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Abstract

This paper presents a novel algorithm for analysis of stochastic processes. The algorithm
can be used to �nd the required solutions in the cases of principal component analysis (PCA),
partial least squares (PLS), canonical correlation analysis (CCA) or multiple linear regression
(MLR). The algorithm is iterative and sequential in its structure and uses on-line stochastic
approximation to reach an equilibrium point. A quotient between two quadratic forms is used
as an energy function and it is shown that the equilibrium points constitute solutions to the
generalized eigenproblem.
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1 Introduction

The ability to perform dimensionality reduction is crucial to systems exposed to high dimensional
data e.g. images, image sequences [10], and even scalar signals where relations between a high
number of di�erent time instances need to be considered [6]. This can for example be done by
projecting the data onto new basis vectors that span a subspace of lower dimensionality. Without
detailed prior knowledge, a suitable basis can only be found using an adaptive approach [17, 18].
For signals with high dimensionality, d, an iterative algorithm for �nding this basis must not exhibit
a memory requirement nor a computational cost signi�cantly exceeding O(d) per iteration. The
employment of traditional techniques, involving matrix multiplications (having memory require-
ments of order O(d2) and computational costs of order O(d3)), quickly become infeasible when
signal space dimensionality increases.

The criteria for an appropriate the new basis is, of course, dependent on the application. One
way of approaching this problem is to project the data on the subspace of maximum data variation,
i.e. the subspace spanned by the largest principal components. There are a number of applications
in signal processing where the largest eigenvalue and the corresponding eigenvector of input data
correlation- or covariance matrices play an important role, e.g. image coding.

In applications where relations between two sets of data, e.g. process input and output, are
considered an analysis can be done by �nding the subspaces in the input and the output spaces for
which the data covariation is maximized. These subspaces turn out to be the ones accompanying
the largest singular values of the between sets covariance matrix [19].

In general, however, the input to a system comes from a set of di�erent sensors and it is evident
that the range (or variance) of the signal values from a given sensor is unrelated to the importance
of the received information. The same line of reasoning holds for the output which may consist
of signals to a set of di�erent e�ectuators. In these cases the covariances between signals are
not relevant. Here, correlation between input and output signals is a more appropriate target for
analysis since this measure of input-output relations is invariant to the signal magnitudes.

Finally, when the goal is to predict a signal as well as possible in a least square error sense,
the directions must be chosen so that this error measure is minimized. This corresponds to a

1



low-rank approximation of multiple linear regression also known as reduced rank regression [14] or
as redundancy analysis [23].

An important problem with direct relation to the situations discussed above is the generalized
eigenproblem or two-matrix eigenproblem [3, 9, 22]:

Aê = �Bê or B�1Aê = �ê: (1)

The next section will describe the generalized eigenproblem in some detail and show its rela-
tion to an energy function called the Rayleigh quotient. It is shown that four important problems
emerges as special cases of the generalized eigenproblem: principal component analysis (PCA),
partial least squares (PLS), canonical correlation analysis (CCA) and multiple linear regression
(MLR). These analysis methods corresponds to �nding the subspaces of maximum variance, max-
imum covariance, maximum correlation and minimum square error respectively.

In section 3 we present an iterative, O(d) algorithm that solves the generalized eigenproblem by
a gradient search on the Rayleigh quotient. The solutions are found in a successive order beginning
with the largest eigenvalue and corresponding eigenvector. It is shown how to apply this algorithm
to obtain the required solutions in the special cases of PCA, PLS, CCA and MLR.

2 The generalized eigenproblem

When dealing with many scienti�c and engineering problems, some version of the generalized
eigenproblem needs to be solved along the way.

In mechanics, the eigenvalues often corresponds to modes of vibration. In this paper, however,
we will consider the case where the matrices A and B consist of components which are expectation
values from stochastic processes. Furthermore, both matrices will be hermitian and, in addition,
B will be positive de�nite.

The generalized eigenproblem is closely related to the the problem of �nding the extremum
points of a ratio of quadratic forms

r =
wTAw

wTBw
(2)

where both A and B are hermitian and B is positive de�nite, i.e. a metric matrix. This ratio
is known as the Rayleigh quotient and its critical points, i.e. the points of zero derivatives, will
correspond to the eigensystem of the generalized eigenproblem. To see this, let us look at the
gradient of r:

@r

@w
=

2

wTBw
(Aw � rBw) = �(Aŵ � rBŵ); (3)

where � = �(w) is a positive scalar and \^" denotes a vector of unit length. Setting the gradient
to 0 gives

Aŵ = rBŵ or B�1Aŵ = rŵ (4)

which is recognized as the generalized eigenproblem, eq. 1. The solutions ri and ŵi are the eigenval-
ues and eigenvectors respectively of the matrix B�1A. This means that the extremum points (i.e.
points of zero derivative) of the Rayleigh quotient r(w) are solutions to the corresponding general-
ized eigenproblem so that the eigenvalue is the extremum value of the quotient and the eigenvector
is the corresponding parameter vector w of the quotient. As an ilustration, the Rayleigh quotient
is plotted to the left in in �gure 1 for two matrices A and B. The quotient is plotted as the radius
in di�erent directions ŵ. Note that the quotient is invariant to the norm of w. The two eigenval-
ues are shown as circles with their radii corresponding to the eigenvalues. It can be seen that the
eigenvectors e1 and e2 of the generalized eigenproblem coincides with the maximum and minimum
values of the Rayleigh quotient. To the right in the same �gure, the gradient of the Rayleigh
quotient is illustrated as a function of the direction of w. Note that the gradient is orthogonal
to w (see equation 3). This means that a small change of w in the direction of the gradient can
be seen as a rotation of w. The arrows indicate the direction of this orientation and the radii of
the 'blobs' correspons to the magnitude of the gradient. The �gure shows that the directions of
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Figure 1: Left:The Rayleigh quotient r(w) between two matrices A and B. The curve is plotted
as rŵ. The eigenvectors of B�1A are marked as reference. The corresponding eigenvalues are
marked as the radii of the two circles. Note that the quotient is invariant to the norm of w.
Right: The gradient of r. The arrows indicate he direction of this orientation and the radii of the
'blobs' correspons to the magnitude of the gradient.

zero gradient coincides with the eigenvectors and that the gradient points towards the eigenvector
coresponding to the largest eigenvalue.

