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Abstract: In this article, we propose a unified approach to estimating and modeling

univariate time series. The approach applies to both linear and nonlinear time series

models and can be used to discriminate non-nested nonlinear models. For example,

it can discriminate between threshold autoregressive and bilinear models or between

autoregressive and moving average models. It can also be used to estimate and dis-

criminate between symmetric and asymmetric conditional heteroscedastic models

commonly used in volatility studies of financial time series. The proposed approach

is based on Gibbs sampling and may require substantial amounts of computing in

some applications. We illustrate the proposed approach by some simulated and real

examples. Comparison with other existing methods is also discussed.
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1. Introduction

Estimation and model selection are two main components of time series anal-
ysis. There are many results available in the literature that concern parameter
estimation of a given model and model selection within a specified class of mod-
els. For example, the exact maximum likelihood method was widely investigated
in 1980s for autoregressive moving-average (ARMA) models, e.g. Ansley (1979),
Jones (1980), Hillmer and Tiao (1979) among others, and the conditional least
squares approach was proposed for nonlinear models, e.g. Tong (1990) and the
references therein. For model selection, some popular model selection criteria
such as AIC and its variants are commonly used to select the order of an autore-
gressive process or a threshold autoregressive models. See, for instance, Priestley
(1981), Brockwell and Davis (1991) and Tong (1990).

There is, however, no unified approach or program that can be used to esti-
mate most of the linear and nonlinear models considered in the literature. For
example, special packages are needed to apply bilinear models, threshold models
or Markov switching models. Furthermore, there is little discussion of model
selection across different classes of nonlinear models. Much work on model selec-
tion in the literature focuses on nested models for which the traditional maximum



452 CATHY W. S. CHEN, ROBERT E. MCCULLOCH AND RUEY S. TSAY

likelihood ratio tests or Largange multiplier tests or information criterion func-
tions apply. For non-nested models, model discrimination becomes much more
involved, especially when the competing models are nonlinear. In the time se-
ries literature, Li (1993) adopts the idea of separate families of hypotheses of
Cox (1962) and proposes a test statistic for discriminating bilinear and threshold
models. The test statistic has an asymptotic chi-squared distribution with one
degree of freedom. However, Li’s test is closely related to the method of selecting
a model with smaller residual variance and is not applicable to other nonlinear
models.

The purpose of this paper is to propose a unified approach that can be used
to estimate most of the univariate time series models available in the literature
and to select an appropriate model for a time series when the candidate models
may be non-nested nonlinear. More specifically, our objective is to consider an
approach that is widely applicable in univariate time series analysis. The models
can be linear or nonlinear, and the approach can discriminate between non-
nested nonlinear models. The proposed approach is based on Gibbs sampling and
requires some prior specification. In particular our approach to model selection
allows each observation to select one of the candidate models. The key prior
specification here is the probability that an individual observation is generated
by a specified model given that both observations adjacent in time are generated
by that same model. (See equation (5) below.) Sensitivity analysis of prior
specification will be discussed later.

Because the proposed approach uses Gibbs sampling, it may require substan-
tial computing time in some applications. Our goal is not to develop the most
efficient approach for univariate time series analysis, but a unified approach that
is applicable to most parametric models. In a given application where the enter-
tained models are specified, it is often possible to reduce the computing time by
some special algorithm or theoretical derivation. However we shall not focus on
those special issues.

The paper is organized as follows. In Section 2, we give the general frame-
work of models considered in this paper and show that many time series models
considered in the literature are special cases of our model. Section 3 considers
model estimation via the Gibbs sampling. In particular, we treat starting values
of the time series and the innovational series as parameters and consider the
conditional likelihood function of a parameter given the others. We also discuss
methods for implementing the Gibbs sampler when the parameter under study is
nonlinear, e.g. the moving-average parameters in an ARMA model. Section 4 is
devoted to model discrimination. Here a simple switching framework is used in
which the competing non-nested nonlinear models become submodels of a mix-
ture. Under this framework, each individual observation can select its own model
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from the mixture. The posterior probability that particular observations are as-
sociated with a particular model can then be used to select an appropriate model
for the whole series. Advantages of the proposed method of model selection are
discussed. While this idea for model discrimination was used in McCulloch and
Tsay (1994) and in George, McCulloch and Tsay (1996) for some special models,
we implement it differently in this paper and extend it to a procedure for general
non-nested nonlinear models. Finally, we illustrate the proposed approach by
some simulated and real examples in Section 5.

