
A Unified Approach to Route Planning for Shared Mobility

Yongxin Tong † Yuxiang Zeng ‡ Zimu Zhou # Lei Chen ‡ Jieping Ye § Ke Xu †
† SKLSDE Lab, BDBC, and IRI, Beihang University, China

‡ The Hong Kong University of Science and Technology, Hong Kong SAR, China
ETH Zurich, Zurich, Switzerland, §Didi Research Institute, Didi Chuxing, Beijing, China

†{yxtong,kexu}@buaa.edu.cn, ‡{yzengal,leichen}@cse.ust.hk,
#zzhou@tik.ee.ethz.ch, §yejieping@didichuxing.com

ABSTRACT
There has been a dramatic growth of shared mobility appli-
cations such as ride-sharing, food delivery and crowdsourced
parcel delivery. Shared mobility refers to transportation ser-
vices that are shared among users, where a central issue is
route planning. Given a set of workers and requests, route
planning finds for each worker a route, i.e., a sequence of
locations to pick up and drop off passengers/parcels that
arrive from time to time, with different optimization ob-
jectives. Previous studies lack practicability due to their
conflicted objectives and inefficiency in inserting a new re-
quest into a route, a basic operation called insertion. In
this paper, we present a unified formulation of route plan-
ning called URPSM. It has a well-defined parameterized
objective function which eliminates the contradicted objec-
tives in previous studies and enables flexible multi-objective
route planning for shared mobility. We prove the problem
is NP-hard and there is no polynomial-time algorithm with
constant competitive ratio for the URPSM problem and its
variants. In response, we devise an effective and efficient so-
lution to address the URPSM problem approximately. We
design a novel dynamic programming (DP) algorithm to ac-
celerate the insertion operation from cubic or quadric time
in previous work to only linear time. On basis of the DP al-
gorithm, we propose a greedy based solution to the URPSM
problem. Experimental results on real datasets show that
our solution outperforms the state-of-the-arts by 1.2 to 12.8
times in effectiveness, and also runs 2.6 to 20.7 times faster.

PVLDB Reference Format:
Yongxin Tong, Yuxiang Zeng, Zimu Zhou, Lei Chen, Jieping Ye,
Ke Xu. A Unified Approach to Route Planning for Shared Mo-
bility. PVLDB, 11(11): 1633-1646, 2018.
DOI: https://doi.org/10.14778/3236187.3236211

1. INTRODUCTION
Shared mobility refers to transportation services that are

shared among users, such as ride-sharing, food delivery and
crowdsourced parcel delivery [38]. By altering routes and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 11
Copyright 2018 VLDB Endowment 2150-8097/18/07.
DOI: https://doi.org/10.14778/3236187.3236211

filling under-used vehicles, shared mobility mitigates pol-
lution, reduces transportation costs, and provides last-mile
delivery solutions [45]. It is predicted as an efficient and
sustainable alternative to urban transportation.

A key enabler for practical shared mobility is route plan-
ning among workers and requests. A worker can be a driver
in ride-sharing services or a courier in food and parcel de-
livery services; and a request specifies an origin for pickup,
and a destination for drop off. Route planning finds for each
worker a route i.e., a sequence of locations to pick up and
drop off passengers/parcels that arrive dynamically, with
different optimization objectives.

Route planning for shared mobility has attracted exten-
sive research interests from the database, data mining and
transportation science communities. Most studies consider a
single or a subset of the following objectives: (i) minimizing
the total travel distance [30][25][34][41][40][24]; (ii) maxi-
mizing the number of served requests [19][47][21][29][40][24];
and (iii) maximizing the total revenue [13][14]. Many solu-
tions are heuristic and rely on an operation called insertion,
which inserts the origin and the destination of a new re-
quest into the current route [30][25][41][34][19][47][40][18].
In practice, previous studies have the following limitations.

Limitation 1. Existing proposals sometimes adopt multi-
ple vague or even conflicted optimization objectives. For ex-
ample, in [30][25][34][40][24], the goal is to minimize the to-
tal travel distance of requests without specifying how many
requests should be served. Hence an “optimal” solution is to
serve no request at all, which contradicts to common sense
and the goal to maximize the number of served requests. A
unified route planning problem with flexible and consistent
optimization objectives is desirable for various real-world
shared mobility applications.

Limitation 2. The insertion operation in existing solu-
tions [30][25][47][18][31] are inefficient for large-scale shared
mobility platforms. It takes at least square time to insert a
new request into a route, making insertion a bottleneck to
process large numbers of requests in real-world applications.

To address these limitations, we define a new problem,
Unified Route Planning for Shared Mobility (URPSM). It
unifies mainstream optimization objectives into a well-defined
objective function where individual objectives are compatibly
integrated. The URPSM problem also offers the flexibility
to adjust the optimization goals for specific applications. We
show that the three optimization goals above can be reduced
as special cases of the URPSM problem.

