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We present a new method for using commodity graphics hardware to achieve real-time,
on-line, 2D view synthesis or 3D depth estimation from two or more calibrated cameras.
Our method combines a 3D plane-sweeping approach with 2D multi-resolution color
consistency tests. We project camera imagery onto each plane, compute measures of
color consistency throughout the plane at multiple resolutions, and then choose the
color or depth (corresponding plane) that is most consistent. The key to achieving real-
time performance is our use of the advanced features included with recent commodity
computer graphics hardware to implement the computations simultaneously (in parallel)
across all reference image pixels on a plane.

Our method is relatively simple to implement, and flexible in term of the number
and placement of cameras. With two cameras and an NVIDIA GeForce4 graphics card
we can achieve 50–70 M disparity evaluations per second, including image download

and read-back overhead. This performance matches the fastest available commercial
software-only implementation of correlation-based stereo algorithms, while freeing up
the CPU for other uses.

Keywords: View synthesis; stereo; real time computation.

1. Introduction

This work is motivated by our long standing interest in tele-collabration, in par-

ticular 3D tele-immersion. We want to display high-fidelity 3D views of a remote

∗This paper is a combined and extended version of two previous papers, [36] presented at Pacific
Graphics 2002 in Beijing China, and [37] presented at CVPR 2003.-
†Currently at the University of Kentucky (ryang@cs.uky.edu).
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environment in real time to create the illusion of actually looking through a large

window into a collaborator’s room.

One can think of the possible real-time approaches as covering a spectrum, with

Light-Field Rendering at one end, and geometric or polygonal approaches at the

other. Light-Field Rendering uses a collection of 2D image samples to reconstruct

a function that completely characterizes the flow of light through unobstructed

space.7,19 With the function in hand, view synthesis becomes a simple table lookup.

Photo-realistic results can be rendered at interactive rates on inexpensive personal

computers. However collecting, transmitting, and processing such dense samples

from a real environment, in real time, is impractical.

Alternatively, some researchers use computer vision techniques (typically

correlation-based stereo) to reconstruct a 3D scene model, and then render that

model from the desired view. It is only recently that real-time implementations of

stereo vision became possible on commodity PCs, with the help of rapid advances

in CPU clock speed, and assembly level optimizations utilizing special extensions

of the CPU instruction set. One such example is the MMX extension from Intel.

Software implementations using these extensions can achieve up to 65 million dis-

parity estimations per second (Mde/s).10,11,13 While this is impressive, there are

typically few CPU cycles left to perform other tasks, such as processing related

to user interaction. Further if the primary goal is 2D view synthesis, a complete

geometric model (depth map) is not necessary.

We present a novel use of commodity graphics hardware that effectively com-

bines a plane-sweeping algorithm with view synthesis for real-time, online 3D scene

acquisition and view synthesis in a single step. Using real-time imagery from two

or more calibrated cameras, our method can generate new images from nearby

viewpoints, or if desired, estimate a dense depth map from the current viewpoint

in real time and on line, as illustrated in Fig. 1.

At the heart of our method is a multi-resolution approach to find the most con-

sistent color (and corresponding depth) for each pixel. We combine sum-of-square-

differences (SSD) consistency scores for windows of different sizes. This approach is

equivalent to using a weighted correlation kernel with a pyramidal shape, where the

tip of the pyramid corresponds to a single-pixel support and each square horizontal

slice from below the tip to the base corresponds to a doubling of the support.

This multi-resolution approach allows us to achieve good results close to depth

discontinuities as well as on low texture areas. By utilizing the programmable Pixel

Shader and mipmap functionality32 on the graphics hardware, we can compute

multi-resolution consistency scores very efficiently, enabling interactive viewing of

a dynamic real scene. Parts of the results have been previously presented at Pacific

Graphics 2002 in Beijing China35 and CVPR 2003.36

In the next section we discuss related work in computer vision and computer

graphics. After that we present an overview of our method followed by a detailed

description. Finally, we present experimental results for novel view synthesis and

depth estimation.
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Fig. 1. Example setup for real-time online reconstruction using five cameras.

2. Related Work

Recently, with the increasing computational power on inexpensive personal compu-

ters and the wide availability of low-cost imaging device, several real-time methods

have been proposed to capture and render dynamic scenes. They are of particular

interest to this thesis and are reviewed here.

2.1. Stereo vision methods

Stereo vision is one of the oldest and most active research topics in computer

vision. It is beyond the scope of this paper to provide a comprehensive survey.

