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A Unified Approach to Orthogonal Digital 
Filters and Wave Digital Filters, Based on 

LBR Two-Pair Extraction 

P. P. VAIDYANATHAN, MEMBER, IEEE 

Abstract -The LBR-extraction approach is extended in order to derive 

wave digital filters and several orthogonal digital filters in a unified 

manner. The derivation clearly places in evidence the underlying ortho- 

gonal@ property of all these structures, which can therefore be imple- 

mented based on a simple building block, namely, the “planar rotation” 

operator. The derivation directly emphasizes the concept of “structural 

boundedness” as a requirement for low sensitivity. In addition to wave and 

orthogonal filters, a number of other methods for forcing structural 

boundedness are indicated. 

I. INTRODUCTION 

W AVE digital filters [l]-[4] and orthogonal digital 
filters [5] are two well-established families of digital 

filter structures, and are known for several excellent prop- 
erties, under finite-precision constraints. Among these are 
low passband-sensitivity, stability in spite of parameter 
quantization, and possibility of achieving freedom from 
limit cycles that normally arise due to signal quantization. 
Wave digital filters are the result of a pioneering develop- 
ment in 1971 by Fettweis [l], who showed that, by sys- 
tematically transforming a doubly terminated LC network 
into the discrete-time domain, low-sensitivity digital filters 
can be designed. Since then, there has been considerable 
activity in the wave filter area, leading to a complete 
understanding of this successful class of filters. 

The Gray-Markel normalized digital filter structures [6] 
are based on a tapped cascade of “orthogonal building” 
blocks. The recursive part of a transfer function is, there- 
fore, realized by means of an orthogonal filter. A wide 
family of truly orthogonal digital filters has been developed 
in the classic work by Dewilde ef al. [5], based entirely on 
z-domain concepts. This remarkable family shares a num- 
ber of important properties with the wave digital filters. In 
addition, the normalized lattice structures [6] are known to 
be a form of wave digital filters [28]. 

Henrot and Mullis [7] have shown that a bichannel 
version of the Levinson’s recursion algorithm can be used 
to derive a new class of orthogonal digital filters. The 
building blocks that result in their synthesis are extensions 
of the normalized lattice [6]. These filters possess many of 
the excellent properties that conventional orthogonal filters 
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have, and are in addition, simultaneously cannonic and 
“pipelineable.” Related structures and new ones are pro- 
posed in [8] in an independent manner, and new results are 
obtained relating to the actual implementation of these 
structures in VLSI. 

In a recent contribution [9], it was shown that wave 
digital filters can be synthesized independently in the z- 
domain without starting from an LC prototype network. 
The purpose of this paper is to extend these ideas and 
obtain a unified derivation of wave filters and the various 
types of orthogonal filters outlined above. The “cordic 
processor” which implements a planar-rotation is found to 
be basic to both of these families, and these and related 
conclusions are obtained here based on the LBR-extraction 
approach [9]. The concept of “structural boundedness,” 
which is key to the low-sensitivity property, is emphasized 
in this paper. All the structures presented here essentially 
indicate various ways of forcing this “boundedness.” 

The lossless bounded real (LBR) property, which is key 
to all our developments, is the z-domain version of a basic 
property satisfied by scattering matrices of lossless two- 
ports in the continuous-time domain [lo]-[12]. In the con- 
tinuous-time domain, the scattering matrix is derived from 
an impedance matrix (satisfying the lossless positive real 
(LPR)) property, and is, therefore, a square matrix. How- 
ever, an independent definition of the LBR property can 
be used even for rectangular matrices and, in particular, 
column vectors, which helps us to generalize the LBR 
approach for single-input multi-output situations. 

In Section II WC review certain preliminaries that will be 
required in later developments. Sections III and IV deal 
with the link between the LBR-approach, wave digital 
filters, and the orthogonal filters. The concept of “ortho- 
gonality” is shown to be generic to all these filters, en- 
abling us to implement them in terms of planar-rotations. 
In Section V, the LBR-approach is used for an indepen- 
dent derivation of the pipelineable orthogonal filters intro- 
duced in [7] and [8]. Finally, in Section VI we indicate a 
number of other methods for incorporating structural 
boundedness in an implementation. 

An interesting family of structures advanced by 
Vaughan-Pope and Bruton [27] should also be mentioned 
in the context of this paper; this class of structures is also 
based on ladder topology and has excellent sensitivity 
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Fig. 1. A typical magnitude-response. 
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Fig. 2. Pertaining to (2). 

properties. However, we will not have occasion to discuss 
this family in this paper. 

II. REVIEW OF PRELIMINARIES 

The main purpose of this section is to review a number 
of concepts and definitions that will be used in the rest of 
the paper. 

Review of Structural Boundedness and Low Sensitivity 

Consider a rational scalar transfer function with real 
coefficients: 

H( z;, = 
a, + a,z-’ + . . . + uNzFN 

l+b,z-i+ ... +b,z-N . 
(1) 

Let us assume that the structure implementing H(z) has 
the following property: As long as the values of the multi- 
pliers are within a certain permissible range, the magnitude 
] H( e j”) ] is boun.ded above by a scalar constant, say unity. 
(The precise nature of this “permissible range” depends 
upon the actual structure. In some of our examples, this 
range is (0, l), while in others, this range is ( - 1, l).) Thus 
the structure imposes a kind of “boundedness” or “pas- 
sivity” on the transfer function. Let us consider a typical 
lowpass response, as shown in Fig. 1. At a frequency wk in 
the passband, the transfer function magnitude is precisely 
unity, for an infinite-precision implementation. If now an 
internal multiplier is quantized, then the magnitude 
IH(ej”*)l cannot increase, because of the “structural 
boundedness.” As a result, IH(ej“k)l plotted against an 
internal multiplier mi has the form shown in Fig. 2. It is, 
therefore, clear that 

4H(e’“k) I 
ami 

= o, 
m, = mjo 

(2) 

In other words, the structural boundedness forces zero- 
sensitivity property with respect to each internal multiplier 
at certain frequencies wk in the passband. Recall that 
structural boundedness, which implies 

IH(ej”)l61, VW (3) 

::J Jlz: 
Fig. 3. A digital two-pair. 

is equivalent to the property 

5 lr(n)l*d E lx(n)l* (4) 
n= -co n=--03 

for every square-summable (i.e., finite energy) input se- 
quence x(n). (This follows by invoking Parseval’s relation. 
See [9].) Thus for a “structurally bounded” or “passive” 
implementation, the output energy is at most equal to the 
input energy. This kind of a boundedness property holds in 
a number of well-known structures, for example, the wave 
filters, the orthogonal digital filters, and the digital lattice 
filters. Apart from low sensitivity, there are several other 
consequences of this boundedness, as detailed in [9], [13]. 
This kind of structural boundedness is a general concept 
and can even be used for the design of low-sensitivity FIR 
filters [14]. Note that the bound of unity in (3) is only a 
convention. An arbitrary fixed constant, independent of the 
multiplier values, is in fact a sufficient bound. 