If the eigenvalues ri are distinct (i.e. ri 6= rj for i 6= j), the di�erent eigenvectors are orthogonal
in the metrics A and B which means that

ŵT
i Bŵj =

(
0 for i 6= j

�i > 0 for i = j
and ŵT

i Aŵj =

(
0 for i 6= j

ri�i for i = j
(5)

(see proof 6.1). This means that the wis are linearly independent (see proof 6.2). Since an
n-dimensional space gives n eigenvectors which are linearly independent, hence, fw1; : : : ;wng
constitutes a base and any w can be expressed as a linear combination of the eigenvectors. Now, it
can be proved (see proof 6.3) that the function r is bounded by the largest and smallest eigenvalue,
i.e.

rn � r � r1 (6)

which means that there exists a global maximum and that this maximum is r1.
To investigate if there are any other local maxima, we look at the second derivative, or the

Hessian H, of r for the solutions of the eigenproblem,

Hi =
@2r

@w2

����
w=ŵi

=
2

ŵT
i Bŵi

(A� riB) (7)

(see proof 6.4). It can be shown (see proof 6.5) that the Hessian Hi have got positive eigenvalues
for i > 1, i.e. there exits vectors w such that

wTHiw > 0 8 i > 1 (8)

This means that for all solutions to the eigenproblem except for the largest root, there exists a
direction in which r increases. In other words, all extremum points of the function r are saddle
points except for the global minimum and maximum points. Since the two-dimensional example
in �gure 1 only has two eigenvalues, as illustrated in the �gure, they correspond to the maximum
and minimum values of r.

We will now show that �nding the directions of maximum variance, maximum covariance,
maximum correlation and minimum square error can be seen as special cases of the generalized
eigenproblem.
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2.1 Direction of maximum data variation

For a set of random numbers fxkg with zero mean, the variance is de�ned as Efxxg. Now let us
turn to a set of random vectors, with zero mean. In this case we consider the covariance matrix,
de�ned by:

Cxx = EfxxT g (9)

By the direction of maximum data variation we mean the direction ŵ with the property that the
linear combination x = ŵTx posses maximum variance. Hence, �nding this direction is hence
equivalent to �nding the maximum of

� = Efxxg = EfŵTxŵTxg = ŵTEfxxT gŵ =
wTCxxw

wTw
: (10)

This problem is a special case of that presented in eq. 2 with

A = Cxx and B = I: (11)

Since the covariance matrix is symmetric, it is possible to expand it in its eigenvalues and
orthogonal eigenvectors as:

Cxx = EfxxT g =
X

�i êiê
T
i (12)

where �i and êi are the eigenvalues and orthogonal eigenvectors respectively. This is known as
principal component analysis (PCA). Hence, the problem of maximizing the variance, �, can be
seen as the problem of �nding the largest eigenvalue, �1, and its corresponding eigenvector since:

�1 = êT
1
Cxxê1 = max

wTCxxw

wTw
= max �: (13)

It is also worth noting that it is possible to �nd the direction and magnitude of maximum data
variation to the inverse of the covariance matrix. In this case we simply identify the matrices in
eq. 2 as A = I and B = Cxx.

2.2 Directions of maximum data covariation

Given two sets of random numbers with zero mean, fxkg and fykg, their covariance is de�ned as
Efxyg = Efyxg. If we consider the multivariate case, we can de�ne the between sets covariance
matrix according to:

Cxy = EfxyT g (14)

This time we look at the two directions of maximal data covariation, by which we mean the
directions, ŵx and ŵy, such that the linear combinations x = ŵT

x x and y = ŵT
y y gives maximum

covariance. This means that we want to maximize the following function:

� = Efxyg = EfŵT
x xŵ

T
y yg = ŵT

xEfxy
T gŵy =

wT
xCxywyq

wT
xwxwT

ywy

: (15)

Note that, for each �, a corresponding value �� is obtained by rotating wx or wy 180�. For this
reason, we obtain the maximum magnitude of � by �nding the largest positive value.

This function cannot be written as a Rayleigh quotient. However, the critical points of this
function coincides with the critical points of a Rayleigh quotient with proper choices of A and B.
To see this, we calculate the derivatives of this function with respect to the vectors wx and wy

(see proof 6.6): (
@�
@wx

= 1

kwxk
(Cxyŵy � �ŵx)

@�
@wy

= 1

kwyk
(Cyxŵx � �ŵy):

(16)
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Setting these expressions to zero and solving for wx and wy results in(
CxyCyxŵx = �2ŵx

CyxCxyŵy = �2ŵy:
(17)

This is exactly the same result as that obtained after a gradient search on r in eq. 2 if the matrices
A and B and the vector w are chosen according to:

A =

�
0 Cxy

Cyx 0

�
, B =

�
I 0

0 I

�
, and w =

�
�xŵx

�yŵy

�
: (18)

This is easily veri�ed by insertion of the expressions above into eq. 4 which results in8<
:Cxyŵy = r �x�y ŵx

Cyxŵx = r
�y
�x
ŵy

(19)

and then solving for wx and wy which gives equation 17 with r2 = �2. Hence, the problem of
�nding the direction and magnitude of the largest data covariation can be seen as maximizing a
special case of eq. 2 with the appropriate choice of matrices.

The between sets covariance matrix can be expanded by means of singular value decomposition
(SVD) where the two sets of vectors fêxig and fêyig are mutually orthogonal:

Cxy = Exyfxy
T g =

X
�i êxiê

T
yi (20)

where the positive numbers, �i, are referred to as the singular values. Since the basis vectors are
orthogonal, we see that the problem of maximizing the quotient in eq. 15 is equivalent to �nding
the largest singular value:

�1 = êTx1Cxyêy1 = max
wT
xCxywyq

wT
xwxwT

ywy

= max �: (21)

The SVD of a between-sets covariance matrix has a direct relation to the method of partial
least squares (PLS) [13, 25].

2.3 Directions of maximum data correlation

Again, consider two random variables x and y with zero mean and stemming from a multi-normal
distribution with

C =

�
Cxx Cxy

Cyx Cyy

�
= E

(�
x

y

��
x

y

�T)
(22)

as the covariance matrix. Consider the linear combinations x = ŵT
x x and y = ŵT

y y of the two

variables respectively. The correlation1 between x and y is de�ned as Efxyg=
p
EfxxgEfyyg. This

means that the function we want to maximize can be written as

� =
Efxygp

EfxxgEfyyg
=

EfŵT
x xy

T ŵygq
EfŵT

x xx
T ŵxgEfŵT

y yy
T ŵyg

=
wT
xCxywyq

wT
xCxxwxwT

yCyywy

: (23)

Also in this case, as � changes sign if wx or wy is rotated 180�, it is su�cient to �nd the positive
values.

Just like equation 15, this function cannot be written as a Rayleigh quotient. But also in this
case, we can show that the critical points of this function coincides with the critical points of a

1The term correlation is some times inappropriately used to denote the second order origin moment (�x2) as
opposed to variance which is the second order central moment (�[x�x0]2). The de�nition used here can be found in
textbooks in mathematical statistics. It can loosely be described as the covariance between two variables normalized
with the geometric mean of the variables' variances.