Interested readers are referred to a recent survey and evaluation by Scharstein and

Szeliski.27 While many stereo algorithms obtain high-quality results by performing

global optimizations, today only correlation-based stereo algorithms are able to

provide a dense (per pixel) depth map in real time on standard computer hardware.

Only a few years ago special hardware had to be used to achieve real-time

performance with correlation-based stereo algorithms.6,14,34 It was until recently

that, with the tremendous advances in computer hardware, software-only real-time

systems began to merge. For example, Mulligan and Daniilidis proposed a new

trinocular stereo algorithm in software23 to achieve 3–4 frames/second on a sin-

gle multi-processor PC. Hirschmuler introduced a variable-window approach while

maintaining real-time suitability.10,11 There is also a commercial package from Point

Grey Research13 which seems to be the fastest one available today. They report

45 Mde/s on a 1.4 GHz PC, which extrapolates to 64 Mde/s on a 2.0 GHz PC.
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These methods use a number of techniques to accelerate the calculation, most

importantly, assembly level instruction optimization using Intel’s MMX extension.

While the reported performance of 35–65 Mde/s is sufficient to obtain dense-

correspondences in real-time, there are few CPU cycles left to perform other tasks

such as high-level interpretation of the stereo results. Furthermore, most approaches

use an equal-weight box-shaped filter to aggregate the correlation scores, so the

result from the previous pixel location can be used in the current one. While this

simplifies the implementation and greatly reduces computational cost, the size of

the aggregation window has a significant impact on the resulting depth map.

2.2. Image-based methods

Image-based Visual Hull. Matusik et al. presented an efficient method for real-

time rendering of a dynamic scene.22 They used an image-based method to compute

and shade visual hulls18 from silhouette images. A visual hull is constructed by using

the visible silhouette information from a series of reference images to determine a

conservative shell that progressively encloses the actual object. Unlike previously

published methods, they constructed the visual hulls in the reference image space

and used an efficient pixel traversing scheme to reduce the computational comple-

xity to O(n2), where n2 is the number of pixels in a reference image. Their system

uses a few cameras (four in their demonstration) to cover a very wide field of view

and is very effective in capturing the dynamic motion of objects. However, their

method, like any other silhouette-based approach, cannot handle concave objects,

which makes close-up views of concave objects less satisfactory. Another disadvan-

tage of image-based visual hull is that it completely relies on successful background

segmentation.

Hardware-assisted Visual Hull. Based on the same visual hull principle,

Lok presented a novel technique that leverages the tremendous capability of mo-

dern graphics hardware.21 The 3D volume is discretized into a number of parallel

planes, the segmented reference images are projected onto these planes using pro-

jective textures. Then, he makes clever use of the stencil buffer to rapidly determine

which volume samples lie within the visual hull. His system benefits from the rapid

advances in graphics hardware and the main CPU is liberated for other high-level

tasks. However, this approach suffers from a major limitation — the computational

complexity of his algorithm is O(n3), where n is the width of the input images

(assuming a square image). Thus it is difficult to judge if his approach will prove

to be faster than a software-based method with O(n2) complexity.

Generalized Lumigraph with Real-time Depth. Schirmacher et al. intro-

duced a system for reconstructing arbitrary views from multiple source images on

the fly.28 The basis of their work is the two-plane parameterized Lumigraph with

per-pixel depth information. The depth information is computed on the fly using a

depth-from-stereo algorithm in software. With a dense depth map, they can model

both concave and convex objects. Their current system is primarily limited by the

quality and the speed of the stereo algorithm (1–2 frames/second).
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3. Our Method

We believe that our method combines the advantages of previously published

real-time methods in Sec. 2, while avoiding some of their limitations as follows.

• We achieve real-time performance without using any special-purpose hardware,

and our method, based on the OpenGL specification, is relatively easy to

implement.

• We can deal with arbitrary object shapes, including concave and convex objects.

• We do not use silhouette information, so there is no need for image segmentation,

which is not always possible in a real environment.

• We use graphics hardware to accelerate the computation without increasing the

symbolic complexity — our method is O(n3), the same as most correlation-based

stereo algorithms.

• Our proposed method is more versatile. We can use two or more cameras in a

casual configuration, including configurations where the images contain epipo-

lar points. This case is problematic for image-pair rectification,5 a required

pre-processing step for most real-time stereo algorithms.