With this motivation for boundedness, one can define a 
bounded-real function (BR) H(z) to be any stable’ trans- 
fer function that is real valued for real z, and such that the 
condition of (3) is satisfied. A lossless bounded real (LBR) 
function is a BR function with strict equality in (3) for all 
o. Such a function is nothing but a stable all-pass function. 

Digital Two-Pairs 

In order to proceed further with our discussion on 
low-sensitivity filters, let us extend the above boundedness 
concepts to a “digital two-pair.” A digital two-pair [15], 
shown in Fig. 3, is a two-input two-output system, de- 
scribed either by the chain parameters: 

or the transfer parameters: 

Y,(z) [ I[ T,,(z) T,*(z) x,(z) 
Y,(z) = 7m T,*(z) I[ I X2(4 . 

(6) 
A “reciprocal” two-pair satisfies the condition T12(z) = 
T21(z) or equivalently, AD - BC = 1. The descriptions of 
(5) and (6) are related as indicated in [15]. The chain 
matrix of (5) and the transfer matrix of (6) are denoted by 
II(z) and r(z), respectively. 

A digital two-pair is said to be LBR if (a) it is stable, (b) 
r(z) is real-valued for real z, and (c) r’(z-‘)7(z) = 1. 
Condition (c), which is called paraunitariness, essentially 

‘In this paper, “stable” refers to bounded-input bounded-output stab& 
ity, i.e., all poles are strictly inside the unit circle. 
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Fig. 4. Two-pair extraction. 

implies 

E M41’+ lx2(4121 

has zero sensitivity at points of maximum power transfer. 
The quantity (Y is a constant depending upon internal 
multipliers mi, but as &/8m, is independent of frequency, 
the “sensitivity properties” of H(z) and H,(z) are essen- 
tially identical. 

We now extend the concept of two-pairs to the case 
where the scalar signals Xi, Y,, Y,,X, in Fig. 3 are replaced 
with vector signals X1, Yi, Y,,X,. Thus 

n=-CC 

[ :::;] = [ ::I; ::I;][ :i:I] (loa) 

= E M412+ lv2(4121 (7) 

I?=--m 
and the transfer parameters qj are defined accordingly: 

i.e., the energy of the output (vector) sequence is equal to Y,(z) [ II L(z) T,,(z) Xl(Z) 

that of the input (vector) sequence for every finite-energy Y,w = T,,(z) T,,(z) I[ 1 X2(4 . (lob) 

input. In terms of the chain parameters, paraunitariness is 
equivalent to: 2 The parameters are related as 

l+Cc=AA T,,=CA-’ 

l+BB=bD 

CD=AB. @a> 

T,,=D-CA-'B 

A stable reciprocal two-pair is LBR if and only if 
T,,=A-' 

A=b 
T22=-A-1B 

B=t 
and 

AD-BC=l. @b) 
A=T,-,' 

(11) 

Given a transfer function G,(z), the “extraction” of a 
digital two-pair leads to a remainder G,-,(z) (see Fig. 4) 
where G,,,(z) and G,,-,(z) are related by the extraction 
formula: 

G,-,=(c-AG,)/(BG,-D) 

G,=(C+DG,-,)/(A+BG,-,). (9) 

Here the parameters A(:), B(z), C(z), D(z) are the chain 
parameters as in (5). The subscripts m and m - 1 do not 
necessarily stand for order. Thus unless the two-pair is 
properly chosen, the order of G,-, is not less than that of 
G rn’ 

A digital filter transfer function can be synthesized [9]’ in 
a structurally bounded manner by realizing it as a cascade 
of LBR two-pairs, terminated in a BR multiplier mO (i.e., 
Imo( ( 1). Indeed, this also leads to an alternative approach 
to the synthesis of wave digital filters among others, without 
starting from an K-prototype network. It has been shown 
by Fettweis [29] that the actual transfer functions of inter- 
est in a wave digital filter do not have zero sensitivity at the 
points of maximum power transfer in the passband. (The 
author wishes to thank a reviewer for bringing [29] to his 
attention.) However, Fettweis also points out in [29] that 
the nonzero component of this sensitivity is a constant 
independent of frequency, and, therefore, does not cause 
any concern at all in an actual implementation. To be more 
specific, the actual transfer function of interest H(z) is in 
the form H(z) = aH,(z) where H,(z) is such that ]H1(ejw)] 

2Superscript tilde indicates transposition followed by, replacement of .z 
with z-l. 

B=-T,-,'T,, 

C=T,,T;,' 

D = T12 - T11T$T22. (12) 

Such two-pairs for which some or all of the chain parame- 
ters are matrices or vectors will be called matrix two-pairs. 
Clearly, the above description is meaningful only if A and 
T21 are square, i.e., only if the vectors X, and Y2 have the 
same number of components. For such cases, the “extrac- 
tion formula” now becomes 

G,-,=(D-G,B)-'(G,A-C) 03) 

G,=(C+DG,-,)(A+BG,-J'. (14) 

A matrix LBR two-pair is defined in exactly the same 
manner as an LBR two-pair. In particular, the paraunitary 
property is equivalent to 

&+I=aA 

~B+I=~D 

CD=AB. (15) 

A proof of (ll)-(15) is included in Appendix A.6. 
In this paper, in addition to the conventional two-pair, 

we are also interested in those matrix two-pairs with X1 
and Y, scalar, and with Y1 and X2 vectors of 2 compo- 
nents each. The two-pair extraction scheme for such two- 
pairs is shown in Fig. 5, where G,,,(z) and G,-,(z) are 
clearly 2-component vectors. The function G,(z) is said to 
be BR if (a) each entry is stable, (b) G,(z) is real for real 
z, and (c) GA(e-j”)G,(ej”) < 1 for all w. Such a function 
is LBR or allpass if the inequality in (c) holds with equality 
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IFig. 5. Matrix two-pair extraction. 

Fig. 6. The planar-rotation building block. 

for all w. For a BR Gm(z), it can be shown that: 3 

G~(z)G,(z)<l, for all z with ]z] >l. (16) 

When G,,,(z) is a scalar, this follows from the maximum 
modulus principle. For vector Gm(z), a proof is given in 
Appendix A.1. 

Next, referring to Fig. 4, if G,-, is (lossless) BR, then so 
is G,,, provided the extracted two-pair is LBR. Same is true 
with Fig. 5. The converse, however, is not necessarily true. 
Thus if G,,, is LBR and an “inappropriate” LBR two-pair 
is extracted, then G,,-, might turn out to be non-BR (or 
even unstable). However, if G,,, is LBR and an LBR 
two-pair is extracted, G,,-, is always paraunitary, i.e., 
G~-l(z-l)G,,-l(z)=l for all z. This can be shown by 
using (13)-(15).. Note that a paraunitary matrix r(z) be- 
comes an orthogonal matrix, i.e., 7% = I if r is not a 
function of z. The simplest orthogonal matrix that we will 
have occasion to consider is the “planar rotation” matrix 
R: 

R= cos e sin e 

- sin8 I c0se . 
Thus in the following equation: 

(;)=$j 

074 

(17b) 

the vector (U, Vi)’ is rotated by an angle 0 counterclock- 
wise, to obtain the vector (I’, Vi)‘. This operation will be 
denoted as in Fig. 6. 