5



Rayleigh quotient with proper choices of A and B. The partial derivatives of � with respect to wx

and wy are (see proof 6.7)8>><
>>:

@�
@wx

= a
kwxk

�
Cxyŵy �

ŵ
T
xCxyŵy

ŵT
xCxxŵx

Cxxŵx

�
@�
@wy

= a
kwyk

�
Cyxŵx �

ŵ
T
y Cyxŵx

ŵT
y Cyyŵy

Cyyŵy

� (24)

where a is a positive scalar. Setting the derivatives to zero gives the equation system8<
:Cxyŵy = ��xCxxŵx

Cyxŵx = ��yCyyŵy

(25)

where

�x = ��1y =

s
ŵT
yCyyŵy

ŵT
xCxxŵx

: (26)

�x is the ratio between the standard deviation of y and the standard deviation of x and vice versa.
The �'s can be interpreted as a scaling factor between the linear combinations. Rewriting equation
system 25 gives (see proof 6.9) (

C�1
xxCxyC

�1
yyCyxŵx = �2ŵx

C�1
yyCyxC

�1
xxCxyŵy = �2ŵy:

(27)

Hence, ŵx and ŵy are found as the eigenvectors to C�1
xxCxyC

�1
yyCyx and C�1

yyCyxC
�1
xxCxy respec-

tively. The corresponding eigenvalues �2 are the squared canonical correlations [4, 5, 24, 12, 16].
The eigenvectors corresponding to the largest eigenvalue �2

1
are the vectors ŵx1 and ŵy1 that

maximizes the correlation between the canonical variates x1 = ŵT
x1x and y1 = ŵT

y1y.
Now, if we let

A =

�
0 Cxy

Cyx 0

�
; B =

�
Cxx 0

0 Cyy

�
; and w =

�
wx

wy

�
=

�
�xŵx

�yŵy

�
(28)

we can write equation 4 as 8<
:
Cxyŵy = r �x�yCxxŵx

Cyxŵx = r
�y
�x
Cyyŵy

(29)

which we recognize as equation 25 for ��x = r �x�y and ��y = r
�y
�x

. If we solve for wx and wy in

eq. 29, we will end up in eq. 27 with r2 = �2. This shows that we obtain the equations for the
canonical correlations as the result of a maximizing the energy function r.

An important property of canonical correlations is that they are invariant with respect to a�ne
transformations of x and y. An a�ne transformation is given by a translation of the origin followed
by a linear transformation. The translation of the origin of x or y has no e�ect on � since it leaves
the covariance matrix C una�ected. Invariance with respect to scalings of x and y follows directly
from equation 23. For invariance with respect to other linear transformations see proof 6.10.

2.4 Directions for minimum square error

Again, consider two random variables x and y with zero mean and stemming from a multi-normal
distribution with covariance as in equation 22. In this case, we want to minimize the square error

�2 = Efky� �ŵyŵ
T
x xk

2g

= EfyTy � 2�yT ŵyŵ
T
x x+ �2ŵT

x xx
T ŵxŵ

T
y g

= EfyTyg � 2�ŵT
yCyxŵx + �2ŵT

xCxxŵx;

(30)
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i.e. a rank-one approximation of the MLR of y onto x based on minimum square error. The
problem is to �nd not only the regression coe�cient �, but also the optimal basis ŵx and ŵy. To
get an expression for �, we calculate the derivative

@�2

@�
= 2

�
�ŵT

xCxxŵx � ŵ
T
yCyxŵx

�
= 0; (31)

which gives

� =
ŵT
yCyxŵx

ŵT
xCxxŵx

: (32)

By inserting this expression into eq. 30 we get

�2 = EfyTyg �
(ŵT

yCyxŵx)
2

ŵT
xCxxŵx

: (33)

Since �2 cannot be negative and the left term is independent of the parameters, we can minimize
�2 by maximizing the quotient to the right in eq. 33, i.e. maximizing the quotient

� =
ŵT
xCxyŵyp
ŵT
xCxxŵx

=
wT
xCxywyq

wT
xCxxwxwT

ywy

: (34)

Note that if wx and wy minimizes �2, the negation of one or both of these vectors will give the
same minimum. Hence, it is su�cient to maximize the positive root. The square of this quotient,
i.e. �2, is also known as the redundancy index [21] in the rank one case.

As in the two previous cases, while this function cannot not be written as a Rayleigh quotient,
we can show that its critical points coincides with the critical points of a Rayleigh quotient with
proper choices of A and B. The partial derivatives of � with respect to wx and wy are (see proof
6.8) 8<

:
@�
@wx

= a
kwxk

(Cxyŵy � �Cxxŵx)

@�
@wy

= a
kwxk

�
Cyxŵx �

�2

� ŵy

�
:

(35)

Setting the derivatives to zero gives the equation system8<
:
Cxyŵy = �Cxxŵx

Cyxŵx = �2

� ŵy;
(36)

which gives (
C�1

xxCxyCyxŵx = �2ŵx

CyxC
�1
xxCxyŵy = �2ŵy:

(37)

Now, if we let

A =

�
0 Cxy

Cyx 0

�
; B =

�
Cxx 0

0 I

�
; and w =

�
wx

wy

�
=

�
�xŵx

�yŵy

�
(38)

we can write equation 4 as 8<
:Cxyŵy = r�x�yCxxŵx

Cyxŵx = r
�y
�x
ŵy

(39)

which we recognize as equation 36 for � = r �x�y and �2

� = r
�y
�x
. If we solve for wx and wy in eq. 39

we will end up in eq. 37 with r2 = �2. This shows that we minimize the square error in eq. 30 as a
result of maximizing the energy function r in eq. 2 for the proper choice of regression coe�cient �.

It should be noted that the regression coe�cient � de�ned in eq. 32 is valid for any choice of ŵx

and ŵy. In particular, if we use the directions of maximum variance, � is the regression coe�cient
for principal components regression (PCR) and for the directions of maximum covariance, � is the
regression coe�cient for PLS regression.
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2.5 Examples

To see how these four di�erent special cases of the generalized eigenproblemmay di�er, the solutions
for the same data is plotted in �gure 2. The data is two-dimensional in X and Y and randomly
distributed with zero mean. The top row shows the eigenvectors in the X-space for the CCA,
MLR, PLS and PCA respectively. The bottom row shows the solutions in the Y -space. Note that
all solutions except the two solutions for CCA and the X-solution for MLR are orthogonal. Figure
3 shows the correlation, mean square error, covariance and variance of the data projected onto the
�rst eigenvectors for each method. It can be seen that: The correlation is maximized for the CCA
solution; The mean square error is minimized for the MLR solution. The covariance is maximized
for the PLS solution. The variance is maximized for the PCA solution.

CCA

X  

Y  

MLR PLS PCA

Figure 2: Examples of eigenvectors using CCA, MLR, PLS and CCA on the same sets of data.

3 The algorithm

We will now show that we can �nd the solutions to the generalized eigenproblem and, hence,
perform PCA, PLS, CCA or MLR by doing a gradient search on the Rayleigh quotient.