3.1. Overview

Our primary goal is to synthesize a new view, given two or more calibrated input

images. We begin by discretizing the 3D space into parallel planes orthogonal to

the view direction. We then project the calibrated input images onto each plane

Di as shown in Fig. 2. If there is indeed a surface at a point on Di, the projected

images at that point should be the same color if two assumptions are satisfied: (A)

the surface is visible, i.e. there is no occluder between the surface and the images;

Fig. 2. A configuration where there are five input cameras, the solid dot represents the new view
point. Spaces are discretized into a number of parallel planes.
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and (B) the surface is Lambertian — the reflected light does not depend on the 3D

position of the input images.

If we choose to accept that the two above assumptions are satisfied, then the

color consistency at each point on plane Di can be used as an indication of the

likelihood of a surface at that point on Di. If we know the surface position (depth)

and most likely color, then we can trivially render it from any new view point.

3.1.1. Basic approach (single-pixel support)

For a desired new view Cn (the red dot in Fig. 2), we discretize the 3D space

into planes parallel to the image plane of Cn. Then we step through the planes. For

each plane Di, we project the input images on these planes, and render the textured

plane on the image plane of Cn to get an image (Ii) of Di. While it is natural to

think of these as two sequential operations, in practice we can combine them into

a single homography (plane-to-plane) transformation. In Fig. 3, we show a number

of images from different depth planes. Note that each of these images contains the

projections from all input images, and the area corresponding to the intersection

of objects and the depth plane remains sharp. For each pixel location (u, v) in Ii,

we compute the mean and variance of the projected colors. The final color of (u, v)

is the color with minimum variance in {Ii}, or the color most consistent among all

camera views.

From a computer vision perspective, our method is implicitly computing a depth

map from the new viewpoint Cn using a plane-sweep approach.4,16,29,30 (Readers

who are unfamiliar with computer vision terms are referred to Ref. 5.) If we only use

two reference cameras and make Cn the same as one of them, for example the first

one, one can consider our method as combining depth-from-stereo and 3D image

warping in a single step. The projection of the view ray P (u, v) into the second

camera is the epipolar line. (Its projection in the first camera reduces to a single

point.) If we clip the ray P (u, v) by the near and the far plane, then its projection

defines the disparity search range in the second camera’s image. Thus stepping along

P (u, v) is equivalent to stepping along the epipolar line in the second camera, and

computing the color variance is similar to computing the sum-of-square-difference

(SSD) over a 1 × 1 window in the second camera. If we use multiple images, our

Fig. 3. Depth plane images from step 0, 14, 43, 49, from left to right; The scene, which contains
a teapot and a background plane, is discretized into 50 planes.
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method can be considered in effect a multi-baseline stereo algorithm26 operating

with a 1 × 1 support window, with the goal being an estimate for the most likely

color rather than the depth.

3.1.2. Hardware-based aggregation of consistency measures

Typically, the consistency measures computed over a single pixel support window

do not provide sufficient disambiguating power, especially when using only two to

three input images. In these cases, it is desirable to aggregate the measures over

a large support window. This approach can be implemented very efficiently on

a CPU, and by reusing data from previous pixels, the complexity becomes inde-

pendent of the window size. However on today’s graphics hardware, which uses

Single-Instruction-Multiple Data (SIMD) parallel architectures, it is not so simple

to efficiently implement this type of optimization.

We have several options to aggregate the color consistency measures. One is to

use convolution functions in the Imaging Subset of the official OpenGL Specification

(Version 1.3).1 By convolving a blurring filter with the contents of the frame buffer,

we can sum up the consistency measures from neighboring pixels to make color

(depth) estimates more robust.

If the convolution function was implemented as a part of the pixel trans-

fer pipeline in hardware, as in the OpenGL specification, there would be little

performance penalty. Unfortunately, hardware-accelerated convolutions are only

available on expensive graphics workstations such as SGI’s Oynx2, but these

expensive workstations do not have programmable pixel shaders. On commodity

graphics cards available today, convolution is only implemented in software, requir-

ing pixels to be transferred between the main memory and the graphics board.

This is not an acceptable solution since such out-of-board transfer operations will

completely negate the benefit of doing computation on the graphics board.

There are ways to perform convolution using standard graphics hardware.33

One could use multiple textures, one for each of the neighboring pixels, or render

the scene in multiple passes and perturb the texture coordinates in each pass. For

example, by enabling bilinear texture interpolation and sampling in the middle

of 4 pixels, it is possible to average those pixels. Note that in a single pass only

a summation over a 2 × 2 window can be achieved. In general such tricks would

significantly decrease the speed as the size of the support window becomes larger.