As the efficiency bottleneck of many route planning algo-
rithms is the insertion operation, we design a novel dynamic

1633

programming (DP) algorithm that reduces its time complex-
ity from cubic or quadric [18][30][25][19][47] to linear. The
key insight is that dynamic programming can be utilized to
find a best pickup location in O(1) time.

Furthermore, unlike previous efforts that ignore the hard-
ness of approximation analysis, we conduct a systematic
theoretical analysis of the URPSM problem. We clarify
and prove that there is no algorithm, either determinis-
tic or randomized, with constant competitive ratio for the
URPSM problem and its special cases studied in previous
literature [30][25][18]. We finally devise an effective and ef-
ficient heuristic solution to the URPSM problem.

Our main contributions can be summarized as follows.

• We abstract a unified formulation of the route plan-
ning problem for shared mobility, i.e., URPSM, by a
well-defined parameterized objective function. It elim-
inates the contradicted objectives in previous studies
and benefits flexible multi-objective route planning in
real-world shared mobility applications.

• We design a novel dynamic programming (DP) algo-
rithm to accelerate the insertion operation. Our algo-
rithm reduces the time complexity of this basic oper-
ation from cubic or quadric to linear.

• We comprehensively analyze the hardness of approxi-
mation of the URPSM problem. Specifically, we prove
that there is no polynomial-time algorithm with con-
stant competitive ratio for the URPSM problem and
its variants. The results serve as references to analyze
other route planning problems and guidelines to design
efficient solutions to the URPSM problem.

• We devise an effective and efficient solution using the
DP-based insertion to solve the URPSM problem.

• Extensive experiments on real datasets show that our
solution is 2.6 to 20.7 times faster and 1.2 to 12.8 times
more effective than the state-of-the-arts [25][11].

In the rest of this paper, we review related work in Sec. 2,
formulate the URPSM problem, and discuss its generaliz-
ability as well as its hardness in Sec. 3. We propose a dy-
namic programming based insertion in Sec. 4 and design a
complete solution to the URPSM problem in Sec. 5. Finally
we present the evaluations in Sec. 6 and conclude in Sec. 7.

2. RELATED WORK
Research on route planning for shared mobility (RPSM)

dates back to the dial-a-ride problem proposed in 1975 [43][44],
and has been studied by the database, data mining, trans-
portation science communities. This section briefly reviews
different variants of the RPSM problem and their solutions.

An important setting in RPSM problems is static or dy-
namic. In a static (offline) RPSM problem, information of
workers and requests is known in advance. Conversely, in
a dynamic (online) setting, workers or requests appear dy-
namically, and requests need to be served within a short
time or even immediately. Dynamic RPSM problems are
more aligned with real-world shared mobility applications
[30][25][41][34][47][19][13][14] and will be our main focus.

Mainstream objectives of RPSM problems include min-
imizing the total travel distance [16][23], maximizing the
number of served requests [29][47][19][40], maximizing the
total revenue [13][14], etc. The total travel distance cal-
culates the total distance traveled by the workers to serve

the requests. A small total travel distance indicates a low
travel cost and little pollution [10]. A large number of served
requests contribute to the revenue of the shared mobility
providers [47]. A more common goal is to minimize the total
travel distance while serving all the requests [30][25][41][34].
Other studies focus on maximizing the total revenue of the
shared mobility provider (the total payment of the served
requests minus the total salaries of the workers) [13][14],
minimizing the makespan (the completion time of the last
request) [12][22], or maximizing the complicated social utili-
ties between workers and requests [18]. Our aim is to analyze
the relationship among mainstream objectives and integrate
them into a compatible and flexible formulation.

Many solutions to the dynamic RPSM problems have been
proposed [30][25][41][34][47][19], where a core operation, called
insertion, is widely utilized. Zheng et al. [30][41] use the
enumeration strategy to search the best insertion location,
which needs to satisfy the constraints of the inserted re-
quests. With additional constraints on the number of re-
quests, the feasible insertions can be further reduced but
optimal ones may also be mistakenly removed [34][37]. Par-
allelism also applies to speed up insertion [34]. Insertion
is frequently used in the solutions to large-scale dynamic
RPSM problems. However, the insertion has quadric or even
cubic time complexity, which is a bottleneck of efficiency.
This motivates us to devise a linear insertion algorithm.

To solve the dynamic RPSM problems, Zheng et al. [30][41]
first search a set of candidate workers through grid index
and then insert the request to the candidate with minimal
increased distance. Huang et al. [25] propose a kinetic data
structure to store all possible routes and use a similar inser-
tion procedure to minimize the total travel distance. Alonso-
Mora et al. [11] adopt a batch-based method to first divide
a few requests into small groups, and then insert a group
of requests into the route of one worker. However, these
studies are unfit for large-scale shared mobility applications.
On basis of a novel linear insertion, we propose a complete
heuristic solution to the RPSM problem, which is both more
effective and efficient than these studies.