2. A General Nonlinear Model

The model considered in this paper is

yt = f(yt−1, . . . , yt−p; at−1, . . . , at−q; βf ) + at (1)

at = gtεt

gt = g(yt−1, . . . , yt−u; at−1, . . . , at−v; gt−1, . . . , gt−w; βg),

where yt is a univariate time series, f(·) and g(·) are two known functions with
finite-dimensional parameter vectors βf and βg, respectively, p, q, u, v, and w

are non-negative integers, and {εi} is a sequence of independent and identically
distributed random variables with mean zero and variance one. The function
g(·) is assumed to be positive; it governs the evolution of the volatility of the
innovational series at. For simplicity, we focus on the case that the εt’s are
standard normal random variables, i.e. at is conditionally normal. However, it
is easily seen that εt can be any continuous random variables with a well defined
density function.

Model (1) is a general model, because it encompasses many commonly used
models in the literature. Some specific examples are:
1. If g(·) = β1, which is a positive constant, and f(·) =

∑p
i=1 φiyt−i−∑q

i=1 θiat−i;
then model (1) reduces to the well-known ARMA of Box, Jenkins and Reinsel
(1994).

2. If f(·) = 0 and g2(·) = γ0 +
∑q

i=1 γia
2
t−i, where γ0 > 0 and γi ≥ 0, then

the model becomes the well-known conditional autoregressive heteroscedastic
(ARCH) model of Engle (1982). The ARCH model and its variants are widely
used in finance to model the volatility of a security return.

3. If f(·) = 0 and g2(·) = γ0+
∑v

i=1 γia
2
t−i+

∑w
i=1 λig

2
t−i, where γ0 > 0, γi ≥ 0 and

λi ≥ 0, then we have the generalized ARCH (GARCH) model of Bollerslev
(1986).

4. If f(·) = 0 and g(·) = exp(γ0 +
∑u

i=1 βiyt−i +
∑v

j=1 γjat−j), then model (1)
becomes a stochastic volatility model in which the conditional variance of
the series is related to past observations and past innovations. This model is
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similar to that in Tsay (1987) and can be extended to include models that
allow for asymmetric responses to positive and negative innovations.

5. If g(·) = β1 > 0, a constant, and f(·) =
∑p

i=1 φiyt−i−∑q
i=1 θiat−i+

∑p
i=1

∑q
j=1

βijyt−iat−j , then model (1) becomes the bilinear model of Granger and An-
dersen (1978) and Subba Rao (1981).

6. If f(·) = φ
(i)
0 +

∑p
j=1 φ

(i)
j yt−i and g(·) = σ(i) > 0 for ri−1 ≤ yt−d ≤ ri, where

d is a positive integer and ri’s are real numbers satisfying −∞ = r0 < r1 <

· · · < rk = ∞, then model (1) becomes the threshold autoregressive (TAR)
model of Tong (1978, 1990).

Model (1) also provides a framework to combine different time series models.
For example, if f(·) = φ0 + φ1yt−1 − θ1at−1 and g(·) = ω0 + ω1at−1 > 0 almost
surely, then yt is an ARMA process with a concurrent bilinear innovation. Such
an innovational series also shows stochastic volatility as that of an ARCH model.
In Section 4, we use model (1) to develop a switching model for discrimination
of non-nested nonlinear models.

3. Estimation

In this section, we discuss a general approach to parameter estimation of
model (1). The proposed approach is Bayesian and makes use of Gibbs sampling.
In particular, we assume the time series yt starts at time t = 1 with unknown
starting values, lagged innovations, and lagged g values. We treat these initial
values as unknown parameters of the model and estimate them jointly with other
parameters. This marks a “big” difference between the proposed approach and
many existing estimation methods, because those existing methods assume ei-
ther the starting values are zero or the process under study is stationary. (See,
for example, Brockwell and Davis (1991).) The idea of treating starting values
and innovations of a time series process as unknown parameters has been used
previously in the literature primarily for ARMA models. For example, in exact
likelihood estimation of ARMA models, those starting values and innovations are
estimated by using the dynamic structure of the data. However, for nonlinear
models no formal study is currently available.

Consider model (1). Let p∗ = max{ p, u}, q∗ = max{q, v}, y0 = (y−p∗+1,
y−p∗+2, . . . , y0)′ be the starting values of yt, a0 = (a−q∗+1, a−q∗+2, . . . , a0)′ be
the starting innovations, and g0 = (g−w+1, . . . , g0)′ the starting lagged g values.
Finally, let Ω = (y′

0, a
′
0, g

′
0, β

′
f , β′

g)
′ be the set of all parameters of model (1). For

n observations {yt}n
t=1, let Yt = (y1, . . . , yt)′. It is easily seen that the conditional

mean and variance of yt given Yt−1 and Ω are

E(yt|Yt−1, Ω) = f(yt−1, . . . , yt−p; at−1, . . . , at−q) ≡ ft

var(yt|Yt−1, Ω) = g2(yt−1, . . . , yt−u; at−1, . . . , at−v ; gt−1, . . . , gt−w) ≡ g2
t .
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Therefore, the log-likelihood function of the data can be written as L(Yn, Ω) =∑n
t=1 ln p(yt|Yt−1, Ω), which, under normality, becomes

L(Yn, Ω) =
−1
2

n∑
t=1

[
ln(2πg2

t ) +
(yt − ft)2

g2
t

]
.

