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Abstract

We argue that the conditional bias associated with a sample unit can be a
useful measure of influence in finite population sampling. We use the condi-
tional bias to derive robust estimators that are obtained by downweighting the
most influential sample units. Under the model-based approach to inference,
our proposed robust estimator is closely related to the well-known estimator
of Chambers (1986). Under the design-based approach, it possesses the de-
sirable feature of being applicable with most sampling designs used in prac-
tice. For stratified simple random sampling, it is essentially equivalent to the
estimator of Kokic & Bell (1994). The proposed robust estimator depends
on a tuning constant. In this paper, we propose a method for determining the
tuning constant and show that the resulting estimator is consistent. Results
from a simulation study suggest that our approach improves the efficiency of
standard nonrobust estimators when the population contains units that may
be influential if selected in the sample.

Keywords: Conditional bias; Design-based inference; Influence function; Model-
based inference; Outlier.

1 Introduction

1.1 The influence function in infinite population sampling

The influence function (Hampel, 1974) is well known in infinite population sam-
pling. It is often used in the context of outlier-robust estimation to study properties
of estimators or derive robust estimators. To fix ideas, let Yi (i = 1, . . . , n) be
n independent random variables having the same distribution F and suppose that
we are interested in estimating θ = t(F ). For a given fixed value y, the influence
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function is defined as

IF(y; t, F ) = lim
ε→0

t{(1− ε)F + εδy} − t(F )

ε
, (1)

where δy is the Dirac distribution at y. If θ = t(F ) is the mean of F , (1) equals
IF(y; t, F ) = y − θ, which is unbounded. Robustness is typically achieved by
choosing functionals t(F ), such as the median of F, that have a bounded influence
function.

Let us now consider the estimator θ̂ = t(F̂ ) of θ, where F̂ = n−1
∑n

i=1 δYi is
the empirical distribution function. A well known approximation (e.g., Hampel et
al., 1986, p. 85) that uses the influence function (1) is

θ̂ ' θ +
1

n

n∑
i=1

IF(Yi; t, F ) (2)

with EF {IF(Yi; t, F )} = 0 (i = 1, . . . , n). This approximation may be used to
estimate the variance of θ̂.

1.2 The conditional bias in infinite population sampling

Muñoz-Pichardo et al. (1995) proposed to use the conditional bias

B(yi; θ) = EF

(
θ̂ | Yi = yi

)
− θ (3)

as a measure of the influence of the ith observation. Schlittgen & Schwabe (2001)
introduced the asymptotic mean sensitivity curve, defined as limn→∞ nB(yi; θ).
Using the approximation (2) with EF {IF(Yi; t, F )} = 0, it is straightforward to
approximate (3) by

B(yi; θ) '
1

n
IF(yi; t, F ). (4)

The conditional bias is thus approximately proportional to the influence function
IF(yi; t, F ) and so can be viewed as an influence measure for the ith observation.
From (2) and (4),

θ̂ − θ '
n∑

i=1

B(Yi; θ).

The conditional bias can thus be viewed as the contribution of the ith observation
to the error θ̂ − θ. Robustness is achieved by curbing the influence or contribution
of the largest observations on this error.
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1.3 Design-based approach

In finite population sampling, inference is usually made with respect to the known
probability sampling design P (S) that is used to select a random sample S from
the finite population U of size N . This is often called the design-based approach
to inference. In this approach, only the sample inclusion indicators are random;
all other quantities are treated as fixed. The influence function (1) seems irrelevant
in the design-based approach because there is no underlying distribution F that is
assumed to have generated the population values yi (i ∈ U ) at least for inference
purposes.

One way of defining the influence function in finite population sampling con-
sists of replacing F by FN =

∑
i∈U δyi/N so that the finite population parameter

θ can be expressed as θ = t(FN ). Unfortunately, this leads to an influence func-
tion that fails to account for the sampling design. For instance, if θ = t(FN ) is
the population mean of FN , i.e. θ =

∑
i∈U yi/N , the influence function is again

IF(y; t, FN ) = y− θ. The quantity IF(yi; t, FN ) = yi− θ is not a good measure of
the influence of unit i because it ignores the sampling design. As an example, sup-
pose that unit i is selected with certainty in the sample. It would seem intuitively
appealing to consider an influence measure that is equal to zero for this unit. This
is not the case for IF(yi; t, FN ) = yi − θ.

Approximations analogous to (2) have also been developed within the design-
based approach (e.g., Campbell, 1980; Gwet & Rivest, 1992; Deville, 1999; Dem-
nati & Rao, 2004). While these methods are quite useful for variance estimation,
they lead to influence measures that do not account for the sampling design.

Assuming with-replacement sampling, and thus independent and identically
distributed observations, Zaslavsky et al. (2001) extended the definition (1) to
finite population sampling under the design-based approach. Hulliger (1995) de-
fined a sensitivity curve for probability proportional to size sampling. He took the
sampling design into account by expressing the finite population parameter θ as
a function of the population values of the size variable. Although the sampling
design is involved in both methods, they again yield a non-zero influence measure
for a unit i selected with certainty in the sample. Also, it does not seem easy to
generalize these methods to other sampling designs with possibly large sampling
fractions.