3. PROBLEM STATEMENT
This section defines the URPSM problem, which unifies

the objective functions of many prior studies [30][25][34][41]
[47][21][29][40][24][13][14].

3.1 Notations and Definitions
Definition 1 (Road Network). A road network is de-

noted by an undirected graph G = (V,E) with a vertex set V
and an edge set E. Each edge (u, v) ∈ E is associated with
a travel cost cost(u, v).

The travel cost can be either a distance or an average travel
time, which can be obtained from OpenStreetMap [6] or
large historical trajectory mining [48]. We use travel time
and travel distance interchangeably in this paper. We de-
note dis(u, v) as the distance of the shortest path between
any two vertices u ∈ V and v ∈ V .

Definition 2 (Worker). A worker is denoted by w =<
ow,Kw > with an initial location ow ∈ V and a capacity Kw.

The capacity of a worker is the maximum number of pas-
sengers a taxi can take or the maximum number of items
a courier’s box can contain at any time. We use W =
{w1 · · ·w|W |} to denote all the workers.

1634

Definition 3 (Request). A request is denoted by r =<
or, dr, tr, er, pr,Kr > with an origin or ∈ V , a destination
dr ∈ V , and a capacity Kr. It is released on the shared mo-
bility platform (platform for short) at a release time tr and
needs to be served before a deadline er. A request is served
if (i) a worker picks up r at or after tr; and (ii) the same
worker drops r at dr before er. If a request is not served
(rejected), the platform will receive a penalty pr.

The capacity Kr of a request specifies the number of pas-
sengers in ride-sharing or items in courier services in a single
request. Note that there can be two deadlines in real-world
applications, i.e., the deadlines for pickup and delivery. Yet
a single deadline for delivery er usually suffices since the
deadline for pickup can be expressed as er−dis(or, dr). Note
that it is difficult to serve every request given a tight deadline
(e.g., 5-6 minutes in ride-sharing [30][13]). Hence a platform
may reject certain request, which incurs a loss, i.e., penalty
pr, due to the loss in income from the served requests or
user experience. The penalty is application-specific. We use
R = {r1 · · · r|R|} to denote all the requests and Rw to de-
note all the requests served by worker w. We further denote
R+ =

⋃
w∈W Rw as all the served requests and R− = R−R+

as all the rejected requests.

Definition 4 (Route). A route of a worker w is de-

noted by Sw = 〈ow, l1w, · · · , l|Sw|−1
w 〉, where 〈l1w, · · · , l|Sw|−1

w 〉
is an ordered sequence of origin and destination of Rw, i.e.,
liw ∈ {or | r ∈ Rw} ∪ {dr | r ∈ Rw}. A route is feasible
if (i) ∀r ∈ Rw, or and dr exist and or precedes dr in the
sequence; (ii) ∀r ∈ Rw, the time when w arrives at dr is no
later than the deadline er; (iii) At any time, the number of
passengers/items that have been picked up but not delivered
in this route, does not exceed the capacity of the worker.

We use D(Sw) to denote the total travel distance of Sw,

i.e., D(Sw) = dis(ow, l
1
w) +

∑|Sw|−1
i=2 dis(li−1

w , liw).

3.2 Unified Objective and URPSM Problem
Definition 5 (URPSM). Given a road network, a set

of workers W , a set of requests which are only known at
their released time, and a weight coefficient α, the URPSM
problem is to find, for each worker w ∈ W , a route Sw, such
that the unified cost UC(W,R) is minimized

UC(W,R) = α
∑
w∈W

D(Sw) +
∑

r∈R−
pr (1)

and meets the following constraints: (i) Feasibility constraint:
each worker is arranged a feasible route; (ii) Invariable con-
straint: once requests are rejected, they cannot be revoked.
Otherwise, they must be served.

We illustrate the URPSM problem by the following example.

Example 1. Suppose a ride-sharing platform with two
workers (vehicles) w1, w2 and three dynamically arrived re-
quests r1-r3. The initial locations of workers are labeled on
a road network with eight vertices v1-v8 as shown in Fig. 1.
The coordinates (latitudes and longitudes) of the vertices are
also labeled. For example, the coordinate of v1 is (0, 1). Ta-
ble 1 lists the details of the requests. We assume α = 1,
Kw1 = Kw2 = 4 and Kr1 = Kr2 = Kr3 = 1.
At time 0 (tr1), a request r1 is released with origin at v2

and destination at v4. To serve r1, the platform needs to
plan a route to pick up r1 at v2 and deliver it at v4 before its

Figure 1: A road network with coordinates.