A less obvious option is to use the mipmap functionality available in today’s

Graphics Processing Units (GPUs). This approach is more general and quite effi-

cient for certain types of convolutions. Modern GPUs have built-in box-filters to

efficiently generate all the mipmap levels needed for texturing. Starting from a base

image J0 the following filter is recursively applied:

J i+1
u,v =

1

4

2v+1∑

q=2v

2u+1∑

p=2u

J i
p,q ,
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where (u, v) and (p, q) are pixel coordinates. Therefore, it is very efficient to sum

values over 2n × 2n windows. Note that at each iteration of the filter the image

size is divided by two. Therefore, a disadvantage of this approach is that the color

consistency measures can only be evaluated exactly at every 2n × 2n pixel location.

For other pixels, approximate values can be obtained by interpolation. However,

given the low-pass characteristics of box-filters, the error induced this way is limited.

3.1.3. Multi-resolution approach

Choosing the size of the aggregation window is a difficult problem. The probabi-

lity of a consistency mismatch goes down as the size of the window increases.24

However, using large windows leads to a loss of resolution and to the possibility

of missing some important image features. This is especially so when large win-

dows are placed over occluding boundaries. This problem is typically dealt with by

using a hierarchical approach, or by using special approaches to deal with depth

discontinuities.11

Here we will follow a different approach that is better suited to the implemen-

tation on a GPU. By observing correlation curves for a variety of images, one can

observe that for large windows the curves mostly only have a single strong minimum

located in the neighborhood of the true depth, while for small windows often mul-

tiple equivalent minima exist. However, for small windows the minima are typically

well localized. Therefore, one would like to combine the global characteristics of the

large windows with the well-localized minima of the small windows. The simplest

way to achieve this in hardware consist of just adding up the different curves. In

Fig. 4 some example curves are shown for the Tsukuba dataset.

Summing two variance images obtained for windows differing by only a factor

of two (one mipmap-level) is very easy and efficient. It suffices to enable trilinear

texture mapping and to set the correct mipmap-level bias. Additional variance

images can easily be summed using multiple texturing units that refer to the same

texture data, but have different mipmap-level biases.

In fact, this approach corresponds to using a large window, but with larger

weights for pixels closer to the center. An example of a kernel is shown in Fig. 5.

The peaked region in the middle allows good localization while the broad support

region improve robustness.

We will call this approach the Multiple Mip-map Level (MML) method. In

contrast, the approach that only uses one mip-map level will be called the Single

Mip-map Level (SML) method.

In addition to these two variations, we also implemented an additional min-

filtering step for depth computation only. The use of min-filter was proposed in

Refs. 2 and 3. It is equivalent to replacing each pixel’s depth value with the one

from its local neighborhood with the best matching measure (the most consistent)

in the final disparity map. So it suffices to overlay the final depth map with dif-

ferent offsets and select the minimum at each pixel location. This can be applied
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Fig. 5. Shape of kernel for summing up six levels.

to both the SML method and the MML method, and it incurs little additional

computation.

3.2. OpenGL implementation details

While it is straightforward to use texture mapping facilities in graphics hardware to

project the input images on to the depth planes, our hardware acceleration scheme

does not stop there. Modern graphic cards, such as the NVIDIA’s GeForce series,25

provide a programable means for per-pixel fragment coloring through the use of

Register Combiner.15 We exploit this programmability, together with the texture

mapping functions, to carry out the entire computation on the graphics board.

3.2.1. Real-time view synthesis

In our hardware-accelerated renderer, we step through the depth planes from near

to far. At each step (i), there are three stages of operations, scoring, aggregation,

and selection. In the scoring stage, we first project the reference images onto the

depth plane Di, then compute the per-pixel mean color and consistency measure. In

the second optional aggregation stage, consistency measures are aggregated through

different mipmap levels. Note that if we only want to use a single mipmap level,

which is equivalent to aggregating the consistency measures over a fix-sized support

region, we only need to reduce the rendered image size proportionally (by changing

the viewport setting) in the last selection stage. The automatic mipmap selection

mechanism will select the correct mipmap level. A sub-pixel texture shift can also

be applied in the last selection stage to increase the effective support size. In the

final selection stage, the textured Di, with a RGB color and a consistency measure

for each pixel, is rendered into the the frame buffer, and the most consistent color

is selected. We show an outline of our implementation in Algorithm 1.

