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ABSTRACT: This paper develops a new approach to robust

specification testing for dynamic econometric models. A novel

feature of these tests is that, in addition to the estimation under

the null hypothesis, computation requires only a matrix linear least

squares regression and then an ordinary least squares regression

similar to those employed in popular nonrobust tests. The

statistics proposed here are robust to departures from i

distributional assumptions that are not being tested. Moreover, the

statistics may be computed using any T^'-consistent estimator.

Several examples are presented to illustrate the generality of the

procedure. Among these are conditional mean tests for models

estimated by weighted nonlinear least squares which do not require

correct specification of the conditional variance, and tests of

conditional means and variances estimated by quasi—maximum

likelihood under nonnormality . Also, some new, computationally

simple tests for the tobit model are proposed.





1 . Introduction

Specification testing has become an integral part of the

econometric model building process. The literature is extensive,

and model diagnostics are available for most procedures used by

applied econometricians. By far the most popular specification

tests are those that can be computed using ordinary least squares

regressions. Examples are the Lagrange Multiplier (LM) test,

versions of Hausman ' s [B] specification tests, White's [14]

information matrix (IM) test, and an LM version of the

Davidson-MacKinnon [3] test for nonnested hypotheses. In fact,

Newey [10] and White [16] have shown that most of these tests are

asymptotically equivalent to one of the conditional moment (CM)

tests considered by Newey [10], Tauchen [11], and White [16]. In

the maximum likelihood setting with independent observations, Newey

[10] has shown how to compute CM tests using auxiliary regressions.

White [16] has extended Newey 's results to a general dynamic

setting

.

The simplicity of the regression—based procedures currently

used is not without cost. In many cases the validity of these tests

relies on certain auxiliary assumptions holding in addition to the

relevant null hypothesis. For example, in a nonlinear regression

framework where the dynamic regression function is correctly

specified under the null hypothesis, the usual LM regression-based

statistic is invalid in the presence of conditional

heteroskedasticity . The regression form that falls out of Newey

[10] or White [16] is also usually invalid. Other examples are the



various tests for heteroskedasticity : currently used regression

forms require constancy of the conditional fourth moment of the

regression errors under the null hypothesis. Finally, Lfi and other

CM tests for jointly parameterized conditional means and variances

are inappropriate under nonnormal ity . All of these situations are

characterized by the same feature: validity of the tests requires

imposition of more than just the hypotheses of interest under H^.

Furthermore, traditional testing procedures require that the

estimators used to compute the statistics are efficient in some

sense under the null hypothesis. It is important to stress that

this is not merely nitpicking about regularity conditions.

Due primarily to the work of White [12,13,14,15], Domowitz and

White [4], Hansen [6], and Newey [10], there now exist general

methods of computing robust statistics. Unfortunately, for general

classes of specification tests, computing robust versions using

currently available methods is burdensome. This is particularly

true of LM-like tests where, at least based on currently available

formulas, analytically solving for the derivative of the implicit

constraint function and computing generalized inverses are needed

for computation. Several authors have even claimed that, contrary

to the case of the Wald statistic, there are no useful robust forms

cf the LM statistic.

It is a safe bet that the substantial analytical and

computational work required to obtain robust statistics is the

reason they appear relatively infrequently in applied econometric

work. Evidence of this statement is the growing use of the White



[12] heteroskedasticity—robust t-statistics , which are now computed

by fTiany econometrics packages. In the same papers one rarely sees

an Lli test, a Hausman test, or a nonnested hypothesis test carried

out in a manner that is robust to second moment misspecif ication

.

This is unfortunate since these tests are inconsistent for the

alternative that the conditional mean is correctly specified but the

conditional variance has been misspecif ied . In other words, the

standard forms of well known tests can result in inference with the

wrong asymptotic size while having no systematic power for testing

the auxiliary assumptions that are imposed in addition to H-.

This paper develops a unified approach to calculating robust

statistics which I believe is easily accessible to applied

econometricians. It is shown that a general class of tests can be

obtained using only linear least squares regressions. These tests

maintain only the hypotheses of interest under the null, and are

applicable to specification testing of dynamic multivariate

conditional means and/or conditional variances without imposing

farther assumptions on the conditional distribution (except

regularity conditions). In classical situations, these tests are

asymptotically equivalent to their traditional counterparts under

the additional assumptions needed to make the standard tests valid.

T-^arBovsr , because the statistics may be computed using any

VT-consistent estimator, the methodology leads to some interesting

new tests in cases where the computational burden based on previous

approaches is prohibitive.

The remainder of the paper is organized as follows. Section 2



discusses the setup and the general results. Section 3 illustrates

the scope of the methodology with several examples, and Section 4

contains concluding remarks. Regularity conditions and proofs are

contained in an appendix.

2. General Results

Let CCY.jZ.): t=l,2,...} be a sequence of observable random

vectors with Y IxJ, Z IxK. Y is the vector of endogenous

variables. Interest lies in explaining Y in terms of the

explanatory variables Z. and (in a time series context) past values

of Y and Z . For time series applications, let X =

riables and let( Z , Y , Z , . .
.

, Y , Z ) denote the predetermined va

^, c= K ^ denote the support of X = For cross section

applications, set X = Z .

