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ABSTRACT: This paper develops a new approach to robust
specification testing for dynamic econometric models. A novel
feature of these tests is that, in addition to the estimation under
the null hypothesis, computation requires only a matrix linear least
squares regression and then an ordinary least squares regression
similar- to those employed in popular nonrobust tests. The
statistics proposed here are robust to departures from )
distributional assumptions that are not being tested. Moreover, the
statistics may be computed using any YT-consistent estimator.
Several examples are presented to illustrate the generality of the
procedure. Among these are conditional mean tests for models
estimated by weighted nonlinear least squares which do not require
correct specification of the conditional variance, and tests of
conditional means and variances estimated by quasi—maximum

likelihood under nonnormality. Also, some new, computationally

simple tests for the tobit model are proposed.






1. Introduction

Specification testing has become an integral part of the
econometric model building process. The literature is extensive,
and model diagnostics are available for most procedures used by
applied econometricians. By far the most popular specification
tests are those that can be computed using ordinary least squares
regressions. Examples are the Lagrange Multiplier (LM) test,
versions of Hausman's [B8] specification tests, White’'s [14]
information matrix (IM) test, and an LM version of the
Davidson—MacKinnon [3] test for nonnested hypotheses. In fact,
Newey [10] and White [16] have shown that most of these tests are
asymptotically quiValent to one of the conditional moment (CM)
tests considered by Newey [10], Tauchen [11], and White [161]. In
the maximum likelihood setting with independent observations, Newey
[10] has shown how to compute CM tests using auxiliary regressions.
White [16] has extended Newey's results to a general dynamic
setting. il B

The simplicity of the regression—-based procedures currently
used is not without cost. In many cases the validity of these tests

relies on certain auxiliary assumptions holding in addition to the

relevant null hypothecis. For example, in a nonlinear regression
framework where the dynamic regression function is correctly
specified under the null hypothesis, the usual LM regression-—based
statistic is invalid in the presence of conditional
hetercskedasticity. The regression form that falls out of Newey

[10] or White [16] is also usually invalid. Other examples are the



various tests for heteroskedasticity: currently used regression
forms require constancy of the conditional fourth moment of the
regression errors under the null hypothesis. Finally, LM and other
CM tests for jointly parameterized conditional means and variances
are inappropriate under nonnormality. All of these situations are

characterized by the same feature: validity of the tests requires

imp;;iziénuo¥"more than just fﬁe hypotheses Df infe?ést under HO'
Furthermore,ltraditional testing procedures require that the
estimators used to compute the statistics are efficient in some
sense under the null hypothesis. It is important to stress that
this is not merely nitpicking about regularity conditions.

Due primarily to the work of White [12,13,14,15], Domowitz and
White [4], Hansen [&], and Newey [10], there now exist general
methods of computing robust statistics. Unfortunately, for general
clacsses of specification tests, computing robust versions using
currently available methods is burdensoée. This is particularly
‘true of LM-like tests where, at least based on currently available
formulas, analytically solving for the derivative of the implicit
constraint function and computing generalized inverses are needed
for computation. Several authors have even claimed that, contrary

to the case

a
~h
r-'.

he wWald cstatistic, there are no us2ful robust ftorms
of the LM statistic.

It is a safe bet that the substantial analytical and
computational work reguired to obtain robust statistics is the
reason they appear relatively infrequently in applied econometric

work. Evidence of this statement is the growing use of the White

I



[12] heteroskedasticity—robust t-statistics, which are now computed
by many econometrics packages. In the same papers one rarely sees
an LM test, a Hausman test, or a nonnested hypothesis test carried
out in a manner that is robust to second moment misspecification.
This is unfortunate since these tests are inconsistent for the

alternative that the conditional mean is correctly specified but the

cogdigional variance has been misspecified. In other words, the

;
standard forms of well known tests‘can result in inference with the
wrong asymptotic size while having no systematic power for testing
the auxiliary assumptions that are imposed in addition to HO'

This paper develops a unified approach to calculating robust
statistics which I believe is easily accessible to applied
econometricians. It is shown that a general class of tests can be
obtained using only linear least squares regressions. These tests
maintain only the hypotheses of interest under the null, and are
applicable to specification testing of dynamic multivariate
conditional means and/or conditional variances without imposing
further assumptions on the conditional distribution (except
regularity conditions). In classical situations, these tests are
asymptotically equivalent to their traditional counterparts under
the additional assumptions needed to make the standard tests valid.
Moreover, because the statistics mav be computed using any
YT—-consistent estimator, the methodology leads to some interestiﬁg

new tests in cases where the computational burden based on previous

approaches is prohibitive.

2

The remainder of the paper is organized as follows. Section 2

!
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discusses the setup and the general resulte, Section 3 i1llustrates
the scope of the methodology with several examples, and Section 4
contains concluding remarks. Regularity conditions and proofs are

contained in an appendix.