In the first scoring stage, we would like to program the Pixel Shader to

compute the RGB mean and a luminance “variance” per pixel. Computing the

true variance requires two variables per pixel. Since the current hardware is li-

mited to four channels and not five, we opt to compute the RGB mean and a

single-variable approximation to the variance. The latter is approximated by the

sum-of-square-difference (SSD), that is

SSD =
∑

i

(Yi − Ybase)
2 , (1)
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Algorithm 1. Pseudo Code for an OpenGL Implementation

createTex(workingTexture);

createTex(frameBufferTexture);

for (i = 0; i< steps; i++) {

// the scoring stage;

setupPerspectiveProjection();

glEnable(GL_BLEND);

glBlendFunc(GL_ONE, GL_ONE);

setupPixelShaderForSDD();

for (j = 0; j< inputImageNumber; j++)

projectImage(j, baseReferenceImage);

// the OPTIONAL aggregation stage

// MaxML is the Maxinum Mipmap Level

if (MaxML > 0)

sumAllMipLevels(MaxML);

// the selection stage;

if (i == 0) {

copyFrameToTexture(frameBufferTexture);

continue;

} else

copyFrameToTexture(workingTexture);

setupPixelShaderForMinMax();

setupOrthogonalProjection();

renderTex(workingTexture,

frameBufferTexture);

copyFrameToTexture(frameBufferTexture);

}

where Yi is the luminance from an input image and Ybase is the luminance from a

base reference image selected as the input image that is closest to the new viewpoint.

This allows us to compute the SSD score sequentially, an image pair at a time. In

this stage, the frame buffer acts as an accumulation buffer to keep the mean color

(in the RGB channel) and the SSD score (in the alpha channel) for Di. In Fig. 6,

we show the SSD score images (the alpha channel of the frame buffer) at different

depth steps. The corresponding color channels are shown in Fig. 3.

In the optional aggregation stage, we first have to copy the frame buffer

to a texture, with automatic mipmap generation enabled. Then we use the

multi-texturing functionalities to sum up different mipmap levels. Note that all

texture units should bind to the same texture object but with different settings

of the mipmap bias. This is possible because the mipmap bias, as defined in
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Fig. 6. SSD scores (encoded in the alpha channel) for different depth planes in the first scoring

stage. We use the same setup as in Fig. 3. From left to right, the corresponding depth steps are
0, 14, 43, 49.

the OpenGL specification, is associated with per texture unit, not per texture

object.

In the last selection stage, we need to select the mean color with the smallest SSD

score. The content of the frame buffer is copied to a temporary texture (Texwork),

while another texture (Texframe) holds the mean color and minimum SSD score

from the previous depth step. These two textures are rendered again into the frame

buffer through orthogonal projection. We reconfigure the Pixel Shader to com-

pare the alpha values on a per pixel basis, the output color is selected from the one

with the minimum alpha (SSD) value. Finally the updated frame buffer’s content

is copied to Texframe for use in the next depth step.

Complete pseudo code for our hardware-accelerated render is provided in

Algorithm 1. Details about the settings of the Pixel Shader are in Appendix A.

Note that once the input images are transferred to the texture memory, all the

computations are performed on the graphics board. There is no expensive copy

between the host memory and the graphics broad, and the host CPU is essentially

idle aside from executing a few OpenGL commands.

3.2.2. Real-time depth

As explained in Sec. 3.1.1, our technique is implicitly computing a depth map from

a desired view point, we just choose to keep the best color estimate for the purpose

of view synthesis. If we choose to trade color estimation for depth estimation, we

can use almost the same method above (Sec. 3.2.1) to compute a depth map in real-

time, and liberate the CPU for other high level tasks. The only change necessary

is to configure the graphics hardware to keep the depth information instead of the

color information. The color information can then be obtained by re-projecting the

reconstructed 3D points into input images. From an implementation standpoint,

we can encode the depth information in the RGB portion of the texture image. In

addition, an optional min-filter can be applied to the final depth map.

3.3. Tradeoffs and future work using the graphics hardware

There are certain tradeoffs we have to make when using the graphics hardware.

One common complaint about current graphics hardware is the limited arithmetic
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resolution. Our method, however, is less affected by this limitation. Computing the

SSD scores is the central task of our method. SSD scores are always non-negative, so

they are not affected by the unsigned nature of the frame buffer. (The computation

of SSD is actually performed in signed floating point on recent graphics cards, such

as the GeForce4 from NVIDIA.) A large SSD score means there is a small likelihood

that the color/depth estimate is correct. So it does not matter if a very large SSD

score is clamped, it is not going to affect the estimate anyway.