The conditional bias might be a useful measure of influence since it can be
easily extended to any inferential framework. In the next sections, we use the
conditional bias to derive robust estimators in finite population sampling by down-
weighting the most influential sample units. We first consider the model-based
approach to inference in section 2. We then consider the design-based approach to
inference in sections 3-5.
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2 Robust best linear unbiased predictor

In the model-based approach to inference in finite population sampling (e.g., Val-
liant et al., 2000), the y-values of the N population units are assumed to be gen-
erated by some model. We denote by X , the known N -row matrix containing the
vector of explanatory variables xT

i in its ith row. Often, a linear model is con-
sidered, for which (Yi − xT

i β)/σi (i ∈ U) given X are mutually independent and
have all the same distribution F , where β is a vector of unknown model parameters
and σi is usually assumed to be known up to a constant factor. Furthermore, the
distribution F has a mean of zero and a variance of one.

A non-informative sample s is selected from the finite population U and is
treated as fixed when making inferences. The interest is in the prediction of a
function of the population Y -variables through the sample Y -variables. To fix
ideas, we will assume that we are interested in predicting the random population
total θ =

∑
i∈U Yi. Royall (1976) proposed the best linear unbiased predictor of θ,

which can be expressed as
θ̂ =

∑
i∈s

wiYi (5)

with the weights

wi = 1 +
xT
i

σ2i

(∑
i∈s

xix
T
i

σ2i

)−1 ( ∑
i∈U−s

xi

)
. (6)

In this context, the conditional bias attached to unit i is

Bi(yi;β) = EF (θ̂ − θ | s, Yi = yi). (7)

Definition (7) is slightly different from definition (3) to account for the fact that θ
is a random variable. Using (5) and noting from (6) that

∑
i∈swixi =

∑
i∈U xi,

the conditional bias (7) can be expressed as

Bi(yi;β) =

{
(wi − 1)(yi − xT

i β) (i ∈ s),
−(yi − xT

i β) (i ∈ U − s). (8)

This expression highlights that the conditional bias takes a different form depend-
ing on whether unit i has been selected in the sample or not. The prediction error
of (5) can be written as

θ̂ − θ =
∑
i∈U

Bi(Yi;β). (9)

Therefore, the conditional bias Bi(Yi;β) can be interpreted as the contribution of
unit i to the prediction error of (5). Although they did not consider the conditional
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bias, Beaumont & Rivest (2009) showed that this decomposition of the predic-
tion error holds for any weighted estimator that satisfies the calibration equation∑

i∈swixi =
∑

i∈U xi. Also, the prediction variance of θ̂ can be expressed as

varF
(
θ̂ − θ | s

)
=
∑
i∈s

(wi − 1)2σ2i +
∑

i∈U−s
σ2i = EF

{∑
i∈U

B2
i (Yi;β) | s

}
.

To construct a robust version of the best linear unbiased predictor, we first express
it as:

θ̂ =

{
θ̂ −

∑
i∈U

Bi(Yi;β)

}
+
∑
i∈U

Bi(Yi;β). (10)

From (9), the first term on the right-hand side of (10) is equal to θ and is thus
unaffected by influential units. The error comes entirely from the second term. To
obtain robustness, it would be desirable to reduce the contribution of the largest
Bi(Yi;β) on this second term. Curbing the influence of nonsample units is not
possible as their y-value is unknown, so their conditional bias cannot be estimated.
Thus, nothing can be done at the estimation stage to protect against influential units
in the nonsample portion of the population. Protection can be achieved against the
occurrence of influential sample units by downweighting their contribution in the
second term on the right-hand side of (10). Using (8), this leads to the robust
estimator:

θ̂R(β) =

{
θ̂ −

∑
i∈U

Bi(Yi;β)

}
+
∑
i∈s

ψ{Bi(Yi;β)}+
∑

i∈U−s
Bi(Yi;β)

=
∑
i∈s

Yi +
∑

i∈U−s
xT
i β +

∑
i∈s

ψ{(wi − 1)(Yi − xT
i β)}, (11)

where ψ is any bounded function such that ψ(z) ' z when z is close to 0. A typical
choice is the Huber function, ψ(z; c) = sign(z)×min(|z|, c), where c is a positive
tuning constant and sign(z) = 1, for z ≥ 0, while sign(z) = −1, otherwise. In
general, the vector β is unknown and must be replaced by some estimator β̂, which
yields the robust estimator θ̂R(β̂). The estimator β̂ could be any robust estimator
developed for infinite populations, as in Chambers (1986), or could be obtained
using an independent source of data, as in Kokic & Bell (1994). In Section 5, we
have empirical evidence in the design-based context that the use of a nonrobust
estimator of β leads to properties similar to those of robust estimators. We expect
similar behaviour in the model-based approach. If the underlying tuning constant
c in the Huber ψ function is large, the estimator θ̂R(β̂) reduces to the best linear
unbiased predictor for every choice of β̂.
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The robust estimator θ̂R(β̂), obtained from (11), is closely related to the estima-
tor developed by Chambers (1986) using arguments not involving the conditional
bias. Chambers’ estimator is:

