness experiment on sedated macaque fetal data with 

simulated motion also revealed that the proposed approach outperformed the state-of-the-art 

in terms of the precision and capture range in the presence of maternal anatomy. The 

strength of this experiment compared to the accuracy experiment is that it is a validation on 

in utero data, but in contrast it cannot tell us true accuracy as there is no completely 

stationary estimate available.

B. Resolution Enhancement From Multiple Fetal DWI Acquisitions

For clinical studies with limited numbers of acquisitions and higher noise levels it is 

possible to increase the sampling resolution (decreased voxel size), but the spatial resolution 

may not increase. If inadequate numbers of diffusion datasets are available, not all regions 

of the final DTI reconstruction may support resolution enhancement, as it is clearly 

dependent on the local density of the scattered diffusion measurements and also the absence 

of within-slice motion artifacts corrupting those measurements. The deconvolution process 

is by far the most computationally expensive element, so in clinical datasets there will be a 

practical trade-off between computation time and reconstruction resolution that depends on 

the amount of data that was possible to acquire within the clinical imaging time. The 

practical fetal image reconstruction problem is in many cases ill-posed, which is why an 

imaging prior is necessary to obtain a reasonable solution among the infinitely many 

possible solutions. The task of selecting the prior strength is essentially a problem of 

choosing a suitable balance between avoiding over-fitting to noise and forming an overly 

smooth estimate. Separately to image noise, treating slice voxels as scattered points in space 

may itself introduce a form of semi-structured noise: The values from two approximately 

coinciding thick-slice voxels, from slices having very different orientations, may differ 

substantially purely because of their slice profiles. In order avoid over-fitting to the 

additional noise, the motion prior needs to be strengthened, which will result in a smoother 

reconstruction, effectively resulting in the loss of resolution. Thus, even though it may not 

be possible to achieve SR it may make sense to still incorporate a form of computationally 

expensive point spread deconvolution within the reconstruction process.
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C. Conclusion

We have presented a unified diffusion sensitive method for 3-D DTI reconstruction from 

motion scattered multi-slice DWI sequences acquired from moving fetal brain anatomy. The 

proposed unified approach, that incorporates a robust fitting to negate the effect of within 

slice motion artifact, outperformed the current state-of-the-art slice alignment method with 

respect to motion estimation in an accuracy and a precision experiment. The experiments 

also demonstrated that DW volume motion correction as used by [23] for adults may not be 

an adequate motion model in fetal imaging, where between slice motion may be a more 

significant factor. The work presented here is the first approach to support SR reconstruction 

for in utero fetal brain diffusion MRI. Through experiments on the clinical human fetal data 

and monkey fetal data, we have demonstrated that the approach has practical value when 

multiple slice planes can be acquired. In the clinical fetal experiment, 3-D DTI 

reconstruction supported the diagnoses obtained from T2-weighted MRI and provided 

additional information not available from conventional DTI studies of the fetus. We 

presented tractography results showing the development of white matter connectivity and 

cortical diffusion anisotropy maps that motivate the application of the approach to fetal 

growth modeling in human fetuses. For normal connectivity, slice motion estimation clearly 

improved the visual accuracy of tract estimation and revealed clear differences in known 

connectivity abnormalities. However, while the proposed approach promises to provide 

additional diagnostic information, the variability in image signal to noise level (due for 

example to coil placement) and number of acquisitions possible in clinical studies must be 

carefully considered when interpreting results. The recent development of methods to 

address fetal motion in conventional structural MR led to the first larger scale studies of 

tissue growth and cortical folding [40] in utero. The development of comparable diffusion 

imaging techniques promises to enable similar advances in the study of developing 

structural connectivity and tissue microstructure in the developing fetal brain.

Acknowledgments

This work was supported by the National Institutes of Health under Grant R01 NS 055964 (PI: C. Studholme) and 
Grant R01 NS 061957 (PI: C. Studholme). The work of M. Fogtmann was supported by a postdoctoral grant from 
The Villum Foundation, Denmark.

References

1. Bui T, Daire JL, Chalard F, Zaccaria I, Alberti C, Elmaleh M, Garel C, Luton D, Blanc N, Sebag G. 
Microstructural development of human brain assessed in utero by diffusion tensor imaging. 
Pediatric Radiol. 2006; 36:1133–1140.