A major limitation of our hardware acceleration scheme is the inability to handle

occlusions. This is a common problem for most real-time stereo algorithms. In

software, we could use the method introduced in the Space Carving algorithm16 to

mark off pixels in the input images, however, there is no such “feedback” channel in

the graphics hardware. To address this problem in practice, we use a small baseline

between cameras, a design adopted by many multi-baseline stereo systems. However,

this limits the effective view volume, especially for direct view synthesis. We are

also exploring a multi-pass approach to address the occlusion problem in general.

The bottleneck in our hardware acceleration scheme is the fill rate. This limita-

tion is also reported by Lok in his hardware-accelerated visual hull computation.21

In each stage, there is a texture copy operation that copies the frame buffer to

the texture memory. We found that texture copies are expensive operations even

within the graphics board, especially when the automatic mipmap generation is

enabled. We have explored the use of P-buffer, an OpenGL extension that allows

to render directly to an off-screen texture buffer. There was no performance gain,

in fact performance was worse in some cases. We suspect that this extension is

still a “work in progress” in the current drivers from NVIDIA. We expect to see a

substantial performance boost when this work is done.

Furthermore, the last texture copy for the selection stage can be eliminated with

small changes in the graphics hardware. There exists an alpha test in the graphics

pipeline, but it only allows comparison of the alpha value (which is the SSD score in

our case) to a constant value. It would be ideal to change the alpha test to compare

to the current alpha value in the frame buffer, in a fashion similar to the depth

test. We believe these are opportunities for graphics hardware venders to improve

their future products.

4. Experimental Results

We have implemented a distributed system using four PCs and up to five calibrated

1394 digital cameras (SONY DFW-V500). These cameras are roughly 70 mm apart,

aiming at a scene about 1200 mm away from the cameras. The camera exposures

are synchronized using an external trigger. Three PCs are used to capture the

video streams and correct for lens distortions. The corrected images are then com-

pressed and sent over a 100 Mb/s network to the rendering PC. We have tested

our algorithm on three NVIDIA cards, a Quadro2 Pro (a professional version of the

GeForce2 card), a GeForce3, and a GeForce4, using all five cameras for view syn-

thesis. Figure 7 shows some live images computed online in real time. Performance
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Fig. 7. Some live views directly captured from the screen. They are synthesized using five
cameras.
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Fig. 8. Frame rates from three cards at different output resolutions with 50 depth planes —
corresponding to the second row in Table 1.

Table 1. Rendering time per frame in milliseconds (number
of depth planes (rows) vs. output resolutions (columns)). The
numbers in each cell are from a GeForce4, a GeForce3, and
a Quadra2 Pro, respectively. All numbers are measured with
five 320 × 240 input images.

1282 2562 5122

20 9, 16, 40 18, 31, 55 51, 82, 156

50 20, 31, 85 42, 70, 130 120, 211, 365

100 40, 62, 140 84, 133, 235 235, 406, 720

comparisons are presented in Table 1 and Fig. 8. On average, a GeForce3 is about

75 percent faster than a Quadro2 Pro for our application, and a GeForce4 is about

60 percent faster than a GeForce3.

For comparison purposes, we also ran some tests using different support sizes.

The results are shown in Fig. 9. Even a small support window (4 × 4) can make
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Fig. 9. Impact of support size on the color or depth reconstruction (using all five cameras);
First row: Synthesized images from an oblique viewing angle (view extrapolation) with different
levels of aggregation using the MML method. Second row: extracted depth maps using the MML
aggregation method. The erroneous depth values in the background are due to the lack of textures
in the image. The maximum mipmap level is set from zero to four, corresponding to a support
size of 1 × 1, 2 × 2, 4 × 4, and 8 × 8, respectively.

substantial improvements, especially in low texture regions, like the cheek or fore-

head on the face. The black areas in the depth map are due to the lack of textures

on the background wall. They will not impact the synthesized views.