III. THE LINK BETWEEN THE LBR APPROACH, 

WAVE FILTERS, AND ORTHOGONAL FILTERS 

In this section we begin with a basic LBR two-pair [9] 
and obtain an “orthogonal” implementation for this. The 
derivation simultaneously reveals the relation to wave 
“adaptors,” and. it becomes clear that the three families of 
filters are tied together by the “planar rotation circuit” of 

(17). 
The most basic LBR two-pair (Type 1A) used in the 

synthesis of filters in [9] has the following transfer matrix: 

-1-U @1+ z-i) 

T(Z) =: 
6(1+ z-1) -(1-a)z-i 1 

1+ uz-l 
(18) 

3Superscript dagger (t) stands for transposition followed by complex 
conjugation. 

I 

Fig. 7. Type 1A two-pair implementation. 

Fig. 8. Orthogonal implementation of Type 1A two-pair. 

where 0 < CJ < 1. This two-pair is also obtainable by trans- 
forming continuous-time lossless elements into the digital 
scattering domain. This can be seen from the works of 
Constantinides and others. See, for example, [24],[25]. The 
contributions of Swamy and Thyagarajan [4] also clearly 
demonstrate this. 

This two-pair can be implemented in the form shown in 
Fig. 7, where the 3 x 3 delay-free transfer matrix pi is 

[ 

l-u 
71 = i 

-(Lu) l-u 
-“l 
-u 1 (19) 

as shown in [9]. The matrix 7i is closely related to the 
series wave adaptor [16]. Moreover, ri can be replaced with 
a normalized matrix R, without affecting I(Z), where R, 
is given by 

[ 

sin2 e c0se sin e cos e 

RI= cos e 0 -sine (20) 
-shec0se sine - c02e 1 

where cos B = 6, sine = fi. R, is an orthogonal ma- 
trix and can be decomposed into a product of two planar 
norm preserving rotations as follows: 

[ 

cos e -sin8 0 

I[ 
0 1 0 

RI= 0 0 1 -sine 0 -c0se . 
sin e c0se 0 c0se 0 -sine 1 (21) 

This leads to an orthogonal implementation of ,the LBR 
two-pair, as shown in Fig. 8. Essentially then, this is an 
implementation of a normalized wave adaptor in terms of 
planar rotations. Note the similarity of Fig. 8 to the circuits 
given in [17]. 

All the first-order two-pairs in [9] are obtainable from 
the Type 1A two-pair by transformations, and, therefore, 
have implementations similar to Fig. 8. The second order 
two-pairs of Type 2,[9] are obtained from Type 1 first-order 
two-pairs by replacing the delay with 

G(z) = f z-l (P + z-l) 
1+pz-’ ’ 

IPI -cl (22) 
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G(z)- Fig. 11. Type 3 LBR two-pair. 

two-pair is followed by a second-order LBR two-pair, 

&F 
followed by another first-order two-pair. One of the first- 
order two-pairs is LBR, while the other is not (i.e., it does 

Fig. 9. Implementation of (22). not satisfy 0 < u c 1). However, the entire combination of 
the three two-pairs is indeed second-order LBR, and more- 
over can be implemented with two delays. One purpose of 

GN*ayK. -. l:B lab 
this section is to justify this. We also show an implementa- 
tion that involves an orthogonal matrix, which in turn can 
be decomposed into four planar rotations. The resulting 

Fig. 10. Cascaded two-pair synthesis of a BR function. structure is identical to a building block in [17]. In addition 
the orthogonal matrix can be looked upon as a normalized 
version of the “Brune-adaptor” [18]. 

which is itself an LBR function and can be implemented The second-order sections under consideration are of the 
with planar rotators (Fig. 9). Type 2 two-pairs are char- form shown in Fig. 11, where a Type 1A two-pair has 

acterized by two parameters, u and p, and are ,LBR if and transfer matrix as in (18) and a Type 2B two-p& has 

only if 0 < u < 1 and - 1~ p < 1. (Equation (22) represents transfer matrix: 
a special case of spectral transformations in digital filters, 
advanced by Constantinides. See [23] and references 
therein.) 

(a-11)(1+pz-1) 6(1+2pz-‘+z-2) 

There is one more type of second-order LBR two-pair [9] 
that needs to be considered in order to complete the list of 

rcz) = [ 6(1+2pz-‘+z-2) -(a-1)z-‘(p+z-1) 

l+B(l+u)z-‘+uz-2 
I. 

required two-pairs. We call this the Type 3 LBR two-pair. 
This has an analogy to the “Brune” section of the continu- (23) 

ous-time domain. In the next section, we deal with this Let the e’s and p’s of the three subsections be as indicated 
two-pair and show that it can be implemented with only in Fig. 11. Then they are related [9] by 
two delays, and four planar rotations. 

(1-a,)(l-p,)a3+a,(l-a3)(1-p2) 

IV. IMPLEMENTATIONOF THETYPE 3 LBR 
TWO-PAIR AND RELATIONTO~AVEAND +2(1- ui)(l- u2)(1 - u3) = 0. (24) 

ORTHOGONALFILTERS 

Let us briefly review the use of various LBR two-pairs, This constraint essentially cancels an unintended “trans- 

in the synthesis of a BR function G&z) [9]. The synthesis mission zero” at z = - 1. However, an actual digital imple- 

consists of successive LBR two-pair extractions (Fig. 4), mentation of this form invariably involves quantized ver- 

such that at each extraction step, the remainder BR func- sions of u’s and p’s, and the constraint of (24) is not 

tion G,,-, has an order less than that of the BR function exactly satisfied. This results in spurious zeros or peaks in 

G,,,. The extraction scheme is based on the fact that if a BR the synthesized transfer function. Such a difficulty is easily 

function G,(z) attains the magnitude of unity at a avoided by noting that the cascade of Fig. 11 is equivalent 

frequency w0 i.e., ]G,,,(ej”o)( =l, then there exists an LBR to the direct implementation of a second-order LBR two- 

two-pair with transfer matrix T,(Z), such that G,,- i( z) is a pair with chain matrix: 

lower order BR function. Moreover, if w0 = 0 or Q, then 
the LBR two-pair is of first order and the order of G,-, is 

l+rz-‘+sz-2 tz-‘+uze2 

one less. If w,, is in the range 0 < w0 < n, then the LBR I-I(Z) = 1 24 + tz-’ s + rz-l + z-’ 1 
(25) 

two-pair is of second order and the order of G,,,-, is two p -2qz-‘+ pz-2 

less. Consequently, by repeated extraction, one can syn- 
thesize a BR function as a cascaded two-pair (Fig. 10) with 

where p and q are such that det II(z) = 1 (reciprocity 

each two-pair being of order one or two. 
condition). It is easily verified that p and q are given by 