Given prior distribution p(Ω), the log of the joint posterior distribution function
for the model is


(Ω|Yn) ∝ ln[ p(Ω)] − 1
2

n∑
t=1

[
ln(2πg2

t ) +
(yt − ft)2

g2
t

]
. (2)

The ability to evaluate this posterior function plays a key role in the pro-
posed approach. For the general model in (1), this posterior function involves
many parameters and might be difficult to handle. Some methods are available in
the literature to overcome this difficulty, especially when special cases of model
(1) are entertained. For example, the Kalman filter can be used to evaluate
this posterior function recursively for linear Gaussian ARMA models with a flat
prior (see Jones (1980)). The EM algorithm can be used if model (1) is in the
form of a component model (see Shumway and Stoffer (1982)). More recently,
the Gibbs sampler has been shown to be useful in obtaining the joint posterior
distribution of Ω for some time series models. For example, the Gibbs sampler
with the Metropolis algorithm is found to be useful in modeling linear Gaussian
ARMA models with conditionally conjugate priors. Here the Metropolis algo-
rithm is used primarily to handle nonlinear parameters for which no closed-form
formulas are available to simplify the Gibbs draw. In Carlin, Polson and Stoffer
(1992), the Gibbs sampler in conjunction with scale mixtures of normal distri-
butions was used to analyze nonlinear State-Space models. An advantage of the
Gibbs sampler is that the joint posterior distribution of the model parameters in
(2) can be obtained iteratively by using lower-dimensional conditional posterior
distributions. As a special case, one may consider all 1-dimensional conditional
posterior distributions in implementing the sampler. The 1-dimensional poste-
rior distributions obtained from (2) are easy to evaluate. Another advantage of
the Gibbs sampler is that only conditional prior specification is needed. Other
Bayesian analyses of time series models using Markov Chain methods include
Marriott et al. (1996) and Chib and Greenberg (1994) among many others.

In this paper, we also use the Gibbs sampler. However, we shall not use the
Metropolis algorithm to handle nonlinear parameters. Instead we employ the
griddy Gibbs approach of Tanner (1991) for those parameters that do not have
closed-form formulas to facilitate the Gibbs draws. Advantages of the griddy
Gibbs include simplicity and wide applicability. The computational burden of
the griddy Gibbs, however, may be heavy. The griddy Gibbs used is as follows:
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Griddy Gibbs.
Let ωi be the ith element of Ω and [b0, b1] be the support of ωi. In practice,

the support is determined by properties of the entertained model. For example,
if ωi denotes the lag-1 coefficient of an AR(1) model, i.e. yt = ωiyt−1 + εt, then
[b0, b1] = [−1, 1] so that the process is not explosive. The conditional posterior
distribution function of ωi given the data, all the other parameters and prior
distribution p(ωi) is

p(ωi|Yn, Ω(i)) ∝ p(ωi|Ω(i))
n∏

t=1

N(ft, g
2
t ), (3)

where Ω(i) denotes all the parameters in Ω except ωi and ft and gt are functions of
ωi. The griddy Gibbs draws a realization of ωi by the following procedure:
• Select a grid of m points in the support [b0, b1] or for a subset of [b0, b1].
• For each grid point, evaluate the conditional posterior distribution function

of ωi in (3).
• Draw a random realization of ωi from the selected grid based on the values of

the conditional posterior distribution function.
From the procedure, it is clear that the actual value of the normalization constant
of the conditional posterior function is not needed in implementing the griddy
Gibbs. The prior distribution p(ωi|Ω(i)) may assume many forms depending on
the substantive information of the problem under study. It is clear, however,
that a uniform prior simplifies the computation involved.

Example. As an illustration, we consider in detail the Gibbs sampler used for
the following simple bilinear model yt = φ0 + φ1yt−1 − θat−1 + βyt−1at−1 + at,
at = σεt where σ > 0 is the standard deviation of the innovation series at. The
parameters of this model are Ω = (φ0, φ1, θ, β, y0, a0, σ)′, where y0 is the starting
value of the series and a0 is the starting innovation. The Gibbs samples of these
parameters can be drawn as follows:
• The two AR coefficients φ0 and φ1 can be drawn easily because they are

linear parameters and have a closed-form formula when a conjugate prior is
used. Specifically, conditional on the other parameters, we can express the
two AR parameters in a linear regression setup in a manner similar to that
of an MA(1) model. Let m1 = θ − βy0, x11 = 1 and x21 = y0. For t > 1,
define recursively mt = (θ − βyt−1)mt−1, x1t = 1 + (θ − βyt−1)x1,t−1 and
x2t = yt−1 + (θ − βyt−1)x2,t−1. Furthermore, define y∗t = yt − mt. Then, we
have y∗t = φ0x1t +φ1x2t +at, t = 1, . . . , n. Therefore, φ0 and φ1 can be drawn
jointly by using the usual result of Gibbs sampling for linear regression model
with conjugate prior.
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• The variance parameter σ2 can also be drawn by using the usual technique,
because conditional on other parameters σ2 has an inverted chi-square distri-
bution under the normality assumption and conjugate prior.