4.1. Stereo results

We also tested our method under the minimal condition — using only a pair of

images. Our first test set is the Tsukuba set, which is used in computer vision

literature. Note we only tested depth output since this data set includes a ground

truth disparity map. The results are shown in Fig. 10, in which we show the disparity

maps with different aggregation methods. For disparity maps on the left column, we

used the SML method so that the SSD image was only rendered at a single mipmap

level to simulate a fix-sized box filter. Note that texture shift trick effectively doubles

the size of the filter. So it is equivalent to use a 2×2 kernel at mipmap level zero, and

a 4× 4 kernel at mipmap level one, etc. The right column shows results from using

the MML method, i.e. summing up the different mipmap levels. We computed the

different disparity maps in each subsequent row by varying the maximum mipmap

level (abbreviated as MaxML) from zero up to five. We can see that the results

using a 1×1 kernel (second row) are almost meaningless. If we use a higher mipmap

level, i.e. increase the support size, the results improve for both methods. But

the image resolution drops dramatically with the SML method (left column). The

disparity map seems to be the best when using the MML method with MaxML = 4
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Fig. 10. Depth results on the Tsukuba data set using only two images. The top-right image shows
the ground-truth disparity map. For the remaining rows, on the left column we show the disparity
maps from the SML method, while on the right we show the ones from the MML method. The
mipmap levels are set to zero to five, corresponding to a support window of size 1×1, 2×2, 4×4,
etc.
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Fig. 11. Calculated disparity map from another widely-used stereo pair.

Table 2. Stereo Performance on an NVIDIA GeForce4 card when summing all
mipmap levels. The two input images are 640 × 480, the maximum mipmap level
(MaxML) is set to 4 in all tests.

Output # of Depth Times Img. Update Read Disp. Calc.
Size Planes (ms) (Hz) (ms) (ms) (M/sec)

20 71.4 14 (VGA) 58.9

5122 50 182 5.50 5.8 × 2 6.0 65.6

100 366 2.73 68.3

20 20.0 50 (QVGA) 53.1

2562 50 49.9 20 1.6 × 2 1.5 60.0

100 99.0 10.1 63.2

(i.e. a 16 × 16 support). Little is gained when MaxML > 4. Results from another

widely used stereo pair using MaxML = 4 are shown in Fig. 11.

In term of performance, we tested our implementation on an NVIDIA GeForce4

Card — a card with four multi-texture units. We found virtually no performance

difference when MaxML was changed from one to four. This is not surprising

since we can use all four texture units to sum up all four levels in a single pass. If

MaxML is set to over four, another additional rendering pass is required, which

results in less than 10% increase in calculation time.a In practice, we find that

setting MaxML to four usually strikes a good balance between smoothness and

preserving small details for stereo. Details of the performance data for the MML

method can be found in Table 2. Plotting these data in Fig. 12, we can see that our

algorithm exhibits very good linear performance with respect to the image size.

We also tested our SML method (results shown in Table 3). In this case the

frame-rates are higher, especially when going to a higher mipmap level. Note that

for higher mipmap levels the number of evaluated disparities per seconds drops

because in this case the output disparity map has a lower resolution. This method

might be preferred for some applications where speed is more important than detail.

When running under the stereo configuration, our current real-time prototype

performs a few additional steps in software, such as radial distortion correction

aWe do not use trilinear interpolation in our performance testing, and it seems that in practice
setting MaxML over four has a detrimental effect on the final result.
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Fig. 12. Stereo performance on a NVIDIA GeForce4 Card. The data are from Table 1.

Table 3. Stereo performance on an NVIDIA GeForce4 card when using
only a single mipmap level with texture shift enabled. Throughput decreases
proportionally to the output resolution because the majority of the time is
spent on computing the SSD score. The overhead includes both the image
update time and the time to read back the depth map from the frame buffer.

Base Output # of Depth Times Overhead Disp. Calc.
Size Size Planes (ms) (Hz) (ms) (M/sec)

20 2.5 40 11.7

5122 1282 50 6.4 15.6 12.0 10.7

(4 × 4) 100 12.8 7.8 8.86

20 28.3 35.3 31.7

5122 2562 50 71.4 14.0 13.1 38.8

(2 × 2) 100 144 6.9 41.7

20 40.8 24.5 89.8

5122 5122 50 106 9.4 17.6 106

100 207 4.8 117

20 12.7 78.7 20.1

2562 1282 50 31.6 31.6 3.58 23.3

(2 × 2) 100 63.1 15.8 24.6

20 16.2 61.7 62.7

2562 2562 50 40.3 24.8 4.7 72.8

100 80.7 12.4 76.7
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Fig. 13. Typical results from our real-time online stereo system. The first row shows the two
input images and the disparity map. The second row shows the reconstructed 3D point cloud
from different perspectives. Some holes in the 3D views are caused by the rendering. We simply
render fix-size (in screen space) points using the GL POINT primitive.