The conditional distribution of Y given X = x always exists

and is denoted D , ( • |>:j_). Assume that the researcher is interested

in testing hypotheses about a certain aspect of D , for example the

conditional expectation and/or the conditional variance. Note that,

because at time t the conditioning set contains C ( Y , Z ) , . . . ,

(Y ,Z )>, the assumption is that interest lies in getting the

dynamics of the relevant aspects of D correctly specified. For

cross section applications, this point is of course irrelevant.

Many specification tests, including those for conditional means

and variances, have asymptotically equivalent versions that can be

derived as follows. Let "n. (Y ,X ,©) be an Lxl random function

pdefined on a parameter set © c K , and let <P. (X ,©) be an Lxl



function also defined on ©. Note that t\. depends on Y whereas f.

depends only on the predetermined variables. The null hypothesis of

interest is expressed as

H,^: EC-a. (Y. .X^,e )|X.] = <p.(X.,e ), for some 8 e ©, (2.1)
O tttot tto- o

t=l , 2 , . . .

•

The leading case, and the one emphasized in this paper, is when

i<P^(x^ !©) : 5<a. « -^^f e <£ ©} is a parameterized family for the
^

conditional mean and/or conditional variance of Y given X = k .

The validity of (2.1) can be tested by choosing functions of the

predetermined variables X and checking whether the sample covariances

between these functions and

are significantly different from zero. It is useful to allow the

indicators to depend on 9 and some nuisance parameters. Let tt e Fl

denote a NkI vector of nuisance parameters, and let 6 = (©' ,n' )' be

the Mxl vector of all parameters where M = P+N. Let A (X ,6) be an

L;cQ matrix and let C (X ,6) be an LxL, symmetric and positive

semi—definite matrix. Assume the availability of an estimator Qj such
i /^^ -^

that T '*"(©- - e ) = (1) under H.. Also assume that the nuisancelop (J

•^ 1 /"?" Q oparameter estimator tt_ is such that T ^(tt^ - n^) =0 (1), where [nT.:
T T T p 1

T=l,2,...} is a nonstochastic sequence in Ti. Then a computable test

statistic is the Qxl vector

1 ^. j^ •^ -I ' ^. .^. y. ^^

T L A;C.*t = T L K^t^rx. - 'P.) (2.2)
t=l

'-'-'-
t=l

where "•^" denotes that each function is evaluated at ©_ or <S^ =



O' ,n' )' (note that the dependence of the summands in (2.2) on the

sample size T is suppressed). From a theoretical standpoint, the

p.s.d. matrix C could of course be absorbed into A , and (p could be

absorbed into n^ . but the structure in (2.2) is exploited below to

generate regression-based tests with the additional property that they

Are asymptotically equivalent to standard tests under classical

circumstances.

To use (2.2) as a basis for a test of (2.1), the limiting

distribution of

t=i

under H^ is needed. In general, finding the asymptotic distribution

of ^j entails finding the limiting distribution of

K° ^ T-''^ E A°'C°^° (2.4)
t=l

(values with "o" superscripts are evaluated at 9 or 6^ = (6' ,17^.' )' )
o I o ' I

1/2 '^

and the limiting distribution of T ( ©^ - © ) (the limiting
I o

distribution of T (rr^ - rr^) does not affect the limiting

distribution of f under H.). Because ^ is the standardized sum of

a vector martingale difference sequence under H. , its limiting

distribution is frequently derivable from a central limit theorem.

1 Z'' '^

In standard cases T"^ ^
( S-r ~ © ) will also be asymptotically normal.

T o

Given the asymptotic covariance matrices of f and T ~ ( ®x ~ ® ^ and

differentiability assumptions on A , C , and <p , it is possible to

derive the asymptotic covariance matrix of ^ by the usual mean

value expansion. In principle, deriving a quadratic form in ?^

which has an asymptotic ')C distribution is straightforward. But



nothing guarantees that the resulting test statistic is easy to

compute.

In specific instances test statistics based on ^ can be

computed from simple DLS regressions. For example, Newey [103 snd

White [16] have shown how statistics based on covariances of the

form (2.2) can be computed from simple auxiliary regressions when ©^

is the maximum likelihood estimator and the conditional density is

correctly specified under H .

In general, the regression-based statistics appearing in the

literature have the drawback that they are not robust to certain

departures from distributional assumptions. For example, suppose

interest lies in testing hypotheses about the conditional

expectation of Y (taken to be a scalar for simplicity) given X .

The parametric model is

<:m^(x^,e): x^ e ^^, 6 e ©}

,

(2.5)

where © <z K , and the null hypothesis is

Hj^: E(Y^|X^) = m^(X^,e^), some 9^ e ©, t=l,2, (2.6)

Setting L = 1, C^(,X^,6) = 1, ^^(Y^jX^.e) = Y^, and ^p^(X^,e) =

m^(X^,e) in (2.1) yields a class of tests based on

^-1
T ^ E \(^^,'^j)'ll^ (2.7)

t=l

where U = Y - m ( X , G^ ) , 6^ is the nonlinear least squares (NLL5)

estimator, X. (X ,6) is a IxQ vector function of misspecification

indicators, and 6 is a vector containing 9 and possibly other

nuisance parameters. The standard LM approach leads to a test based

on the (uncentered) R^ from the regression



U^ on V^m^, X^ t=l T. (2.8)

Under H and conditional homoskedasticity , TR^ is asymptotically X^.