• The starting value y0 can be drawn again by using results of linear regression
analysis. Specifically, define y∗1 = y1 − φ0 + θa0, x∗

1 = φ1 + βa0 and y∗t =
yt − φ0 − φ1yt−1 + (θ − βyt−1)y∗t−1 and x∗

t = (θ − βyt−1)x∗
t−1 for t > 1. Then,

we have y∗t = x∗
t y0 + at, t = 1, . . . , n, and the result of the Gibbs sampler for

simple linear regression applies.
• Similarly, the starting innovation a0 can be drawn by using the result of

linear regression analysis. Define y∗1 = y1 − φ0 − φ1y0, x∗
1 = −θ + βy0, y∗t =

yt − φ0 − φ1yt−1 + (θ − βyt−1)y∗t−1 and x∗
t = (θ − βyt−1)x∗

t−1 for t > 1. Then,
we obtain y∗t = x∗

t a0 + at, t = 1, . . . , n, which is a simple linear regression.
• Finally, the MA coefficient θ and the bilinear parameter β are nonlinear, and

there exist no closed-form formulas to simplify the Gibbs draw. One possible
approach to overcome this difficulty is to use the Metropolis algorithm. In this
paper, we use the griddy Gibbs approach. As mentioned before, for these two
parameters, the individual conditional posterior distribution functions can be
evaluated easily over a grid of finite points. For the MA coefficient θ, the
support is [−1, 1] whereas that of the bilinear parameter β must satisfy the
condition φ2

1 + σ2β2 < 1. (See Liu (1989) for the stationarity condition of the
bilinear model.)

Note that in theory all parameters can be drawn by using the griddy Gibbs.
However, it is desirable to use closed-form formulas whenever available and to
draw several parameters jointly whenever possible. Drawing one parameter at a
time using the griddy Gibbs could result in slow convergence of the sampler.

In the above illustration, all techniques used are not limited to the bilinear
model. On the contrary, the proposed estimation procedure is widely applicable
in linear and nonlinear time series analysis. Only the closed-form formulas and
the likelihood function need to be changed when other models are entertained.

A potential weakness in using the griddy Gibbs is the specification of pa-
rameter support. For simple models, one can use the theoretical properties of
the model such as stationarity, invertibility or existence of some moments to se-
lect the supports. However, for high dimensional models, the interdependence
of the parameters may complicate the specification. In our implementation of
the griddy Gibbs, we use an iterative method. We start with a relatively wide
interval for a given parameter and refine the interval after some Gibbs iterations.
In practice, this means one needs to run the Gibbs sampler several times in order
to obtain estimates of a model. Given the advance in computing facilities and
the gains in understanding the series over the iterations, we believe that this is
not a serious drawback for the proposed estimation method. Furthermore, when
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the number of parameters is large, one can start with a sparse grid in the ini-
tial Gibbs iterations to reduce the computation in refining the specification of
parameter supports.

4. Model Discrimination

In this section we consider the problem of model selection in nonlinear time
series analysis, especially when the competing models are not nested. Such a
model-selection problem is important because many classes of nonlinear models
have been proposed in the literature and there exists no simple method to ef-
fectively discriminate one class of models from another. For example, both the
TAR and bilinear models have been used to analyze annual sunspot data with
proponents claiming better fit for their model. (See Tong (1990) and Gabr and
Subba Rao (1981).) Another example is that many ARCH-type of models have
been used to describe and predict the volatility of the monthly S&P 500 excess
returns, and there is no agreement on which model is most appropriate.

Our approach to model discrimination is to let individual observations make
their own choice of model. Consider the case of two competing non-nested non-
linear models. We use these competing models to define the functions f(·) and
g(·) of model (1) and introduce a simple switching scheme that allows each indi-
vidual observation to select its own model. Thus, under the proposed approach,
the two competing models become submodels of a mixed model, and each indi-
vidual observation can select its own submodel. In real applications, the dynamic
structure of a time series cannot change abruptly over time. A structural change
tends to occur gradually over a period of time. Therefore, it is reasonable to
assume that the model selection of individual observations evolves over time in a
smooth fashion. This consideration leads us to employ a simple switching scheme
to govern the model selection. The selection results of individual observations
provide information about which submodel is more appropriate for the data.
This information can then be used to make model selection.