2. Kim DH, Chung S, Vigneron DB, Barkovich AJ, Glenn OA. Diffusion-weighted imaging of the 
fetal brain in vivo. Magn Reson Med. 2008; 59(1):216–220. [PubMed: 18050314] 

3. Schneider J, Confort-Gouny S, Le Fur Y, Viout P, Bennathan M, Chapon F, Fogliarini C, Cozzone 
P, Girard N. Diffusion-weighted imaging in normal fetal brain maturation. Eur Radiol. 2007; 
17:2422–2429. [PubMed: 17404738] 

4. Schneider MM, Berman JI, Baumer FM, Glass HC, JS, Jeremy RJ, Esch M, Biran V, Barkovich AJ, 
Studholme C, Xu D, Glenn OA. Normative apparent diffusion coefficient values in the developing 
fetal brain. Am J Neuroradiol. 2009; 30(9):1799–1803. [PubMed: 19556350] 

5. Baldoli C, Righini A, Parazzini C, Scotti G, Triulzi F. Demonstration of acute ischemic lesions in 
the fetal brain by diffusion magnetic resonance imaging. Ann Neurol. 2002; 52(2):243–246. 
[PubMed: 12210800] 

Fogtmann et al. Page 23

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



6. Girard N, Gire C, Sigaudy S, Porcu G, d’Ercole C, Figarella-Branger D, Raybaud C, Confort-Gouny 
S. MR imaging of acquired fetal brain disorders. Child’s Nervous Syst. 2003; 19:490–500.

7. Widjaja E, Geibprasert S, Blaser S, Rayner T, Shannon P. Abnormal fetal cerebral laminar 
organization in cobblestone complex as seen on post-mortem MRI and DTI. Pediatric Radiol. 2009; 
39:860–864.

8. Berman JI, Hamrick SEG, McQuillen PS, Studholme C, Xu D, Henry RG, Hornberger LK, Glenn 
OA. In vivo MRI of the fetal brain. Am J Neuroradiol. 2011; 32(2):21–22.

9. Huang H, Xue R, Zhang J, Ren T, Richards LJ, Yarowsky P, Miller MI, Mori S. Anatomical 
characterization of human fetal brain development with diffusion tensor magnetic resonance 
imaging. J Neurosci. 2009; 29(13):4263–4273. [PubMed: 19339620] 

10. Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience 
research. Neuron. 2006; 51(5):527–539. [PubMed: 16950152] 

11. Zanin E, Ranjeva JP, Confort-Gouny S, Guye M, Denis D, Cozzone PJ, Girard N. White matter 
maturation of normal human fetal brain. An in vivo diffusion tensor tractography study. Brain 
Behav. 2011; 1(2):95–108. [PubMed: 22399089] 

12. Kasprian G, Brugger PC, Weber M, Krssak M, Krampl E, Herold C, Prayer D. In utero 
tractography of fetal white matter development. Neuroimage. 2008; 43(2):213–224. [PubMed: 
18694838] 

13. Aksoy M, Forman C, Straka M, Skare S, Holdsworth S, Hornegger J, Bammer R. Real-time optical 
motion correction for diffusion tensor imaging. Magn Reson Med. 2011; 66(2):366–378. 
[PubMed: 21432898] 

14. Rousseau F, Glenn OA, Iordanova B, Rodriguez-Carranza CE, Vigneron DB, Barkovich AJ, 
Studholme C. Registration-based approach for reconstruction of high-resolution in utero fetal MR 
brain images. Acad Radiol. 2006; 13(9):1072–1081. [PubMed: 16935719] 

15. Jiang S, Xue H, Glover A, Rutherford M, Rueckert D, Hajnal JV. MRI of moving subjects using 
multislice snapshot images with volume reconstruction (SVR): Application to fetal, neonatal, adult 
brain studies. IEEE Trans Med Imag. Jul; 2007 26(7):967–980.

16. Studholme C, Hill D, Hawkes D. An overlap invariant entropy measure of 3-D medical image 
alignment. Pattern Recognit. 1999; 32(1):71–86.