Table 1: Dynamically arrived requests.

request
release time deadline origin destination penalty

(tr) (er) (or) (dr) (pr)
r1 0 23 v2 v4 20
r2 5 26 v3 v5 10
r3 11 25 v8 v5 9

deadline 23. A feasible route is 〈ow1 , v2, v4〉, which reaches
v4 at time 5+1+5+5 = 16. Specifically, w1 starts from v7
and first travels from v1 to v2. w1 picks up r1 at v2 and then
travels from v8 to v4. Finally w1 takes r1 to the destination
before the deadline er1 = 23. The platform can also re-
ject the request, which will incur a penalty pr1 = 20. The
URPSM problem plans routes for each worker and minimize
the unified cost, which is composed of both the total travel
distance and the penalty of unserved requests.

Next we show that many previous studies are special cases
of our URPSM problem with specific α and pr settings.

• Minimize the total travel distance [25][41][30][33][35].
By setting α = 1 and ∀r ∈ R, pr = ∞, minimizing
Eq. (1) is equivalent to minimizing the total travel dis-
tance while serving all requests.

• Maximize the number of served requests [47][19][29][21].
By setting α = 0 and ∀r ∈ R, pr = 1, minimizing
Eq. (1) is equivalent to minimizing the number of un-
served requests (i.e., maximizing the number of served
requests) since the penalty of any r is pr = 1.

• Maximize the total revenue [13][14]. The total revenue
of the platform consists of the income of workers and
the fare from the served requests. The income of a
worker is related to the total working time (or travel
distance) and the income for unit time cw. The fare
of a request is relevant to the travel distance and the
fare for unit distance cr. Then the total revenue of the
platform is calculated as:

revenue(W,R) = cr
∑

r∈R+

dis(or, dr)− cw
∑
w∈W

D(Sw)

(2)
Set α = cw and ∀r ∈ R, pr = cr × dis(or, dr):

UC(W,R) = cw
∑
w∈W

D(Sw) + cr
∑

r∈R−
dis(or, dr) (3)

Substitute R+ = R−R− and Eq. (3) into Eq. (2):

revenue(W,R) = cr
∑
r∈R

dis(or, dr)− UC(W,R) (4)

Since the requests are given (i.e., the first term is a
constant), minimizing UC(W,R) is equivalent to max-
imizing the total revenue.

We summarize the major notations in Table 2.

1635

Table 2: Summary of major notations.

Notation Description
R,W a set of requesters and workers
or, dr origin and destination of request r
pr penalty of each unserved request r

R+, R− a set of served requests and rejected requests
Sw, D(Sw) schedule of worker w and its distance
Kw, Kr capacity of worker w, capacity of request r

α weight parameter for unit distance of workers
dis(., .) shortest distance between two vertices

3.3 Hardness Analysis
This subsection analyzes the competitive hardness of the

URPSM problem and its variants. The URPSM problem
is NP-hard since it generalizes the existing NP-hard prob-
lems [30]. However, there are few studies on the competitive
hardness. The only known result [13] proves that no deter-
ministic algorithm can guarantee constant competitive ratio
to maximize the total revenue, but it is unknown whether
the conclusion applies to randomized algorithms. We an-
alyze the competitive hardness by studying whether a ran-
domized algorithm can guarantee constant competitive ratio
against an oblivious adversary [15]. If no such randomized
algorithm exists, nor will any deterministic algorithm [15].

Theorem 1 presents our main results.

Theorem 1. The following special cases of the URPSM
problem has no constant competitive ratio for either random-
ized or deterministic algorithms:
(1) maximizing the number of served requests, i.e., α = 0
and ∀r ∈ R, pr = 1;
(2) maximizing the total revenue of the platform, i.e., α = cw
and ∀r ∈ R, pr = cr × dis(or, dr);
(3) minimizing the total distance while serving all requests,
i.e., α = 1 and pr = ∞.

We prove the three statements in Theorem 1 sequentially
by Lemma 1, Lemma 2 and Lemma 3, respectively.

Lemma 1. When α = 0 and ∀r ∈ R, pr = 1, neither
a randomized nor a deterministic algorithm has a constant
competitive ratio.

Proof. We only need to show that no randomized algo-
rithm can guarantee constant competitive ratio. We first
generate a distribution of the input and prove the expected
value of any deterministic algorithm on this input is not
constant (e.g., ∞). Then applying Yao’s Principle [46], no
randomized algorithm has a constant competitive ratio.

The distribution χ of the requests, workers and road net-
work is generated as follows: (i) We assume the road net-
work G is an undirected cycle graph with |V | vertices (|V |
is even) and the length of each edge is 1. (ii) We assume
a single worker with initial location ow = v1 and capacity
Kw = 2. (iii) A request r is released at time tr = |V | whose
or is generated uniformly at random from all vertices V . We
set dr = or, er = tr + ε, ε > 0 and pr = Kr = 1.