Finding the largest eigenvalue In the previous section, it was shown that the only stable
critical point of the Rayleigh quotient is the global maximum (eq. 8). This means that it should
be possible to �nd the largest eigenvalue of the generalized eigenproblem and its corresponding
eigenvector by performing a gradient search on the energy function r. This can be done with an
iterative algorithm:

w(t+ 1) = w(t) + �w(t); (40)

where the update vector �w, on average, lies in the direction of the gradient:

Ef�wg = �
@r

@w
= �(Aŵ � rBŵ) (41)

where � and � are positive numbers. � is the gain controlling how far, in the direction of the
gradient, the vector estimate is updated at each iteration. This gain could be constant as well as
data or time dependent.

In all four cases treated in this article, A has got at least one positive eigenvalue, i.e. there
exist an r > 0. We can then use an update rule such that

Ef�wg = �(Aŵ �Bw) (42)
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Figure 3: The correlation, mean square error, covariance and variance when using the �rst pair
of vectors for each method. The correlation is maximized for the CCA solution; The mean square
error is minimized for the MLR solution. The covariance is maximized for the PLS solution. The
variance is maximized for the PCA solution. (See section 2.5)

to �nd the positive eigenvalues. Here, the length of the vector will represent the corresponding
eigenvalue, i.e. kwk = r. To see this, consider a choise of w that gives r < 0. Then we have
wT�w < 0 since wTAw < 0. This means that kwk will decrease until r becomes positive.

The function Aŵ �Bw is illustrated in �gure 4 together with the Rayleigh quotient plotted
to the left in �gure 1.

Finding successive eigenvalues Since the learning rule de�ned in eq. 41 maximizes the Rayleigh
quotient in eq. 2, it will �nd the largest eigenvalue �1 and a corresponding eigenvector ŵ1 = �ê1
of eq. 1. The question naturally arises if, and how, the algorithm can be modi�ed to �nd the
successive eigenvalues and vectors, i.e. the successive solutions to the eigenvalue equation 1.

Let G denote the n� n matrix B�1A. Then the n equations for the n eigenvalues solving the
eigenproblem in eq. 1 can be written as

GE = ED ) G = EDE�1 =
X

�iêif
T
i ; (43)

where the eigenvalues and vectors constitute the matrices D and E respectively:

D =

0
B@�1 0

. . .

0 �n

1
CA ; E =

0
@ j j
ê1 � � � ên
j j

1
A ; E�1 =

0
B@� fT

1
�

...
� fTn �

1
CA : (44)

The vectors, fi, appearing in the rows of the inverse of the matrix containing the eigenvectors are
the dual vectors to the eigenvectors êi, which means that

fTi êj = �ij : (45)
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di�erent w. The Rayleigh quotient is plotted as reference.

ffig are also called the left eigenvectors of G and fêig , ff̂ig are said to be biorthogonal. From eq.
5 we know that the eigenvectors êi are both A and B orthogonal, i.e. that

êTi Aêj = 0 and êTi Bêj = 0 for i 6= j: (46)

Hence we can use this result to �nd the dual vectors fi possessing the property in eq. 45, e.g. by
choosing them according to:

fi =
Bêi

êTi Bêi
: (47)

Now, if ê1 is the eigenvector corresponding to the largest eigenvalue of G, the new matrix

H = G� �1ê1f
T
1

(48)

will have the same eigenvectors and eigenvalues as G except for the eigenvalue corresponding to
ê1, which now becomes 0 (see proof 6.11). This means that the eigenvector corresponding to the
largest eigenvalue of H is the same as the one corresponding to the second largest eigenvalue of G.

Since the algorithm will �rst �nd the vector ŵ1 = ê1, we only need to estimate the dual vector
f1 in order to subtract the correct outer product from G and remove its largest eigenvalue. In our
case this is a little bit tricky since we do not generate G directly. Instead we must modify its two
components A and B in order to produce the desired subtraction. Hence we want two modi�ed
components, A

0

and B
0

, with the following property:

B
0�1A

0

= B�1A� �1ê1f
T
1
: (49)

A simple solution is obtained if we only modify one of the matrices and keep the other matrix
�xed:

B
0

= B and A
0

= A� �1Bê1f
T
1
: (50)

This modi�cation can be accomplished if we estimate a vector u1 = �1Bê1 = Bw1 iteratively as:

u1(t+ 1) = u1(t) + �u1(t) (51)

where

Ef�u1g = � [rBŵ1 � u1] : (52)

Once this estimate has converged, we can use u1 = �1Bê1 to express the outer product in eq. 50:

�1Bê1f
T
1
=

�1Bê1ê
T
1
BT

êT
1
BêT

1

=
u1u

T
1

êT
1
u1

: (53)
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We can now estimate A0 and, hence, get a modi�ed version of the learning algorithm in eq. 41
which �nds the second eigenvalue and the corresponding eigenvector to the generalized eigenprob-
lem:

Ef�wg = �
h
A

0

ŵ � rBŵ
i
= �

��
A�

u1u
T
1

ŵT
1
u1

�
ŵ � rBŵ

�
: (54)

The vector w1 is the solution �rst produced by the algorithm, i.e. the largest eigenvalue and the
corresponding eigenvector.

This scheme can of course be repeated to �nd the third eigenvalue by subtracting the second
solution in the same way and so on. Note that this method does not put any demands on the
range of B in contrast to exact solutions involving matrix inversion.

It is, of course, possible to enhance the proposed update rules and also take second order
derivatives into account. This would include estimating the inverse of the Hessian and using
this matrix to modify the update direction. Such procedures are, for the batch or o�-line case,
known as Gauss-Newton methods [7]. In this paper, however, we will not emphasize on speed and
convergence rates. Instead we are interested in the structure of the algorithm and how di�erent
special cases of the generalized eigenproblem is reected in the structure of the update rule.

In the following four sub-sections it will be shown how this iterative algorithm can be applied
to the four important problems described in the previous section.

3.1 PCA

Finding the largest principal component We can �nd the direction of maximum data vari-
ation by a stochastic gradient search according to eq. 42 with A and B de�ned according to eq.
11:

Ef�wg = 
@�

@w
= � [Cxxŵ � �ŵ] = � EfxxT ŵ� �ŵg (55)

This leads to a novel unsupervised Hebbian learning algorithm that �nds both the direction of
maximum data variation and the variance of the data in that direction. The update rule for this
algorithm is given by

�w = � (xxT ŵ �w); (56)

where the length of the vector represents the estimated variance, i.e. kwk = �. (Note that � in
this case is allways positive.)

Note that this algorithm �nds both the direction of maximal data variation as well as how much
the data varies along that direction. Often algorithms for PCA only �nds the direction of maximal
data variation. If one is also interested in the variation along this direction, another algorithm
need to be employed. This is the case for the well known PCA algorithm presented by Oja [20].