θ̂C(β̂) =
∑
i∈s

Yi +
∑

i∈U−s
xT
i β̂ +

∑
i∈s

(wi − 1) σ̂i ψ{(Yi − xT
i β̂)/σ̂i}, (12)

where σ̂i is a robust estimator of σi. The robust estimator given by (12) reduces the
impact of large standardized residuals (Yi − xT

i β̂)/σ̂i but, unlike θ̂R(β̂), does not
address the combined influence of weights (wi − 1) σ̂i and standardized residuals.
Both θ̂R(β̂) and θ̂C(β̂) are special cases of a slightly more general estimator given
in equation (6) of Beaumont & Rivest (2009). In a design-based empirical study,
they have shown a slight superiority of θ̂R(β̂) over θ̂C(β̂).

3 Robust Horvitz–Thompson estimator

3.1 General framework

We denote by Ii (i ∈ U) the N sample inclusion indicators such that Ii = 1,
if i ∈ S, and Ii = 0, otherwise. Let us suppose again that we are interested
in estimating the finite population total θ =

∑
i∈U yi and that we consider the

Horvitz–Thompson estimator θ̂HT =
∑

i∈S diyi, where di = 1/πi is the design
weight attached to unit i and πi = pr(Ii = 1) is its first-order inclusion proba-
bility. The Horvitz–Thompson estimator is design-unbiased; i.e., EP (θ̂HT) = θ,
where the subscript P indicates that the expectation is evaluated with respect to the
sampling design. For a sample unit, the conditional bias of the Horvitz–Thompson
estimator is defined as

BHT
1i = EP (θ̂HT | Ii = 1)− θ =

∑
j∈U

(
πij
πiπj

− 1

)
yj , (13)

where πij = pr(Ii = 1, Ij = 1) denotes the second-order inclusion probability of
units i and j. Using EP (θ̂HT) = θ, it is not difficult to show that the conditional
bias for a nonsample unit is

BHT
0i = EP (θ̂HT | Ii = 0)− θ = −(di − 1)−1BHT

1i .

See also Moreno-Rebollo et al. (1999) and Moreno-Rebollo et al. (2002). The
conditional bias BHT

1i is equal to zero when πi = 1. This is an intuitively ap-
pealing property. The design variance of the Horvitz–Thompson estimator can be
expressed as

varP (θ̂HT) = EP (θ̂HT − θ)2 =
∑
i∈U

BHT
1i yi.
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Therefore, the design variance of θ̂HT is identically equal to zero if and only if
BHT

1i = 0 for all i ∈ U . For instance, this occurs when the sample size is fixed and
yi/πi = a for some constant a. This also occurs when a census is conducted.

For any sampling design, we can write

θ̂HT − θ =
∑
i∈S

BHT
1i +

∑
i∈U−S

BHT
0i +

(∑
i∈S

diAi −
∑
i∈U

Ai

)
, (14)

where

Ai = −(1− πi)−1
∑
j∈U
j 6=i

(
πij − πiπj

πj

)
yj .

Provided the term in parentheses on the right hand side of (14) is equal to zero,
the conditional bias can be interpreted as the contribution of unit i to the sampling
error of the Horvitz–Thompson estimator. This is satisfied for Poisson sampling.
For stratified simple random sampling and fixed-size high-entropy sampling with
varying first-order inclusion probabilities, it can be shown that the term θ̂HT − θ
is Op(Nn

−1/2), whereas the term in parentheses on the right hand side of (14) is
Op(n

−1/2). Thus, in these two cases, we can write

θ̂HT − θ '
∑
i∈S

BHT
1i +

∑
i∈U−S

BHT
0i . (15)

Assuming a sampling design for which (15) holds and using an argument similar to
the one that led to (11), we obtain the following robust alternative to the Horvitz–
Thompson estimator:

θ̂RHT = θ̂HT −
∑
i∈S

BHT
1i +

∑
i∈S

ψ(BHT
1i ). (16)

The conditional bias BHT
1i in (16) depends in general on unknown population pa-

rameters that should be estimated either using current data or an independent source
of data. The resulting estimated conditional bias is denoted by B̂HT

1i and replaces
BHT

1i in (16) when it is unknown. Estimation ofBHT
1i using current data is discussed

in Section 3.3.

3.2 Examples

For Poisson sampling, πij = πiπj , i 6= j and the conditional bias in (13) reduces
to

BHT
1i = (di − 1)yi.
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Unit i has a large influence if its design weight, di, is large and/or if its y-value, yi,
is large. The conditional bias is known for all the sample units and so it does not
need to be estimated.

For without-replacement stratified simple random sampling, it is straightfor-
ward to show that

BHT
1i =

Nh

Nh − 1

(
Nh

nh
− 1

)
(yi − Ȳh), for i ∈ Uh (17)

where nh is the sample size in stratum h and Ȳh = N−1h

∑
i∈Uh

yi with Uh de-
noting the set of population units in stratum h and Nh the size of Uh. From (17),
an observation in stratum h has a large influence when it is far from the stratum
mean, Ȳh. Ignoring the factor Nh/(Nh − 1) in (17) and considering the one-sided
Huber function ψ(z; c) = min(z, c), the resulting robust estimator (16) becomes
equivalent to the Winsorized estimator of Kokic & Bell (1994).