2. Beneral Results

t): t=1,2,...} be a sequence of observable random

vectors with Yt 1:xJ, Zt 1xK. Yt is the vector of endogenous

Let {(Y,,Z

variables. Interest lies in explaining Yt in terms of the

explanatory variables Z, and (in a time series context) past values

t

of Yt and Zt. For time series applications, let Xt =

(Z Yl’zl) denote the predetermined variables and let

eV e-17feg00 0o
K+ (J+K) (t-1)

Yt < R denote the support of Xt. For cross section
applications, set Xt = Zt'
The conditional distribution of Yt given Xt = xy always exists

and is denoted Dt(-lx ). Assume that the researcher is interested

t

in testing hypotheses about a certain aspect of Dt’ for example the
conditional expectation and/or the conditional variance. Note that,

because at time t the conditioning set contains {(Yt—l’zt—l)"'°’

(Yl’zl)}’ the assumption is that interest lies in getting the

dynamics of. the relievant aspects of D, correctly specified. For

t

cross section applications, this point is of course irrelevant.
Many specification tests, including those for conditional means
and variances, have asymptotically equivalent versions that can be

derived as follows. Let nt(Yt,X «8) be an Lx1 random function

t
defined on a parameter set ® < RP, and let @t(xt,e) be an Lx1



function also defined on @. Note that N depends on Yt whereas e

depends only on the predetermined variables. The null hypothesis of

interest is expressed as
. L] . = -« = - 2-1
HO E[nt(yt'xt'eo)lxt] @t(xt,eo)_ for some 90 e @, ( )

N
The leading case, and the one emphasized in this paper, is when

{wt(xt,e): Ry e.ft, 8 € @} is a parameterized family for the

conditional mean and/or conditional variance of Yt given Xt = Xy
The validity of (2.1) can be tested by choosing functions of the

predetermined variables X, and checking whether the sample covariances

t
between these functions and

¢t(Yt,Xt,eD) = nt(Yt,Xt,eD) = @t(xt’eo)

are significantly different from zero. It is useful to allow the

indicators to depend on @ and some nuisance parameters. Let rm e Il
denote a Nx1 vector of nuisance parameters, and let & = (6’,n’)’ be
the Mxl vector of all parameters where M = F+N. Let At(Xt,é) be an

LR matrix and let Ct(Xt,é) be an Lxl, symmetric and positive

semi—definite matrix. Assume the availability of an estimator eT such

LR L YN

that T“‘(GT - 60) = Dp(l) under HO' Also assume that the nuisance

parameter estimator ;T is such that Tl/z(;r.T - n?) = Dp(l), where {n?:

T=1,2....} is a nonstochastic sequence in Ii. Then a computabie test

statistic is the BGx1 vector

0>
=3
rt
|
.6
r+
h
1

T Pt Pal Pl T .
‘ E AC ¢, = T E A

~

where """ denotes that each function is evaluated at eT or 6T =
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(é%,ﬁ%)' (note that the dependence of the summands in (2.2) on the
sample size T is suppressed). From a thearetical standpoint, the
p.s.d. matrix Ct could of course be absotrbed into At’ and Py could be
absorbed into nt, but the structure in (2.2) is exploited below to
generate regression—based tests with the additional property that they
are asymptotically equivalent to standard tests under classical
éircumstances.

]
To use (2.2) as a basis for a test of (2.1), the limiting

distribution of

£ = T2 y A C g (2.3)
T - tTtt
t=1
under H, is needed. In general, finding the asymptotic distribution

0

o,

of ET entails finding the limiting distribution of

T
-1/
2 = T2 5 A9c9° (2.4)
T & t t7t
t=1

{values with "o" superscripts are evaluated at 60 or 5$ = (eé,ng’)')
and the limiting distribution of Tl/‘i(eT - eD) (the limiting
distribution of Tl/‘(nT = n?) does not affect the limiting
distribution of %T under Ho). Because E? is the standardized sum of

a vector martingale difference seguence under HO’ its limiting

distribution is frequently derivable from a central limit theorem.

1 ]
- -—

In standard cases 77 ¢

N
GT = 60) will also be asymptotically normal.

=4 . . . a]
Biven the asymptotic covariance matrices of Z_ and

-_a 7
T T 'o) and

differentiability assumptions on At’ c and ¢t, it is possible to

t!
derive the asymptotic covariance matrix of ET by the usual mean

~

value expansion. In principle, deriving a gquadratic form in ET

2
which has an asymptotic X distribution is straightforward. But



nothing guarantees that the resulting test statistic 1s easy to

compute.

In specific instances test statistics based on ET can be
computed from simple OLS regressions. For example, Newey [10] and

White [16] have shown how statistics based on covariances of the

form (2.2) can be computed from simple auxiliary regressions when eT

is the maximum likelihood estimator and the conditional density is
i

correctly specified under HO'

In general, the regression—-based statistics appearing in the
literature have the drawback that they are not robust to certain
departures from distributional assumptions. For example, suppase

interest lies in testing hypotheses about the conditional

expectation of Y, (taken to be a scalar for simplicity) given Xt'

t

The parametric model is

{ X B c = 2.3
{m, ( t,e) e fk_ e e 2}, ( )

t t

where ©® < RF, and the null hypothesis is

: E = =1,2 2.
Hqyt E(Ytht) mt(xt’eo)’ some eo e ® t=1,2,.... (2.6)
Setting L = 1, Ct(Xt,é) =1, nt(Yt,Xt,e) = Yt’ and wt(Xt,e) =
m, (X _,8) in (2.1) yields a class of tests based on
_1 T s A
T 7L 2 (X600, (2.7)
o= Tt T t
where Ut = \t = mt(Xt,eT), GT is the nonlinear least sgquares (NLLS)

estimator, xt(Xt,é) is a 1xQ vector function of misspecification
indicsators, and & is a vector contzining © and possibly other
nuisance parameters. The standard LM approach leads to a test based

on the (uncentered) R® from the regression



ES

N s _ 7
U, on Igm . A t=1l,...,T. (2.8)

Under HO and conditional homoskedasticity, TR™ is asymptotically Xa.