Thus, the Lti approach effectively takes the null hypothesis to be

^o'
' ^0 ^°^^^ ^"'^ V(Y^|X^) = CT^ for some a^ > O, t=l,2,... (2.9)

but it is of course an inconsistent test for the alternative

H^' i Hq holds but Hq' does not.

The regression form from Newey [10] and White [16] is

/^ y\ rfX .-x

1 on U.V m U^X^ t=l,...,T. (2.10)
t s t t t

-}

In general , H ' is also required for TR"^ from this regression to be

2 1asmptotical ly X^.

There are many other examples where the goal is to test

hypotheses about certain aspects of a distribution but auxiliary

assumptions are maintained under the null hypothesis in order to

obtain a simple regression-based test. Because the limiting

distributions of test statistics can be sensitive to violations of

the auxiliary assumptions, it is important to use robust forms of

tests for which H includes only the hypotheses of interest. But as

mentioned above, applying the standard mean—value approach to the

general statistic ?_ results in a statistic for which computation

can be prohibitively burdensome.

A relatively simple statistic is available if ?-j. is

appropriately modified. Assume that Q € int(©) and that ^p. is
o t

dif ferentiable on int(6). Then, instead of using the indicator

A'C , the idea is to first purge from C "A its linear projection

"1/2 '^

onto C. '^^^^' That is, consider the modified statistic

8



— i/'f -"•1 z'T"^ "^ y^ A xs ^.
1 /o-^

? = T y rc A - c V (p B ]'C *
^T til 9^t T-" t ^t

where

B.
f T -1 T y^ .^ j^

r V (p' c A^ e^t t t

(2.11)

(2.12)

is the PkQ matrix of regression coefficients from the regression

(2.13)C^ ^A^ on C^
'"^e^t

t=l,...,T.

Equation (2.11) can be written more succinctly as

-1/'? '
,,

~
?^ ^ T "^'^

j: a; 4,

t=i
t^t

(2.14)

where {A : t=l,...,T} are the residuals from the regression in

(2.13) and <p^ = C^ 4.^. It is important to note that ?^ and kj 3.re

not always asymptotically equivalent in the sense that ^ - ^_ ->

under H . In general, the indicators A'C and [A - V^(p B-p]'C are

useful for checking different departures from (2.1). I return to

this issue below.

Even when ^ and ^ are not asympotical ly equivalent, k-^. can be

used as the basis for a useful specification test. The

computational simplicity of a limiting X^ quadratic form in 5 is a

consequence of the following theorem.

Theorem 2.1 : Assume that the followinq conditions hold under H :

(i) Regularity conditions A.l in the appendix;

(ii) For some 6 <= int(©),
o

(a) ECn, (Y. ,X. ,e )|X.] = (p.(X.,G ), t=l,2,tt'to t ttO'
(b) E[v^n^(Y^,x^,e^) |x^] = 0, t=i,

1 / '' '" o
(c) T^'~{6^ - 6°) = (1).T T p



Then

e, = t-^'\e^ca°- v^,.°B°rc°*° . =^,1)

where

b:
r T

''J^EtV^.°.cX3

In addition.

TR' ^.
where R*" is the uncentered r-squared from the regression

1 on
*t^t'-^t

~
'^e'^t^T-^

t=l,...,T (2.15)

and B-p is given by (2.12)

Theorem (2.1) can be applied as follows:

j^ j^ j^ j^

(1) Given A , C , ti, , (p., and 6 , compute A , C, , n. , <p, , anc

V^^^. Define A^ = C^ "^A^
, 7^^^ = C^

''^e'^t'
^"^ *t " ^t "*t'

(2) Run the matrix regression

A^ on '^Q^^ "t=l , . . . , T (2.16)

and save the residuals, say A ;

(3) Run the regression

1 on 'I'lA t=l T

and use TR^ as asymptotically XT under H , assuming that A does not

contain redundant indicators.

Note that condition (ii.b) is an additional restriction on r\.

that must be satisfied in order for (l)-(3) to be a valid procedure

under H . This assumption rules out certain specification tests,

but is applicable to the leading case of diagnostics for conditional

10



means (hence conditional probabilities) and/or conditional

variances. These acb usually the cases where one would like to be

robust against other distributional departures. "

Assumption (ii.c) is perhaps more properly listed as a

regularity condition, but it is placed in the te;<t to emphasize the

generality of Theorem 2.1. Having a VT-consistent estimator of 6^

is a fairly weak requirement, and allows relatively simple

specification tests when G (as well as n,.) has been estimated by an
o I

inefficient procedure. An application to the tobit model is given

in Section 3.

An important issue, mentioned earlier, is the relationship

between ^ and ^ . There is a simple characterization of their

asymptotic equivalence.

Lemma 2.2 : Let the conditions of Theorem 2.1 hold. If, in

addition

,

(iii) t"^^^ £ ^e'^t'^t^'^t
"

"^t^
" °p^^^'

then

?-p - ?^ = o (1). (2.17)

The importance of this lemma is that if (iii) holds then the

modified indicator is testing for departures from H in the same

directions as the originally chosen indicator. When (2.17) holds, the

statistics based on quadratic forms in ? and ^ are asymptotically

equivalent. This is useful when comparing tests derived from Theorem

2.1 to more traditional forms of tests.