17. Kim K, Habas PA, Rousseau F, Glenn OA, Barkovich AJ, Studholme C. Intersection based motion 
correction of multislice MRI for 3-D in utero fetal brain image formation. IEEE Trans Med Imag. 
Jan; 2010 29(1):146–158.

18. Jiang S, Xue H, Counsell S, Anjari M, Allsop J, Rutherford M, Rueckert D, Hajnal JV. Diffusion 
tensor imaging (DTI) of the brain in moving subjects: Application to in-utero fetal and ex-utero 
studies. Magn Reson Med. 2009; 62(3):645–655. [PubMed: 19526505] 

19. Oubel E, Koob M, Studholme C, Dietemann JL, Rousseau F. Reconstruction of scattered data in 
fetal diffusion MRI. Med Image Anal. 2012; 16:28–37. [PubMed: 21636311] 

20. Gholipour A, Estroff JA, Warfield SK. Robust super-resolution volume reconstruction from slice 
acquisitions: Application to fetal brain MRI. IEEE Trans Med Imag. Oct; 2010 29(10):1739–1758.

21. Rousseau F, Kim K, Studholme C, Koob M, Dietemann J. On super-resolution for fetal brain MRI. 
Med Image Comput Comput-Assist Intervent. 2010:355–362.

22. Fogtmann M, Chapman T, Kim K, Seshamani S, Studholme C. A unified approach for motion-
estimation and super-resolution reconstruction from structural magnetic resonance on moving 
subjects. MICCAI Workshop Perinatal Paediatric Imag. 2012

23. Scherrer, B.; Gholipour, A.; Warfield, SK. MICCAI. Vol. 2. New York: Springer; LNCS; 2011. 
uper-resolution in diffusion-weighted imaging; p. 124-132.

24. Xue Z, Li H, Guo L, Wong ST. A local fast marching-based diffusion tensor image registration 
algorithm by simultaneously considering spatial deformation and tensor orientation. Neuroimage. 
2010; 52(1):119–130. [PubMed: 20382233] 

25. Park HJ, Kubicki M, Shenton ME, Guimond A, McCarley RW, Maier SE, Kikinis R, Jolesz FA, 
Westin CF. Spatial normalization of diffusion tensor mri using multiple channels. Neuroimage. 
2003; 20(4):1995–2009. [PubMed: 14683705] 

26. Barmpoutis, A.; Jian, B.; Vemuri, B.; Shepherd, T. Symmetric positive 4th order tensors and their 
estimation from diffusion weighted mri. In: Karssemeijer, N.; Lelieveldt, B., editors. Information 

Fogtmann et al. Page 24

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Processing in Medical Imaging. Vol. 4584. Berlin, Germany: Springer; 2007. p. 308-319.Lecture 
Notes in Computer Science

27. Basu, S.; Fletcher, T.; Whitaker, R. Medical Image Computing and Computer-Assisted 
Intervention. Vol. 9. New York: Springer; LNCS; 2006. Rician noise removal in diffusion tensor 
MRI; p. 117-125.

28. Joshi, SH.; Marquina, A.; Osher, SJ.; Dinov, I.; Van Horn, JD.; Toga, AW. MRI resolution 
enhancement using total variation regularization. Proc. 6th IEEE Int. Conf. Symp. Biomed. Imag.: 
From Nano to Macro; 2009; p. 161-164.

29. Pearson K. The problem of the random walk. Nature. 1905; 72(1865):294.

30. Liu DC, Nocedal J. On the limited memory BFGs method for large scale optimization. Math 
Program. Dec; 1989 45(3):503–528.

31. Kim K, Habas PA, Rajagopalan V, Scott JA, Corbett-Detig JM, Rousseau F, Barkovich AJ, Glenn 
OA, Studholme C. Slimmer: Slice mri motion estimation and reconstruction tool for studies of 
fetal anatomy. Proc SPIE. 2011; 7962:79624D.