Finding successive principal components In order to �nd successive principal components,
we we recall that A = Cxx and B = I. Hence we have the matrix G = B�1A = Cxx which is
symmetric and has orthogonal eigenvectors. This means that the dual vectors and the eigenvectors
become indistinguishable and that we need not estimate any other vector than w itself. The outer
product in eq. 50 then becomes:

�1Bê1f
T
1
= �1Iê1ê

T
1
= w1ŵ

T
1
: (57)

From this we see that the modi�ed learning rule for �nding the second eigenvalue can be written
as

Ef�wg = �
h
A

0

ŵ �Bw
i
= �

�
(Cxx �w1ŵ

T
1
)ŵ �w

�
; (58)

A stochastic approximation of this rule is achieved if we at each time step update the vector w by

�w = �
�
(xxT �w1ŵ

T
1
)ŵ �w

�
: (59)
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As mentioned in section 2.1, it is possible to perform a PCA on the inverse of the covariance
matrix by choosing A = I and B = Cxx. The learning rule associated with this behavior then
becomes:

�w = � (ŵ � xxTw): (60)

3.2 PLS

Finding the largest singular value If we want to �nd the directions of maximum data covari-
ance, we de�ne the matrices A and B according to eq. 18. Since we want to update w, on average,
in direction of the gradient, the update rule in eq. 42 gives:

Ef�wg = 
@r

@w
= �

��
0 Cxy

Cyx 0

�
ŵ � r

�
I 0

0 I

�
ŵ

�
: (61)

This behavior is accomplished if we at each time step update the vector w with

�w = �

��
0 xyT

yxT 0

�
ŵ �w

�
(62)

where the length of the vector at convergence represents the covariance, i.e. kwk = r = �. This
can be done since we know that it is su�cient to search for positive values of �.

Finding successive singular values Also in this case, the special structure of the A and B

matrices will simplify the procedure for �nding the subsequent directions with maximum data
covariance. We have

A =

�
0 Cxy

Cyx 0

�
and B =

�
I 0

0 I

�
; (63)

which again means that the compound matrix G = B�1A = A will be symmetric and have or-
thogonal eigenvectors, which are identical to their dual vectors. The outer product for modi�cation
of the matrix A in eq. 50 becomes identical to the one presented in the previous section:

�1Bê1f
T
1
= �1

�
I 0

0 I

�
ê1ê

T
1
= w1ŵ

T
1
: (64)

A modi�ed learning rule for �nding the second eigenvalue can thus be written as

Ef�wg = �
h
A

0

ŵ �Bw
i
= �

���
0 Cxy

Cyx 0

�
�w1ŵ

T
1

�
ŵ�

�
I 0

0 I

�
w

�
: (65)

A stochastic approximation of this rule is achieved if we at each time step update the vector w by

�w = �

���
0 xyT

yxT 0

�
�w1ŵ

T
1

�
ŵ �w

�
: (66)

3.3 CCA

Finding the largest canonical correlation Again, the algorithm in eq. 42 for solving the
generalized eigenproblem can be used for the stochastic gradient search. With the matrices A and
B and the vector w as in eq. 28, we obtain the update direction as:

Ef�wg = 
@r

w
= �

��
0 Cxy

Cyx 0

�
ŵ � r

�
Cxx 0

0 Cyy

�
ŵ

�
: (67)

This behavior is accomplished if we at each time step update the vector w with

�w = �

��
0 xyT

yxT 0

�
ŵ �

�
xxT 0

0 yyT

�
w

�
: (68)

Since we will have kwk = r = � when the algorithm converges, the length of the vector represents
the correlation between the variates.
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Finding successive canonical correlations In the two previous cases it was easy to cancel out
an eigenvalue because the matrix G was symmetric. This is not the case for canonical correlation.
Here, we have

A =

�
0 Cxy

Cyx 0

�
and B =

�
Cxx 0

0 Cyy

�
; (69)

which gives us the non-symmetric matrix

G = B�1A =

�
C�1xx 0

0 C�1yy

��
0 Cxy

Cyx 0

�
=

�
0 C�1xxCxy

C�1yyCyx 0

�
: (70)

Because of this, we need to estimate the dual vector f1 corresponding to the eigenvector ê1, or
rather the vector u1 = �1Bê1 as described in eq. 52:

Ef�u1g = � [Bw1 � u1] = �

��
Cxx 0

0 Cyy

�
w1 � u1

�
: (71)

A stochastic approximation for this rule is given by

�u1 = �

��
xxT 0

0 yyT

�
w1 � u1

�
: (72)

With this estimate, the outer product in eq. 50 can be used to modify the matrix A:

A
0

= A� �1Bê1f
T
1
= A�

u1u
T
1

ŵT
1
u1

: (73)

A modi�ed version of the learning algorithm in eq. 42 which �nds the second largest canonical
correlations and its corresponding directions can be written on the following form:

Ef�wg = �
h
A

0

ŵ �Bw
i
= �

���
0 Cxy

Cyx 0

�
�

u1u
T
1

ŵT
1
u1

�
ŵ �

�
Cxx 0

0 Cyy

�
w

�
: (74)

Again to get a stochastic approximation of this rule, we perform the update at each time step
according to:

�w = �

���
0 xyT

yxT 0

�
�

u1u
T
1

ŵT
1
u1

�
ŵ �

�
xxT 0

0 yyT

�
w

�
: (75)

Note that this algorithm simultaneously �nds both the directions of canonical correlations and
the canonical correlations �i in contrast to the algorithm proposed by Kay [15], which only �nds
the directions.

3.4 MLR

Finding the directions for minimum square error Also here, the algorithm in eq. 42 can
be used for a stochastic gradient search. With the A, B and w according to eq. 38, we get the
update direction as:

Ef�wg = 
@r

@w
= �

��
0 Cxy

Cyx 0

�
ŵ � r

�
Cxx 0

0 I

�
ŵ

�
: (76)

This behavior is accomplished if we at each time step update the vector w with

�w = �

��
0 xyT

yxT 0

�
ŵ �

�
xxT 0

0 I

�
w

�
: (77)

Since we have kwk = r = � when the algorithm converges, we get the regression coe�cient as
� = kwk�x�y
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Finding successive directions for minimum square error Also in this case we must use
the dual vectors to cancel out the detected eigenvalues. Here, we have

A =

�
0 Cxy

Cyx 0

�
and B =

�
Cxx 0

0 I

�
; (78)

which gives us the non-symmetric matrix G as

G = B�1A =

�
C�1xx 0

0 I

��
0 Cxy

Cyx 0

�
=

�
0 C�1xxCxy

Cyx 0

�
: (79)

Because of this, we need to estimate the dual vector f1 corresponding to the eigenvector ê1, or
rather the vector u1 = �1Bê1 as described in eq. 52:

Ef�u1g = � [Bw1 � u1] = �

��
Cxx 0

0 I

�
w1 � u1

�
: (80)

A stochastic approximation for this rule is given by

�u1 = �

��
xxT 0

0 I

�
w1 � u1

�
: (81)

