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A Unified Approach to Nonlinear 
Transformation Materials
Sophia R. Sklan & Baowen Li  

The advances in geometric approaches to optical devices due to transformation optics has led to the 
development of cloaks, concentrators, and other devices. It has also been shown that transformation 
optics can be used to gravitational fields from general relativity. However, the technique is currently 
constrained to linear devices, as a consistent approach to nonlinearity (including both the case of a 
nonlinear background medium and a nonlinear transformation) remains an open question. Here we 
show that nonlinearity can be incorporated into transformation optics in a consistent way. We use 
this to illustrate a number of novel effects, including cloaking an optical soliton, modeling nonlinear 
solutions to Einstein’s field equations, controlling transport in a Debye solid, and developing a set of 
constitutive to relations for relativistic cloaks in arbitrary nonlinear backgrounds.

Transformation optics1–9, which uses geometric coordinate transformations derive the materials requirements of 
arbitrary devices, is a powerful technique. Essentially, for any geometry there corresponds a material with identi-
cal transport. With the correct geometry, it is possible to construct optical cloaks10–12 and concentrators13 as well 
as analogues of these devices for other waves14–18 and even for diffusion19–26. While many interpretations and for-
malisms of transformation optics exist, such as Jacobian transformations4, scattering matrices27–31, and conformal 
mappings3, one of the most theoretically powerful interpretations comes from the metric formalism32. All of these 
approaches agree that materials define an effective geometry, however the metric formalism is important since it 
allows us to further interpret the geometry. In particular, certain geometries correspond to solutions to Einstein’s 
field equations, which relate geometric curvature to gravitational forces. Materials that mimic these geometries, 
or artificial relativistic media, constitute a subset of transformation optics materials (dark blue circle, Fig. 1) that 
can effectively model relativistic effects32, such as black holes33,34 and gravitational lensing35 or create novel devices 
such as the space-time cloak (which hides events instead of objects)36.

One limitation of transformation optics, however, is the necessity of using linear materials (materials whose 
properties do not change with electric field, pressure, temperature, etc.). At present, the transformations that 
have been derived have exclusively been applied to linear media. That is, the focus has been upon media equiva-
lent to an isotropic, homogeneous, linear background medium embedded in curvilinear coordinates. However, 
there is no necessity to maintain the constraint of linearity. In thermal transformations, researchers have already 
considered the case of temperature dependent transformations (which we shall generalize as “nonlinear transfor-
mations”), and shown how they are equivalent to a thermally nonlinear material embedded within a linear back-
ground37,38. However, considerations of background nonlinearity have thus far been absent. Moreover, nonlinear 
transformations lack the intuitive physical interpretation of linear transformation materials, where transport fol-
lows stationary geodesics. This intuition is useful when developing devices where geodesics bend and shift with 
the applied field.

In this paper, we shall present a unified theory of nonlinear transformation optics. We will consider both 
the case of a nonlinear background medium (bottom half of Fig. 1) and nonlinear transformations (right half of 
Fig. 1) in arbitrary combination. We shall begin by generalizing transformation optics theory to incorporate these 
nonlinearities, then consider examples illustrating this formalism from each of the new, nonlinear quadrants of 
Fig. 1. Examples will be selected for their practical significance, physical intuition, and clarity.

Results
Nonlinear Transformation Formalism. To begin, in linear transformation optics, the constitutive relation is32
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where gij is the metric in transformed coordinates, g is the determinant of the metric, g00 is the time-like com-
ponent of the metric (−1 for a static transform) and γ is the determinant of the untransformed metric (1 for 
Euclidean coordinates, r2 for cylindrical, etc.). That is,
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where γij is the metric of the reference frame (unprimed coordinates) and we have used Einstein summation 
notation for curvilinear coordinates (indices repeated as both subscript and superscript (covariant and contra-
variant) are summed, Latin indices are only over spatial dimensions, Greek indices are over space and time (0th) 
dimensions). Note that this formulation explicitly requires a stationary medium and observer. A fully covariant 
description is given in39–42 and is easily modified to incorporate the formalism developed here, but is less widely 
used than the stationary case.

Scalar field dependence. Since in most cases the variable of interest in a transformation materials problem is a 
scalar (temperature, pressure, electric potential) or can be approximated as such (electric field, fluid velocity, etc. 
for specific geometries), it is helpful to begin the consideration of field dependence by considering this scalar 
variable explicitly. By definition, this scalar variable is not changed by transformation media techniques except 
for the implicit change of spatial variable (e.g. T(r) → T(r′)). Moreover, scalars remain scalar even when raised 
to an arbitrary power, so rank of the tensors considered in equation 1 are not changed by the field dependence 
(even when they are Taylor expanded as a function of field strength). As the tensor rank governs the rules for the 
transformation, we conclude that equation 1 can easily be generalized to a nonlinear transformation of a nonlin-
ear background by the relation
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where we have assumed that the nonlinearity is solely a function of implicitly time and coordinate-dependent 
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E r t E r t E r t E r t( , ) ( , ) ( , ) ( , )i
i  and position (henceforth an implicit depedence, with 

dependence upon other fields (e.g. magnetic field intensity, temperature, pressure, etc.) following trivially from 
this equation.

Figure 1. Representation of our transformation optics framework. Background material () and coordinate 
transform (g) can be linear or nonlinear with respect to applied fields, making four mutually exclusive cases. 
Within this parameter space, certain combinations satisfy transformation optics requirements (light blue 
ellipse). A subset of these also satisfy Einstein’s field equations (dark blue ellipse). When nonlinearity is 
included, effects from other fields, e.g. nonlinear optics (magenta circle) can become incorporated into 
transformation optics. Transformation optics is typically fabricated using metamaterials (orange circle), 
although other implementations are possible (if often trivial, e.g. lenses) and applications of metamaterials 
outside of transformation optics also exist. Examples of transformation optics devices from each quadrant are 
labelled, with the nonlinear examples being explored in the text (except the switchabe cloak, discussed in ref.37).
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Note that the functional forms of E( )  and g(E) are arbitrary. Assuming the coordinate transformation xi → xi′ 
leaves Maxwell’s equations (or the corresponding equation of motion for other fields) unchanged, except for a 
change of variables (i.e.