If wa in the above discussion is in the range 0 < o,, < 7~, 
and if G,(ej“o) is real (i.e., equal to 1 or - l), then a Type 
2 LBR two-pair is extracted. As indicated in Section III, and 
such a two-pair can be implemented with three planar 
rotations. Next, if G,( ej”“) is complex, i.e., G,( ej“o) = e@ 
then a cascade of three two-pairs is used [9]: a first-order 

4p2 = 
(r + rs - tu)2 

1+r2+s2--2s-t2-u2 
(26) 

r + rs - tu 

s P (27) 
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Note that the corresponding transfer matrix is 

1 u + tz-’ &[l+(r+rHu)/2sz-1+2-z] 1 

7(z)= [&[1+(r+rs-tu)/2st-i+z-q -(tz-l+ uz-2) 

l+rz-‘+sz-2 
1. 

In the rest of this paper we assume that the poles in (28) 
are complex conjugate, hence s > 0. In Appendix A.2 we 
show that the parameters r, s, t, and u can be computed as 
follows, for a given set of (q, uz, a,, p2): 

Define the intermediate parameters: 

a = qu,u, 

~=P,~l~,(l+~2)+(~1+~3)~2 

+ P2030- d(u2 -1) 

+u,(1-q)(u,-1)+(1-u,)(l-a,) 

C=u,u,-~~2(1+u2)(u,+u,)+u* 

+w-~1)(~2-W2+fJ33) 

+ 0 -- u33)b2 4bJ1a2 + 0 - u&J* - 1) 

+(1-u3)(1-u1)~2(1+u2) 

d=~,+cr,+~~(l+u,)+(l-a,)(~,-1) 

+P2(l-e3)(e2-1)+(l-~1)(1-~g)~2. (29) 

Then compute 

b-2a a 

r= c+3a-2b ‘= c+3a-2b’ (30) 

It remains to compute t and U. Recall that the extraction 
process is being done on a BR function G,(z) where 
G,(ej”o) = e . j”l Compute t and u from 

tsino,+sin6b+rsin(t9,-w,)+ssin(8,-2w,)=0 

(31) 

u= -tcos~0+cos~,+rcos(~,-w,)+scos(6,-2w,). 

(32) 

It now remains to find a cannonic realization of the 
transfer matrix of (28). We show in Appendix A.3 that 
there exists a state-space realization: 

X(n+l)=Ax(n)+Bu(n) 

y(n) =Cx(n)+Du(n) (33) 

where 

with Q’S defined according to 

A,( t - ru)-su su - h2(t - ru) 
lx1 = Al-A2 ) %= h-X2 

Q1 
3 

= M- rs - tu)-2s(s -1) = 

2&(X, - h2) 
a5 

a‘$= 
2s(s-l)-X,(r-rs-tu) = 

2h(X, - A,) 
a7 

u + A,t u+h,t 
%=--x1_ %I= X, (35) 

provided the (Y~‘s satisfy the following conditions: 

Assuming that T(Z) is LBR, it indeed turns out that the 
conditions of (36) are satisfied. This then shows that, for 
the LBR two-pair under consideration, the minimum de- 
gree (i.e., order of A-matrix for a minimal realization) is 2. 

Obtaining an Orthogonal Realization of the LBR Two-Pair 

of f.28) 
The minimal realization of (34) in general has complex 

multipliers. We wish to obtain a more convenient realiza- 
tion by using a similarity transformation. Moreover, we 
would like to obtain a realization that involves planar 
rotations as the only computational units. This can be 
obtained by first deriving an “orthogonal” realization. We 
find it convenient to start by restating the LBR property of 
the transfer matrix T(Z) in terms of the state-space repre- 
sentation. To this end, let us begin by considering the 
circuit of Fig. 12. A multi-input multi-output system T(Z) 
is shown, with A,, B,, C,, D, denoting a minimal state- 
space realization. We assume A,, B,, C,, D, to be real. Let 
us now construct the following matrix: 

4 Cl 

s1 = B, A, * [ 1 (37) 

Let us assume that S, is orthogonal, i.e., S{S, = I. This 
implies 

y’(n)y(n) = ut(n)u(n)+xr(n)x(n)-d(n +l)x(n +l). 

(38) 

Assume that the input is zero for n > iV where N > 0 is 
arbitrary. Summing from 0 to N we get 

Cl An)dn) = ~~o~~(n~~~~)+~f~O)xo 
ll=O 

- x’(N+l)x(N+l). (39) 
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Fig. 12. State-space structure for T(Z). 

From the orthogonal&y of S, we have 

AiA,--I= -c:c, (40) 
By minimality assumption, (C,, A,) is completely observa- 
ble. Hence (40) provides us with a Lyapunov Equation, 
which clearly implies that r(z) is stable. By using (40) in 
(39) it is easy to verify that 

fj y’(n)y(n) = E u’(n)u(n)+x’(O)x(O) (41) 
n=O n=O 

for the new realization. Thus for all input sequences that 
are zero for n > N, and for all possible N > 0 we have 

E y’(n)y(n)= E uf(n)4n) (42) 
?I=0 n=O 

for zero initial conditions. This implies that the system 
r(z) is LBR. 

In summary, if the state-space realization is such that S, 
is orthogonal (i.e., LBR), then the transfer matrix r(z) 
itself is LBR. Conversely, if T(Z) is LBR, then there always 
exists a minimal realization such that S, is orthogonal (for 
a proof see Appendix A.4). This leads to the discrete time 
version of the LBR lemma: 

Discrete-Time LBR Lemma: Let r(z) be a discrete-time 
transfer matrix and let (A, B, C, D) be a minimal realiza- 
tion. Then T(Z) is LBR if and only if there exists a real 
symmetric positive definite matrix P such that 

DtD + B’PB = I 

C%+A’PA=P 

C’D + A’PB = 0. (43) 

An alternative proof of .this lemma can be given by em- 
ploying the bilinear transformation on the continuous-time 
version of the LBR lemma [12], which itself is the scatter- 
ing domain version of the “Kalman-Yakubovich’a lemma. 
The above proof is simpler and based entirely on z-domain 
concepts. 