For high entropy fixed-size sampling designs, Hájek (1981) proposed the fol-
lowing approximation to πij :

πij ' πiπj{1−D−1(1− πi)(1− πj)}, (18)

whereD =
∑

l∈U πl(1−πl). This approximation is more accurate for large sample
and population sizes. Using (18) in (13), we can approximate the conditional bias
attached to unit i by

BHT
1i ' (di − 1)

[{
1 +D−1πi(1− πi)

}
yi − φπi

]
, (19)

where φ = D−1
∑

j∈U (1 − πj)yj . Under mild regularity conditions, the term
D−1πi(1 − πi) in (19) is O(N−1). Assuming that the population size N is large,
we can neglect this term from (19), which leads to

BHT
1i ' (di − 1)(yi − φπi). (20)

From (20), it is clear that unit i has a large influence if its weight, di, is large or if
its residual, (yi − φπi), is large.

3.3 Estimation of the conditional bias

In general, the conditional bias, BHT
1i , must be estimated. One possibility consists

of using the conditionally design-unbiased estimator of BHT
1i :

B̂HT
1i =

∑
j∈S

(
πij − πiπj
πjπij

)
yj , (21)
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provided πij > 0 for all j ∈ U. That is, EP (B̂HT
1i | Ii = 1) = BHT

1i . In the
special case of stratified simple random sampling, the estimated conditional bias
(21) reduces to

B̂HT
1i =

nh
nh − 1

(
Nh

nh
− 1

)
(yi − ȳh) for i ∈ Uh, (22)

where ȳh = n−1h

∑
i∈Sh

yi denotes the sample mean in stratum h and Sh is the
set of sample units in stratum h. It is clear that (22) was obtained from (17) by
replacing Nh/(Nh − 1) with nh/(nh − 1) and the true stratum mean Ȳh with the
sample mean ȳh.

Alternatively, the stratum mean Ȳh in (17) could be replaced by a robust esti-
mator, the median, say, which leads to

B̂HT
1i =

Nh

Nh − 1

(
Nh

nh
− 1

)
(yi −mh) for i ∈ Uh, (23)

where mh is the sample median in stratum h. Similarly, in the case of a high en-
tropy sampling design, the coefficient φ in (20) can be estimated by a standard
nonrobust estimator or by a robust estimator such as anM -estimator. In our empir-
ical study in Section 5, it turns out that the choice of an estimator of the conditional
bias makes little difference in terms of relative bias and relative efficiency, at least
in our scenarios.

3.4 Choice of the tuning constant

The ψ-function in (16) usually depends on a tuning constant c. A suitable value for
c is sometimes determined by minimizing an estimator of the mean square error
of the robust estimator (e.g., Hulliger, 1995; Kokic & Bell, 1994; and Beaumont
& Rivest, 2009). We propose an alternative approach that consists of finding the
value of c that minimizes

max{|B̂RHT
1i (c)|; i ∈ S}, (24)

where B̂RHT
1i (c) is an estimator of the conditional bias of the robust Horvitz–

Thompson estimator. From (16), this conditional bias can be written as

BRHT
1i (c) = EP (θ̂RHT(c) | Ii = 1)− θ

= BHT
1i + EP

∑
j∈S

{
ψ(B̂HT

1j ; c)− B̂HT
1j

}
| Ii = 1

 . (25)
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A conditionally unbiased estimator of the last conditional expectation in (25) is
simply ∆(c) =

∑
i∈S{ψ(B̂HT

1i ; c)− B̂HT
1i }. This yields the estimator

B̂RHT
1i (c) = B̂HT

1i + ∆(c).

Let B̂HT
min = min(B̂HT

1i ; i ∈ S) and B̂HT
max = max(B̂HT

1i ; i ∈ S). Because ∆(c) does
not depend on i, the value of c that minimizes (24), denoted by cmin, must be such
that

−
{
B̂HT

min + ∆(cmin)
}

= B̂HT
max + ∆(cmin),

for any choice of the function ψ. As a result, ∆(cmin) = −(B̂HT
min + B̂HT

max)/2. The
robust estimator (16) can be expressed as θ̂RHT(c) = θ̂HT + ∆(c), for any value of
c. Therefore, our proposed robust estimator reduces to

θ̂RHT(cmin) = θ̂HT + ∆(cmin) = θ̂HT − 1

2

(
B̂HT

min + B̂HT
max

)
. (26)

The robust estimator (26) can be obtained without actually computing the value
cmin so that no iterative process is required. In contrast, determining the value of
c by minimizing an estimator of the mean square error is much more computer-
intensive and is often achieved by using simplifying assumptions.

Remark: The robust estimator θ̂RHT(cmin) in (26) can be justified without
requiring the decomposition of the sampling error (15) to hold approximately.
To observe this, let us consider a class of estimators of the form θ̂RHT(λS) =
θ̂HT + λS for which estimator (16) is a special case. Similarly as above, an
estimator of the conditional bias BRHT

1i (λS) = EP {θ̂RHT(λS) − θ | Ii = 1}
is: B̂HT

1i (λS) = B̂HT
1i + λS . The statistic λS can be determined by minimizing

max(|B̂HT
1i + λS |; i ∈ S). Let λS,min denote the solution to this minimization

problem. The resulting robust estimator, θ̂RHT(λS,min), is equal to the right side of
(26).