32. Jones DK, Cercignani M. Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed. 
2010; 23(7):803–820. [PubMed: 20886566] 

33. Clancy B, Kersh B, Hyde J, Darlington R, Anand K, Finlay B. Web-based method for translating 
neurodevelopment from laboratory species to humans. Neuroinformatics. 2007; 5(1):79–94. 
[PubMed: 17426354] 

34. Kroenke CD, Bretthorst GL, Inder TE, Neil JJ. Diffusion mr imaging characteristics of the 
developing primate brain. Neuroimage. 2005; 25(4):1205–1213. [PubMed: 15850738] 

35. Kroenke CD, Van Essen DC, Inder TE, Rees S, Bretthorst GL, Neil JJ. Microstructural changes of 
the baboon cerebral cortex during gestational development reflected in magnetic resonance 
imaging diffusion anisotropy. J Neurosci. 2007; 27(46):12 506–12 515.

36. Mori S, van Zijl P. Fiber tracking: Principles and strategies—A technical review. NMR Biomed. 
2002; 15(7–8):468–480. [PubMed: 12489096] 

37. Haselgrove JC, Moore JR. Correction for distortion of echo-planar images used to calculate the 
apparent diffusion coefficient. Magn Reson Med. 2005; 36(6):960–964. [PubMed: 8946363] 

38. Nielsen JF, Ghugre NR, Panigrahy A. Affine and polynomial mutual information coregistration for 
artifact elimination in diffusion tensor imaging of newborns. Magn Reson Imag. 2004; 22(9):
1319–1323.

39. Rohde G, Barnett A, Basser P, Marenco S, Pierpaoli C. Comprehensive approach for correction of 
motion and distortion in diffusion-weighted MRI. Magn Reson Med. 2003; 51(1):103–114. 
[PubMed: 14705050] 

40. Studholme C. Mapping fetal brain development in utero using magnetic resonance imaging: The 
big bang of brain mapping. Ann Rev Bio Eng. 2011; 13(1):345–368.

Fogtmann et al. Page 25

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 1. 
Illustration of motion induced scattering during a multi-slice DWI acquisition. Figure (a) 

shows a stack of acquired slices in the scanner coordinate system which are positioned 

regularly. But, due to rigid target motion during imaging, the slices do not corresponding the 

original underlying anatomy at the start of the acquisition. Figure (c) contains a distribution 

density plot of the diffusion measurement directions in the scanner coordinate system. The 

slices must be rigidly mapped to a common anatomical coordinate system to enable 

volumetric reconstruction, as in Figure (b). The intended diffusion measurement directions 

in Figure (c) must also be reoriented using the rotational component of the rigid motion 

transformation for each diffusion weighted slice, causing the data to be scattered in the 

spherical (orientation) domain. Figure (d) illustrates the resulting distribution of the 

diffusion measurement directions in the anatomical coordinate system, here generated from 

a synthetic motion-trajectory representative of a fetal head motion.
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Fig. 2. 
Coordinate systems and transformations. Diagram shows the mappings between a slice and 

the reference coordinate system, where the diffusion volume is reconstructed, as well as the 

mappings to and from an intermediate initial setup coordinate system. Both the slice and the 

reference coordinate system have a corresponding voxel coordinate system controlling the 

resolution.
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Fig. 3. 
Overview of pipeline: The data is loaded into the SLIMMER tool to obtain an initial volume 

alignment for each DWI slice stack refined from the planned DICOM coordinates. nDW 

volume is then estimated using the structural motion estimation and reconstruction approach 

in [22], and an initial motion-trajectory is estimated using the registration approach of [19]. 

The next step is an initial robust reconstruction as explained in Section VI-C, followed by 

the first DTI reconstruction with the proposed approach. This is followed by two cycles of 

slice motion estimation and diffusion reconstruction as described in Section VI-D.
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Fig. 4. 
Left three columns: Examples of simulated motion corrupted multi slice nDW data formed 

from a high quality stationary adult study on a 3T system. The three rows show a motion 

simulated stacks with the motion levels 0.5, 1.0, and 1.5, respectively and an intensity noise 

level simulating 1.5T data. Right column: The slice rms as a function of the slice-to-mask 

intersection given the ground truth for three studies with three different motion level. The 

color of the markers indicate the iteration label of plotted rms error. Red, green, yellow, and 

blue correspond to the zeroth, first, second, and third iteration of the unified approach, 

respectively. There is a clear pattern of rms reduction between each iteration in all studies 

which justifies each iteration level. The plots also reveal that there is a drop in performance 

for slices with a mask intersection size of less than approximately a 1000 voxels.
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Fig. 5. 
Selected slice stacks for the four clinical cases showing examples of minimum motion. 