Thus, the LM approach effectively takes the null hypothesis to be

2
H_.‘“: H_. holds and V(Ytlxt) = for some c; >0, t=1,2,..- (2.9)

0 0

oM

but it is of course an inconsistent test for the alternative

H1 3 HO holds but H0 does not.

The regression form from Newey [10] and White [161 is

”~ -~ , -
1 on UtVemt, utxt t=1l,...,To (2.10)

-
In general, HO' is also required for TR® from this regression to be
asmptotically XU. -

18]

There are many other examples where the goal is to test
hypotheses about certain aspects of a distribution but auxiliary
assumptions are maintained under the null hypothesis in order to
obtain a simple regression-based test. Because the limiting
distributions of test statistics can be sensitive to violations of
the auxiliary assumptions, it is important to use robust forms of
tests for which H. includes only the hypotheses of interest. But as

0

mentionad above, applying the standard mean—-value approach to the

general statistic ET results in a statistic for which computation
can be prohibitively burdensome.

A relatively simple statistic is available if gT is
appropriately modified. Assume that eo e int(®) and that L is

differentiable on int(®). Then, instead of using the indicator

K%Ct, the idea is to first purge from tt/‘ht its linear projection
onta bi/évewt. That is, consider the modified statistic



T
: -1/2 ~1/27 SIS ~ R
— - ’ 17
ET = r [Ct At Ct Ve@tBT] Ct ¢t (2.11)
t=1
where
Ll T A o~ _1T NN
BT tgﬁvewtctve@t tglve@tctAt (2.12)

is the FxQ matrix of regression coefficients from the regression

- 1727 W o L/2Ee _ S > 1=
Ct At on Ct Vewt Elgocogle (2.13)
Equation (2.11) can be writtenm more succinctly as
’NT -
E_ =12 v he (2.14)
T R A =
t=1
where {Kt: t=1,...,T} are the residuals from the regression in

2.13) and
not always

under HO'

~1l/722

¢t = Ct ¢t. It is important to note that ET and ET are

asymptotically equivalent in the sense that ET - ET Bo

In general, the indicators AtCt and [At = VéthT] Ct are

I return to

useful for checking different departures from (2.1).

this issue below.

Even when ET and %T are not asympotically equivalent, 3

used as the basis for a useful specification test. The

D

can be

computational simplicity of a limiting X quadratic form in gT is a

consequence of the following theorem.

Thecrem 2.1:
(i)_ Regularity conditions A.1 in the appendix;
For some eD < int(®) ., -

(8) ELn (Y X, .8 )X, 3 = @ (X..06_ ), t=1,2,...3

i

(b)  ELVgn (Y, X, .® )X, 1 = 0, t=1,2,...3

t

1/2,% o), .
(ed 7 (64 — &) = Op(l).

Azsume that the following conditions hold under HO:



Then

.
) - 2
E = T2 Al - v Bl + o (1)
— t 9 p
t=1
whetre
O T jw] -1 7 fw] DD
BT = tE&E[V 'Ctve t] tE&E[Vewt £ t],

In addition,

il I TR® 9 xé;

-
where R™ is the uncentered r-squared from the regression

- - =
t VethT] t=1,....T (2.13)

and BT is given by (2.12). =

Theorem (2.1) can be applied as follows:

{1) Given At, Ct’ Nps @ys and 6T, caompute A £ Ct’ Mg ©ps and
Vewt, Define At = Ct At’ Vewt = Ct Vemt, and ¢t = C ¢t

(2) Run the matrix regression

A e =1.... 2.16
At on Ve@t t=1, o T ( )
and save the residuals, say Xt;
(3) Run the regression
1 on ¢tAt t=1.....T

-

and use TR~ as asymptotically Xg under HO’ assuming that Kt does not

contain redundant indicators. N

Note that condition (ii.b) is an additional restriction on nt
that must be satisfied in order for (1)-(3) to be a valid procedure
under HO' This assumption rules out certain specification tests,

but is applicable to the leading case of diagnostics for conditional



means (hence conditional probabilities) and/or conditional
variances. These are usually the cases where one would like to be
robust against other distributional departures. =

Assumption (ii.c) is perhaps more properly listed as a

reqularity condition, but it is placed in the text to emphasize the

generality of Theorem 2.1. Having a YT-consistent estimator of 6?

is a fairly weak reqguirement, and allows relatively simple
specification tests when eD (as well as n?) has been estimated by an
inefficient procedure. An application to the tobit model is given
in Section 3.

An important issue, mentioned earlier, is the relationship
between %T and ET' There is a simple characterization of their

asymptotic eguivalence.

Lemma 2.2: Let the conditions of Theorem 2.1 hold. If, in

addition,

(iiiy T /7 : V. 0.'Coln, - @) = (1)
L Ve 'Cilng = o Optt/s
t=1
then
c - c = [ | 2
ST ET Dp(l). (2.17)

The importance of this lemma is that if (iii) bolds then the
modified indicator is testing for depaftures from HO in the same
directions as the originally chosen indicator. When (2.17) holds, the
statistics based on guadratic forms in %T and ET are asymptotically
eguivalent. This is useful when comparing tests derived from Theorem
2.1 to more traditional forms of tests.