= ′ ′ ′ ′ ′L ε L εE x g x E x x E x g x E x E x x[ ( ), , ( , ( )), ] [ ( ), ( , ( )), ( ( )), ] (4)0 0

for operator  that defines E), then the introduction of nonlinearity preserves transformation optics techniques, 
as the coordinates only enter the nonlinearity through the field. For example, this means that the Kerr nonlinear-
ity (discussed in detail in the following section) should not be perfectly transformed according to the general 
rules for coordinate transformations. In particular, because that nonlinearity depends upon the electric field 
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j  which is changes form under coordinate transformations, Maxwell’s equa-

tions are changed if the transformation is applied blindly43,44. If this effect is neglected, however, Maxwell’s equa-
tions actually obey the correspondence of equation 4 and ′
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Tensor field dependence. This scalar field nonlinearity is a useful form but is not the most general nonlinearity. 
In general, the field of interest will be an arbitrary rank tensor. However, if we assume that the functional depend-
ence of g,  are accurately represented by Taylor expansions in terms of field strength, then we need only consider 
the special case of a vector field depedence. Higher ranked tensors will result in terms which are effectively reduc-
ible to tensor products of vectors (e.g. χ χ↔T E E

ijkl
T

kl ijkl
E

k l
( ) ( ) ). Because the rank of the tensor determines the prop-

erties under coordinate transformation, we thus see that the rules for the vector field dependent transformation 
cover the rules for any other tensor rank (assuming that the Taylor expansion holds). In particular, a material with 
anisotropic dependence upon the electric field (i.e. both strength and orientation) can be represented by the 
Taylor expansion
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(2 ) is the nonlinear (electric) susceptibility (magnetic susceptibility can be defined similarly for µ(H)). 

Since each factor of Ei in the anisotropy corresponds to an additional scalar product,
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where indices ij are handled by the transformation of equation 3 which multiplies all factors of . Note that this 
formalism can implicitly handle anisotropy in indices ij, as such linear anisotropy can be introduced as a transfor-
mation from an isotropic background, giving a composite transformation.

Nonlinear Background – Linear Transform. In particular, if the nonlinearity takes the form of a Kerr 
nonlinearity
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(P is polarization and χ is susceptibility, which we assume to be isotropic), Maxwell’s equations remain unchanged 
under the cloaking transformation,

′ = +
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Thus, if we can find a solution to Maxwell’s equations in Euclidean space with a Kerr nonlinearity, we can find 
a solution to Maxwell’s equations with a Kerr cloak permittivity (lower left in Fig. 1)
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by writing the Euclidean solution in primed (i.e. cloak) coordinates (note that we have taken advantage of the 
transformation E(r) = E(r′) and assumed that only one polarization of electric field is present43). (Including the 
full anisotropy of χ(3), equation 9 is modified χ χ| | →E g g E E

ijkl
ka lb

a b
(3) 2 (3) , more details are given in43,44) The Kerr 

nonlinearity is a special case of nonlinear optics with an exactly solvable system for special values of intensity E2 
corresponding to optical soliton modes. For concreteness, we select the first spatial soliton45,

��
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where A0 is the soliton intensity, y A k3 /2
0 0

(3)χ= | |  is the pulse width, k is the wave-vector, ω frequency, 
γ χ= | |k A n3 /4(3)

0
2

0
2, and n0 is the linear index of refraction. Note that the polarization and direction of soliton 

propagation in this case are arbitrary, but because the equation 9 is isotropic with respect to these choices the 
system does not need to be modified for solitons of different polarization or propagation direction. (Higher orde 
solitons, however, will possess different combinations of frequencies and so will require some modification in 
practice for proper realization of the cloak.) The analytic solution is plotted in Fig. 2. Note that the cloaking is 
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exact in the analytic case, despite the nonlinear background. While this solution is exact, it is limited to planar 
system (i.e. 1 + 1D) such as slab waveguides, since the Kerr spatial soliton is unstable in higher dimensions46. 
However, this approach is easily generalized to other systems with optical spatial solitons, including saturable 
Kerr nonlinearity, photoreactive materials, etc. Additionally, as discussed below, the spectral breadth of the 
soliton implies that the cloak cannot work perfectly for all the frequencies present (but can work perfectly for 
some and approximately for others, as the soliton spectrum is relatively narrow).

Applications. Moreover, while the ability to cloak a soliton is somewhat artificial, its success implies that an 
observer could not use a background Kerr nonlinearity to detect the presence of a nonlinear cloak, whereas 
a linear cloak would disperse the soliton and thereby render itself detectable. This could have applications in 
controlling waves in other nonlinear media with similar nonlinearities, such as protecting against rogue waves47 
(although this is easier to accomplish in optics than surface waves, as the nonlinearity is more easily engineered 
there). In addition, nonlinearity is used to locate defects in acoustic/ultrasonic nondestructive testing48–50, includ-
ing via acoustic solitons51, and to detect waves in sonar systems52. Applying this technique to an acoustic system, 
then, would prevent an observer from using the nonlinearity of a material to detect a cloak hidden within it. Since 
nonlinearities exist in most real materials (e.g. polycrystalline solids, porous media like clay or soil, and seawater 
and other complex fluids), the incorporation of nonlinearity to cloaking design is integral to rigorously prevent 
detection of buried objects or evade sonar. Similarly, a concentrator (equation 30) could be used to increase 
the density of a field in a region, thereby promoting soliton formation or promoting the interaction of multiple 
solitons.