Since the request is released at time |V | and there are |V |
vertices in the graph, the worker in the optimal solution has
enough time (i.e., |V |) to arrive at or when the request r
is released. Hence r can always be served by the optimal
solution and the expected number of unserved requests is
zero, i.e., Eχ[OPT] = 0.

Consider a generic deterministic online algorithm ALG
which has its worker at point (not vertex) u when r is re-
leased. As long as the shortest distance between u and or is
no greater than ε, ALG is able to serve r with a probability

≤ 2ε
|V | . Since there is only one request, the expected number

of unserved requests of ALG is Eχ[ALG] ≥ 1− 2ε
|V | . Hence

Eχ[ALG]

Eχ[OPT]
≥

1− 2ε
|V |

0
→ ∞

The above ratio becomes unbounded.

Lemma 2. When α = cw and ∀r ∈ R, pr = cr×dis(or, dr),
neither a randomized nor a deterministic algorithm has a
constant competitive ratio.

Proof. We prove Lemma 2 by adjusting the setting of
the distribution in the proof of Lemma 1. Specifically, we
generate the distribution dr for the request r as follows. dr
is always chosen from a vertex in the cycle graph whose dis-
tance from or is |V |/2. Because the distance from the loca-
tion of worker and or is no more than |V |/2 on an undirected
cycle graph, and dis(or, dr) = |V |/2, the worker will move
another |V |/2 to serve r. Therefore the total travel distance
of the worker is no more than |V |/2 + |V |/2 = |V |. We also
assume a sufficiently large cr e.g., cr > 2cw, otherwise an
optimal solution may reject r when the total distance of the
worker is close to |V |. Then we have

Eχ[OPT] ≤ α|V | = cw|V |

Eχ[ALG] ≥ (1− 2ε

|V |) · pr = (1− 2ε

|V |) · cr ·
|V |
2

If ε is small enough, then

Eχ[ALG]

Eχ[OPT]
≥ cr

2cw
(1− 2ε

|V |) = Ω(
cr
cw

)

Therefore neither a randomized nor a deterministic algo-
rithm has a constant competitive ratio.

Lemma 3. When α = 1 and pr = ∞, neither a random-
ized nor a deterministic algorithm has a constant competitive
ratio.

Proof. We prove Lemma 3 using the distribution in the
proof of Lemma 1. According to previous analysis, the to-
tal distance of the optimal route under this distribution is
bounded by |V | and any deterministic algorithm has prob-
ability of 1− 2ε

|V | to reject r. Thus,

Eχ[OPT] ≤ α|V | = |V |, Eχ[ALG] ≥ (1− 2ε

|V |) · pr
Eχ[ALG]

Eχ[OPT]
≥ pr

|V | (1−
2ε

|V |)

By setting a sufficiently small ε and pr = ∞, the above ratio

becomes unbounded, i.e.,
Eχ[ALG]

Eχ[OPT]
→ ∞.

4. DP-BASED INSERTION
Although there is no algorithm with provable effectiveness

to solve the URPSM problem (Sec. 3.3), solutions built upon
insertion prove to be practically effective for the variants of
the URPSM problem [30][25][41][34]. However, the insertion
operation is also an efficiency bottleneck in large-scale dy-
namic shared mobility applications. This section formally
defines the insertion operation, and proposes a novel DP-
based algorithm to boost its efficiency.

4.1 Preliminaries
Insertion was first proposed in [32] for the Vehicle Routing

Problem (VRP) [20], which arranges optimal routes for a set
of vehicles to deliver a given set of requests (passengers) to

1636

Algorithm 1: Basic Insertion

input : a worker w with route Sw and a request r
output: a new route S∗ for the worker w

1 S∗ ← Sw,Δ
∗ ← ∞;

2 foreach i ← 0 to n do
3 foreach j ← i to n do
4 S′

w ← insert or at i-th and dr at j-th in Sw;
5 if S′

w is feasible then
6 Δi,j ← D(S′

w)−D(Sw);
7 if Δi,j < Δ∗ then S∗ ← S′

w,Δ
∗ ← Δi,j ;

8 return S∗;

different cities. The idea of an insertion-based solution is to
iteratively arrange a route for a vehicle by inserting one ver-
tex (city) at a time. This idea can be extended by inserting
two vertices (i.e., origin and destination of the request) at
a time, and has been used to design heuristic solutions to
the dial-a-ride problem and its variants [27][28][36][26]. Al-
though the insertion is proposed for route planning for a sin-
gle worker, it has also been widely adopted in multi-worker
route planning, where the insertion-based route planning is
performed for each worker individually [18][30][25].

Formally, we define the insertion operation following the
conventions in [27][28] as follows.

Definition 6 (Insertion). Given a worker w with the
current route Sw composed of n vertices, and a new request
r, the insertion operation aims to find a new feasible route
S∗ with the minimal increased distance to further serve r,
by inserting both or and dr into Sw, such that the order of
vertices in Sw remains the same in S∗.