Remark: Even though computing cmin is not necessary to obtain the right side
of (26), it may still be useful to compute it for mean square error estimation (see
Section 3.5) or for the implementation of the robust estimator (see Section 6). The
value cmin is the solution in c to the equation ∆(c) = −(B̂HT

min + B̂HT
max)/2. It can

be shown that, if the Huber ψ function is used, there always exists a solution to this
equation although it is not necessarily unique. If this occurs, one can choose the
largest value of c that solves the equation. The proof is given in the appendix.

Let us now assume the standard conditions: (i) θ̂HT − θ = Op

(
Nn−1/2

)
;

and (ii) max(|B̂HT
1i |; i ∈ S) = Op(Nn

−1). The first condition simply requires
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that the Horvitz–Thompson estimator is design-consistent and the second condition
should normally be satisfied provided that di = O(Nn−1) and didj (πij − πiπj) =
O
(
n−1

)
if i 6= j . This is true when the estimator (21) is used. Under these con-

ditions, our robust estimator θ̂RHT(cmin) is design-consistent. This can be seen by
considering the decomposition

θ̂RHT(cmin)− θ =
(
θ̂HT − θ

)
− 1

2

(
B̂HT

min + B̂HT
max

)
,

and by noting that the second term on the right side of the previous equation is
Op(Nn

−1), which is asymptotically negligible compared with the first term so
that θ̂RHT(cmin)− θ = Op(Nn

−1/2). Note that (26) is not only consistent but also
asymptotically equivalent to the Horvitz–Thompson estimator.

3.5 Mean square error estimation

The estimation of the mean square error of robust estimators is necessary in prac-
tice to have an indication of whether they are more efficient than non-robust esti-
mators. The design mean square error of θ̂RHT can be written as

MSEP

(
θ̂RHT

)
= varP

(
θ̂RHT

)
+

{
EP

(
θ̂RHT − θ̂HT

)2
− varP

(
θ̂RHT − θ̂HT

)}
.

(27)
The two terms within the brackets in (27) represent an approximation of the square
design bias of θ̂RHT. Similarly to Gwet & Rivest (1992), we suggest the mean
square error estimator

mseP
(
θ̂RHT

)
= vP

(
θ̂RHT

)
+max

{
0,
(
θ̂RHT − θ̂HT

)2
− vP

(
θ̂RHT − θ̂HT

)}
,

(28)
where vP (θ̂RHT) and vP (θ̂RHT−θ̂HT) are design-consistent estimators of varP (θ̂RHT)
and varP (θ̂RHT − θ̂HT), respectively. Replication variance estimation techniques,
such as the bootstrap, may provide a practical way of obtaining vP (θ̂RHT) and
vP (θ̂RHT − θ̂HT). Assuming c is fixed, there are a number of methods that can be
used and that are typically implemented by generating bootstrap weights; e.g., Rao
et al. (1992) and Beaumont & Patak (2012).

If the tuning constant c is determined by finding the value that minimizes (24),
the robust Horvitz–Thompson estimator reduces to (26). It is not obvious how
to properly bootstrap B̂HT

min and B̂HT
max in (26). Indeed, we do not know of any

method that could be used to estimate the design variance of θ̂RHT(cmin) because
of the max function in (24). Further research is needed to obtain a proper variance
estimator for θ̂RHT(cmin). For now, we suggest treating cmin as being fixed, which
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is often done in the literature. This implies that the value cmin must actually be
computed even though it is not necessary for the computation of (26).

The tuning constant c may also be determined by minimizing (28). If the boot-
strap is used to obtain the mean square error estimate, a double bootstrap may be
required to account for the variability of θ̂RHT that is due to estimating c. It is not
clear how to properly perform double bootstrapping in survey sampling. Further
investigations are needed on this topic. To simplify the estimation of the mean
square error, we again suggest treating the estimated tuning constant as fixed.

4 Robust generalized regression estimator

In this section, we consider the case of the generalized regression estimator of
θ =

∑
i∈U yi. We assume that a vector of auxiliary variables xi is available for

all i ∈ S and that the population total of the x-vector,
∑

i∈U xi, is known. The
generalized regression estimator of θ is

θ̂G =
∑
i∈S

diyi +

(∑
i∈U

xi −
∑
i∈S

dixi

)T

γ̂, (29)

where

γ̂ =

∑
j∈S

djν
−1
j xjx

T
j

−1∑
j∈S

djν
−1
j xjyj (30)

and νi is a known constant attached to unit i. Using a first-order Taylor expansion
and neglecting the higher order terms, we can write

θ̂G − θ '
∑
i∈S

diEi −
∑
i∈U

Ei, (31)

where Ei = yi − xT
i γ denotes the census residual attached to unit i with

γ =

∑
j∈U

ν−1j xjx
T
j

−1∑
j∈U

ν−1j xjyj .