With this estimate, the outer product in eq. 50 can be used to modify the matrix A:

A
0

= A� �1Bê1f
T
1
= A�

u1u
T
1

ŵT
1
u1

: (82)

A modi�ed version of the learning algorithm in eq. 42 which �nds the successive directions of
minimum square error and their corresponding regression coe�cient can be written on the following
form:

Ef�wg = �
h
A

0

ŵ �Bw
i
= �

���
0 Cxy

Cyx 0

�
�
u1u

T
1

ŵT
1
u1

�
ŵ �

�
Cxx 0

0 I

�
w

�
: (83)

Again to get a stochastic approximation of this rule, we perform the update at each time step
according to:

�w = �

���
0 xyT

yxT 0

�
�
u1u

T
1

ŵT
1
u1

�
ŵ �

�
xxT 0

0 I

�
w

�
: (84)

We can see that, in this case, the wys are orthogonal but not necessarily the wxs. The or-
thogonality of the wys is easily explained by the Cartesian separability of the square error; when
the error in one direction is minimized, no more can be done in that direction to reduce the error.
This shows that we can use this method for successively building up a low-rank approximation of
MLR by adding a su�cient number of solutions, i.e.

~y =

kX
i=1

�iŵyiŵ
T
xix (85)

where ~y is the estimated y and k is the rank. It may be pointed out that if all solutions are used,
we obtain the well known Wiener �lter.

4 Experiments

The memory requirement as well as the computational cost per iteration for the presented algo-
rithm is of order O(md). This enables experiments in signal spaces having dimensionalities which
would be impossible to handle using traditional techniques involving matrix multiplications (having
memory requirements of order O(d2) and computational costs of order O(d3)).

This section presents some experiments with the algorithm for analysis of stochastic processes.
First, the algorithm is employed to perform PCA, PLS, CCA, and MLR. Here the dimensionality
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of the signal space is kept reasonably low in order to make a comparison with the performance of
an optimal, in the sense of maximum likelihood (ML), deterministic solution which is calculated
for each iteration, based on the data accumulated so far.

Second, the algorithm is applied to a process in a high-dimensional (1000-dim.) signal space.
In this case, the gain sequence is made data dependent and the output from the algorithm is
post-�ltered in order meet requirements for quick convergence together with algorithm robustness.

In all experiments the error in magnitude and angle were calculated relative the correct answer
wc. The same error measures were used for the output from the algorithm as well as for the
optimal ML estimate:

�m(w) = kwok � kwk (86)

�a(w) = arccos(ŵT ŵo): (87)

4.1 Comparisons to optimal solutions

The test data for these four experiments was generated from a 30-dimensional Gaussian distribution
such that the eigenvalues of the generalized eigenproblem decreased exponentially, from 0.9:

�i = 0:9

�
2

3

�i�1
:

The two largest eigenvalues (0.9 and 0.6) and the corresponding eigenvectors were simultane-
ously searched for. In the PLS, CCA and MLR experiments, the dimensionalities of signal vector
belonging to the x and y part of the signal were 20 and 10 respectively.

The average angular and magnitude errors were calculated based on 10 di�erent runs. This
computation was made for each iteration, both for the algorithm and for the ML solution. The
results are plotted in �gures 5, 6, 7 and 8 for PCA, PLS, CCA and MLR respectively. The errors of
the algorithm are drawn with solid lines and the errors of the ML solution are drawn with dotted
lines. The vertical bars show the standard deviations. Note that the angular error is always positive
and, hence, does not have have a symmetrical distribution. However, for simplicity, the standard
deviation indicators have been placed symmetrically around the mean. The �rst 30 iterations were
omitted to avoid singular matrices when calculating matrix inverses for the ML solutions.

No attempt was made to �nd an optimal set of parameters for the algorithm. Instead the
experiments and comparisons were carried out only to display the behavior of the algorithm and
show that it is robust and converges to the correct solutions. Initially, the estimate was assigned a
small random vector. A constant gain factor of � = 0:001 was used throughout all four experiments.

4.2 Performance in high dimensional signal spaces

The purpose of the methods presented in this paper is dimensionality reduction in high-dimensional
signal spaces. We have previously shown that the proposed algorithm have the computational
capacity to handle such signals. This experiment illustrates that the algorithm also behaves well
in practice for high-dimensional signals. The dimensionality of x is 800 and the dimensionality of
y is 200, so the total dimensionality of the signal space is 1000. The object in this experiment is
CCA.

In the previous experiment, the algorithm was used in its basic form with constant update
rates set by hand. In this experiment, however, a more sophisticated version of the algorithm is
used where the update rate is adaptive and the vectors are averaged over time. The details of this
extension to the algorithm are numerous and beyond the scope of this paper. Here, we will only
give a brief explanation of the basic structure of the extended algorithm.

Adaptability is necessary for a system without a pre-speci�ed (time dependent) update rate �.
Here, the adaptive update rate is dependent on the energy of the signal projected onto the vector
as well as the consistency of the change of the vector.

The averaged vectors wa are calculated as

wa ( wa +  (w �wa) (88)
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Figure 5: Results for the PCA case
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Figure 6: Results for the PLS case
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Figure 7: Results for the CCA case
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Figure 8: Results for the MLR case
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where  depends on the consistency of the changes in w. When there is a consistent change in
w,  is small and the averaging window is short and wa follows w quickly. When the changes in
w are less consistent, the window gets longer and wa is the average of an increasing number of
instances of w. This means, for example, that if w is moving symmetrically around the correct
solution with a constant variance, the error of wa will still tend towards zero (see �gure 9).
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Figure 9: Left: Figure showing the estimated �rst canonical correlation as a function of number
of actual events (solid line) and the true correlation in the current directions found by the algo-
rithm (dotted line). The dimensionality of one set of variables is 800 and of the second set 200.
Right:Figure showing the log of the angular error as a function of number of actual events.

The experiment was carried out using a randomly chosen distribution of a 800-dimensional x
variable and a 200-dimensional y variable. Two x and two y dimensions were correlated. The
other 798 dimensions of x and 198 dimensions of y were uncorrelated. The variances in the 1000
dimensions were of the same order of magnitude.

The left plot in �gure 9 shows the estimated �rst canonical correlation as a function of number
of actual events (solid line) and the true correlation in the current directions found by the algorithm
(dotted line).

The right plot in �gure 9 shows the e�ect of the adaptive averaging. The two upper noisy
curves show the angular errors of the `raw' estimates in the x and y spaces and the two lower
curves shows the angular errors for x (dashed) and y (solid). The angle errors of the smoothed
estimates are much more stable and decrease more rapidly than the `raw' estimates. The errors
after 2 � 105 samples is below one degree. (It should be noted that this is an extreme precision
as, with a resolution of 1 degree, a low estimate of the number of di�erent orientations in a 1000-
dimensional space is 102000.) The angular errors were calculated as the angle between the vectors
and the exact solutions, ê (known from the x y sample distribution), i.e.