According to the above lemma, the transfer matrix of 
(28) can be realized in the form of Fig. 12, where matrix S, 

679 

of (37) is now a 4x4 orthogonal matrix. Given such a 
state-space representation, if we now apply an orthogonal 
transformation: 

A, = T-‘A,T 

B2 = T- ‘B, 

C, = C,T 

D2=D1 (44) 

where T-’ = T I, then the matrix 

4 C2 

“= B, A, [ 1 (45) 

continues to be orthogonal. It is computationally beneficial 
to apply transformations of this form in order to obtain a 
matrix S, with larger number of null entries. In particular, 
if T is chosen as the following orthogonal matrix: 

&iF 
9 -k 1 k=/& (46) 

where Cij are the elements of C,, this ensures that the (2,2) 
element of C, is zero. Also recall the form of D matrix 
(Eqn. (34)). Thus in summary, the LBR matrix of (28) can 
be realized in the form of Fig. 12, where the orthogonal 
matrix of (45) is of the form 

p11 s12 313 %41 

s, = 

I 

o s23 o 
s32 833 334 . 

I 
(47) 

s41 ‘42 s43 s44 
It only remains to factorize this orthogonal matrix into a 
product of planar rotations of the form in (17). This can be 
done in a systematic fashion, using standard techniques 
such as those described in [19]. In view of the two null 
entries in (47), it turns out to be possible to implement S, 
with only four planar rotations. A convenient way to 
define the four factors-is the following: 

Let ki 7 cos 8, and ki = sinei. Let us construct the num- 
bers (k,, k,; . ., k,, k,) as follows: 

k, = s23, ic, = - s2, 

k, = ~1 - s33 ) k, = 2 

k,k, klk2 

k4+, i(4=y. 
2 2 

Then the orthogonal matrix of (47) can be written in the 
following form: 

k2k4 

kl 0 
1 

k,k,k, + aic,k, - kljC2k3 k,k,k, - aic3ic4 

- k,k&, i- ak3k4 klk2k3 - k,k,k, - ak3?C4 

where a = f 1 is the determinant of S,. The matrix S, can 
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x2 

Fig. 13. Orthogonal implementation of the LBR two-pair of (28). 

now be factored in terms of the four angles: 

*Ii i j3 iJ[ 31 i ; i] 

Thus an overall implementation of the LBR two-pair of 
(28) in terms of planar rotations is, as shown in Fig. 13. 
Once again, each rectangular box stands for a rotation 
matrix as described in (17). In summary, an orthogonal 
implementation of the LBR two-pair of (28) has been 
obtained. Notice that the structure of Fig. 13 is precisely 
the one advanced in [17]. 

We conclude this section by making the following 
observation. The results of the next section (Section V) are 
currently being generalized [26] for the synthesis of m-input 
p-output LBR matrices, in the form of an LBR matrix 
two-pair cascade. These results can also be used to rederive 
the results of this section (Section IV) in a simpler and 
elegant manner. In particular, the proof that the McMillan 
degree of the LBR two-pair of (28) is 2, and the proof that 
it can be implemented with four planar rotation operators, 
follow from this generalization [26] easily. 

V. SYNTHESIS OF 2 x 1 LBR TRANSFER FUNCTIONS 
BY LBR MATRIXTWO-PAIREXTRACTION. AN 

APPROACHTC) PIPELINEAFSLEORTHOGONALFILTERS 

Given a scalar BR transfer function H(z) it can be 
realized in a “structurally bounded” manner, in a number 
of ways. For example, [20]: 

Method 1. The transfer function H(z) can be embedded 
into an LBR two-pair, which in turn is synthesized by 
factorizing the transfer matrix or chain matrix. 

Method 2. H(z) can be directly synthesized, without the 
embedding process, by LBR two-pair extraction. 

Method 3. H(z) can be embedded into a one-input 
two-output transfer matrix G(z) ([20, p.24]), which in turn 
can be synthesized by a “LBR matrix two-pair” extraction 
approach. 

G,,,(z)- 

Fig. 14. Matrix-LBR two-pair cascade realization of G,(z). 

The purpose of‘this sectionis to consider the details of 
Method 3. Thus given a BR function H(z) = P(z)/Q(z), 
it can be embedded as one component of G,(z) = 
[H(z)G(z)]’ where G(z) = S(z)/Q(z), is related to H(z) 

‘v 

i.e., 

f$.,(z)G,(z) =l (4% 

I;T(z)H(z)+G(z)G(z) =l. (50) 
If G&z), which is clearly an LBR vector, can be synthe- 
sized in such a way that it remains LBR (or BR) in spite of 
quantizations, then H(z) remains BR, and the resulting 
implementation has low passband sensitivity, according to 
Section II. (In this section, the subscript on G denotes 
order. Thus each component of G,(z) is a ratio of mth 
degree polynomials in z-l). This can be achieved by 
synthesizing GN(z) as a matrix-LBR cascade as in Fig. 14, 
provided the LBR two-pairs remain lossless (or passive) in 
spite of parameter quantization. The key step in the 
synthesis is, therefore, the LBR extraction of the type 
shown in Fig. 5. To be specific, given an LBR vector 
G,(z) = N,(z)/D,,,(z), we wish to extract an LBR matrix 
two-pair T,,,(Z) such that the remainder G,-,(z) = 
N,-,(z)/D,,,-,(I) is lower order LBR. Note that this 
synthesis problem is analogous to the scalar all-pass 
synthesis problem, leading to the Gray and Markel lattice 

[61, P51. 
We wish to proceed as follows: Given G,,,(z), extract a 

constant LBR matrix two-pair +m (i.e., a 3 X 3 orthogonal 
matrix) such that the remainder is of the form z-lG,,-i, 
with G,-, being of order m - 1. Let A,, B,, C,, D, de- 
note the (constant) chain parameters of +,,,. Then 

D,(z) = AD,-,(z)+z-‘BN,,,-,(z) (51) 

N, = CD,-,(z)+z-‘DN,-,(z). (52) 

From the “extraction formula” (13), it is clear that a 
constant scale factor in the chain parameters does not 
affect the remainder. Let us, therefore, set the scalar A = 1 
without loss of generality. Also, assume D,( co) = D,- 1( 00) 
= 1, (i.e., the constant coefficient of the denominator poly- 
nomial is normalized to unity). From (52) we immediately 

get 
C- G,(oo) =k, (say). (53) 

Also, it is clear from ( 51) that N,- i(z) has order d m - 1. 
It now remains to force an order reduction on D,,-,(z), 
which is given by: 

D,,,-,(z) = [D/ BD-‘N,(z)]/(l- BD-‘C). (54) 

By inspection of (54) it is obvious that this can be done by 
choosing B and D such that 

z~D~(z)~~=,,= BD-‘z”N,(z)~,=,. (55) 
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Fig. 15. Order-reduction of an LBR vector. 