Realization. Given that materials with a Kerr nonlinearity exist, it is likely that the simplest implementation of 
a soliton cloak is merely to incorporate such a material into existing metamaterial cloak designs. However, such 
cloak designs are based upon resonant effects (e.g. superluminal phase velocity at a single frequency) and there-
fore cannot be directly applied to multiple disparate frequencies. The lowest order spatial soliton, though, actually 
preserves the spectal properties of a plane wave fairly well. Compared to a plane wave in vacuum, there are only 
two modifications: the wave-vector along ẑ is shifted from k to k − γ (i.e. still a single frequency) and additional 
components are introduced along ky according to the Fourier transform of sech, which is sech(πy0ky/2). This is an 
approximately Gaussian spread centered at zero and with standard deviation 2/πy0. While this implies that the 
soliton only possesses frequencies in the neighborhood of the corresponding plane wave frequency, the Gaussian 
peak is an issue for perfect cloak operation. It is not, however, an impediment to imperfect cloaking. If, instead of 
mapping a finite region to a point, the scattering cross-section of a domain is reduced by a factor ∆r, then the 
resulting cloak is subject to the constraint

r

a (11)0

ω

ω

∆
≤
∆

where ∆ω is the bandwidth of the cloak’s operating frequency53. If the operating frequency is greater than soliton’s 
spectral width, then the approximate cloak still works and is in principle experimentally feasible.

Linear Background – Nonlinear Transform. While we have seen that transformation optics is robust to 
background nonlinearity, that case is easier to understand. The dynamics there are identical to nonlinear optics in 
Euclidean space, with the added linear transformation merely distorting the geodesics in fixed directions. When 
the transformation is nonlinear, then the geodesics can change with changing intensity. This makes, say, the 

Figure 2. Cloak of a medium with Kerr nonlinearity. Note the variation in wave amplitude, corresponding to 
first spatial soliton mode.
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combination of a nonlinear transform and the Kerr effect far harder to calculate. Instead, we shall now consider 
only a nonlinear transform and fix the background to be linear (upper right in Fig. 1). We can apply physical 
intuition to the nonlinear transform by taking inspiration from the study of effective gravitational fields via linear 
transformation optics33,34, where variations in the permittivity mimic the gravitational field produced by a mass 
distribution. In that case, the metric used must satisfy Einstein’s field equations

π
= − =µν µν µν µνG R Rg
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2
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x, , and A[µν] ≡ (Aµν − Aνµ)/2), R is the Ricci curvature scalar µ
µR , G is the gravitational constant, 

c is the speed of light, and Tµν is the stress-energy tensor. That is, a matter distribution is used to define Tµν, which 
then defines gµν via Eq. 12, thereby defining the equivalent , µ via Eq. 1. However, relativity also predicts that 
energy and mass are equivalent (as in the famous = mc2 ). As such, energy distributions can also define a 
stress-energy tensor and thereby produce a gravitational field54.

If the only source of energy is the electromagnetic field, then solutions to Eq. 12 are referred to as electrovac-
uum solutions. A material satisfying Eq. 3 with a metric transform obeying Eq. 12, then, will have a nonlinearity 
equivalent to the gravitational field produced by the electromagnetic field.

For a purely electromagnetic source, Tµν is
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for a purely electromagnetic source, =µ
µT 0 so R = 0 and our equations simplify. Additionally, we shall use the 

intuitive interpretation of a local observer to denote T00 with U(E), simplifying our notation.
To be more specific, we consider a plane wave solution ˆE E t x c ycos( / )
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ω ω= | | −  (note that other solutions 
exist for more realistic fields than a monochromatic plane wave, e.g.55, but are not as easily expressed in terms of 
the effective material parameters needed for transformation materials). In particular, our electromagnetic field is 
selected such that a local observer will detect a plane wave, which leads to ∫ δ=α αA f u E u du( ) ( ) 2 where f is 
defined below in terms of the metric, u = ω(t − x/c). If our background is linear, then =U E E( ) 0
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then assume a metric of the form gµν ≡ diag[−1, 1, f(ct − x), f(ct − x)] in Minkowski coordinates and use Eq. 12 to 
get
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defining h = f2. Using the identity 2cos ( ) 1 cos(2 )2 φ φ= + , the stability condition h → 1 as |E| → 0, and the rota-
tional symmetry (implying −|E| should give the same solution as |E|), gives

ω=




−
| | | |

−





f
E

E

E

E
ct xMathieuC

4
,

8
, ( ) ,

(18)

2
2

0
2

2

0
2

where MathieuC is the Mathieu cosine function (which, because the first term is negative, behaves closer to cosh 

than cosine) and E c G/ 40
(0)ω π=   is the natural electric field scale. Note that G only occurs in E0, and so an 

effective gravitational effect can be tuned by changing E0. In Fig. 3a, we plot f, where we’ve exploited the periodic-
ity of Eq. 17 to create a periodic continuation of f (using the unmodified form results in an exponential growth of 
). We now consider the composite transform TGR,C = TCTGR, to create a cloaked region within this artificial rela-
tivistic medium. Using f, and Eqs 3 and 8 we calculate the components , ,xx xy yy    and plot them in Fig. 3b–d. 
Notably, we do not plot E for this setup, as it is indistinguishable from the solution to a purely linear cloak. This is 
expected, given that the form of E was assumed in solving for g, but we can also show that Maxwell’s equations 
reduce to
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(c ≡ 1) which remain unchanged from linear Euclidean background from waves transverse to x̂. A weaker test 
field, however, could detect the presence of the effective gravitational field if it propagated transversely to this 
electric field.