Displays are approximately axial and sagittal views created using nearest neighbor 

interpolation to highlight the underlying voxel size. The upper two rows show nDW slices 

and the bottom two rows show DW slices. This also highlights the variation in image quality 

which is dependent on the positioning of the coil and the fetus during the clinical study, and 

the low level of signal available in the slices motivating the combination of data from 

different views.
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Fig. 6. 
Top: FA maps computed from DTI reconstructions of the 110 day study, starting from 

different simulated motion perturbation levels. The first two rows show axial and sagittal 

views of the FA maps resulting from the DTI reconstructions without motion estimation 

while the next two rows show the FA maps resulting from the DTI reconstruction with 

motion estimation. First column corresponds to the unperturbed SLIMMER initialization, 

and the remaining five columns correspond to the reconstructions at the different motion 

simulation levels. From the first two rows it can be observed that the quality of the 

reconstruction deteriorates with the increased motion level. The only nonmotion-corrected 

reconstruction with perturbation of the initialization, which shows well-defined white matter 

structures and cortical diffusion anisotropy, is made from the lowest perturbation level. It is 

observed that the quality of the motion-corrected reconstructions with perturbations levels 

≤1.00 are comparable, while the reconstructions with motion levels >1.00 exhibit a drop in 

quality either due to missing data or slice alignment errors. Bottom: FA maps color-coded 

using the tensor direction for the reconstructions for the macaque fetus overlaid upon 

structural T2-weighted reconstructions. The FA values are scaled linearly between 0.05 and 

0.35. The rows of the figure correspond to the gestational ages 85, 110, and/or 135 days, the 

first column contains an axial view, the second column contains a sagittal view, and the third 

column contains a coronal view. The next column displays the coronal view of FA maps of 
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the reconstructions computed DTI fitting to the first DWI stack assuming no motion 

highlighting the lower signal to noise, resolution and image artifacts. The final column 

shows volume only motion estimation and reconstruction from all the data assuming no 

motion.
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Fig. 7. 
Cortical plate FA pattern (top) and FACT based ROI tractography of the corpus callosum 

(bottom) for all three gestational ages constructed using the 0.75 mm resolution 

reconstruction from all the acquired diffusion weighted slice stacks. Extracted tracts are 

color-coded with the local tract direction (green anterior–posterior, blue superior–inferior, 

red medial–lateral).
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Fig. 8. 
An example of the amount of between slice motion recovered in a typical human clinical 

study (subject 2) in terms of slice positioning before and after slice alignment. Slices shown 

are from one diffusion weighted component in each of the three orthogonal diffusion 

weighted acquisitions using an interleave of 2. Right column shows an enlarged view of the 

improved alignment of corresponding structures in the diffusion weighted slices from the 

different diffusion sets collected.
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Fig. 9. 
FA maps color-coded using the primary tensor direction for all four human clinical studies 

overlaid on structural T2-weighted reconstructions (all data reconstructed to 1 mm cubic 

voxels). Left three columns are the iterative reconstruction using full slice motion 

estimation. The next column is the reconstruction using volume based motion correction 

[23], the right most column shows the reconstruction with no DW motion estimation from 

the initial SLIMMER setup. Yellow arrows indicate improved delineation of the small 

corpus callosum in case 1 and 3 with enlarged ventricles using slice motion estimation. In 

case 2 the yellow arrows highlight the absence of any left-right diffusion (red) in the region 

of the corpus callosum.
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Fig. 10. 
Comparison of connectivity in 1.5T human studies using tractography in 3-D data derived 

from typical clinical DTI scans shown with planes from underlying T2W MRI 

reconstructions (all data reconstructed to 1 mm cubic voxels). (a) Comparison of 

tractography from a right anterior ROI (yellow) in the normal corpus callosum of case 4. 

Results show improved delineation of white matter connectivity (from the subjects right to 

the subjects left) after correction for between slice motion, with longer connections, more 

clustered tract shape and FA values (color coding). (b) Comparison of tractography from the 

Corpus Callosum in a 3-D reconstruction after motion correction in case 2 with agenesis of 

the corpus callosum (right), and case 4 with normal corpus callosum (left).
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