In view of the LBR property of G,, we have 

G,$o)G,(O) =l (56) 

i.e., 

q++mqJz)lz=O = zmDm(z)lr=O. (57) 

Thus the choice B = iVd(co)D achieves the desired order 
reduction. The matrix D can be taken as I without affect- 
ing the above reduction process. In summary, if the follow- 
ing chain matrix is extracted: 

UC; k:, 

[ I m I 
(58) 

this results in a lower order remainder G,-,(z). However, 
this chain matrix does not satisfy the paraunitary condi- 
tions of (15) and is, therefore, not LBR. This difficulty is 
easily overcome by scaling (58) such that the order reduc- 
tion is not affected. One such scaling scheme results in the 
following chain matrix: 

I-I 
I/,/= k:,(I-k,k:,)-“* 

m.1 = 

k,,,//=?jti 
(I-k,k:,)-I’* (59) 1 

where the matrix (I - k,kk) has been factorized as 

I - k,k:, = (I - k,kf,$‘*( I - k,k;) “* (60) 

with the square root defined as 

(I - k,k$‘* 

/k: 
= 

-k,k,//x {(I-k;-k;),@-kf) 1 
(61) 

where k, = (k, k~*)~. In view of the LBR property of 
G,,,(z), (16) holds, and in particular k, defined by (53) 
satisfies k:k,,, < 1. Thus I - k,,,kk is positive definite, and 
all square roots in (61) sre real. The situation is depicted in 
Fig. (15) where G,-,(z) is paraunitary. Moreover, it can 
be shown that G,,-,(z) is stable (Appendix A.5) and hence 
LBR. 

Now that the extraction step is complete, let us consider 
the transfer matrix corresponding to the chain matrix of 
(59): 

I m,l 

(I - k,k$‘* I -k:,[(Z-k,k;)/(l-k;k,)]-“’ . 

(62) 
This transfer matrix being orthogonal, can be factorized 

(4 

(b) 

Fig. 16. (a) Implementation of T,,,~. (b) Implementation of TV,*. 

into planar rotations. Thus 

[ 

- cos a1 sin (pi 0 

7 m.1 = 
sin (pi cos a[* cos a1 cos a* sine, 

sin (Y~ sin a2 cos a1 sin ix2 -cosa2 I 

[ 

1 0 0 

IL 

- cos a1 sina, 0 
= 0 cosa* sina, sin (pi cos a1 0 (63) 

0 sina, -cosa* 0 0 1 1 
where k, = - cos (Y~ and k, = sinaicos (Y*. It is interesting 
to find that the above orthogonal matrix, with (Y~ = a2 = 8, 
reduces precisely to the matrix of (20) (after elementary 
row-column operations), which was shown to be related to 
the wave adaptor. Notice that the scaling of II(z) of (58) 
leading to an LBR matrix two-pair is not unique. Thus the 
following chain matrix is another scaled version, leading 
once again to a (different) reduced-order LBR remainder: 

n 
l//E k;/{z 

In,2 = 

(I-k,k:,)-“*km (I-k,,,k;)-1’2 1 @j4) 

The corresponding transfer matrix of the LBR two-pair is 
7 m.2 

= [(I-k,k:,)/(l-k;k,)]+*k, 

I 

(I-k,,k$‘* 

(1- khk,)“* -k:, 

(65) 
This orthogonal matrix has the following factorization in 
terms of planar rotations: 

7 m.2 = 

[ 

-cosa,sincu, sin (rl cos dr, cos a* 

cos a* 0 sin a2 

sin (Y~ sin a2 cos a1 - sin (Y~ cos a2 I 

[ 

sin (Y~ cosq 0 
= 0 0 1 

cos a1 -sina, 0 I 

[ 

0 1 0 
. -sina 0 cosa* . 

I 

(66) 
cos a* 0 sina, 

In Fig. 16. the imnlementations of C. , and 7.. q are shown. 



682 IEEE TRANSACTIONS ON ClRCUlTS AND SYSTEMS, VOL. CAS-32, NO. 7, JULY 1985 

Fig. 17. Complete block-diagram for numerical example, based on the 
building block of Fig. 16(a). 

The matrix rm,* and its implementation in terms of 
planar rotations were.first introduced in [7], where a “bi- 
channel” levinson algorithm is employed in order to derive 
the orthogonal filter implementation. The matrix rm,l and 
study of the potentiality of the structure for VLSI imple- 
mentations can be found in [8]. Note that in view of the 
delay unit separating successive LBR two-pairs (Fig. 15), 
these orthogonal filter structures are pipelineable [7], [8], 
and highly suited for VLSI. (In a broad sense, what we 
mean by pipelineability is that the computations that are 
required inside the filter can be arranged in such a way 
that every hardware unit representing a matrix two-pair 
can proceed with its computational task, without waiting 
for another computational unit to deliver its results, corre- 
sponding to the bresent sampling instant. For more precise 
and accurate statements, the reader is referred to [8], as 
exact details are beyond the scope of this paper.) Notice 
that the resulting filter structures consist entirely of the 
building blocks rm,l (or 7,,*), and lead to an extension of 
the cascaded lattice [6]. Accordingly, rm,l and 7,,,* are 
extensions of the Gray and Markel normalized lattice 
two-pair. 

A Numerical Example: Consider the synthesis of the 
following BR function: 

H(z) = 
+(1+ +z-1) 

1+;z-‘+fz-2’ 
(67) 

This can be embedded into the following LBR vector: 

The first LBR-extraction requires the k parameter to be 

After extracting r2,1 (as in (62)), the remainder all-pass 
vector is 

G:,(z) = (70) 
The second stage of LBR extraction requires 

,k(‘)=G,(m)=-& 2 . 
i i 

(71) 

Once ~i,~ (equation (62)) is extracted, the final remainder 
is now 

(7-a 

which is a (constant) LBR vector. This vector can be 
implemented by rotations of the form (63) with the follow- 
ing parameter values: 

cosa* =l 

sin a2 = 0. (73) 

Thus when the synthesis process terminates, we have a 0-th 
order LBR vector as the final remainder, which itself can 
be represented as the “input-function” of an LBR matrix 
two-pair, of the form (63) or (66), with suitable values of a1 
and a*. Fig. 17 shows the overall implementation. Note 
also that the multipliers of values “ - 1" in Fig. 16 can all 
be eliminated in the resulting cascade-structure of Fig. 17. 

Inspection of (67) and Fig. 17 gives a first impression 
that there are too many multipliers in the structure. In 
general, an Nth-order transfer function (which can always 
be implemented with 2N + 1 multipliers in direct form) 
requires 2N + 1 planar rotations. As each rotation involves 
4 multiplications, it appears that the structures involved 
require 8N + 4 multiplications for an Nth-order transfer 
function. However, the planar rotations need not explicitly 
be implemented as a combination of 4 multipliers, as there 
are more efficient ways of doing it, such as the cordic- 
algorithms. Moreover, the structure of Fig. 17 has the 
advantages of low sensitivity, internal scaling, and freedom 
from limit cycles. The reader is referred to [7], [8], and [17] 
for details in this connection. 