Nonlinear Background – Nonlinear Transform. While the Mathieu cosine form of the nonlinear 
transform is helpful for illustrating the physical relevance of a nonlinear transform, an alternative formulation 
is preferable for developing materials prescriptions. In particular, it is preferable in nonlinear optics to know the 
dependence of the susceptibility as a Taylor series in E
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to some finite order. In considering this problem, we shall once allow  E( ) to have an arbitrary nonlinearity, as that 
is most useful for design (bottom right of Fig. 1). Eq. 17 remains unchanged, save for a modification of U(E) to 
reflect the new value of E( ) , but the solutions can no longer be expressed in terms of analytic functions. Instead, 
we employ the Liouville-Neumann series technique to solve for h(u), where u = ω(t − x/c). That is, we consider a 
series expansion h E h u( )n

n
2= Σ| | , where ′ =h (0) 0n , δ= =h h(0)n n

0
0, and

∫ ∫= .+h u dw dvU E v h v( ) ( ( )) ( )/2
(21)n

u w

n1
0 0

We truncate our solution f = h2 at 4th order in E, as terms of that order and below are most relevant to nonlin-
ear optics. However, truncation means that our solution takes the form f(E = |E| sin(u), u), as some terms have a 
more depend upon um (i.e. secular terms from nonlinear resonance) that cannot be factored without higher order 
terms (these likely correspond to the cosh dependence in the Mathieu solution).

Figure 3. Electrovacuum cloak solution for a linear background. (a) Functional dependence of the metric vs 
position at constant field strength, using a periodic continuation to preserve a finite metric. (b) Corresponding 
value of xx, plotted on a log scale to handle singularity at r = a. (c) Log scale of xy , which is only non-zero 
within the cloak. (d) Log scale of yy .



www.nature.com/scientificreports/

7SCIENTIFIC REPORTS |  (2018) 8:4436  | DOI:10.1038/s41598-018-22215-x

This solution f gives the vacuum nonlinearity in a flat space-time. We now apply the cloaking transformation 
Eq. 8 in cylindrical coordinate to this metric and use Eq. 3 to get
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as desired for a nonlinear cloaking transformation. Notice that the first term in Eq. 22 is the standard linear cloak 
(recall that f(E = 0) = 1 and the second is purely due to the vacuum nonlinearity. We can thus define 
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Notice that, although E0 was originally defined in terms of the constant G, it is the only place that such con-
stant enters into the transformed material equation. Thus, we are free to redefine E0 as any effective scale for the 
electric field strength, rather than the scale prescribed by Eq. 12. That is, we can use transformation optics to 
model a nonlinear gravitational field with arbitrary strength E0(Geff).

Realization. Equation 23 includes nonlinear effects up to fourth order, which is considerably higher than most 
applications for nonlinear optics. Although effects like four wave mixing explicitly rely upon these fourth order 
nonlinearities (hence their inclusion in equation 23), it is far more common to retain only the lowest order 
non-trivial nonlinearity. Assuming our background lacks an (1) term, which is trivially decoupled from the grav-
itational nonlinearity, the first non-trivial term is the secondorder term:
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.

However, the kl dependence of χ(3) is left implicit here and the u2 dependence gives a non-stationary nonlinearity. 
This issues can be corrected to lowest order by making the approximation u ≈ sin u to get |E|2u2 − E2 ≈ |E|2 − 2E2. 
If we interpret the direction of our input field as fixed, this gives
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On the other hand, recalling that our original choice of the direction of 
��

E  was arbitrary within an isotropic back-
ground gives us
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Either form of χ gives the simplest model of the gravitational nonlinearity, which can be seen as a more complex 
form of Kerr nonlinearity.
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Applications. Given the complexity present in even the simplest possible realizations of this gravitational non-
linearity, it is unlikely that these nonlinear gravitational transformations will find experimental applications in the 
near future. However, these results hold an important theoretical application – namely the elucidation of the cor-
respondence between nonlinear optical media and electrovacuum gravitational fields. This implies that difficult 
problems in general relativity can be mapped to equivalent problems in nonlinear optics, where approximations 
as to the effect of nonlinearity are more robust. Simultaneously, results in nonlinear optics can now be interpreted 
as effectively gravitational, providing an interesting intuitive picture of photon-photon interactions not normally 
considered in the standard treatment.

Transformation Media Extension. Before considering our final example, it is worth stepping back and 
considering how these nonlinear transformation optics techniques could be extended to other forms of transfor-
mation media. Acoustics is by far the easiest generalization, as there are straightforward mappings from transfor-
mation optics to transformation acoustics17. Heat transport and diffusion are more difficult, however. While the 
introduction of field dependence to the already established thermal transformation19 holds – i.e. that

κ κ = −T g T g T/ ( ) ( ) ( ) (27)
ij ij

0

ρ ρ = −c T c T g T/ ( ) ( ) ( ) (28)p p0 0

−is valid, the diffusion equation is not Lorentz invariant and therefore is not a valid equation for the relativis-
tic interpretation. Thus, while transformation materials is applicable to nonlinear heat transport, it cannot be 
interpreted in terms of effective gravitational fields. However, because transformation diffusion is defined for an 
isotropic background κ0, with all anisotropy arising from the transformation, a further interpretation is plau-
sible. Both the background nonlinearity and isotropic nonlinear transform control the speed of diffusion at a 
given temperature, whereas the anisotropic aspect controls the preferential direction of diffusion as a function of 
temperature.