Condition (iii) is usefully interpreted as the sample covariBnce

11



between [C
^'^Q^t'

t^^'--!-'''^ ^"^ i^t *+-' t=l,...,T> being zero. It

is trivially satisfied if

T

E '7^^^(e)'c^(e,n^)[T\^(e) - .p^(e)] = o (2.ib)

is the defining first-order condition for 6^. This is frequently the

case, particularly when ©^ is a quasi-maximum likelihood estimator

(QMLE) of the parameters of a conditional mean (see Wooldridge [19])

ori of the conditional mean and conditional variance (see Example 3.3

below). Note that in these cases (2.17) holds (trivially) for local

alternatives. Therefore, the difference between the test based on

?_ and a more traditional nonrobust test based on ?^ (e.g. an LM

test) is simply that different estimators have been used for the

moment matrix appearing in the quadratic form. Consequently, under

the conditions required for the classical test to be valid, the two

procedures are asymptotically equivalent under local alternatives.

The robust test has the advantage of having a limiting noncentral X"

distribution even when the auxiliary assumptions are violated under

local alternatives (e.g. heteroskedasticity is present in a dynamic

regression model )

.

3. Examples of Regression-Based . Robust Tests

Example 3.1 : Let Y be a scalar and let -Cm^(x^,P): x e J^^, B s B},

B c K , be a parametric family for the conditional expectation of

Y. given X . The null hypothesis is

H-,: E(Y^|X.) = m.(X.,3 ), some R e B, t=l,2 . (3.1)
yJ i-t ttO' o

Let [c (x ,a): x e Jf , a e A} be a sequence of weighting functions

12



such that c (x ,«) > 0, and suppose that oc^ is an estimator such

.1/2
( oc_ - a_ J = L

P
that T (oc^ - a ) = (1), where [cx-^} c A. It is not assumed that

[c (x ,a): ;; e Jf , a e A} contains a version of V(Y |X ). The

researcher merely chooses the set of weights {c ( x , ol^) } and

performs weighted NLLS ( WNLLS ) . The WNLLS estimator p^ solves

T

E ^p^^t^P^' "^^t
" "'t^P^^'''^t^"T^ = ^- ^^'^^

A general class of diagnostics is based on

^ \^(6^)' [c^(^)]~^[Y^ - m^(P^)] (3.3)

where 6 can contain p, ex. and other nuisance parameters. Letting © =

p, C^(6) = [c^(a)]~-^, Ta^(e) = Y^, and ^p^(e) = m^O), it is easy to

see that conditions (ii.a) and (ii.b) of Theorem 2.1 hold under H .

Condition (ii.c) will also usually be satisfied. Because (iii) of

Lemma 2.2 holds, the statistic obtained from Theorem (2.1) is

asymptotically equivalent to the statistic based on (3.3). The

following procedure is valid under H., without any assumptions about

_ V(Y^|X^) (except, of course, regularity conditions):

(i) Estimate p by WNLLS. Compute the residuals U , the gradient

V„m (b\-), and the indicator X^(6_). Define U^ = cT^'^'^LJ^, 7^m^ =Pi-i ti tttpt
'"—1/2 ' ~ "—l/^':
^t '^p'^t'

^^^ ^t = ^t '^t =

(ii) Regress X on V^m, and keep the residuals, sav X.. ;t tj t "^ ' t

(iii) Regress 1 on U X and use TR^ from this regression as

r>
asymptotically "X^ under H .

The indicator X can be chosen to yield heteroskedastici ty-

robust LM tests, Hausman tests based on two WNLLS regressions which



do not assume that either estimator is relatively efficient, and

tests of nonnested hypotheses, such as the Davidson-MacKinnon [3]

test, which are valid in the presence of heteroskedasticity . These

tests are considered in more detail in Wooldridge C19].

Example 3.2 : Suppose now, in the context of Example 3.1, c. (a) is

set to 1 and the goal is to test the assumption of homoskedasticity

(actually, the goal is to test the joint assumption of correctness

of the conditional mean and homoskedasticity ) = In particular, the

null hypothesis is

H-. E(Y. |X.) = m.(X..p ), V(Y. |X.) = a^ some p„ e B, (3.4)
O tt tto tt o o

some cr^ > 0, t=l,2
o

In the notation of Theorem 2.1, G = (^',a^)'. Let P- be the NLLS

estimator, and let U be the NLLS residuals. Let X ( X , <S ) be a IxQ

vector of indicators. Most tests for heteroskedasticity Are based

on a statistic of the form

T "
J] X ' [U; - a^l (3.5)

t=l
''

'? — JL
•"•'7

where a!!l is the usual estimator T J] y^. Choosirig X(X_,6) to be the
t=l

nonconstant, nonredundant elements of vech [ V m ( P
)

' V m^( P ) ] leads

to the White [12j test for heteroskedasticity. Choosing >v^(X^,6) =

X^^ , where X^, is a IxQ subvector of X., leads to the Lagrange
tl tl t'

Multiplier test for a general form of heteroskedasticity (see

Breusch and Pagan [1]). Setting X (X ,6) = (U^_^ ( P ),-.., U^_jg ( 3 ) )

gives Engle's [5] test for ARCH.