VI. OTHERMETHODSFORFORCINGSTRUCTURAL 

BOIJNDEDNESS 

Given a BR function, there are several ways of finding 
structurally bounded implementations. So far, we have 
described three such methods (Section V). In this section, 
we wish to draw the reader’s attention to other possible 
methods. Assume, for example, that a BR function H(z) 
has been embedded into an LBR vector G&Z). Now 
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consider a minimal state-space representation ofG,(z): 

x(n+l)=Ax(n)+Bu(n) 

y(n)=Cx(n)+Du(n) (74) 

where G,(z) = Y(z)/U(z). A minimal realization can al- 
ways be found such that the matrix 

RcD c [ 1 B A (75) 

is orthogonal i.e., LBR. This follows from the discrete-time 
version of the LBR Lemma (Section IV). The matrix R 

can, therefore, be decomposed into a product of “planar 
rotations”: R = RlR2R3.. . R,, by means of systematic 
procedures (see, for example, [19]). Thus under a quantized 
environment R can be retained to be (L)BR, hence G,(z) 
remains (L)BR, hence H(z) remains BR. 

Yet another extremely simple means of achieving struc- 
tural boundedness in certain transfer functions is the fol- 
lowing: Consider again a BR function H(z), as in (1). 
Assume that the numerator is a symmetric polynomial. 
Now define a transfer function G(z) such that 

IG(ej“)l*+ IH(ej“)l* =l. (76) 

If the numerator of G(z) turns out to be an antisymmetric 
polynomial, then H(z) can always be implemented in the 
following form: 

H(z)=t[Adz)+A2(z)1 (77) 

A number of digital filter structures that are well-known 
for excellent properties under finite precision conditions 
have been rederived, based on the LBR approach. The 
results in this paper are not altogether surprising because 
passivity and losslessness are inherently present in all of 
these structures. The main contribution here is to obtain a 
derivation from a single viewpoint, so that all these 
fascinating results and structures can be understood in a 
unified manner, clearly placing in evidence the underlying 
relation between them. 

APPENDIX A.1 

Let G(z) be a BR vector. Based on elementary linear 
system concepts, we show Gt(za)G(za) (1 for all z0 such 
that ]zO( > 1. Note that, by definition of the BR property, 

Gt(ej”)G(ej”) 61, for all 0. (Al) 

Thus if u(n) is the input sequence and y(n) the output 
(vector) sequence, then this implies 

Yt(ej”)Y(ej”) < (U(eiw)12. W) 
Integrating and applying Parseval’s relation leads to 

where A,(z) and A*(z) are stable all-pass functions of 
orders Nl and N2, with N = Nl + N2. Odd-order Butter- 
worth, Chebyshev, and Elliptic transfer functions are among 
the many transfer functions that can be implemented as in 
(77). Now an all-pass function of order Nk can be imple- 
mented cannonically, requiring only Nk multipliers, by 
employing well-known techniques [6],[21]. Thus in spite of 
parameter quantization, the all-pass nature is preserved, 
hence the quantity ]H(e“‘)] can never exceed unity. This, 
therefore, leads to an elegant “structurally bounded” im- 
plementation requiring only N multipliers. Note that, if an 
implementation involving only “planar-rotations” is re- 
quired, it can be obtained by synthesizing each allpass 
function Ak(z) as a cascade of the normalized lattice- 
structure [6]. This also enables the suppression of limit 
cycles. The required number of planar rotations is only N 
rather than 2N + 1. 

for every input sequence with finite energy. 
In particular let us consider the following finite-energy 

input: 

where N is any arbitrary integer, and ]za] > 1. Clearly 

An> = 
Ghb,“, n<N 

something else, n > N. 
(A5) 

Thus 

$ y+(n)y(n) = Gt(zo)G(zo) 2 hl*” 
PI=--QJ #I=--00 

03 Q, 

=s C- y+(n)y(n)G C ldn)l* 
n=-CC n=-cc 

The justification for the above allpass decomposition can 
easily be given in the z-domain. However, it can also be 
understood by translating certain well-known properties 
from the theory of classical, doubly terminated filter 
synthesis (for example, see [22]). 

= f Izp. W) 
II=--00 

It immediately follows that Gt( za)G( z,,) Q 1. Moreover, 
this is a strict inequality unless G(z) li constant. 

All the filter structures considered so far are recursive, 
and implement IIR transfer functions. We conclude this 
section by mentioning that, for finite impulse response 
(FIR) digital filters, a method is outlined in [14] to achieve 
structural boundedness. The resulting structures have low- 
sensitivity property; to the best of our knowledge, this is 
the only class of structurally bounded implementations 
that cannot be related to the orthogonal implementations 
in terms of planar rotations in a natural way. 

APPENDIX A.2 
PROOF OF THE COMPUTATION RULES FOR THE 

PARAMETER r, s, t, u IN SECTION IV 

The cascaded two-pair of Fig. (11) has three sections. If 
the chain matrices are multiplied out and then the overall 
transfer matrix is computed, it has the following common 
denominator: 

D,(z) = 1 + dz-’ + cz-* + bzp3 + aze4 647) 

VII. CONCLUDING REMARKS 
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where a, 6, c, ld are as in (29). But there is a cancelation of 
the factor (1 + z-l)* between DA(z) and the 2 X 2 numera- 
tor matrix [9]. Dividing (A7) through by (1 + z-i)2 we get 
the second-order denominator: 

D,(z)==l+ cfb3;1-2bz-1+ a 
c+3a-2bZ 

-2 (~8) 

which leads to the expressions in (30). 
Next, note that the extraction of the two pair of (28) is 

done only under the condition that G,(ej”o) = eja. The 
overall two-pair is such that, at the frequency wa, there is a 
transmission zero, i.e., zero of Ti2(z)[ = T2i(z)]. At this 
frequency, therefore, G,( ejwo) = T,,( ei“o). This leads to 
the two conditions (31) and (32). 

APPENDIX A.3 
M1Nm.4~ DEGREE OF THE TWO-PAIR OF (28) 

For the two-pair under consideration, the D matrix is 
clearly of the form in (34). If there exists (this existence 
assumption automatically gets verified in this appendix) a 
realization with a 2 x 2 A matrix, then there certainly exists 
a realization with the A matrix as in (34). With B = [bij] 
and C = [cij], if we set 

l(z)=D+C(zl-A)-‘B (A91 

then this leads to the following constraints on B and C: 

ru+a,+a2=t 

su - h,a, - &a2 = 0 

r + rs - tu 
a5 + a, = 

26 
-(G)r 

r - rs - tu = 
26 

&a, + h2a5 = s& - J;; 

r + rs - tu 
a3 + a4 = 

26 - 
t-6 

r - rs - tu = 
26 

hza,+X,ff,=s~-~ 

a6 + ag = - f 

X2ff,+Xla,=u 

where the ok’s are defined as 

al = cnbll, a2 = c12b21 

a3 = c2Al y a4 = c22b21 

a5 = cdl, 7 OL6 = c2lbn 

a1 = C12b22 9 a8 = c22b22 

constructed.) For this, we note that the paraunitary con- 
straint on r(z) of (28): 

7’(z-‘)7(z) = I (A121 

leads to the following constraint: 

4s = 
(r + rs - t~)~ 

1+r2+s2-t2-u2-2s’ 
(AI31 

In addition, each of X, and X2 satisfies the following 
equation: 

1+ rh,’ + sX;* = 0. (‘w 

By making use of (A13) and (A14), it can be verified that 
(36) holds. 