Err[ŵ] = arccos(ŵT
a
ê):

5 Summary and conclusions

We have presented an iterative algorithm for analysis of stochastic processes in terms of PCA,
PLS, CCA, and MLR. The directions of maximal variance, covariance, correlation, and least square
error are found by a novel algorithm performing a stochastic gradient search on suitable Rayleigh
quotients. The algorithm operates on-line which allows non-stationary data to be analyzed. When
searching for an m-rank approximation, the computational complexity is O(md) for each iteration.
Finding a full rank solution have a computational complexity of order O(d3) using traditional
techniques.

The equilibrium points of the algorithm were shown to correspond to solutions of the generalized
eigenproblem. Hence, PCA, PLS, CCA and MLR were presented as special cases of this more
general problem. In PCA, PLS and CCA, the eigenvalues corresponds to variance, covariance and
correlation respectively of the projection of the data onto the eigenvectors. In MLR, the eigenvalues,
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together with a function of the corresponding eigenvector, provide the regression coe�cients. The
eigenvalues are given by the lengths of the basis vectors found by the proposed algorithm. A low
rank approximation is obtained when only the solutions with the largest eigenvalues and their
corresponding vectors are used.

Reduced rank MLR can, for example, be used to increase the stability of the predictors when
there are more parameters than observations, when the relation is known to be of low rank or,
maybe most importantly, when a full rank solution is unobtainable due to computational costs.
The regression coe�cients can of course also be used for regression in the �rst three cases. In the
case of PCA, the idea is to separately reduce the dimensionality of the X and Y spaces and do
a regression of the �rst principal components of Y on the �rst principal components of X . This
method is known as principal components regression. The obvious disadvantage here is that there
is no reason that the principal components of X are related to the principal components of Y .
To avoid this problem, PLS regression is some times used. Clearly, this choice of basis is better
than PCA for regression purposes since directions of high covariance are selected, which means
that a linear relation is easier to �nd. However, neither of these solutions results in minimum least
squares error. This is only obtained using the directions corresponding to the MLR problem.

PCA di�ers from the other three methods in that it concerns only one set of variables while the
other three concerns relations between two sets of variables. The di�erence between PLS, CCA
and MLR can be seen by comparing the matrices in the corresponding eigenproblems. In CCA,
the between sets covariance matrices are normalized with respect to the within set covariances
in both the x and the y spaces. In MLR, the normalization is done only with respect to the x
space covariance while the y space, where the square error is de�ned, is left unchanged. In PLS,
no normalization is done. Hence, these three cases can be seen as the same problem, covariance
maximization, where the variables have been subjected to di�erent, data dependent, scaling.

In some PLS applications, the variances of the variables are scaled to unity [25, 8, 13]. This
may indicate that the aim is really to maximize correlation and that CCA would be the proper
method to use.

Recently, the neural network community has taken an increased interest in information theo-
retcal approaches[11]. In particular, the concepts independant components and mutual information
has been the basis for a number of successful applications, e.g. blind separation and blind decon-
volution [2]. It is appropriate to point out that there is a strong relation between these concepts
and canonical correlation [1, 15]. The relevance of the present paper in this context is apparent.

6 Proofs

6.1 Orthogonality in the metrics A and B (eq. 5)

ŵT
i Bŵj =

(
0 for i 6= j

�i > 0 for i = j
and ŵT

i Aŵj =

(
0 for i 6= j

ri�i for i = j
(5)

Proof: For solution i we have
Aŵi = riBŵi

The scalar product with another eigenvector gives

ŵT
j Aŵi = riŵ

T
j Bŵi

and of course also
ŵT

i Aŵj = rjŵ
T
i Bŵj

Since A and B are Hermitian we can change positions of ŵi and ŵj which gives

rjŵ
T
i Bŵj = riŵ

T
i Bŵj

and hence
(ri � rj)ŵ

T
i Bŵj = 0:
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For this expression to be true when i 6= j, we have that ŵT
i Bŵj = 0 if ri 6= rj . For i = j we now

have that ŵT
i Bŵi = �i > 0 since B is positive de�nite. In the same way we have�

1

ri
�

1

rj

�
ŵT

i Aŵj = 0

which means that ŵT
i Aŵj = 0 for i 6= j. For i = j we know that ŵT

i Aŵi = riŵ
T
i Bŵi = ri�i.

2

6.2 Linear independence

fwig are linearly independent.

Proof: Suppose fwig are not linearly independent. This would mean that we could write an
eigenvector wk as

ŵk =
X
j 6=k

jŵj :

This means that for j 6= k,
wT

j Bwk = jwjBwj 6= 0

which violates equation 5. Hence, fwig are linear independent.
2

6.3 The range of r (eq. 6)

rn � r � r1 (6)

Proof: If we express a vector w in the base of the eigenvectors ŵi, i.e.

w =
X
i

iŵi

we can write

r =

P
iŵ

T
i A

P
iŵiP

iŵT
i B

P
iŵi

=

P
2i �iP
2i �i

;

where �i = ŵ
T
i Aŵi. Now, since �i = �iri (see equation 5), we get

r =

P
2i �iriP
2i �i

:

Obviously this function has the maximum value r1 when 1 6= 0 and i = 0 8 i > 1 if r1 is the
largest eigenvalue. The minimum value, rn, is obtained when n 6= 0 and i = 0 8 i < n if rn is
the smallest eigenvalue.

2

6.4 The second derivative of r (eq. 7)

Hi =
@2r

@w2

����
w=ŵi

=
2

ŵT
i Bŵi

(A� riB) (7)

Proof: From the gradient in equation 3 we get the second derivative as

@2r

@w2
=

2

(wTBw)2

��
A�

@r

@w
wTB� rB

�
wTBw � (Aw � rBw)2wTB

�
:
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If we insert one of the solutions ŵi, we have

@r

@w

����
w=ŵi

=
2

ŵT
i Bŵi

(Aŵi � rBŵi) = 0

and hence
@2r

@w2

����
w=ŵi

=
2

ŵT
i Bŵi

(A� riB) :

2

6.5 Positive eigenvalues of the Hessian (eq. 8)

wTHiw > 0 8 i > 1 (8)

Proof: If we express a vector w as a linear combination of the eigenvectors we get

�i
2
wTHiw = wT (A� riB)w

= wTB(B�1A� riI)w

=
X

jŵ
T
j B(B�1A� riI)

X
jŵj

=
X

jŵ
T
j B

�X
rjjŵj �

X
rijŵj

�
=
X

jŵ
T
j B

X
(rj � ri)jŵj

=
X

2j �j(rj � ri)

where �i = ŵT
i Bŵi > 0. Now, (rj � ri) > 0 for j < i so if i > 1 there is at least one choice of w

that makes this sum positive.
2

6.6 The partial derivatives of the covariance (eq. 16)

(
@�
@wx

= 1

kwxk
(Cxyŵy � �ŵx)