Condition (iii) is usefully interpreted as the sample covariance

11



/ ¢t: t=1,...,T} being =zero. It

I

J1/2 0 T
between lCt Vemt.

t=1,...T} and {éi
is trivially satisfied if

T ~
tglvewt(e)'Ct(G,nT)[nt(G) - wt(e)] = O (2.18)

is the defining first-order condition for éT. This is freguently the

case, particularly when 6. is a quasi-maximum likelihood estimator

T
(GMLE) of the parameters of a conditional mean (see Wooldridge [19])
or:of the conditional mean and conditional variance (see Exzample .3
below). Note that in these cases (2.17) holds (trivially) for local
altetrnatives. Therefore, the difference between the test based on

L

T and a more traditional nonrobust test based on ET (e.g. an LM
test) is simply that different estimators have been used for the
moment matrix appearing in the gquadratic form. Consequently, under
the conditions required for the classical test to be valid, the two
procedures are asymptotically equivalent under local alternatives.

-3

The robust test has the advantage of having a limiting noncentral x*

—

distribution even when the auxiliary assumptions are violated under
local alternatives (e.g. heteroskedasticity is present in a dynamic

regression model].

Z. Examples of Regression—EBased. Robust Tests

Example Z.1: Let Yt be a scalar and let {m_(x_,R): x_ € fE, B € B},

t

B < RF, be a parametric family for the conditional expectation of

Yt given X The null hypothesis is

£-
. = = 2 o

Ho. E(Ytlxt) mt(xt’Bo)’ some BO € B, t=1,2,.... (Z.1)

Let {ct(xt,a): Xy o€ ft, x € A} be a seguence of weighting functions



-~

such that Ct(x &) > 0, and suppose that &T is an estimator such

172, (a] .
that T (aT = a?) = Op(l), where {aT} < A. It is ngt assumed that

t

{ X, sX): % . i ' - Th
Lct(wt_oc) N e.ft_ x € A} contains a version of V(Ytht) e

researcher merely chooses the set of weights {ct(xt,aT)} and

performs weighted NLLS (WNLLS). The WNLLS estimator BT solves

T ”~
S tEIVBmt(B)'EYt - m (B)1/c (&) = O. (3.2)
A general class of diagnostics is based on
T ~ ”~ -1 ”~
’ - z 3
tglxt(éT) [Ct(aT)] [Yt mt(BT)] (3.3)

where & can contain B, « and other nuisance parameters. Letting & =

B Ct(5) = [ct(a)]_l, nt(e) =Y and wt(e) = mt(B), it is easy to

t.'

see that conditions (ii.a) and (ii.b) of Theorem Z.1 hold under HO'

Condition (ii.c) will also usually be satisfied. Because (iii) of
Lemma 2.2 holds, the statistic obtained from Theorem (2.1) is
asymptotically equivalent to the statistic based on (3.3). The
following procedure is wvalid under HO’ without any assumptions about
V(yt[xt) {except, of course, reqularity conditions):

”~

(i) Estimate Bo by WNLLS. Compute the residuals U the gradient

t 9
s : x S R ~ A.__l/zrx ~
V.m, (B, ). and the ind . = =
5™y Br). & ndicator xt(5T) Define Ut = cy Ut’ Vsmt =
il ~ ~—1/20
cC < g =] - -
£ Bmt' and Xt ct Xt’
{ii) Regress xt on'VBmt and keep the residuals, sav it;

-~

(iii) Regress 1 on Utxt and use TR™ from this regression as

-
asymptotically Xa under HO'

The indicator it can be chosen to yield heteroskedasticity-

robust LM tests, Hausman tests based on two WNLLS regressions which



do not assume that either estimator is relatively efficient, and
tests of nonnested hypotheses, such as the Davidson-MacKinnon [3]
test, which are valid in the presence of heteroskedasticity. These

tests are considered in more detail in Wooldridge [19].

~

Example 2.2: Suppose naw, in the context of Example 3.1, ct(a) is

set to 1 and the goal is to test the assumption of homoskedasticity
(actually, the goal is tp test the joint assumption of correctness
of the conditional mean and homoskedasticity). In particular, the

null hypothesis is

oM

Hot ECQY X)) = m (X WB_)s VIY [X)

o o some Bo e B, (3.4)

some c; S0 Ol =11 S

In the notation of Theorem 2.1, © = (B’',07)’. Let BT be the NLLS
estimator, and let Ut be the NLLS residuals. Let Kt(Xt,é) be a 1x0@
vector of indicators. Most tests for heteroskedasticity are based

on a statistic of the form

T

- T T AN TU. - ofd (3.95)
=1 t t T
o —1] ~2
where G; is the usual estimator T "L Uz. Choosing X(Xt,é) to be the

t=1

nonconstant, nonredundant elements of vech [VBmt(B)’VBmt(B)] leads
to the White [12] test for heteroskedasticity. Choosing Kt(Xt,6) =

X where Xt is a 1:x8 subvector ot X leads to the Lagrange

t1* 1 t?

Multiplier test for a general form of heteroskedasticity (see

B S i §) = u (R) u (8))
Breusch and FPagan [1]). Setting xt(xt, ) = ( -1 Bls----U,
gives Engle’s [3] test for ARCH.