By inserting a pair of origin and destination that has a min-
imal increased distance, it also minimizes the total travel
distance. Thus the goal is aligned with our URPSM prob-
lem, which minimizes the weighted total distance and the
penalty of unserved requests. We first review the basic in-
sertion proposed in previous studies [27], then design a naive
DP-based insertion with quadric time complexity and linear
memory complexity, and an improved version with both lin-
ear time and memory complexities.

4.2 Basic Insertion
Basic insertion was proposed in [27][28] without optimiza-

tion for efficiency. Its idea is to (1) enumerate all possible
pairs (e.g., (i, j)) of places for inserting or and dr to obtain a
new route S′

w; (2) check whether the new route S′
w violates

any constraint; and (3) replace S∗ by S′
w if no constraint is

violated and S′
w increases a shorter distance.

Algo. 1 illustrates the basic insertion. In line 1, it initial-
izes a new route S∗ as Sw in case of no feasible route. In
lines 2-3, we enumerate all possible pickup places (at i-th
in Sw) and deliver places (at j-th in Sw). In lines 4-7, we
generate a new route S′

w and check whether it is feasible. If
yes, we calculate its increased distance Δi,j and compare it
to the current minimal Δ∗. We update S∗ using S′

w and Δ∗

using Δi,j if Δi,j < Δ∗.

Complexity Analysis. The number of possible (i, j) pairs
is O(n2) in lines 2-3. Line 5 checks whether the new route S′

w

violates the capacity and the deadline constraints in O(n)
time. If not, it will take O(n) time to calculate the increased
distance in line 6. Note that lines 5-6 involve shortest dis-
tance queries. The above analysis assumes a shortest dis-

(a) i = j = n (b) i = j < n (c) i < j

Figure 2: Three cases of all O(n2) possible pairs (i, j).

tance query takes O(1) time, as with many previous stud-
ies [11][13][18][33]. The assumption is reasonable because
real-world shared mobility companies like Didi [3] regard
shortest distance queries as a basic operation of constant
time. We will adopt this assumption throughout the rest
of this paper unless explicitly specified. Lines 5-7 check S′

w

and update S∗ and Δ∗, which also takes O(n) time. Thus
the total time cost of basic insertion is O(n3) and the total
memory cost is O(n). If a shortest distance query takes O(q)
time, the algorithm takes O(n3q) time.

4.3 Naive DP-Based Insertion
This subsection presents a naive DP-based insertion al-

gorithm, which reduces the O(n3) time complexity of basic
insertion to O(n2). The idea is to (1) enumerate all pos-
sible pairs of places for inserting or and dr, but (2) check
whether a new route is feasible and calculate Δi,j in O(1)
time instead of O(n) time in basic insertion. We first ex-
plain how to calculate Δi,j because it will be used to check
the feasibility of a new route.

4.3.1 Calculating Δi,j in O(1) Time
Rather than calculate Δi,j = D(S′

w)−D(Sw) from scratch,
which takes O(n) time, we calculate Δi,j in O(1) time lever-
aging the detour when inserting lj between li and lk. Specif-
ically, the detour det(li, lj , lk) is defined as follows.

det(li, lj , lk) = dis(li, lj) + dis(lj , lk)− dis(li, lk)

It is the increased distance when lj is inserted between li
and lk. Accordingly, Δi,j can be calculated in O(1) time
using detours in Fig. 2, where Fig. 2a and Fig. 2b are two
special cases when i = j while Fig. 2c is the general case.

Δi,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
dis(ln, or) + dis(or, dr), if i = j = n

dis(li, or) + dis(or, dr)

+dis(dr, li+1)− dis(li, li+1), if i = j < n

det(li, or, li+1) + det(lj , dr, lj+1), otherwise

(5)

4.3.2 Checking Route Feasibility in O(1) Time
To check whether a new route is feasible, we should check

(i) the deadline constraint and (ii) the capacity constraint
defined in Definition 4.

To check the deadline constraint in O(1) time, we borrow
the idea of slack time [27]. Denote ddl[k] as the latest time
to arrive at lk without violating any deadline constraint. We
set ddl[k] as er − dis(or, dr) if lk is the origin of r; and er if
lk is the destination.

ddl[k] =

{
er − dis(or, dr), if lk is or

er, if lk is dr
(6)

Denote arr[k] as the time when w arrives at lk. Hence,

arr[k] = arr[k − 1] + dis(lk−1, lk) (7)

Further denote slack[k] as the maximal tolerable time for
detour (i.e., slack time) between lk and lk+1 to satisfy all

1637

Algorithm 2: Naive DP Insertion

input : a worker w with a route Sw and a request r
output: a new route S∗ for the worker w