It follows from (31) that the asymptotic conditional bias attached to unit i of the
generalized regression estimator is

BG
1i = EP (θ̂G | Ii = 1)− θ '

∑
j∈U

(
πij
πiπj

− 1

)
Ej . (32)
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The conditional bias, BG
1i, with respect to the generalized regression estimator is

identical to (13) with yi replaced by Ei. Using an argument similar to the one that
led to (11) or (16), we obtain a robust version of θ̂G as

θ̂RG = θ̂G −
∑
i∈S

BG
1i +

∑
i∈S

ψ(BG
1i). (33)

Once again, the conditional bias BG
1i in (33) depends in general on unknown pop-

ulation parameters that should be estimated using current data or an independent
source of data. In the former case, one needs to estimate γ. One could use the
weighted least square estimator γ̂ given by (30) or a robust estimator such as an
M -estimator. The resulting estimated conditional bias is denoted by B̂G

1i and re-
places BG

1i in (33).
Similarly to Section 3.4, the choice of the tuning constant can be obtained

by minimizing the maximum estimated conditional bias of the robust generalized
regression estimator. The resulting robust estimator is

θ̂RG(cmin) = θ̂G − 1

2

(
B̂G

min + B̂G
max

)
, (34)

where B̂G
min = min(B̂G

1i; i ∈ S) and B̂G
max = max(B̂G

1i; i ∈ S). The robust esti-
mator (33) has a form similar to (16). As a result, estimation of the mean square
error can be done in a similar fashion as in Section 3.5. The design consistency
of θ̂RG(cmin) follows under regularity conditions similar to those needed for estab-
lishing the consistency of θ̂RHT(cmin).

5 Empirical study

We conducted a limited simulation to investigate the performance of the proposed
robust estimator in terms of relative bias and relative efficiency. We generated six
populations, each consisting of an auxiliary variable x and a variable of interest y.
In each population, the x-values were first generated from a Gamma distribution
with mean 50 and variance 500.

In the first three populations, of size 500, 1000 and 5000, respectively, the y-
values were generated according to the ratio model, yi = 2xi + 3.7x

1/2
i εi, where

the error terms εi were generated from a standard normal distribution, which lead
to a coefficient of determination approximately equal to 0.75. These populations
did not contain any outlier.

In the last three populations, also of size 500, 1000 and 5000, respectively, the
y-values were generated according to the mixture model, yi = τi(2xi+3.7x

1/2
i εi)+

13



(1− τi)zi, where the z-values were independently generated from a normal distri-
bution with mean 1200 and standard deviation 200 and the τi’s were independently
generated from a Bernoulli distribution with probability p = 0.98. That is, these
populations contained approximately 2% of outliers.

From each population, we selected R = 10, 000 samples according to Pois-
son sampling with inclusion probabilities, πi, proportional to xi; that is, πi =
ñxi/

∑
i∈U xi, where ñ denotes the expected sample size. The expected sampling

fractions, f = ñ/N , were set to 0.02 and 0.10.
The choice of Poisson sampling in our simulation study is justified by the fact

that it makes sample coordination in repeated surveys much easier. For this reason,
Poisson sampling is increasingly used in business surveys conducted by statistical
agencies. For example, Poisson sampling is going to be used in the redesign of
about 100 Statistics Canada business surveys. Another reason justifying the use
of Poisson sampling is that it allows us to compare two methods for determin-
ing the tuning constant: (i) the proposed method, which is based on minimizing
(24); and (ii) the usual method that consists of determining the tuning constant that
minimizes the estimated mean square error. For the strategy consisting of Poisson
sampling and the Horvitz–Thompson estimator, it is easy to obtain an expression
for the estimated mean square error without relying on some simplifications that
would make the comparison of the two methods difficult.

In each sample, we first computed three Horvitz–Thompson type estimators:
(i) the Horvitz–Thompson estimator given by θ̂HT =

∑
i∈S diyi; (ii) the robust

estimator given by (26), which we denote by θ̂RHT
cb ; (iii) the robust estimator (16),

where the tuning constant c was chosen so that its estimated mean square error was
minimized. We denote the resulting estimator by θ̂RHT

mse . From (28), the estimated
mean square error of θ̂RHT in (16) under Poisson sampling is

mseP (θ̂RHT) =
∑
i∈S

(1− πi) [yi + ψ{(di − 1)yi}]2

+ max

(
0,
(
θ̂RHT − θ̂HT

)2
−
∑
i∈S

(1− πi) [ψ{(di − 1)yi} − (di − 1)yi]
2

)
.