The correspondences for Theorem 2.1 are L = 1, Ct(é) = 1, ng (@)

14



- ) -

-

= Ut(B), and @t(e) = o . Under H_, E[Ut(BD)IXt] = o, s0 that (1i.a)

0
of Theorem Z.1 is satisfied. Also, B t(B) = ”VBmt(B)U (B). Under
HO’ E[U (B )IX ] = 0 so that E[VB (B )IX l] =0 and (ii.b) is holds.
In this case, the relevant element of V_ ¢, is simply 1. Thus, the

o't

auxiliary regression in the second step of the robust procedure

Laden ] Lade S

Slmply demeans the indicators. Given U;, U;, and a choice of xt,

the X‘ statistic 1s obtained as TR from the regression
|

1 on (Ut_ UT)()\t = KT) t=1,...,T (3.6)

T
where KT T E £ This procedure is asymptotically equivalent to
t=1

the corresponding more traditional forms of the tests under the
additional assumption that E[Uz(BD)lXt] is constant (note that (1i1i)
of Lemma 2.2 is satisfied). Interestingly, the slight modification
in (3.6) (which is the demeaning of the indicators Kt) yields an
asymptotically XE distributed statistic without the additional
assumption of constant fourth moment for Uz. In the case of the
White test in a linear time series model, the demeaning of the
indicators yields a statistic which is asymptaotically equivalent to
Hsieh's [?] suggestion, for.:ia robust form of the White test, but the
above statistic is significantly easier to compute. Rarely does one
care to assume anything about the fourth moment of Yt, so that the
robust regression form in (3.&) seems to be a useful modification.

In the case of the ARCH test, TR® from the regression in (3.6)

; . . 2 "
i1s asymptotically equivalent to TR™ from the regression

~ A ~ A

1 on (U -c )(Ut 1 C ),----(U Cf’)(Ut ) t=Q@+1,...T. (3.7)

GICrT

The regression based form in (3.7) is robust to departures from the

15



conditional normality assumption, and from any other auxiliary
A o
assumptions, such as constant conditional fourth moment for Ut'

Contrast this to the usual method of computing tests for ARCH. M

Example 2.3: Theorem 2.1 can also be applied to models that jointly

parameterize the conditional mean and conditional variance. The

general setup is as follows. For simplicity, let Yt be a scalar,

and consider LM tests which do not assume conditional normality.
The unconstrained conditional mean and variance functions are

{ut(xt,x), mt(xt,x): Yy € I"'} (3.8)

where I ¢ RM. It is assumed that

E(Yt[Xt) = “t(xt’xo)’ V(Yt[Xt) = w (X

t ,xo), some XD e I'. (3.9)

t

Take the null hypothesis to be

Hyt ¥ = r(e,) for some © € ® ¢ R (3.10)
o () o

where P < M and r is continuously differentiable on int{(®). Let

mt(e) = ut(r(e)) and wt(e) = wt(r(e)) be the constrained mean and

variance functions. OMLE is carried out under the null hypothesis.

~

Let ©_ be the estimator of @ under H_., and let Y_ = r(é ) be the

T o OF T T
constrained estimator of xc. Vemt and Vewt are the 1uP gradients of
m, and Wy under HO' Note that Wy =T Wy and Hy = my by definition.

The LM test of (3.10) is based on the unrestricted score of the

-~

quasi-log likelihood evaluated at ¥ The transpose of the score is

_p
~ 2 -
s, (¥)" = qut(x) Ut(x)/mt(x) + wat(x) [Ut(x) = mt(x)]/th(x) (3.11)
C (TeHe ()7 (L0 (¥) 0 U, (%) .
= - ~ o (Q-.l&)
met(x) o] 1/4wt(¥) Ut(x) = wt(x)

16



Evaluating s, at r(e) gives

t
st(r(e)) = At(e) Ct(e)[nt(e) = wt(e)J (Z.13)
where At(e) = [qut(r(e)) : wat(r(e)) 1. Ct(e) is the diagonal
matrix in the middle of (3.11) evaluated at r (o), nt(e)' =
[Ut(r(e)), U:(r(e))], and @t(e)' = [mt(e), wt(e)]. The standardized
score evaluated at ;T is
T |
-1/2 ~
T Y s . (¥,). (3.14)
£=y £t °T

Under H0 and the assumption of conditional normality, TR from the

regression
1 on St t=1,...,T (3.15)
2
is asymptotically Xa, where @ = M -~ P is the number of restrictions

under HO' Unfortunately, this procedure is invalid under

nonnormality. Theorem (2.1) suggests a robust form of the test. In

this case,

E _ 1/wt (0] ~ _ Ut
S & 0 e 5 G2 = w
252 L e 2x1 LU = vy
where Ut = Yt - mt(éT). The transformed gquantities are
~ Vemt/w/'wt - qut/th
ve(‘pt = ~ ~ L] At = ~ ~
Vewt/wt72 wat/thQ
(3.16)
~ _ [ Ut/w/'wt ]
¢t = ~n . ~ =
[uy - wt]/thQ

17



The raobust test statistic is obtained by first running the

regression

= Do
A, on Ve, E= T (3.17)

and saving the matrix residuals {Kt: t=1,...,T}. Then run the

regression

i on ¢£Kt =il e T (3.18)

t -

and use TR™ as asymptotically XS under Ho. Note that the regression

N

(eT) = 0,

in (3.18) contains perfect multicollinearity since Atver

where Ver(e) is the MxP gradient of r. Many regression packages
nevertheless compute an R2; for those that do not, P regressors can

be omitted from (3.18).