1 S∗ ← Sw,Δ
∗ ← ∞;

2 Initialize ddl, arr, slack, picked by Eq. (6)-Eq. (9);
3 foreach i ← 0 to n do
4 if (1) of Lemma 4 is violated then break;
5 if (1) of Lemma 5 is violated then continue;
6 if (2) of Lemma 4 is violated then continue;
7 foreach j ← i to n do
8 if j > i and picked[j] > Kw −Kr (i.e., (2) of

Lemma 5 is violated) then break;
9 calculate Δi,j by Eq. (5);

10 if (3) or (4) in Lemma 4 is violated then
break;

11 if Δi,j < Δ∗ then Δ∗ ← Δi,j , i
∗ ← i, j∗ ← j;

12 if Δ∗ < ∞ then
S∗ ← insert or at i∗-th and dr at j∗-th in Sw;

13 return S∗;

the deadlines after lk. Since a detour after lk may cause
the worker to violate the deadlines of lk+1, · · · , ln, slack[k]
should be no larger than the deadline of location lk+1 (ddl[k+
1] − arr[k + 1]), and all the deadlines after location lk+1

(slack[k + 1]). Hence, slack[·] can be calculated as follows.

slack[k] = min
k′>k

(ddl[k′]− arr[k′])

= min{slack[k + 1], ddl[k + 1]− arr[k + 1]} (8)

Lemma 4. The deadline constraint will not be violated if
and only if (1) arr[i]+dis(li, or) ≤ er; (2) det(li, or, li+1) ≤
slack[i]; (3) arr[i] + dis(li, or)+ dis(or, dr) ≤ er when i = j
(Fig. 2a and Fig. 2b) or arr[j]+det(li, or, li+1)+dis(lj , dr) ≤
er when i < j (Fig. 2c); and (4) Δi,j ≤ slack[j].

Proof (Sketch). Condition (1) checks whether the dead-
line constraint of the new request r is violated if or is in-
serted at i-th; condition (2) checks whether any deadline
constraint of all the other requests is violated if or is in-
serted at i-th. Similarly, condition (3) checks whether the
deadline constraint of r is violated if dr is inserted at j-th;
condition (4) checks whether any deadline constraint of all
the other requests is violated if dr is inserted at j-th. We
refer readers to [42] for more details.

To check the capacity constraint in O(1) time, we use
picked request (i.e., picked[k]) to denote the number of re-
quests currently picked up yet not delivered. Then we have

picked[k] =

{
picked[k − 1] +Kr, if lk is or

picked[k − 1]−Kr, if lk is dr
(9)

Lemma 5. The capacity constraint of worker w will not
be violated if and only if (1) picked[i] ≤ Kw −Kr, and (2)
∀k, i < k ≤ j, picked[k] ≤ Kw −Kr.

Proof. Since or is inserted at i-th, picked[i] should be no
greater than Kw−Kr. We also need to check whether there
exists any integer k ∈ (i, j] such that picked[k] is greater
than Kw −Kr. As the request r is delivered right after lj ,
this will exceed the worker capacity Kw at lk if picked[k] >
Kw −Kr, which violates the capacity constraint of w.

4.3.3 Algorithm Sketch
Algo. 2 shows the naive DP insertion with initialization

in line 2 by Eq. (6)-Eq. (9). Line 9 is calculated by Eq. (5).

Line 4, 6 and 10 implement Lemma 4. Line 5 and 8 imple-
ment Lemma 5.

Complexity Analysis. Line 2 takes O(n) time to initialize
arr, ddl, slack, picked. Line 12 takes O(n) time and there
are still O(n2) iterations in lines 3-11. The other lines all
take O(1) time. The total time cost is O(n2) and the total
memory cost is O(n). If a shortest distance query takes O(q)
time, the algorithm takes O(n2q) time.

4.4 Linear DP-Based Insertion
This subsection presents an improved DP-based insertion

with linear time complexity (linear DP insertion for short).
It finds the route with the minimal increased distance with-
out enumerating all possible pairs of places (i, j) for inser-
tion. Linear DP insertion is built upon the naive DP inser-
tion, but leverages two insights. (i) It only takes O(n) time
to find the best route for the special cases when i = j as in
Fig. 2a and Fig. 2b. (ii) Given a fixed j, it only takes O(1)
time to find the best i via dynamic programming in the gen-
eral case as in Fig. 2c. The first insight is trivial because it
takes O(1) time to check the feasibility of S′

w and calculate
Δ∗ (Sec. 4.3). Thus when i = j, it takes O(n) time to find
the feasible route with the minimal increased distance. In
the following, we mainly explain the second insight.

4.4.1 Enumerating Delivery Locations
Instead of enumerating all possible pairs (i, j), linear DP

insertion only enumerates the delivery locations (j) to find
the best route. Denote Δ∗

j as the minimal increased distance
for a given j. For the general case in Fig. 2c,

Δ∗
j = min

i<j
Δi,j

= min
i<j

(
det(li, or, li+1) + det(lj , dr, lj+1)

)
= det(lj , dr, lj+1) + min

i<j
det(li, or, li+1) (10)

The first term is the detour after inserting j, which is con-
stant for a fixed j. The second term is the minimal detour
among all i < j. The key in linear DP insertion is to find a
feasible i to minimize the second term in O(1) time.