The idea behind the proposed mixed model is simple. We believe that the
issue of model discrimination exists only when the two competing non-nested
nonlinear models fit the data well; otherwise, the selection is clear. Consequently,
a better way to discriminate between models is to let each individual observation
select its own model. Moreover, it is conceivable that certain portions of the data
fit one model nicely whereas the remaining data fit the other model better. In
this situation, the mixed model considered appears to be more appropriate.

One can also treat the proposed mixture-model approach as a generalization
of the odds-ratio commonly used in Bayesian inference. In computing an odds-
ratio, we assume that all of the data points belong to the candidate model. On
the other hand, under the proposed mixed model, observations can belong to
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different models. Thus, the proposed method provides another level of flexibility
over the odds-ratio.

The switching scheme for model discrimination has been used in McCulloch
and Tsay (1994) to test for “trend-stationarity” versus “difference-stationarity”
of a linear time series and in George, McCulloch and Tsay (1996) to distinguish
between fixed-coefficient versus random-coefficient autoregressive models. How-
ever, these two papers use Markov switching and only consider linear models for
which closed-form formulas are available. The current paper is much more gen-
eral as it can handle a wide range of linear and non-linear models. In addition,
this paper improves the procedure by treating starting values and innovations as
parameters . This improvement could be significant in applications because it
relaxes the assumption that the starting values and innovations are either fixed
or equal to their expectation. For non-stationary series to which most real-world
time series belong, the unconditional expection of a series might not exist.

The probabilistic mechanism of the proposed mixed model can give rise to
a large number of possible submodel configurations; for a given time series of
length n, the possible number of submodel configurations is 2n. In applications,
these configurations might require intensive computation in model estimation.
However, as illustrated in George and McCulloch (1993), McCulloch and Tsay
(1994) and George, McCulloch and Tsay (1996), this computational difficulty
can be overcome by using Gibbs sampling.

4.1. A mixed model with switching

The proposed framework for discriminating between two competing models
is the two-state switching model:

yt =

{
f1,t + a1t, a1t = g1,tεt if st = 1,
f2,t + a2t, a2t = g2,tεt if st = 2,

(4)

where fi,t, gi,t and ait are defined as in (1) and {st} is a sequence of states. The
state switching is governed by

P (st = i|st−1 = st+1 = i) = η, P (st = i|st−1 �= st+1) = 0.5. (5)

Thus the switching depends on the two nearest neighbors of the observation in
time. Each observation has a conditional probability η to stay with the same
model as its neighbors. When the two adjacent neighbors are in different states,
the probability of model switch is neutral at 0.5. Because structural changes tend
to occur gradually over a period of time, a large η seems to be more realistic in
application. If η = 1 then all observations come from one of the two competing
models. In this paper, we use η close to 1 and consider values of η in the interval
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[.95, .9999] to study the sensitivity of model selection with respect to the choice of
η. Alternatively, one could put a hyper-prior on η that has most of the probability
mass on values close to 1. Including the large set of parameters st in model (4)
makes it very flexible. In application strong prior information (large η) is needed
to get reasonable results.

One way to appreciate the implication of η is to consider the independence
case in which model change is independent over time. In this case, there are 8
possible model configurations for every three consecutive observations and the
probability that all three observations belong to the same model is only η/4,
which is less than 0.25. Thus, the chance of model change is substantial when η

is not large. Of course, the independence assumption is an extreme case and is
often unrealistic in application. Our discussion is only meant to justify the use
of a large value for η.

There are many ways to describe the transition of model selection from one
observation to another, ranging from independent Bernoulli trials to complicated
dynamic mechanism. Our choice of (5) is based on several considerations. First,
the transition is very flexible; it covers a wide range of possibilities by varying η.
For example, η = 0.5 corresponds to independent Bernoulli trials with probabil-
ity 0.5 and η = 1 implies that change can only occur when two neighbors belong
to different models. Second, it is easy to use because the user only needs to spec-
ify a single parameter. In the traditional two-state Markov switching model, one
needs to specify two parameters for the probability transition matrix. Third, the
equation is intuitively appealing. It easily reflects the common sense of smooth
model change. Fourth, the scheme can be extended to involve other neighboring
systems, e.g. two observations prior and after the observation. Such a specifi-
cation would provide an alternative way to specify strong prior information that
nearby observations are likely to come from the same model.

4.2. Implementation

Model selection is based on the posterior distribution of the parameters st

in model (4). This posterior is computed in the obvious way by using Gibbs
sampling and drawing the st’s given the parameters of both models and then
drawing the parameters of the individual models given the st values in a manner
similar to that outlined in Section 3.