In addition, we investigated the robustness of the ratio estimator. In this case, esti-
mating the conditional bias requires estimating γ. We were interested in compar-
ing different estimators of γ. Thus we computed three ratio type estimators: (i) the
standard ratio estimator, θ̂G, which is a special case of the generalized regression
estimator (29) with scalar xi and νi = xi. Under the above sampling design, the
standard ratio estimator can be expressed as θ̂G = (ñ/ns)θ̂

HT, where ns denotes
the observed sample size. (ii) The robust estimator (34), where the conditional
bias (32) was estimated in a nonrobust fashion. That is, the unknown regression
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coefficient γ was replaced by the weighted least square estimator γ̂ given by (30).
We denote the resulting robust estimator by θ̂RG

nr . (iii) The robust estimator (34),
where the conditional bias (32) was estimated in a robust fashion. The unknown
regression coefficient γ was replaced by an M -estimator using the Huber function
as a ψ-function with K = 1.345 as the tuning constant. This constant is different
from the tuning constant c that minimizes (24). In the infinite population set-up,
the value 1.345 is often used because, asymptotically, the robust estimator of γ
based on this threshold is 95% as efficient as the nonrobust estimator if the true
distribution is normal. We denote the resulting robust estimator by θ̂RG

r . In the
case ñ = 10, a small number of samples contained fewer than two observations, in
which case they were discarded.

For comparisons of estimators, we computed the Monte Carlo percent relative
bias

RBMC(θ̂) = 100× EMC(θ̂)− θ
θ

,

where EMC(θ̂) = R−1
∑R

r=1 θ̂
(r) with θ̂(r) denoting the estimator θ̂ in the r-th

simulated sample, r = 1, . . . , R. We also computed the Monte Carlo relative
efficiency, using the nonrobust estimator, θ̂NR, as the reference

REMC(θ̂) = 100× MSEMC(θ̂)

MSEMC(θ̂NR)
,

where MSEMC(θ̂) = R−1
∑R

r=1(θ̂
(r) − θ)2.

Table 6 shows the relative bias and the relative efficiency of three Horvitz–
Thompson type estimators. The relative efficiency was computed with respect to
the Horvitz–Thompson estimator. As expected, the Horvitz–Thompson estimator,
θ̂HT showed a negligible bias in all the scenarios. The robust estimators θ̂RHT

cb and
θ̂RHT

mse were slightly or moderately biased, as expected. The robust estimator θ̂RHT
cb

showed a smaller bias than θ̂RHT
mse in all the scenarios. For the populations that did

not contain any outlier, both robust estimators were slightly less efficient than the
Horvitz–Thompson estimator with a value of relative efficiency ranging from 100
to 108. For the populations with outliers, the robust estimators were generally more
efficient than the Horvitz–Thompson estimator. The benefits of using a robust es-
timator over the Horvitz–Thompson estimator were much more apparent when the
sample size was smaller. For example, with an expected sample size equal to 20
and expected sampling fraction equal to 0.02, the value of relative efficiency cor-
responding to θ̂RHT

cb was equal to 65%, whereas it was equal to 58% for θ̂RHT
mse . For

smaller expected sample sizes such as ñ = 10 and ñ = 20, θ̂RHT
mse performed bet-

ter than θ̂RHT
cb in terms of relative efficiency, but seemed slightly less efficient than
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θ̂RHT
cb for larger expected sample sizes such as ñ = 50 and ñ = 100. These results

suggest that minimizing (24) can be viewed as a good alternative to minimizing the
estimated mean square error, while being much simpler to implement in practice.
For a given expected sampling fraction, the relative bias of the robust estimators
decreased as the expected sample size increased. Also, the relative efficiency ap-
proached 100 as the expected sample size increased. These results are evidence
that θ̂RHT

cb is design-consistent as discussed in Section 3.4 and suggest that θ̂RHT
mse is

also design-consistent, although we did not provide a formal proof of consistency
for the latter.

We now turn to the ratio type estimators. Table 6 shows the relative bias and
the relative efficiency, with respect to the standard ratio estimator, of three ratio
type estimators. For the populations with no outlier, the standard ratio estimator
and the robust estimators showed almost identical performances in terms of both
relative bias and relative efficiency. It is worth noting that both robust estimators
were never less efficient than the standard ratio estimator. For the populations con-
taining outliers, the robust estimators showed a moderate bias, as expected. Once
again, the robust estimators were significantly more efficient than the standard ratio
estimator, especially for ñ ≤ 50. Once again, the results suggest that both robust
versions of the ratio estimator are design-consistent. Finally, it is worth noting
that the method of estimating the conditional bias made little difference in terms
of relative bias and relative efficiency, especially for ñ ≥ 50. This suggests that
estimating the conditional bias in a nonrobust fashion may prove useful in practice
since it is easy to implement.

6 Discussion

We have shown that the conditional bias can be useful for deriving robust esti-
mators in finite population sampling. Implementation of these estimators can be
done by modifying either the y-values or the design weights of sample units. For
instance, the robust estimator θ̂RHT given by (16) can be expressed as θ̂RHT =∑

i∈s diỹi with ỹi = yi − αid
−1
i BHT

1i and αi = 1 − ψ(BHT
1i )/BHT

1i . For Poisson
sampling, we have ỹi = yi {1− αi(1− πi)}. Noting that 0 ≤ αi ≤ 1 and assum-
ing that yi > 0 for all i, it follows that yi/di ≤ ỹi ≤ yi. That is, if the conditional
bias for unit i is small, its y-value reduces to its original value, yi, whereas the
value of units with a large conditional bias is reduced. Alternatively, θ̂RHT can be
written as θ̂RHT =