The correspondences for Theorem 2.1 are L = 1, C. (6) = 1, T\^(©)

14



= U"0), and 4-' (0) = a". Under H^^ , E[U"0 )|X ] = cr^ so that (ii.a)

of Theorem 2.1 is satisfied. Also, V-,UT;0) = -2V_m . O ) U . O ) . Under
P t ji t t

H., ECU^CP )|X.] = so that E[V„U^O )|X.] = and (ii.b) is holds.
0' tot ptot

In this case, the relevant element of V ^p is simply 1. Thus, the
u t

auKiliary regression in the second step of the robust procedure
j^.'-i y".'

simply demeans the indicators. Given U*^, ct!^, and a choice of \ ,

the yr statistic is obtained as TR^ from the regression

1 on (U^- cr^)(>^t " ^^ t=l,...,T (3.6)

where X^ = T E ^4- - This procedure is asymptotically equivalent to
t=l

the corresponding more traditional forms of the tests under the

4additional assumption that E[U (P )|X ] is constant (note that (iii)

of Lemma 2.2 is satisfied). Interestingly, the slight modification

in (3.6) (which is the demeaning of the indicators X ) yields an

asymptotically X^ distributed statistic without the additional

assumption of constant fourth moment for U . In the case of the

White test in a linear time series model, the demeaning of the

indicators yields a statistic which is asymptotically equivalent to

Hsieh's [9] suggestion rfar a robust fOrm of the White test, but the

above statistic is significantly easier to compute. Rarely does one

care to assume anything about the fourth moment of Y , so that the

robust regression form in (3.6) seems to be a useful modification.

In the case of the ARCH test, TR~ from the regression in (3.6)

IS asymptotically equivalent to TR^ from the regression

1 on (U^-crrjI) (U^_^-cr:p) , . . . , (U^-alp) (U^_Q-cr^) t=Q+l,...T. (3.7)

The regression based form in (3.7) is robust to departures from the

15



conditional normality assumption, and from any other auxiliary

Q
assumptions, such as constant conditional fourth moment for U .

Contrast this to the usual method of computing tests for ARCH.

Example 3.3 : Theorem 2.1 can also be applied to models that jointly

parameterize the conditional mean and conditional variance. The

general setup is as follows. For simplicity, let Y be a scalar,

and consider Lti tests which do not assume conditional normality.

The unconstrained conditional mean and variance functions are

Mwhere F c \R , It is assumed that

(3.e)

E(Y. |X.) = Ma.(X.,¥ ), V(Y. |X.) = u).(X.,X ), some X e T. (3.9)tt ttO' tt ttO' o

Take the null hypothesis to be

for some e © c K^ (3.10)
o

where P < Fi and r is continuously dif ferentiable on int(0). Let

"0= ^o = -^^^o^

m.(©) = M. (r(©)) and w (©) = co (r(e)) be the constrained mean and

variance functions. QMLE is carried out under the null hypothesis.

Let e^. be the estimator of 6 under H^ , and let ^ = r(e^) be the
T o T T

constrained estimator of t . V^m^ and V^w^ Are the IxP gradients of
o © t © t

j^. X-.

on

,

m and w under H . Note that cu^ = w and (4. = m by definiti

The LM test of (3.10) is based on the unrestricted score of the

quasi-log likelihood evaluated at ^.j.. The transpose of the score is

s^(¥)' = 7^u^(i;)'U^(X)/a5^(i:) + V^o>^(x)' [U^(X) - o^^(¥) ]/2w^( Jf ) (3.11)

rv^M^(n

y^c.^(v)

i/w^(i;)

l/2a)^(i;)-

U^(i;)
(3.12)

16



Evaluating s at r(0) gives

5^(r(e))' = A^(G)'c^(e)CTi^(e) - <p^(e)] (3.13)

where A (6)' = [V M.(r(e))' ! V co (r(e))'], C (6) is the diagonal

matrix in the middle of (3.11) evaluated at r(9), n. (G)' =

i:U^(r(e)), U^(r(e))], and (p (G)' = [m (G), w (G)]. The standardised

score evaluated at V- is

.-1/2 ^

t=l
(3.14)

Under H and the assumption of conditional normality, TR from the

regression

1 on
t

•7

t=l, . . . ,T (3.15)

is asymptotically XT, where Q = M - P is the number of restrictions

under H . Unfortunately, this procedure is invalid under

nonnormality . Theorem (2.1) suggests a robust form of the test. In

this case,

2:<P

^e-^t^

V wG t-

^t
-

2>:M

^t -
1/w^ ^ - _ r "^t

'

^ *^ "-'-^l i 2.1 >^
'^^ -

'^t

where U = Y - m,{e^). The transformed quantities are
t t t T ^

f V^M^/Vw

^G^t =
' V^m^/Vw^ -

*\#

j^ ./^ « ^t
-

L 7^w^/w^y2 J

i;^f t

7..c>> /w y2
'^ ¥

(3.16)

U^/Vw^

L cuj - w^]/w^y2 J
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The robust test statistic is obtained by first running the

regression

A^ on V^J^ t=l,...,T (3.17)

and saving the matrix residuals -[A : t=l,...,T}= Then run the

regression

1 on J^A^ t=l,...,T (3. IB)

2 ' r?

and use TR^ as asymptotically ')Cl under H . Note that the regression

^
, j^

in (3.18) contains perfect multicol linearity since A-V^rO^.) = 0,
t © I

where V r(e) is the MxP gradient of r. Many regression packages

2nevertheless compute an R ; for those that do not, P regressors can

be omitted from (3.18).