So, for our final example we consider heat transport within a Debye solid (κ ∝ (T/T0)
3, cp ∝ (T/T0)

3, ρ = ρ0/
(1 + αT) ≈ ρ0, where T0 is the Debye temperature, and α is thermal expansivity (O(10−5/K for a solid)). As the 
nonlinear transform in this case is an arbitrary g(T) that does not satisfy Eq. 12, we consider a “phase transition” 
transform

r T
r r r r T T

T
( , )

( ) ( )

2
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2
tanh ,

(29)

L H H L trλ
λ λ λ λ

=
+
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∆

where λ = ρcp,κrr or κθθ, λL(H) are the low (high) temperature transformed parameters, Ttr is the transition tem-
perature, and T∆ is the range of the intermediate zone. In particular, we want a cloak for high temperatures (Eq. 8, 
T > Ttr) and a concentrator for low temperatures. For a concentrator’s transformation a central r < R2 is shrunken 
down to r < R1 where R1 < R2. A second region, R2 < r < R3 is then stretched out to accommodate the shrunken 
central region. Contrast with equation 8, where a single point is expanded to a finite diameter, leaving a hole in 
the center and only requiring one transformed region a < r < b. Typically20, the concentrator uses a radially linear 
mapping
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which can be unified with the cloaking transform of equation 8 by identifying R1 = a, R3 = b and leaving 
R1 < R2 < R3 a free parameter (i.e. the second region in equation 30 is defined over the same domain as equation 8. 
Making this identification, we can define our high temperature (cloak) phase to have the parameters λH
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For the same annular region the low temperature (concentrator) phase has parameters λL
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while the central circle (r < R1) has parameters
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for all temperatures (technically, the properties of the high temperature, cloaked phase are free parameters since 
they are not defined by equation 8, but in practice it is simpler to use the same thermal dependence as the back-
ground and make everything consistent). Notice that for both phases κ κ κ=θθT T T( ) ( ) ( )rr 0

2 , which is helpful 
since many discretized thermal metamaterial implementations of the thermal cloak/concentrator rely upon this 
symmetry being preserved19,20. It is thus conceivable to consider building such thermal metamaterials necessary 
for the cloak-concentrator out of a binary composite where one material undergoes a phase transition at a specific 
temperature. For concreteness, we define the overall form of the cloak-concentrator’s material parameters 
(including both spatial and thermal dependance in the annular region)
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Note that for T Ttr  equation 34 converges to equation 31, for T Ttr equation 34 converges to equation 32, 
and T ≈ Ttr is equal to the average of equations 31 and 32 but switches quickly to either the high or low tempera-
ture limit when T T Ttr| − | >∼ ∆. This behavior is confirmed by COMSOL simulations, where the far field temper-
ature distribution in the nonlinear background is unchanged by the presence of the transformation materials 
(Fig. 4a) and that the low (Fig. 4b) or high (Fig. 4c) temperature cases work as a thermal concentrator or cloak of 
the Debye solid. More interesting is the intermediate case when T(x = 0) ≡ Ttr ≈ 8.4T0, i.e. when transition tem-
perature isotherm bisects the annulus. In this regime the device acts like a cloak for <x 0


 and a concentrator for 

>∼x 0, Fig. 4d. A careful examination of x ≈ 0 reveals that neither the device is neither a cloak or a concentrator 
close to the transition temperature, with isotherms shifting to reflect this compromise regime. In particular, the 
thermal gradient within the central domain neither vanishes (as in the cloak) or a constant (as in the concentrator, 
note the isotherms in Fig.  4b), but curved towards the low temperature phase. Moreover, within 
cloak-concentrator there is a clear asymmetry to the slope of the isotherms for x > 0 vs x < 0 in the high and low 
temperature phases but not in the compromise region (the slope of some isotherms even oscillates near x = 0). 
However, this intermediate region could be made extremely narrow in practice, as it corresonds to a coexistance 
of the high and low temperature phases of the thermal metamaterial and conventional materials generally have 
unambiguous state for first order phase transition.

Applications. With this functionality we have created a device which excludes heat flux at high temperatures 
and attracts it at low temperatures, thereby acting as an effective thermal regulator. In addition, there is ability 
of the cloak (equation 31) and concetrator (equation 32) designs to function correctly when embedded within 
temperature dependent materials is a non-trivial improvement of the functionality of thermal transformation 
materials, as all realistic materials will possess some temperature dependence to their parameters. It is also worth 
noting that even physical parameters unrelated to thermal transport will generally possess some form of temper-
ature dependence, and therefore that the incorporation of designs for transformation materials with non-trivial 
temperature dependent backgrounds or transformations could greatly improve the versatility of transformation 
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materials. Similar arguments can be made for materials with dependence upon pressure, electric, magnetic, and 
electromagnetic fields, albeit for narrower ranges of materials.

Realization. Since most materials possess some degree of temperature dependence to their thermal properties, 
the realization of the cloak-concentrator seems fairly straightforward and is perhaps the most easily achieved of 
all the examples discussed in this work. To work through how it might be realized, however, we shall make several 
approximations. In particular, as our goal is the simplest experimental realization, we shall consider the design 
of the bilayer cloak21 as our starting point. This design, which used a pair of annular regions of homogeneous, 
isotropic material to create a thermal cloak, explicitly focused upon the steady state. This implied that the heat 
capacity could be completely neglected, as engineering the conducitivity was all that was required. More subtly, 
the bilayer cloak also assumed that the superposition holds in its derivation, and therefore only works rigorously 
for materials without temperature dependence. As such, we shall neglect the temperature dependence of the 
background and assume that the materials in our cloak-concentrator are approximately independent of temper-
ature except for near their respective (and possibly distinct) transition temperatures, where the operation of the 
device breaks down. Making these assumptions turns the problem into a two-fold one: first a bilayer concentrator 
must be designed to match the implementation of the bilayer cloak. And second there must be a pair of materials 
which can, after undergoing phase transitions, meet the thermal conductivity requirements in each layer. To 
address the first part, consider the logic of the bilayer cloak – to minimize the thermal flux in the center the inner 
ring’s conducitivity was set as close to zero as possible and the outer ring’s conducitivity was then adjusted to 
prevent any scattering at the outer edge of the cloak. For the concentrator a similar requirement holds, the outer 
layer must prevent scattering, but the inner layer’s conductivity must be adjusted to maximize the heat flux in the 
interior (which is filled with the same material as the background). Numerically optimizing the analytic solution 
to Laplace’s equation with these constraints gives properties as laid out in Table 1, which enhances the heat flux 
in the concentrator regime by 8 percent. Note that the temperature dependence of the conductivities in each 
layer are opposed to each other, with the inner layer’s conducitivity falling with temperature and the outer layer’s 
conductivity rising with rising temperature. This is a non-trivial temperature dependence, but not outside of the 
realm of experimental possiblity – notably thermal diodes have been implemented using pairs of materials with 
similar thermal properties. As such, the thermal cloak-concentrator is likely the ideal candidate for the experi-
mental verification of nonlinear thermal transformations, particularly if the constraint of κi → 0 for the cloak is 
relaxed (i.e. an approximate cloak design is used.