Fig. 14. More results from our real-time online stereo system. The first row shows the input
images; The second row shows the corresponding disparity map.

and segmentation.b As a proof of concept, these yet-to-be-optimized parts are not

fully pipelined with the reconstruction. These overheads slow down the overall

reconstruction rate to 6–8 frames per second at 256×256 resolution with 100 depth

planes. In Fig. 13, we show a sample stereo pair and a reconstructed depth map. In

our real-time system, darker colors in the depth map mean that the object is closer

bThe cameras are facing a white wall with little texture. So we segment the images to fill the
background with different colors.



646 R. Yang et al.

to cameras while brighter colors mean further. To better illustrate our results, we

also show the reconstructed 3D point cloud from different perspectives in Fig. 13.

More scenes and their depth maps can be found in Fig. 14.

5. Conclusion

We have presented a view synthesis/depth estimation scheme suitable for imple-

mentation on commodity graphics hardware. The heart of our method is to use

advanced features in modern graphics hardware to efficiently compute weighted

sum-of-square-differences consistency measures from all reference images, and

choose the most consistent color (or depth) for each output pixel. We have demon-

strated a real-time system implemented solely using OpenGL. When running on

a PC with an NVIDIA Geforce4 graphics card, our method exhibits speed and

accuracy comparable to some of the fastest commercial stereo systems available.

As stated in the introduction, this work is motivated by our long standing inter-

est in 3D tele-immersion. An inverse or image-based approach to view-dependent

rendering or scene reconstruction has appeal to us for this particular application for

several reasons. For one, the finite and likely limited inter-site bandwidth motivates

us to consider methods that “pull” only the necessary scene samples from a remote

to a local site, rather than attempting to compute and “push” geometry from a

remote to a local site. In addition we would like to be able to leverage existing

video compression schemes, so we would like our view/scene reconstruction to be

as robust to sample artifacts (resulting from compression for example) as possible.

We are working with systems and networking collaborators to explore new encoding

schemes aimed specifically at this sort of reconstruction.

In the meantime, we are planning on optimizing our real-time system by

also carrying out the radial distortion correction and background segmentation

on the graphics hardware. We are also looking at ways to efficiently implement

more advanced reconstruction algorithms on graphics hardware. This work will

be eased with newer generations of graphics hardware providing more and more

programmability.

Like other recent work that makes use of increasingly powerful graphics hard-

ware for non-traditional purposes,8,9,12,17,20,31 we hope that our method inspires

further thinking and additional new methods to explore the full potentials of

modern graphics hardware.
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Appendix A Pixel Shader Pseudo Code

The following code is written roughly following the syntax of nvparser, a gener-

alized compiler for NVIDIA extensions. Documentation about nvparser can be

found on NVIDIA’s web site at http://www.nvidia.com.

A.1. Code to compute the squared difference

This piece of code assumes that there are m input images. The alpha channel of the

input images contains a gray scale copy of the image, and the base reference image is

stored in tex0. The squared difference is computed on the gray scale images. The

scales in the code are necessary because the unsigned char values are converted to

floating point values between [0, 1] within Pixel Shader. If no scale is applied, the

output squared value (in unsigned char) will be floor((a− b)2/256), where a and b

are the input values (in unsigned char). In our implementation, we use a combined

scale factor of 32, effectively computing floor((a− b)2/32).

const1 = {1/m, 1/m, 1/m, 1};

// the base reference image will be added

// m-1 times more than the other images;

const0 = {1/((m)(m-1)), 1/((m)(m-1)), 1/((m)(m-1)), 1};

// **** combiner stage 0;

{

rgb {

spare0 = tex1*const1 + tex0*const0;

}

alpha {

spare0 = tex1 - tex0;

scale_by_four ();

}

}

// **** combiner stage 1

{

alpha{

spare0 = spare0*spare0;

scale_by_four ();

}

}
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// **** final output

{

out.rgb = spare0.rgb;

out.alpha = spare0;

}

A.2. Code to do the minimum alpha test

This piece of code assumes that the mean colors are stored in the RGB channel

while the SSD scores are stored in the alpha channel.

// **** combiner stage 0;

{

alpha {

// spare0 = tex1 - tex0 + 0.5

spare0 = tex1 - half_bias(tex0);

}

}

// **** combiner stage 1

{

rgb{

// select the color with the smaller alpha;

// spare0 = (spare0.alpha < 0.5) ? (tex1) : (tex0);

spare0 = mux();

}

alpha{

// select the smaller alpha value

spare0 = mux();

}

}

// **** final output

{ out = spare0; }
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