To use our method for model discrimination, we propose the following pro-
cedure:
1. For each submodel we specify prior distributions for the model parameters

and then use all the data and the estimation method of Section 3 to obtain
estimates (typically posterior means).
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2. Choose a value for η and perform a Gibbs estimation of the mixed model in
(4). Initial values for the submodel parameters are obtained from step 1. Step
1 also provides an initial choice of the support and grid for each parameter
drawn using the griddy method.

3. Check the convergence of Gibbs sampler. Refine and iterate Gibbs sampler if
necessary.

4. Use the posterior distribution of model selection of individual observations to
make inference.
Once the posterior distribution of individual selection is available, one can

make inference of model selection based on the objective of the analysis. For ex-
ample, if the objective is forecasting, one may pay more attention to the model
selection of observations close to the forecast origin. If the objective is the dy-
namic structure of the data, then the posterior mean or median can be used
for overall selection. It is conceivable that the data might not have sufficient
information to distinguish one competing model from another. In this case, one
might search for more data or for ways to further improve the model. It would be
unwise to assume that a statistical method can always distinguish two competing
models based on a finite sample of observations.

Finally, it is important in practice to study the sensitivity of model selection
with respect to prior specification such as η and to check the convergence of
the Gibbs sampler. By varying priors and the number of iterations and starting
values of the Gibbs sampler, one can learn the stability of model selection.

5. Examples

We illustrate the proposed unified approach to estimating and modeling time
series by some simulated and real examples. For the simulated examples, we
consider AR versus MA models and TAR versus bilinear models. We analyse
two real data sets. We compare TAR and bilinear models for the annual sunspot
numbers and ARCH(2) and GARCH(1,1) models for monthly excess returns of
the S&P500 stock market portfolio.

Example 1. Figure 1(a) shows a time plot of 300 observations generated from
the model

yt =

{
.8yt−1 + at, if t = 101, . . . , 200,

at + .3at−1 + .4at−2, if t = 1, . . . , 100; 201, . . . , 300,

where at = 0.5εt, a0 = a−1 = 0 and y0 = 0. This is a mixed model with two
change points at t = 101 and t = 201. The model change at t = 201 can be seen
in Figure 1(a), but that at t = 101 is not obvious. Our goal here is to illustrate
the performance of the proposed approach in estimation and model selection. For
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the AR model, the parameter vector is Ω1 = (φ1, y0, σ1)′, where φ1 is the lag-1
AR coefficient and σ1 is the standard deviation of the AR innovation. For the
MA model, the parameter vector is Ω2 = (θ1, θ2, a0, a−1, σ2)′, where θi are MA
coefficients, ai are starting innovations and σ2 denotes the standard deviation of
the MA innovation.
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Figure 1. Time plot and posterior probabilities for Example 1.
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Following the proposed procedure in Section 4.2, we began with Gibbs sam-
ples for each model, assuming that all of the data belong to that model, to ob-
tain initial parameter estimates and the initial parameter supports for the griddy
Gibbs. The prior for any parameter drawn by griddy Gibbs is the uniform distri-
bution over its interval support. The initial Gibbs samples used 300 iterations.
Using results of the initial Gibbs samples and a given η for conditional switching
probability, we ran 2500 Gibbs iterations to obtain posterior distribution of indi-
vidual model selection. The estimated posterior probabilities are based only on
the last 2000 iterations. This step of ignoring the first 500 Gibbs iterations was
taken to reduce the effect of initial parameter specification. Figure 1(b) shows
the posterior mean of selecting the MA model for each individual observation
for η = 0.95, 0.99, 0.995, respectively. The solid line is for η = 0.995 and the
dotted line for η = 0.99. The effect of η on model selection is seen from the three
posterior probabilities. As expected, η ≥ 0.99 works better and is preferred. For
this example, it is seen that the proposed model-selection method works reason-
ably well. It points out clearly the two change points and is able to identify the
generating model. For estimation, the posterior distributions of the parameters
are well behaved and are centered roughly around the true values.

Example 2. In this example, we generated 300 observations from the mixed
model

yt =




{
.8yt−1 + a1t if yt−1 ≥ 0
−.8yt−1 + a1t if yt−1 < 0

if t = 1, . . . , 100; 201, . . . , 300

.5yt−1 + .2yt−1a2,t−1 + a2t if t = 101, . . . , 200

where y0 = a0 = 0, a1t = 0.5εt and a2t = 0.3εt. This is a mixture of TAR and
bilinear models with two change points at t = 101 and t = 201. The TAR model
has two regimes separated by the threshold variable yt−1 at threshold r = 0.
In each regime, the model is AR(1). The bilinear model used contains a single
bilinear term .2yt−1at−1 and is referred to as a “diagonal” bilinear model. A
special feature of such a bilinear model is that the mean of the series is non-
zero, even though there is no constant term in the model. Properties of diagonal
bilinear models are more complicated than those of non-diagonal bilinear models.
(See Guegun (1994).)