Figure 4. Transformation diffusion of a Debye solid with switchable nonlinear concentrator/cloak transform. 
Steady state plots with T(x = −L/2) = T1, T(x = L/2) = 0. Note that isotherms (grey lines) are not evenly spaced 
due to Debye nonlinearity. (a) Far field temperature distribution. (b) Low temperature, T1 = 0.1T0, concentrator. 
(c) High temperature, T1 = 10T0, cloak. (d) Transitional, half cloak, half concentrator.
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Conclusions
In summary, we have developed a formalism for understanding transformation materials in nonlinear media and 
undergoing nonlinear transformations, and shown how this formalism can be applied to soliton transport (with 
applications in hiding objects from nonlinear detection protocols or shielding rogue waves), effective gravitational 
fields (with applications in modeling relativistic effects in nonlinear optical materials), and thermal management 
(with applications in controlling heat flow in realistic, thermally nonlinear materials or incorporating tempera-
ture dependent parameters in arbitrary transformation media devices). It is therefore possible to use nonlinear 
transformation media to model a wider variety of transport phenomena than have been previously considered. 
Furthermore, the constitutive relations that we have derived in equations 3, 23, 27 and 34 can be used for a wider 
variety of transformations than just the cloaking transformation (e.g. concentrators, rotators, camoflague, etc.).

Additional Applications. Given the incorporation of frequency dependent material parameters in the 
metamaterial realizations of transformation optics11 and the development of nonlinear metamaterials56, the 
incorporation of nonlinear optical transformations presents the opportunity for a wider variety of functional 
materials in this framework. Wave mixing, for example, could be used to generate additional field components 
at a frequency several times the incident wave’s. If a metamaterial has different resonant effects at these fre-
quencies, it could (say), screen the incident wave while concentrating the nonlinear contribution. This could be 
accomplished with metamaterials whose parameters are quite similar to equation 34, except that the depend-
ence upon (T − Ttr)/T∆ would go to a dependence upon (ω − ωtr)/ω∆. Or it could change the relative field 
concentration within different regions (e.g. via a concentrator or its inverse, a dilutor), thereby controlling 
the effective strength of the local nonlinearity (increasing the effective nonlinearity in high fields regions and 
decreasing it in low field regions), which could alternatively aide in the observation of novel nonlinear effects 
or prevent the occurence of unwanted nonlinearities. This approach is quite similar to that applied by certain 
classes of nonlinear metamaterials, which rely upon concentrating the electromagnetic field on regions of 
strong nonlinearity57 or improving the efficiency of nonlinear conversion (e.g. via phase matching)58. Soliton 
formation59 could also be promoted, say by counteracting an excessive dispersion or nonlinearity in the exter-
nal medium (an alternative approach to that adopted by60).

General Realizations. In principle, any of these applications could be implemented with the utilization of 
nonlinear metamaterials, which have so far developed independently of advances in transformation materials, 
being more focused upon the creation of arbitrary strength nonlinearities. Nonlinear metamaterials can be pro-
duced by adding nonlinear elements to a linear metamaterials design61 or embedding such designs in nonlinear 
backgrounds62, or introducing intrinsic structural nonlinearities to linear materials (e.g. magnetoelastic struc-
tural reconfiguration)63. Such nonlinear metamaterials have already been used for elementary soliton steering 
applications60. Note that all of these techniques are reviewed in more detail in Lapine et al.56 and the references 
therein. The combination of frequency mixing and resonance is not necessarily a fatal flaw to these designs either. 
While most of the devices considered here (cloaks, concentrators, etc.) rely upon a tailored metamaterial reso-
nance for their implementation, the potential existence of waves at multiple, distant frequencies can be accounted 
for. In particular, as the metamaterial resonance is tied to the length scale of the structuring, the incorporation 
of multiple length scale would allow for additional resonances. Thus, a cloak designed for a frequency doubling 
application should be designed with two resonant lengt scales (the doubled frequency corresponding to half the 
length). While that complicates the fabrication, it should be achievable so long as the specification application is 
well-defined in advance. Generally, nonlinear transformations can increase the versatility of frequency-dependent 
phenomena in metamaterials and transformation materials.

References
 1. Dolin, L. S. To the possibility of comparison of three-dimensional electromagnetic systems with nonuniform anisotropic filling. Izv. 

Vyssh. Uchebn. Zaved. Radiofizika 4(5), 964–967 (1961).
 2. Greenleaf, A., Lassas, M. & Uhlmann, G. Anisotropic conductivities that cannot be detected by EIT. Physiol. Meas. 24(2), 413 (2003).
 3. Leonhardt, U. Science 312, 1777 (2006).
 4. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312(5781), 1780–1782 (2006).
 5. Leonhardt, U. & Philbin, T. G. Transformation optics and the geometry of light. Prog. Opt. 53, 69–152 (2009).
 6. Greenleaf, A., Kurylev, Y., Lassas, M. & Uhlmann, G. Cloaking devices, electromagnetic wormholes, and transformation optics. 