Note that the first order condition for eT is simply
T - ~N ~N Fa ~N
tglvewt(eT) Ct(eT)[ﬂt(eT) = wt(eT)]

0, Z.19)

so that the robust indicator is asymptotically equivalent to the
usuwual LM indicatar. The matrix regression in (3.17) is the cost to

. the researcher in quarding against nonnormality. ©®

cxample 3.4: Suppose that Y, is a random scalar censored below

+

rerc, and let th be a 1xP vector of predetermined variables Trom

X & popular model for Y, is the tobit model. The tobit model

t° t
implies that

E(Y,_1Y,>0,X.) = X

» \J-.'_O
£70: % tlB + obm(xtlBD/ob) ( )

0

<)

-

where v(-) is the Mills ratio, oy is the conditional variance

usually associated with the "latent" wvariable, and thﬁo is

conditional mean of the latent variable. From a statistical paint

18



of view, the tobit model is no more sensible than

N(X, & s0°) (3.21)
O

log YtlYt)O,X £1%5

t'\l
((3.21) also seems reasonable for many economic applications). If
(3.21) is valid, «_ and w; can be estimated by OLS of

log Yt on th t=1,...,T

using only the positive values of Yt' Recall that (3.21) implies
2

> = . 2 % 2%

E(YtlYt,O,Xt) explw /72 + X ]. (3.22)

£1%

P A’) .
Let X, = exp[w;/Z + X aT] be the fitted values in (3.22). Then, if

t

I~

the tobit model is true, kt should be statistically insignificant as

Fal A’)
a regressor in equation (3.20). Let BT, U;

estimators of Bo’ c; under HO. These include Heckman’'s [7] two—step

be any YT-consistent

estimators. Let

Ve T Ve T HmiBy

A test which should have some power for testing departures from the

= U v(thBT/cT).

tobit model can be based on the correlation between Ut and Kt.

Unfortunately, the usual LM statistic is invalid for two reasons.

First, V(Yt[Yt>0,Xt) is not constant, and second. the estimators

-~ Eatian

(BT,O;) need not have been obtained from a nonlinear least squares
problem. Nevertheless, a statistic is available from Theorem 2.1.
Let

e, (B.O) = X 8 + crv(thB/cr)
and let v9$t denote the 1 x (P+1) gradient of ey with respect to B
and o, evaluated at (gT’gT)' Then the following procedure is
asymptoticalliy valid:

(i) Run the OLS regression

x- e
on Vetpt

+ t=1,....7

19



and save the residuals Xt.

(1i1) Run the regression

.

1 on utit t=1,...,T
and use TR as asymptotically Xi under HO'

Note that weighted least squares could also be used, where the

‘weight corresponds to the inverse of V(YtlYt>O,Xt) under the tobit

t t o¥t
by xt/Vtt and ¥

model. If c, is an estimate of this variance? replace A, and ¥

e

ewt/ftt, respectively in (i), and replace Ut by
Ut/Vct in (ii}). Although it intuitively makes sense to use the
weighted version, it is not possible to say one approach is better

than the other without more information about the origins of BT and

=M

One can of course change the roles of the models, and test for

o~

+ o, v(X

t1PT b= cue

a significant covariance between Xt = X
residuals based on (3.22). In this case, the purging regression

takes the form
K on exp[g2/7 + X . 1X t=1,...T. (3.23
t T < £19%74 %1 a a

Note that a similar test could be based on competing
specifications for E(YtIXt); that is, the zero as well as positive
observations for Yt can be used. This would require specifying

P(Yt}O]Xt) in the competing model (2.21) such as in Cragg [Z].

~

Finally, many other indicators could be included in A_, such as

t
A

the gradient of the competing conditional mean function: +
EXPEQ;/E + th&T]th in the case of (3.21). I do not know the power

properties of these tests. They are included here primarily to

illustrate the scope of Theorem 2.1. ®



4. Conclusions

This paper has developed a general class of specification tests
for dynamic multivariate models which impose under HO only the
hypotheses being tested (e.g. correctness of the conditional mean

and/or correctness of the conditional variance). It is hoped that

the computational simplicity of the methods proposed here removes
some of the barriers to using robust test statistics in practice.
The possibility of generating simple test statistics when

Tl/‘(éT = GD) has a complicated limiting distribution should be

useful in several situations. The tobit example in Section 3 is
only one case where the conditional mean parameters are estimated
using a method other than the efficient WNLLS procedure. Another
example is choosing between log—-linear and linear-linear
specifications. In this case, both models can be estimated by OLS,
and then transformed in the manner of the tobit example to obtain
astimates of E(Ytlxt) for the separate models.

Theorem 2.1 can be extended to certain unit root time series

models. The initial purging of Ct Ve@t from Ct hAt in some cases
results in indicators that are effectively stationary. This is the
case for the LM test in linear time series models where the
regressors excluded under the null hypothesis are individually
cointegrated with the regressors included under the null.
Statistics derived from Theorem 2.1 have the advantage over the
usual Wald or LM tests of being robust to conditional

heteroskedasticity under H Extending Theorem 2.1 to general

0"



nonstationary time series models is left for future research.