Note that the first order condition for © is simply
T - ^

E "^©^t^^T^'^t^^T^^^t^^T^ ~ ^t^®T^^ = ^' (3.19)
t=l

so that the robust indicator is asymptotically equivalent to the

usual LM indicator. The matrix regression in (3.17) is the cost to

the researcher in guarding against nonnormality .

Example 3.4 : Suppose that Y is a random scalar censored below

zero, and let X be a IxP vector of predetermined variables from

X . A popular model for Y is the tobit model. The tobit model

implies that

E(Y. |Y. >0,X^) = X^ R + a v(X^ R /a ) (3.20)
t t t tl o o tl o o

where v(-) is the Mills ratio, c" is the conditional variance
o

usually associated with the "latent" variable, and X,,P is
tl o

conditional mean of the latent variable. From a statistical point
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of view, the tobit model is no more sensible than

log Y^|Y^>0,X^ ^ '^^^tl"o'"o^
(3.21)

((3.21) also seems reasonable for many economic applications). If

(3.21) is valid, ex and co" can be estimated by OLS of
o o

log Y on X t=l,...,T

using only the positive values of Y . Recall that (3.21) implies

E(Y^|Y^>0,X^) = explJ^/T. + X^^oc^]. (3.22)

Let X = expCw^/2 + X4.i«j3 be the fitted values in (3.22). Then, if

the tobit model is true, X should be statistically insignificant as

a regressor in equation (3.20). Let P_, oZ. be any T^T-consistent

2estimators of p , ct under H^. These include Heckman's [7] two-step

estimators. Let

^t -^ - ^^tA - V^^tlV^T>-
A test which should have some power for testing departures from the

tobit model can be based on the correlation between L) and X .

Unfortunately, the usual LM statistic is invalid for two reasons.

First, V(Y !Y >0,X ) is not constant, and second, the estimators

(p-|-,CT^) need not have been obtained from a nonlinear least squares

problem. Nevertheless, a statistic is available from Theorem 2.1.

Let

<P^(B,cr) = X^^P + CTv(X^^P/cr)

and let V ip denote the 1 :< (P+1) gradient of ip with respect to P© t t

and cr, evaluated at (p^.cr^). Then the following procedure is

asymptotically valid:

(i) Run the OLS rearession

X^ on ^Q-P^ t=l

19



and save the residuals X,

.

(ii) Run the regression

1 on U^X^ t=l,...,T

2 '^

and use TR as asymptotically XT under H .

Note that weighted least squares could also be used, where the

weight corresponds to the inverse of V(Y |Y >05X ) under the tobit

models If c. is an estimate of this variance, replace X. and V.^p.
t

'
t S t

by X /Vc. and V <p /Vc., respectively in (i), and replace U by
t t t3 t t "t

U /-/c, in (ii). Although it intuitively makes sense to use the

weighted version, it is not possible to say one approach is better

than the other without more information about the origins of p^ and

One can of course change the roles of the models, and test for

a significant covariance between X = X. P^ + cr^v(X. P^/a^) and the

residuals based on (3.22). In this case, the purging regression

takes the form

X^ on e::p[co^/2 +
^tl'^-'^tl

t=l,..,T. (3.23)

Note that a similar test could be based on competing

specifications for E(Y ]X ); that is, the zero as well as positive

observations for Y. can be used. This would require specifying

P(Y^>0|X^) in the competing model (3.21) such as in Cragg [2].
yx

Finally, many other indicators could be included in X , such as

the gradient of the competing conditional mean function: X =

e;<pCw^/2 + ^tl'^-'^tl ^" ^^^ case of (3.21). I do not know the power

properties of these tests. They are included here primarily to

illustrate the scope of Theorem 2.1.
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4. Conclusions

This paper has developed a general class of specification tests

for dynamic multivariate models which impose under H only the

hypotheses being tested (e.g. correctness of the conditional mean

and/or correctness of the conditional variance) . It is hoped that

the computational simplicity of the methods proposed here removes

some of the barriers to using robust test statistics in practice.

The possibility of generating simple test statistics when

1/2 •"•

T (©T- - 9 ) has a complicated limiting distribution should be
1 o

useful in several situations. The tobit example in Section 3 is

only one case where the conditional mean parameters are estimated

using a method other than the efficient WNLLS procedure. Another

example is choosing between log-linear and linear— linear

specifications. In this case, both models can be estimated by DLS,

and then transformed in the manner of the tobit example to obtain

estimates of E(Y [X ) for the separate models.

Theorem 2.1 can be extended to certain unit root time series

models. The initial purging of C ^^^7
V? from C. ^A, in some casestot t t

results in indicators that are effectively stationary. This is the

case for the LM test in linear time series models where the

regressors excluded under the null hypothesis are individually

cointegrated with the regressors included under the null.