SIAM Rev. 51(1), 3–33 (2009).
 7. Chen, H. Transformation optics in orthogonal coordinates. J. Opt. A Pure Appl. Opt. 11(7), 075102 (2009).
 8. Chen, H., Chan, C. T. & Sheng, P. Transformation optics and metamaterials. Nat. Mater. 9(5), 387–396 (2010).
 9. Liu, Y. & Zhang, X. Recent advances in transformation optics. Nanoscale 4(17), 5277–5292 (2012).
 10. Shalaev, V. M. Transforming Light. Science 322(5900), 384–386 (2008).
 11. Schurig, D. et al. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science 314(5801), 977–980 (2006).

Layer Radius [cm] κCloak [W/mK] κConcentrator [W/mK]

Interior 6 1 1

Inner 9 0.01304 1.558

Outer 10.2 4.261 0.6486

Exterior N/A 1 1

Table 1. Properties of the temperature independent cloak-concentrator. Cloak parameters taken from ref.21, 
with concentrator conductivity chosen to optimize heat flux given the geometry.



www.nature.com/scientificreports/

1 2SCIENTIFIC REPORTS |  (2018) 8:4436  | DOI:10.1038/s41598-018-22215-x

 12. Li, J. & Pendry, J. B. Hiding under the Carpet: A New Strategy for Cloaking. Phys. Rev. Lett. 101(20), 203901 (2008).
 13. Yaghjian, A. D. & Maci, S. Alternative derivation of electromagnetic cloaks and concentrators. New J. Phys. 10(11), 115022 (2008).
 14. Cummer, S. A. & Schurig, D. One path to acoustic cloaking. New J. Phys. 9(3), 45 (2007).
 15. Chen, H. & Chan, C. T. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91(18), 183518 (2007).
 16. Cummer, S. A. et al. Scattering Theory Derivation of a 3D Acoustic Cloaking Shell. Phys. Rev. Lett. 100(2), 024301 (2008).
 17. Chen, H. & Chan, C. T. Acoustic cloaking and transformation acoustics. J. Phys D: Appl. Phys. 43(11), 113001 (2010).
 18. Sklan, S. Cloaking of the momentum in acoustic waves. Phys. Rev. E 81(1), 016606 (2010).
 19. Narayana, S. & Sato, Y. Heat Flux Manipulation with Engineered Thermal Materials. Phys. Rev. Lett. 108(21), 214303 (2012).
 20. Guenneau, S., Amra, C. & Veynante, D. Transformation thermodynamics: cloaking and concentrating heat flux. Opt. Express 20(7), 

8207–8218 (2012).
 21. Han, T. et al. Experimental Demonstration of a Bilayer Thermal Cloak. Phys. Rev. Lett. 112(5), 054302 (2014).
 22. Guenneau, S. & Puvirajesinghe, T. M. Fick’s second law transformed: one path to cloaking in mass diffusion. J. R. Soc. Interface 

10(83), 20130106 (2013).
 23. Zeng, L. & Song, R. Controlling chloride ions diffusion in concrete. Sci. Rep. 3, 3359 (2013).
 24. Schittny, R., Kadic, M., Bückmann, T. & Wegener, M. Invisibility cloaking in a diffusive light scattering medium. Science 325(6195), 

427–429 (2014).
 25. Sklan, S. R., Bai, X., Li, B. & Zhang, X. Detecting Thermal Cloaks via Transient Effects. Sci. Rep. 6, 32915 (2016).
 26. Kadic, M., Bückmann, T., Schittny, R. & Wegener, M. Metamaterials beyond electromagnetism. Rep. Prog. Phys. 76(12), 126501 

(2013).
 27. Ruan, Z., Yan, M., Neff, C. W. & Qiu, M. Ideal Cylindrical Cloak: Perfect but Sensitive to Tiny Perturbations. Phys. Rev. Lett. 99(11), 

113903 (2007).
 28. Zhang, B. et al. Response of a cylindrical invisibility cloak to electromagnetic waves. Phys. Rev. B 76(12), 121101(R) (2007).
 29. Isić, G., Gajić, R., Novaković, B., Popović, Z. V. & Hingerl, K. Radiation and scattering from imperfect cylindrical electromagnetic 

cloaks. Opt. Express 16(3), 1413–1422 (2008).
 30. Zolla, F., Guenneau, G., Nicolet, A. & Pendry, J. B. Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect. 

Opt. Lett. 32(9), 1069–1071 (2007).
 31. Chen, H., Wu, B.-I., Zhang, B. & Kong, J. A. Electromagnetic Wave Interactions with a Metamaterial Cloak. Phys. Rev. Lett. 99(6), 

063903 (2007).
 32. Leonhardt, U. & Philbin, T. G. General relativity in electrical engineering. New J. Phys. 8(10), 247 (2006).
 33. Genov, D. A., Zhang, S. & Zhang, X. Mimicking celestial mechanics in metamaterials. Nat. Phys. 5(9), 687 (2009).
 34. Chen, H., Miao, R. X. & Li, M. Transformation optics that mimics the system outside a Schwarzschild black hole. Optics express 

18(14), 15183–15188 (2010).
 35. Sheng, C., Liu, H., Wang, Y., Zhu, S. N. & Genov, D. A. Trapping light by mimicking gravitational lensing. Nat. Photonics 7(11), 

902–906 (2013).
 36. McCall, M. W., Favaro, A., Kinsler, P. & Boardman, A. A spacetime cloak, or a history editor. J. Opt. 13(2), 024003 (2011).
 37. Li, Y. et al. Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes. 