PP



Footnotes

2 , o L , o .-
1. If E[Ut(eo) vemt(eo) xt(éT)] = 0 and E[vemt(eo) xt(ST)] 0 then

the regression form in (2.10) is valid in the presence of
heteroskedasticity. These orthogonality conditions occur only in
limited cases. One example is testing for serial correlation in a
static regression model (E(Ytlxt) depends only on Zt under HO) with
static heteroskedasticity (V(YtIXt) depends only on Zt under HO).

’ D e - - -
If E[Vemt(eo) Kt(5T)] = 0 under Ho then a simple test which is

robust in the presence of arbitrary heteroskedasticity is TR2 from
the regression
1 on utxt BBl o oog g

that 1is, UtVemt can be omitted from the auxiliary regression.

2. Hal White has suggested an interesting extension to Theorem 2.1.
First, there is no need to split ¢t(Yt,Xt,e) into nt(Yt,Xt,e) and
@t(xt,e). Then, instead of imposing (ii.b), use it(Xt,gT) in the
purging regression, where it(Xt,e) = Ee[ve¢t(Yt,Xt,e)]Xt]. Note
that it is now important to index the expectation operator by ©.
This expectation is the common expectation of the equivalence class

Pe ot probability measures defined as Tollows: F e P(©) if and only

;<
P

EP[¢t(Yt,Xt,e)iXt] = 0
and .

E_LV_ ¢

Vg, (Y X 8 [X, 1 = &, (X, ,0) t=1,24...-

The need to compute ét(Xt,e) generally imposes additional

—~ T

-t



restrictions under the null hypothesis. Hawever, this more general
setup would allow robust tests in certain situations not covered by
Theorem 2.1, such as tests for dynamic linear models estimated by

two stage least squares.



)
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Mathematical Appendix

For convenience, I include a lemma which is used repeatedly in

the proof of Theorem 2Z.1.

Lemma A.1: Assume that the sequence of random functions {GT(NT,G):
e e ® T=1,2,...}. where GT(NT,-) is continuous on ® and ® is a
compact subset of RP, and the sequence of nonrandom functions
{aT(e): 6 e ®, T=1,2,...)}, satisfy the following conditions: i

4 e P -
(1) sup |Qp (W ,@) - B ()] % 0;

(S =C)
(ii) {ET(G): & e ©, T=1,2,...} is continuous on ©
uniformly in T.
Let éT be a seguence pf random vectors such that éT = e? Bo

where {9?} c O. Then

L 1} — D p
@ (W ,6-) ~ B (e5) 5 o.

Froof: see Wooldridge [18, Lemma A.1l, p.229]. =
A definition simplifies the statement of the conditions.

Definition A.1: A sequence of random functions {qt(Yt‘Xt’e): e € O,

t=1,2,...3, where q (Y, .X ,") is continuous on @ and & is a compact

t

subset of RP, is said to satisfy the Uniform Weak Law of Large

Numbers (UWLLN) and Uniform Continuityv (UC) conditions provided that

T
G =i T a.(Y,,%X,.0 - E[q (Y, ,X, .0)]] 2o
B=B t=1
ang
(1i) AT T E[qt(Yt,Xt,e)]: 6 e@, T=1,2,...3 is 0O(1) and
t=1

continuous on ® uniformly in 7. =



In the statement of the conditions, the dependence of functions

on the variables Yt and Xt is frequently suppressed for notational

convenience. If a(®) is a 1xL function of the Px1 vector © then, by
convention, Vea(e) is the LxF matrix Ve[a(e)'], If A(B) is a Q=L

matrix then the matrix Veﬁ(e) is the LOA%P matrix defined as

Veﬂsé)i = F??Al(e)': ...V!Veﬂu(e)']

where Aj(e) is the jth row of A(®) and Veﬁj(e) is the LxP gradient

]
of Aj(e) as defined as above. For simplicity, for any L:x1 vector

function ¢, define the second derivative of @ to be the LFxP matrix

~

Vge(®) = VIV e(e) .

Conditions A.1l:

. P ; .
(1) © c R and 11 ¢ RN are compact and have nonempty interiorsg

(ii) &_ = int(e), {ng: T=1,2,...} < int(M) uniformly in T3
(iii) (a) {nt(yt,xt,e): ® € ®} is a sequence of Lul functions
such that nt(',e) is Borel measurable for each & € @ and nt(yt,xt,')

is continuously differentiable on the interior of ® for all yt,xt,

N

t=1,

G0 oo 2
{(b) {wt(xt,e): © € ®} is a sequence of Lx1 functions such

that ¢, (-.,8) is Borel measurable for each © € © and wt(x ) is twice

t.'
continuously differentiable on the interior of ® for all Ky

t=1,

)

{c) {Ct(xt,é): & € A} is a sequence of LxL matrices

satisfying the measurability requirements, Ct(xt,é) is symmetric and

positive semi-definite for all x, and &, and C_(x_,") is

t L

differentiable on int(A) for all Xyw t=1.2,...3



(d) TA, (X

& §): § € AY is a sequence of LxQ matrices

t?

satisfying the measurability requirements, and At(xt,-) is

differentiable on int(A) for all L eS8l 025 6o o B
) 1/’-\ o
(iv) (a) (9 = GD) = Up(l),
oS oA
by TY®(A. - 29 = 0 (1)

T T

(v)  (a) {V, L (©)°Cy (6)V (6)} and {V (6)'Ct(5)At(5)

o¥t
satistfy the UWLLN and UC conditions;