Statistics derived from Theorem 2.1 have the advantage over the

usual Wald or Ln tests of being robust to conditional

heteroskedasticity under H . Extending Theorem 2.1 to general
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nonstationary time series models is left for future research,



Footnotes

1. If E[U.(e )^V.m,(e )'X.(6°)] = and E[V^m.(e )'X.(6°)] = O thentowtotl Stotl
the regression form in (2.10) Ls valid in the presence of

heteroskedastici ty . These orthogonality conditions occur only in

limited cases. One example is testing for serial correlation in a

static regression model (E(Y. |X.) depends only on Z under H ) with

static heteroskedasticity (V(Y. |X.) depends only on Z. under H^)

.

If ECV^m.O )'X. (<5°)] = under H. then a simple test which is
© t o t I O

2
robust in the presence of arbitrary heteroskedasticity is TR from

the regression

1 on Llu-^^. 't=l,...,T,
•V. ^^

that is, U V m can be omitted from the auxiliary regression,tot

2. Hal White has suggested an interesting extension to Theorem 2.1.

First, there is no need to split <^.(Y ,X ,9) into "n. (Y ,X ,0) and

cp (X ,e). Then, instead of imposing (ii.b), use $ (X.,G^) in the

purging regression, where f (X ,e) = E [ V 4'. ( Y , X , 9) |
X ] . Notett 9©ttt t

that it is now important to index the expectation operator by 6.

This expectation is the common expectation of the equivalence class

P^ of probability measures defined as follows: P e J'iQ) if and only

IT

and

^p^^t^^t'^t'®^ ix^: = o

Ep[V^0^(Y^,X^,e) |X^] = 5^(X^,e) t=l,2,

The need to compute $ (X ,9) generally imposes additional



restrictions under the null hypothesis. However, this more general

setup would allow robust tests in certain situations not covered by

Theorem 2.1, such as tests for dynamic linear models estimated by

two stage least squares.
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Mathematical Appendix

For convenience, I include a lemma which is used repeatedly in

the proof of Theorem 2.1.

Lemma A .

1

: Assume that the sequence of random functions [Q^CW^,©):

© e ©, T=l,2,...}, where Q (W^, • ) is continuous on © and © is a

pcompact subset of [R , and the sequence of nonrandom functxons

CQ-(©): e « ©, T=l,2,...}, satisfy the following conditions: i

(i) sup |Q (W ,©) - Q (©)]| 5 0;
Oe©

(ii) [Q (©): © e ©, T=l,2,...} is continuous on ©

uniformly in T.

Let G be a sequence of random vectors such that ©^ - ©^ -

where {©^> <z ©. Then

Q^(W^,©^) - Qy(©y) 5 0.

Proof: see Wooldridge CIS, Lemma A.l, p. 229].

A definition simplifies the statement of the conditions.

Definition A.l : A sequence of random functions [q. ( Y , X . , ©) : © « ©,

t=l,2,...]-, where q.(Y ,X ,) is continuous on © and © is a compact

subset of K , is said to satisfy the Uniform Uleak Law of Large

Numbers ( UWLLN ) and Uniform Continuity (UC) conditions provided that

T
(i) sup |T Z n^(Y^,X^,©) - E[q. (Y, ,X. ,©)] I 2o

©^ t=l " " - t t t

and

-1 T
(ii) iT Z £i:q^.(Y ,X ,©)]: © e ©, T=l,2,...} is 0(1) and

t=l

continuous on © uniformly in T.
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In the statement of the conditions, the dependence of functions

on the variables Y and X is frequently suppressed for notational

convenience. If a(Q) is a IxL function of the Pxl vector 9 then, by

convention, V.aO) is the L:<P matrix V^[a(G)']. If A(G) is a Q:<L

matrix then the matrix V A(9) is the LQxP matrix defined as

where A.(e>) is the j th row of A(e) and y_A.(©) is the LxP gradient
J tj J

of A.(©) as defined as above. For simplicity, for any Lxl vector

function ip, define the second derivative of ip to be the LPxP matrix

Conditions A.

1

;

P N
(i) © <z K and fl c D? are compact and have nonempty interiors;

(ii) e e int(©), {n°: T=l,2,...} c int(n) uniformly in T;
o T '

(iii) (a) -Cia, (y . , X ,9) : 9 e ©} is a sequence of Lxl functions

such that Ti. (•,©) is Borel measurable for each © e © and "n. ( y . . x, ,
•

)
t t t t

is continuously dif feren tiable on the interior of © for all y. ,x ,

t=l '^

(b) [^p (x ,©): 9 e ©} is a sequence of Lxl functions such

that cp^(-,9) is Borel measurable for each © e © and ip . ( x , • ) is twice

continuously dif f erentiable on the interior of © for all x.