The data of this example are shown in Figure 2(a). Even a careful reading of
the plot cannot reveal easily the two change points. In our analysis, we assume
that the threshold variable yt−1 is known, but the threshold r is unknown. Thus,
the parameter vector for the TAR submodel is Ω1 = (r, φ(1)

1 , φ
(2)
1 , σ1, y0)′ where

r denotes the threshold , φ
(i)
1 is the AR(1) coefficient of the ith regime, and σ1 is

the innovational standard deviation. For the bilinear submodel, the parameter
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vector is Ω2 = (φ, β, σ2, y0, a0)′, where φ and β are the AR and bilinear coefficient,
respectively, σ2 denotes the standard deviation of innovations, and y0 and a0

denote the starting value and innovation, respectively. In sum, there are 10
parameters in the mixed model used for model selection.
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Figure 2. Time plot and posterior probabilities for Example 2.
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Figure 3. Time plot and posterior probabilities for Example 3.

Following the proposed procedure of Section 4.2 and using essentially the
same Gibbs steps and numbers of iterations as those of Example 1, we obtain the
posterior probability of selecting the bilinear model for each observation. These
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probabilities are shown in Figure 2(b) for η = 0.95, 0.99, 0.999. It is seen that
the proposed procedure works well for the data, especially for η = 0.999. The
two change points and the generating model are clearly identified. The result for
η = 0.95 given by the dashed line in Figure 2(b) shows some model uncertainty
at some patches of observations. This is reasonable because the prior probability
for model change in this case is substantial.

Example 3. In this example, we generated 300 observations all from the TAR
submodel of Example 2. However, we assume that the bilinear submodel is an-
other competing model and apply the proposed procedure to discriminate these
two models. Figure 3(a) shows the data whereas Figure 3(b) gives the poste-
rior probabilities of selecting the bilinear model by the individual observations.
These probabilities were obtained by using the same starting values, the same
Gibbs steps and iterations as those of Example 2, except that the probability of
conditional model switching is set at η = 0.99, 0.999, and 0.9999, respectively.
From the probability plot, it is seen that the proposed procedure indeed selects
the generating model for the data, especially when η is close to 1. The case of
η = 0.99 shows some model uncertainty, even though only some isolated points
have posterior probability greater than 0.5 for the bilinear model. This example
thus shows that the prior specification of η should be close to 1 in applications,
say η ≥ 0.99.

Example 4. In this example, we consider the annual Wolf sunspot number from
1700 to 1979 for 280 observations. The data shown in Figure 4(a) are listed
in Tong (1990) and have been widely used in nonlinear time series analysis. It
is generally believed that this series is nonlinear, but there is no agreement on
which nonlinear model is most appropriate for the data. When the subsample
from 1700 to 1921 was used, Gabr and Subba Rao (1981) identified a bilinear
model for the series whereas Tong (1990) specified a two-regime TAR model.
Li (1993) applied a test statistic, which uses the idea of separate families of
hypotheses of Cox (1962), to the subsample and concluded that the bilinear
model of Gabr and Subba Rao is more appropriate. However, from a theoretical
view point, bilinear models do not possess the asymmetric feature between rise
and fall of the cyclical pattern observed in the sunspot number. On the other
hand, the TAR is capable of producing an asymmetric cycle, but it has larger
residual variance in the subsample. The issue of model selection remains.

Our analysis here is to apply the proposed model-discrimination procedure
to the full sample, assuming that the bilinear model of Gabr and Subba Rao
(1981) and the TAR of Tong (1990) as two competing models. The bilinear
model considered assumes the form:

yt = α0+α1yt−1+α2yt−2+α9yt−9+β21yt−2at−1+β81yt−8at−1+β13yt−1at−3

+β43yt−4at−3 + β16yt−1at−6 + β24yt−2at−4 + β32yt−3at−2 + at, (6)
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Figure 4. Time plot and posterior probabilities for annual sunspot numbers.

where at = σεt. Besides the 12 parameters shown in equation (6), this bilinear
model also needs 9 starting values y0, y−1, . . . , y−8 and 6 starting innovations
a0, . . . , a−5. In total, estimation of this bilinear model considers 27 parameters
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some of which are highly nonlinear. As shown by the simpler bilinear example of
Section 3, we can estimate this bilinear model via the proposed Gibbs sampler.
The Gibbs draws of the nonlinear parameters can be done by the griddy Gibbs.