Phys. Rev. Lett. 115(19), 195503 (2015).
 38. Li, Y., Shen, X., Huang, J. & Ni, Y. Temperature-dependent transformation thermotics for unsteady states: Switchable concentrator 

for transient heat flow. Phys. Lett. A 380(18), 1641–1647 (2016).
 39. Thompson, R. T., Cummer, S. A. & Frauendiener, J. A completely covariant approach to transformation optics. J. Opt. 13(2), 024008 

(2010).
 40. Thompson, R. T. & Frauendiener, J. Dielectric analog space-times. Phys. Rev. D 82(12), 124021 (2010).
 41. Thompson, R. T. & Fathi, M. Shrinking cloaks in expanding space-times: The role of coordinates and the meaning of transformations 

in transformation optics. Phys. Rev. A 92(1), 013834 (2015).
 42. Fathi, M. & Thompson, R. T. Cartographic distortions make dielectric spacetime analog models imperfect mimickers. Phys. Rev. D 

93(12), 124026 (2016).
 43. Bergamin, L., Alitalo, P. & Tretyakov, S. A. Nonlinear transformation optics and engineering of the Kerr effect. Phys. Rev. B 84(20), 

205103 (2011).
 44. Paul, O. & Rahm, M. Covariant description of transformation optics in nonlinear media. Opt. Express 20(8), 8982–8997 (2012).
 45. Boyd, R. W. Nonlinear Optics (3rd Edition). (Academic Press, Orlando, FL, 2013).
 46. Stegeman, G. I. & Segev, M. Optical spatial solitons and their interactions: universality and diversity. Science 286(5444), 1518–1523 

(1999).
 47. Solli, D. R., Ropers, C., Koonath, P. & Jalali, B. Optical rogue waves. Nature 450(7172), 1054–1057 (2007).
 48. Donskoy, D., Sutin, A. & Ekimov, A. Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing. NDT 

& E Int. 34(4), 231–238 (2001).
 49. Jhang, K. Y. Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review. Int, J. Precis. Eng. 

Man. 10(1), 123–135 (2009).
 50. Matlack, K. H. et al. Evaluation of radiation damage using nonlinear ultrasound. J. Appl. Phys. 111(5), 054911 (2012).
 51. Ni, X. & Rizzo, P. Use of highly nonlinear solitary waves in nondestructive testing. Mater. Eval. 70(5), 561–569 (2012).
 52. Pinkel, R. Observations of strongly nonlinear internal motion in the open sea using a range-gated Doppler sonar. J. Phys. Oceanogr. 

9(4), 675–686 (1979).
 53. Chen, H. et al. Extending the bandwidth of electromagnetic cloaks. Phys. Rev. B 76(24), 241104 (2007).
 54. Misner, C. W., Thorne, K. S. & Wheeler, J. A. Gravitation. (Macmillan, San Francisco, CA, 1973).
 55. Bonnor, W. B. The gravitational field of light. Comm. Math. Phys. 13(3), 163–174 (1969).
 56. Lapine, M., Shadrivov, I. V. & Kivshar, Y. S. Colloquium: nonlinear metamaterials. Rev. Mod. Phys. 86(3), 1093 (2014).
 57. Canfield, B. K. et al. Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers. Nano Lett. 

7(5), 1251–1255 (2007).
 58. Zheludev, N. & Emel’yanov, V. Phase matched second harmonic generation from nanostructured metallic surfaces. J. Opt. A 6(1), 26 

(2004).
 59. Liu, Y., Bartal, G., Genov, D. A. & Zhang, X. Subwavelength discrete solitons in nonlinear metamaterials. Phys. Rev. Lett. 99(15), 

153901 (2007).
 60. Boardman, A., Egan, P., Velasco, L. & King, N. Control of planar nonlinear guided waves and spatial solitons with a left-handed 

medium. J. Opt. A 7(2), S57 (2005).
 61. Shadrivov, I., Morrison, S. & Kivshar, Y. Tunable split-ring resonators for nonlinear negative-index metamaterials. Opt. Express 

14(20), 9344–9349 (2006).
 62. Kim, E., Wang, F., Wu, W., Yu, Z. & Shen, Y. Nonlinear optical spectroscopy of photonic metamaterials. Phys. Rev. B 78(11), 113102 

(2008).
 63. Lapine, M., Shadrivov, I., Powell, I. & Kivshar, Y. Magnetoelastic metamaterials. Nat. Mater. 11(1), 30–33 (2012).



www.nature.com/scientificreports/

13SCIENTIFIC REPORTS |  (2018) 8:4436  | DOI:10.1038/s41598-018-22215-x

Acknowledgements
The authors would like to thank professor R.T. Thompson for their helpful advice and suggestions.

Author Contributions
S.R.S. proposed the project and performed the analytic calculations and computational simulations. S.R.S and 
B.L. analyzed the results and wrote the manuscript. B.L. supervised the project.

Additional Information
Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	A Unified Approach to Nonlinear Transformation Materials

	Results

	Nonlinear Transformation Formalism. 
	Scalar field dependence. 
	Tensor field dependence. 

	Nonlinear Background – Linear Transform. 
	Applications. 
	Realization. 

	Linear Background – Nonlinear Transform. 
	Nonlinear Background – Nonlinear Transform. 
	Realization. 
	Applications. 

	Transformation Media Extension. 
	Applications. 
	Realization. 


	Conclusions

	Additional Applications. 
	General Realizations. 

	Acknowledgements

	Figure 1 Representation of our transformation optics framework.
	Figure 2 Cloak of a medium with Kerr nonlinearity.
	Figure 3 Electrovacuum cloak solution for a linear background.
	Figure 4 Transformation diffusion of a Debye solid with switchable nonlinear concentrator/cloak transform.
	Table 1 Properties of the temperature independent cloak-concentrator.