,

t=l,2. a m m ^

(c) [C (x ,6): 6 e A} is a sequence of LxL matrices

satisfying the measurabil ity requirements, C (x ,6) is symmetric and

positive semi-definite for all x and 6, and C (x ,) is

dif ferentiable on int(A) for all x , t=l,2.
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( d ) [A (>; ,6): 6 e A} is a sequence of L;:Q matrices

satisfying the measurabi 1 ity requirements, and A ( ;; , ) is

dif feren tiable on int(A) for all x , t=l,2,...;

(iv) (a) T-'-''^(e^ - e ) = (1);
I o p

(b) T-^^^(TT^ - n°) = (1);

(V) (a) {VQip^(e)'C^(6)VQ(p^(e)} and {V^^p^O) ' C^( 6 ) A^( 6 )

satistfy the UWLLN and UC conditions;
T

(b) [T V ECV^v:'°' C°V^ip°]} is uniformly positive definite;
t=i

e t t G t

(vi) (a) ^V^<p^(G)'C^(6)7QTi^(e)}, {[Ip » 4-^(0) 'C^(6)]V^cp^(e)},

and [7Q<p^(e)' [I^ » *^(G)' ]V^C^(6)}

satisfy the UWLLN and UC conditions;

-1/7 ^
(b) "^ L ^Qf°' ^1<pI

= Op(i);

(vii) (a) -rA^(6)'C^(6)V^Ti^(G)}, •[A^(5 ) ' C^(6 ) V^ip^C G) } ,

ill^ «. *^(e)'C^(6)]7^A^(6)' J,

CCIp ® 4'^(G)'C^(6)]v|<p^(G)},

•CA^(6)' [I|_ ® <43^(G)' ]V^C^(<S)}, and

:^Q^^(S)' 11^ ® *^(G)' ]V^C^(6)}

satisfy the UWLLN and UC requirements;

(viii) (a) Z^ ^ T"^ r E[(A°-V^>p°Be)'C°*°*°'C°(A°-V^^°B?)]
I

— tGt:i -cttttGtT
is uniformly p.d.;

(b) Z^-^^V^/^ E (A° - Ve^?B°)'C°<,° 5 N(0,Iq);

( c ) ^A^ ( 6
)

' C^ ( 6 ) 4p^ ( G) 0^ ( G) ' C^ ( 6 ) A^ ( 6 ) } ,

•[A^(6)'C^(6)c{:^(e)0^(e)'C^(6)VQ^^(e)}, and

[Vg^p^ ( G) ' C^ ( 6 ) 4,^ ( G) 43^ ( G) ' C^ ( 6 ) V^^?^ ( G) }

satisfy the UWLLN and UC conditions.
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Proof of Theorem 2.1 : First, note that assumptions (i)-(vi) ensure

existence of B^ and imply that B^ - B^ = o (1) by Lemma A.l.

Therefore,

-1 /'? '^ -^ n "- -^

(a.l)

^\ rf^ ^X

^T = "^ "^^^^ - ^eVT^'^t^t

- (B^ - B°)'T-^/^E^7^^^'C^4't-

'^ oConsider the term post-multiplying (B^ - B^)'. A standard mean

value expansion about & ^ assumption (vi.a), and Lemma A.l yield

--I/2I „ ^ .-^ ^ ^-1/2!, „ 0.^0 a
^ ;E,^e^t'^t*t = ^ ;5/e^t'^;'^t

'^-'

e_)
T D

+ T~^Z m^ ® *t'^^6^t^ T^^^lS^ - 6^) + Op(l).

The first term on the right hand side of (a. 2) is (1) by (vi.b).

By (vi.a) and (iv.a,b), the terms in lines two and three of (a. 2)

are also (1). Therefore,
P

Along with B^ - B^ = o (1), this establishes that under H.

,

T T p O

?T = t'^-^^j: [A^ - ^e^t^T^'^t^t ^ °D^^^"
^^""^^

t=l

A mean value expansion, assumption (vii), and Lemma A.l yield

,
,^T

+ T-4 t:iQ - *°t^P^s'-°t - CA?-v^^°E°rti^ . *?'3V?>

T^''-(2^ - i?)
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+ o (1)

.

p

Consider the second line of (a. 5). It must be shown that the

average appearing there is o (1) under H.. First, note that

- ^'4 tA°-V3^?B°rc°,3^°.

By (ii.b) of the text, ECV^n^lX^] = O under H^. Note that A°, V_ip°,
© t t O t tp t

and C. depend only on X . Also, B- is defined such that

T "-£ E[(A°-Vq(p°B°)'C°Vq^°] =0. (a. 7)

The regularity conditions imposed imply that each of the averages on

the right hand side of (a. 6) satisfy the WLLN. Therefore

Because E[<}j |X ] = O under H^, it is even easier to show that the

1/2 '^

remaining sample averages in (a. 5) are o (1). Combined with T ^(^^t

— 6^) =0 (1) this establishes the first conclusion of the theorem:
' P

^V
= T-^^4 :A° - Vg^°B°]'C°4>° -Op(l). (a. 9)

Given (viii.a), the asymptotic covariance matrix of ?^ is uniformly

positive definite. Moreover, 2L. ^^ * N(0,I ) under H^ by

(viii.b). Condition (viii.c) ensures that

Z^ = T ^ [(A^ - ^©«Pt^j)'Ct4>^*;.C^(A^ -
^e^t®y)3

(a. 10)

is a consistent estimator of ZL.. It is easy to see that

fjJ.ZLJ:^^'^ = TR^, (a. 11)

where R^ is the uncentered r-squared from the regression
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1 on 'P'*.^*. t=l,...,T, (a. 12)

and <i) and A are as defined in the text.

/
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