∑
i∈s d̃iyi, where d̃i = di − αiy

−1
i BHT

1i . In the case of Pois-
son sampling, we have 1 ≤ d̃i ≤ di. Therefore, if the conditional bias for unit i
is small, its weight reduces to its original weight, di, whereas the weight of units
with a large conditional bias is reduced. The weights d̃i cannot be smaller than 1,
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f ñ θ̂HT θ̂RHT
cb θ̂RHT

mse
Populations with no outlier

0.02 10 −0.0 (100) −9.9 (107) −11.3 (108)
20 −0.0 (100) −5.0 (104) −6.0 (105)

100 0.1 (100) −0.8 (100) −1.3 (101)
0.1 50 −0.0 (100) −1.9 (101) −2.4 (102)

100 −0.1 (100) −1.0 (101) −1.3 (101)
500 0.0 (100) −0.2 (100) −0.3 (100)

Populations with outliers
0.02 10 0.4 (100) −15.7 (55) −23.7 (42)

20 −0.0 (100) −10.2 (65) −16.1 (58)
100 −0.1 (100) −5.3 (93) −10.0 (95)

0.1 50 −0.1 (100) −7.5 (72) −12.3 (74)
100 −0.0 (100) −4.9 (88) −7.2 (94)
500 −0.0 (100) −1.6 (100) −2.3 (103)

Table 1: Monte Carlo percent relative bias and relative efficiency (in parentheses)
of three Horvitz–Thompson type estimators

which is intuitively appealing.
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Appendix 1

Proof of the existence of a solution to ∆(c) = −(B̂HT
min + B̂HT

max)/2

Let b(j) (j = 1, . . . , n) be the j-th smallest B̂HT
1i , i ∈ S. Thus, b(1) = B̂HT

min and
b(n) = B̂HT

max. Let also a(j), j = 1, ..., n, be the j-th smallest |B̂HT
1i |, i ∈ S. Finally,

let kj ∈ S be the sample unit for which |B̂HT
1kj
| is the j-th smallest (a(j) = |B̂HT

1kj
|)

and z(j) be the sign of B̂HT
1kj

(z(j)a(j) = B̂HT
1kj

). It can be observed that, if the Huber
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f ñ θ̂G θ̂RG
nr θ̂RG

r
Populations with no outlier

0.02 10 −0.1 (100) −0.2 (97) −0.1 (100)
20 0.0 (100) 0.0 (97) 0.0 (100)

100 -0.0 (100) −0.0 (99) −0.0 (100)
0.1 50 0.0 (100) −0.0 (99) 0.0 (100)

100 −0.0 (100) −0.0 (98) −0.0 (100)
500 −0.0 (100) 0.0 (100) 0.0 (100)

Populations with outliers
0.02 10 −0.6 (100) −5.8 (54) −7.0 (48)

20 −0.3 (100) −4.6 (54) −5.1 (48)
100 −0.1 (100) −4.8 (87) −4.6 (86)

0.1 50 0.0 (100) −5.1 (70) −5.4 (68)
100 0.1 (100) −3.1 (82) −3.2 (81)
500 0.0 (100) −1.5 (99) −1.4 (99)

Table 2: Monte Carlo percent relative bias and relative efficiency (in parentheses)
of three ratio type estimators

ψ function is used, the function

∆(c) =
∑

i∈S

{
ψ
(
B̂HT

1i ; c
)
− B̂HT

1i

}
=

∑
j:a(j)≥c

z(j)(c− a(j))

is continuous and piecewise linear in c (c ≥ 0). The points where its derivative
changes are at a(j) (j = 1, . . . , n). We use this property of ∆(c) and the inter-
mediate value theorem to show the result. We consider five cases: (i) b(1) < 0,
b(n) > 0 and b(n) > −b(1): we have a(n) = b(n) and let j1 be the integer such that
a(j1) = −b(1). Thus, ∆(a(n)) = 0 and it is not difficult to show that

∆(a(j1)) = −
∑

j:a(j)≥a(j1)

(b(1) + a(j)) ≤ −(b(1)+b(n)) < −(b(1)+b(n))/2 < 0 = ∆(a(n)).

By the intermediate value theorem, there exists a solution cmin which is such that
a(j1) < cmin < a(n). (ii) b(1) < 0, b(n) > 0 and b(n) < −b(1): an argument similar
to (i) can be made in this case. (iii) b(1) < 0, b(n) > 0 and b(n) = −b(1): we
can easily see that cmin must be such that ∆(cmin) = −(b(1) + b(n))/2 = 0. This
equation is satisfied for any cmin ≥ a(n). (iv) b(1) ≥ 0 : we have ∆(a(n)) = 0 and

∆(0) = −
n∑

j=1

b(j) ≤ −(b(1) + b(n)) ≤ −(b(1) + b(n))/2 ≤ 0 = ∆(a(n)).

18



By the intermediate value theorem, there exists a solution cmin which is such that
0 ≤ cmin ≤ a(n). (v) b(n) ≤ 0 : an argument similar to (iv) can be made in this
case. Finally, there may be multiple solutions to the equation ∆(c) = −(b(1) +
b(n))/2 because ∆(c) is not necessarily monotone, except for cases (iv) and (v)
which yield a unique solution.
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