@�
@wy

= 1

kwyk
(Cyxŵx � �ŵy):

(16)

Proof: The partial derivative of � with respect to wx is

@�

@wx
=
Cxywykwxkkwyk �w

T
xCxywykwxk

�1wxkwyk

kwxk2kwyk2

=
Cxyŵy

kwxk
�

�wx

kwxk2

=
1

kwxk
(Cxyŵy � �ŵx)

The same calculations can be made for @�
@wy

by exchanging x and y .
2

6.7 The partial derivatives of the correlation (eq. 24)

8>><
>>:

@�
@wx

= a
kwxk

�
Cxyŵy �

ŵ
T
xCxyŵy

ŵT
xCxxŵx

Cxxŵx

�
@�
@wy

= a
kwyk

�
Cyxŵx �

ŵ
T
y Cyxŵx

ŵT
y Cyyŵy

Cyyŵy

� (24)
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Proof: The partial derivative of � with respect to wx is

@�

@wx
=

(wT
xCxxwxw

T
yCyywy)

1=2Cxywy

wT
xCxxwxwT

yCyywy

�
wT
xCxywy(w

T
xCxxwxw

T
yCyywy)

�1=2Cxxwxw
T
yCyywy

wT
xCxxwxwT

yCyywy

= (wT
xCxxwxw

T
yCyywy)

�1=2

�
Cxywy �

wT
xCxywy

wT
xCxxwx

Cxxwx

�

= kwxk
�1(ŵT

xCxxŵxŵ
T
yCyyŵy| {z }

�0

)�1=2
�
Cxyŵy �

ŵT
xCxyŵy

ŵT
xCxxŵx

Cxxŵx

�

=
a

kwxk

�
Cxyŵy �

ŵT
xCxyŵy

ŵT
xCxxŵx

Cxxŵx

�
; a � 0:

The same calculations can be made for @�
@wy

by exchanging x and y .
2

6.8 The partial derivatives of the MLR-quotient (eq. 35)

8<
:

@�
@wx

= a
kwxk

(Cxyŵy � �Cxxŵx)

@�
@wy

= a
kwxk

�
Cyxŵx �

�2

� ŵy

�
:

(35)

Proof: The partial derivative of � with respect to wx is

@�

@wx
=

(wT
xCxxwxw

T
ywy)

1=2Cxywy

wT
xCxxwxwT

ywy

�
wT
xCxywy(w

T
xCxxwxw

T
ywy)

�1=2Cxxwxw
T
ywy

wT
xCxxwxwT

ywy

= (wT
xCxxwxw

T
ywy)

�1=2

�
Cxywy �

wT
xCxywy

wT
xCxxwx

Cxxwx

�

= kwxk
�1(ŵT

xCxxŵxŵ
T
y ŵy| {z }

�0

)�1=2
�
Cxyŵy �

ŵT
xCxyŵy

ŵT
xCxxŵx

Cxxŵx

�

=
a

kwxk
(Cxyŵy � �Cxxŵx) ; a � 0:
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The partial derivative of � with respect to wy is

@�

@wy
=

(wT
xCxxwxw

T
ywy)

1=2Cyxwx

wT
xCxxwxwT

ywy

�
wT
xCxywy(w

T
xCxxwxw

T
ywy)

�1=2wT
xCxxwxwy

wT
xCxxwxwT

ywy

= (wT
xCxxwxw

T
ywy)

�1=2

�
Cyxwx �

wT
xCxywyw

T
xCxxwx

wT
xCxxwxwT

ywy
wy

�

= kwyk
�1(ŵT

xCxxŵx| {z })�1=2
�
Cyxŵx � ŵ

T
xCxyŵyŵy

�

=
a

kwxk

�
Cyxŵx �

�2

�
ŵy

�
; a � 0:

2

6.9 Combining eigenvalue equations (eqs. 27)

(
C�1

xxCxyC
�1

yyCyxŵx = �2ŵx

C�1

yyCyxC
�1

xxCxyŵy = �2ŵy:
(27)

Proof: Since Cxx and Cyy are nonsingular, equation system 25 can be written as8<
:C

�1

xxCxyŵy = ��xŵx

C�1

yyCyxŵx = ��yŵy

Inserting ŵy from the second line into the �rst line gives

C�1

xxCxyC
�1

yyCyxŵx = �2�x�yŵx = �2ŵx;

since �x = ��1

y . This proves the �rst line in eq. 27. In the same way, solving for ŵx proves the
second line in eq. 27.

2

6.10 Invariance with respect to linear transformations

Canonical correlations are invariant with respect to linear transformations.

Proof: Let
x = Axx

0 and y = Ayy
0:

where Ax and Ay are non-singular matrices. If we denote

C0
xx = Efx0x0

T
g;

then the covariance matrix for x can be written as

Cxx = EfxxT g = EfAxx
0x0

T
AT
x g = AxC

0
xxA

T
x :

In the same way we have

Cxy = AxC
0
xyA

T
y and Cyy = AyC

0
yyA

T
y :

Now, the equation system 27 can be written as(
(AT

x )
�1C0�1

xx (Ax)
�1AxC

0
xyA

T
y (A

T
y )

�1C0�1

yy (Ay)
�1AyC

0
yxA

T
x ŵx = �2ŵx

(AT
y )

�1C0�1

yy (Ay)
�1AyC

0
yxA

T
x (A

T
x )

�1C0�1

xx (Ax)
�1AxC

0
xyA

T
y ŵy = �2ŵy;
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or (
C0�1

xxC
0
xyC

0�1

yyC
0
yxŵ

0
x = �2ŵ0

x

C0�1

yyC
0
yxC

0�1

xxC
0
xyŵ

0
y = �2ŵ0

y;

where ŵ0
x = AT

x ŵx and ŵ0
y = AT

y ŵy. Obviously this transformation leaves the roots � unchanged.
If we look at the canonical variates,(

x0 = w0T
xx

0 = wT
xAA

�1x = x

y0 = w0T
y y

0 = wT
yAA

�1y = y;

we see that these too are una�ected by the linear transformation.
2

6.11 The successive eigenvalues (eq. 48)

H = G� �1ê1f
T
1

(48)

Proof: Consider a vector u which we express as the sum of one vector parallel to the eigenvector ê1,
and another vector uo that is a linear combination of the other eigenvectors and, hence, orthogonal
to the dual vector f1.

u = aê1 + uo

where
fT
1
ê1 = 1 and fT

1
ûo = 0:

Multiplying H with u gives

Hu =
�
G� �1ê1f

T
1

�
(aê1 + uo)

= a (Gê1 � �1ê1) + (Guo � 0)

= Guo:

This shows that G and H have the same eigenvectors and eigenvalues except for the largest
eigenvalue and eigenvector of G. Obviously the eigenvector corresponding to the largest eigenvalue
of H is ê2.

2
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