T
(b) E E[V 'C v @D]} is uniformly positive definite;
t=1 “r 6t
(vi) (a) {Ve@t(e)'ct(é)ve“t(e)}’ {[IP ® (6) c (S)JVe@t(e)}s

and {Vewt(e)'[I ® ¢t(e) JVSC (&) 3

satisfy the UWLLN and UC conditions;

-1/2 o, . .
(b)y T tzlve N ct¢t = 0,(1);

(vii) (a) {At(S)'Ct(S)Vent(e)}, {At(5)'Ct(5)Vewt(e)},

[l @ ¢t(9)'Ct(5)]V Ay (&6)°3

a 5

{[IP ® ¢t(9)'Ct(5)]V5wt(e)},

{At(é)'[IL ® ¢, (8)'1V.C _(6)12, and

&t
@t(S)'[I @ ¢t(e)']V5C (S5)3

satisfy the UWLLN and UC requirements:

T
3 q =B _ =i o > o, ,0_ (2} a]
(viii) (a) = = T tglE[(At V B ¥’ C t Ct(At VethT)]
is uniformly p.d.:
by =2"1/=7i/2 L 9 N(O,I);:
(b) =T tZl(A . eth )’ C t -+ (O, Q’?

(c) {At(S)'Ct(6)¢t(e)¢t(e)'Ct(S)At(S)},
{At(5)'Ct(5)¢t(e)¢t(e)'Ct(é)ve@t(e)}s and
wt(e)'Ct(5)¢t(e)¢t(e)'Ct(G)Vewt(e)}

satisfy the UWLLN and UC conditions. ®



Froof of Theorem 2.1: First, note that assumptions (i1i)—-(vi) ensure

existence of B? and imply that BT = B? = op(l) by Lemma A.1l.
Therefore,
T
2 _ _1/"- -~ 3 ~ I
ET = T [A VethT] Ct¢ (a.l)
t=1 T
iy o,,.—1/2 Al
s (BT = BT) T E t Ct¢t.

Consider the term post-multiplying (BT = BT)’, A standard mean

value expansion about 6?, assumption (vi.a), and Lemma A.1 yield

—1/2 - —1/~ D o o -
E Ve t t¢t T E V @y t¢t (a.22)
—1T D, O o O, .O.2 O 172 =
+ T tglxvewt Ctve¢t + [IP ® ¢t CtJVewt} T (eT - 0 )
T D o 172, 7
¢ 2 - —
+ T E L[I ® ¢t ]V5CtJ T (5T 50) + Dp(l).

t=1
The first term on the right hand side of (a.2) is Dp(l) by (vi.b).

By (vi.a) and (iv.a,b), the terms in lines two and three of (a.Z2)

are also Dp(l). Therefore,
T

B | . 1/:Elve$t Et;t = 0_(1). (2.3)
Along with ET = B$ = 0 (1), this establishes that under HO’

o -1/ T -'\ > o ~ A

ET = tE ve“’tBT]'Ct"t + op(l)- (a.4)

A mean value expansion, assumption (vii), and Lemma A.l1 yield

. ~1/27
€. = T [A - Y :B$] c2¢2 (a.S)
t=1
.
-1 (=} 0_0 o (=} o 0.2 D 172 2
-V [3 - [3 [3 —
T tgl{[At e?tBT1 CiVety ~ By llp @ ¢ "CilVee 3 T (& = 6,)
.
+ Tlg 1y e o2 e21v, AT+ (A oPBD1 1 & ¢3717,C
L2 t “t- 60t t Ve®tBr s
1722 o
T S8, - 8D

30



+ o (1).
P

Consider the second line of (a.3). It must be shown that the
average appearing there is Dp(l) under HO' First, note that

T T

T TR O = T e el o)
= T'1£ [A2-7_¢7B21'CO9 2.
- - - R AR R
By (ii.b) of the text, E[ve“ilxt] = O under H,. Note that Ag, ve@g,
and Cz depend only on Xt' Also, B? is defined such that
7‘12 EC(AD-v_ ¢ By cov 21 = 0 (a.7)
= t et T’ "t et ) )

The regularity conditions imposed imply that each of the averages on

the right hand side of (a.6) satisfy the WLLN. Therefore

1 0.0 o
T = . = i .B
tEl[A VethT] Ctve¢t Dp(l) (a.B)
Because E[¢2|Xt] = O under Ho, it is even easier to show that the
S . . i/72 2
remaining sample averages in (a.3) are op(l). Combined with T (6T
- 6?) = Dp(l) this establishes the first conclusion of the theorem:
' —i/TTh--o 0.0 O.0
= e = . . .9
ET T tEQEAt Ve@pBI1°CLeL  + o (1) (a.9)

Given (viii.a), the asymptotic covariance matrix of gT is uniformly

L, P —0—1/2¢ d
positive definite. Moreover, =1 ET -+ N(O.IG) under HO by

(viii.b). Condition (viii.c) ensures that

T
. _l -~ A A A A A ~ A A
= = ’ ’ - .10
=r T tEllI(At Ve«ptBT) thatq:tct(At VethT)] (a )
is a consistent estimator of =_. It is easy to see that
2 . o=l ag 2
cr= = - =
T ET TR™, (a.11)

2
where RT is the uncentered r—-squared from the regression



1 on ¢£Kt t=1,...,T,

and I and Kt are as defined in the text. ®=

(a.12)
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