The threshold model built by Tong (1990) is

yt =

{
φ

(1)
0 +

∑3
i=1 φ

(1)
i yt−i + a

(1)
t , if yt−3 ≤ r,

φ
(2)
0 +

∑11
i=1 φ

(2)
i yt−i + a

(2)
t , if yt−3 > r,

(7)

where ait = σiεt. Including innovational standard deviation, this TAR model
contains 5 parameters in Regime 1 and 13 parameters in Regime 2. Counting
the threshold r and 11 starting values y0, y−1, . . . , y−10, we are effectively esti-
mating 30 parameters for the TAR model. Except for the threshold r, all of the
parameters have closed-form formulas and can be drawn easily. Conditioned on
other parameters, the threshold r becomes a change point of the data. Gibbs
draws of r, therefore, can be done by either the griddy Gibbs or the method in
Carlin, Gelfand and Smith (1992).

Again, we follow the proposed procedure in Section 4.2 to carry out the
model selection. Due to the large number of parameters involved, we used 3500
Gibbs iterations for this example, but discarded results of the first 500 iterations
in computing the posterior probabilities. Figure 4(b) shows the posterior prob-
abilities of selecting the TAR model by the individual observations, where the
solid, dashed, and dotted lines are for η = 0.99, 0.999 and 0.9999, respectively.
In our analysis, we carried out many Gibbs samples and found that the poste-
rior probability plot is stable. From the plots, it is seen that the data do not
strongly favor a single model. For certain periods, the TAR was preferred. But
for other periods, the bilinear model was selected. It seems that the data are
not sufficiently informative to discriminate between these two competing models.
However, the TAR model appears to be the choice of model by the most recent
observations. This is in good agreement with the results of forecasting compari-
son in Tong (1990), Sec. 7.3 who showed that the TAR model produced better
out-of-sample forecasts of the sunspot numbers for the latter part of the data.

The fact that the data were not very informative in choosing a single model
is understandable. First, the two competing models entertained contain many
parameters, making them rather flexible and capable of providing good fit in finite
samples. In this circumstance, one might need a large number of observations
to distinguish one model from the other. Second, there exists the possibility
that neither of the two competing models are appropriate for the data. This is
evident in the posterior probability plot of Figure 4(b) where the TAR model was
preferred when the sunspot number was high and the bilinear model was chosen
when the sunspot number was low. In addition, our residual analysis shows that
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the normalized residuals of the mixed model has lag-1 serial correlation, even
though the correlation is relatively weak.

In summary, the proposed procedure does not pinpoint a single model for the
annual sunspot number from 1700 to 1979. However, it produces results that are
reasonable and in agreement with those available in the literature. It would be
unwise to expect that a model-selection method can always select a single model
based on a finite number of observations. One must take into consideration the
possibility that there exists no true model for a real-world time series. When the
data are not sufficiently informative, a good model-selection procedure should
be able to reveal it. In this sense, the proposed model-discrimination method
appears to be reasonable.

Example 5. Figure 5(a) is a time plot of monthly excess returns of the S&P500
portfolio from January 1926 to December 1991 giving 792 observations. This
series has been widely analyzed in volatility studies, but there is little agreement
on what is the most appropriate model for the data. Our goal here is to compare
between ARCH(2) and GARCH(1,1) models for the data. The model considered
is

yt =

{
θ0 + a1t, a1t = g1,tεt, g2

1,t = γ0 + γ1a
2
1,t−1 + γ2a

2
1,t−2 if st = 1

β0 + a2t, a2t = g2,tεt, g2
2,t = α0 + α1g

2
2,t−1 + β1a

2
2,t−1 if st = 2.

The state switching is governed by equation (5) with η = 0.999. Figure 5(b) plots
the posterior probability of the ARCH(2) model based on the Gibbs sampler
with 500 initial iterations and 4000 general iterations. The mean of the posterior
probabilities is 0.65 so that the overall fit is slightly in favor of the ARCH(2)
model. On the other hand, by comparing Figures 5(a) and 5(b), the GARCH(1,1)
model was selected by most observations that appear to be volatile. Thus, our
result indicates that the evidence of GARCH(1,1) model reported in the literature
is largely due to the few visibly volatile periods of the US economy. While such a
conclusion is understandable, the proposed analysis does highlight the influential
periods for using GARCH(1,1) model. This shows that the proposed model
discrimination procedure can be used to monitor the evolution of the time series
under study.

In the estimation, we used various constraints to ensure that the two sub-
models have proper unconditional variances. For instance, we require α0 > 0,
0 ≤ α1 + β1 < 1, α1 ≥ 0, and β1 ≥ 0 so that the GARCH(1,1) model is not
integrated. Such constraints are easy to implement under the proposed unified
approach.
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Figure 5. Time plot and posterior probabilities for monthly S&P500 returns.

Finally, all computations in this paper were done by a program written in
C++. This program can be used for the general model in (1) provided that the
f(·) and g(·) functions are given.
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