APPENDIX A.4 

Assuming r(z) is LBR, we show the existence of a 
minimal state-space realization A,, B,,, Cc, Do such that 
the matrix 

is orthogonal. Let A, B, C, D be some minimal realization 
of r(z). Then, because r(z) is stable, we know there exists 
a real symmetric positive definite matrix P such that 

A’PA -P= - C’C. (Al9 

Letting P = T-IT-‘, and applying the similarity transfor- 
mation T: 

A,=T-‘AT 

B,=T-‘B 

C,=CT 

D,=D 6416) 

we get a new minimal realization with 

A’,Ao+C;Co=I. 

Now, LBR property of r(z) implies 

(A171 

&y(n) = &u(n) 6418) 
0 0 

for any finite energy input, assuming zero initial condi- 
tions. In particular, consider an input such that u(n) = 0 
for n > N, but arbitrary otherwise. Then 

WO) 
Y(n) = co+), n > N. (Al9 

Hence, 

*=;+lY’Y(n) = 2 x’( n)CJCox( n) 
n=N+l 

= &‘(“)[I - A’,Ao] x(n) 

(All) i.e., 
00 

from (All), the constraints of (36) follow. The solutions 
(equation (35)) follow directly from (AlO). It remains to 

c Y’(nMn) 
n=N+l 

show that the constraints of (36) hold for the LBR two-pair 
under consideration. (This is equivalent to showing that the 
minimal degree of the state-space realization is two, be- 
cause the matrices A, B, C, D have then been successfully 

= E xf(n)x(n)- E xf(n+l)x(n+l) 
n=N+l n=N+l 

=x’(N+l)x(N+l). 642’3) 
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Thus we get or equivalently, by transfer parameter matrices cj by 

5 y’(n)y(n)= f uf(n)u(n)-x’(N+l)x(N+l). 
n=O n=O 

(A21) 
Repeating the above (A21) with N replaced by N - 1, and 
subtracting, we get 

[Y’(N) x’(N+l)] 

6422) 
for all N. This implies that the matrix So is orthogonal, 
which proves the desired result. 

yl= J-11-T + Tl2X2 (A30) 

Y2 = T21Xl + T22X2. (A311 

Note that, for simplicity, functional dependence on z is 
not explicitly shown. In order to derive the relations of 
(ll), note that with X2 = 0 we get 

Xl= AY,, y2 = T,A (A32) 

hence 

T21= A-’ (A33) 

provided A is square and has full normal rank. Moreover, 

Yl=CY2=CA-‘Xl (A341 

hence 

APPENDIX A.5 T,,=CA-‘. (A35) 
PROOF OF STABILITY OF G,,, _ 1 IN SECTION V Similarly, by setting X, = 0, we can derive the other two 

Assuming that G,(z) is a BR vector, and assuming that relations in (11). The relations in (12) follow from (11) 
the two-pair with chain matrix of (58) is extracted, where directly. 
k, = G,,,(co!, let us first show that the corresponding Extraction Formulas: Now refer to Fig. 4 for two-pair 
remainder G,,,-,(z) is stable. We know extraction, and assume that all signals are vectors. We have 

&-1(z)= [I-G,k:,]-‘[G,/k,]. (A23) X2 = G,-,Y,. (A36) 
At a pole to of G,-,(z), we have Hence, from (A29) 

det[I-G,kk] =0 W4) Yl=CY2+ DG,,-,Y,= (C+ DG,,-,)Y,. (A37) 
which implies the existence of a non-null vector u such 
that: 

From (A28) and (A36), 

u’u= o’kmG~(zo)Gm(zo)k~u (A29 Xl= (A+ BG,,-,)Y,. (A381 

Assuming that jzol > 1, let us bring about a conflict, which 
is equivalent to establishing that Gm-,(z) is stable. We 

Equations (A37) and (A38) yield 

know, lzol > 1 implies Yl = (C+ DG,-,)(A + BG,,-,)-lXl G-4 

G,%o)%(zo) ~1. 6426) 
Hence 

u’u < u’k,k;c (‘427) 

But the matrix I - k,kk is real symmetric positive definite 
because ‘k:k, = GL(co)G,(co) ~1 by LBR property of 
G,(z). Thus (A27) cannot be true. 

This proves that G,,-,(z) cannot have a pole outside the 
unit circle. If there were a pole z. on the unit circle, this 
would imply that I - k,kk is singular, which again, is not 
true in view of GIG, -C 1. In summary, all poles of 
G,,,- i( z) are strictly inside the unit circle. 

Now the actual remainder z -‘G,,- 1 is related to (;1,- 1 
by a constant matrix, because the actual chain matrix of 
the LBR two-pair (59) or (64) is obtained from (58) by 
scaling. Thus G,-, has all poles strictly inside the unit 
circle. 

assuming that A + BG,-, has full normal rank. Since G,,, 
is defined by Yr = G,X,, (14) follows from (A39). Next, 
(13) is obtained directly by inverting the relation in (14). 

Proof of Equivalence of (15) and the Paraunitary Property 

The transfer matrix T(Z) = [qj(z)] being paraunitary 
satisfies ?7 = I, i.e., 

fl;,Tl, + p2;,T2, = I 6440) 

i-12T,2 + i-22T22 = I 6441) 

i.,;,T,, + F2;,T2, = 0. (A421 

(Recall that fi;,(z) is abbreviation for T:,(z-‘) and so on.) 
By applying the relations of (11) in (A40), we immediately 

get 

&+I=iA. 6443) 
APPENDIX A.6 

MATRIX TWO-PAIRS AND EXTRACTION FORMULAS Next, from (A41) we get, after simplification with the help 

For a matrix two-pair, the vector signals XI, YI, X2, Y, 
of (A43), 

are related by the chain parameter matrices A, B, C, D as bD + iiB - h-‘CD - bCA-‘B = I. 6444) 

X,=AY,+BX, (~28) Similarly (A42) implies, with the help of (A43), 

Yl = CY, + DX, W9) CD=AB. tw 
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By using (A45) in (A44), we finally arrive at 

BD=BB+I. 

[91 

CA4@ [lo] 

Equations (A43), (A45), and (A46) establish that (15) holds 
for any paraunitary matrix two-pair. 

Conversely, it can be shown that, if (15) holds, then the 
matrix two-pair is paraunitary (i.e., (A40), (A41), and 
(A42) then follow). The details of the converse are omitted 
in the interests of brevity. 
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