4.4.2 Finding the Best Pickup Location in O(1) Time
We introduce Dio[j] to maintain the minimal detour for

inserting or among i < j for a given j. That is, Dio[j] =
min
i<j

det(li, or, li+1). Dio[j] can be calculated via the follow-

ing DP formulation.

Dio[j] =

⎧⎪⎨
⎪⎩

∞, if picked[j − 1] > Kw −Kr

Dio[j − 1], if det(lj−1, or, lj) > slack[j − 1]

min{Dio[j − 1], det(lj−1, or, lj)}, otherwise

(11)
The first case comes from Lemma 5, the second case comes
from Lemma 4, and the third case is due to its definition.

Similarly, we use Plc[j] to record the insertion place of or
corresponding to Dio[j].

Plc[j] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
NIL, if picked[j − 1] > Kw −Kr

Plc[j − 1], if det(lj−1, or, lj) > slack[j − 1]

Plc[j − 1], if Dio[j − 1] < det(lj−1, or, lj)

j − 1, if Dio[j − 1] ≥ det(lj−1, or, lj)

(12)
If Plc[j] and j satisfy the capacity and deadline constraints,
then we obtain the best feasible route for a fixed j. However,

1638

Algorithm 3: Linear DP Insertion

input : a worker w with route Sw and a request r
output: a new route S∗ for the worker w

1 S∗ ← Sw,Δ
∗ ← ∞, Dio[0] ← ∞, P lc[0] ← NIL;

2 Initialize ddl, arr, slack, picked by Eq. (6)-Eq. (9);
3 foreach j ← 0 to n do
4 Update Δ∗, i∗, j∗ with special cases as shown in

Fig. 2a and Fig. 2b;
5 if j > 0 and Corollary 1 is satisfiable then
6 Δ∗

j ← det(lj , dr, lj+1) +Dio[j];
7 if Δ∗

j < Δ∗ then
Δ∗ ← Δ∗

j , i
∗ ← Plc[j], j∗ ← j ;

8 if arr[j] + dis(or, er) > er then break;
9 Update Dio[j + 1] and Plc[j + 1] according to

Eq. (11) and Eq. (12);

10 if Δ∗ < ∞ then
S∗ ← insert or at i∗-th and dr at j∗-th in Sw;

11 return S∗;

if Plc[j] violates certain constraint, it is unknown whether
there is certain i �= Plc[j] that may generate a feasible route.
We tackle this problem via the following lemma.

Lemma 6. If Plc[j] violates the constraints, then other
i �= Plc[j] will also violate the constraints.

Proof. First, assume Plc[j] violates the capacity con-
straint (the first condition of Eq. (12)). According to Lemma 5,
any i ≤ j−1 will also violate the capacity constraint. Next,
assume Plc[j] violates the deadline constraint (the second
condition of Eq. (12)). Suppose to the contrary, there exists
i′ < j which satisfies all constraints. Then we have

det(li′ , or, li′+1) + det(lj , dr, lj+1) ≤ slack[j] (13)

det(li′ , or, li′+1) + det(lj , dr, lj+1) ≤ er − arr[j] (14)

According to Eq. (11), Plc[j] can only violate the deadline
constraint together with the given j, i.e., det(li′ , or, li′+1) ≤
Dio[j]. It indicates that Plc[j] should also satisfy the dead-
line constraint, which contradicts to the assumption.

Accordingly, given a fixed j, we can check whether there
exists a feasible i(< j) to insert or as follows.

Corollary 1. Given a fixed j, there exists a feasible i
for inserting or if and only if (1) picked[j] ≤ Kw − Kr,
(2) arr[j] + Dio[j] + dis(lj , dr) ≤ er, and (3) Dio[j] +
det(lj , dr, lj+1) ≤ slack[j].

4.4.3 Algorithm Sketch
Algo. 3 illustrates the process of linear DP insertion. In

line 4, we handle the cases when i = j using the same way as
in Algo. 2. In lines 5-7, we first check whether there exists a
feasible i for the given j by Corollary 1. If yes, we calculate
the minimal increased distance Δ∗

j and its corresponding i
(i.e., Plc[j]). In line 8, we prune according to Lemma 4 and
dynamically update Dio[j + 1] and Plc[j + 1].

Example 2. Back to the settings in Example 1. Sup-
pose w1 is assigned to serve r1 following the route Sw1 =
〈w1, v2, v4〉. When r2 is released at time 5, w1 is at v1. So
there are another n = 2 vertices in Sw1 except for the current
location of w1. If we insert r2 into the current route Sw1 ,
the arrays in line 2 of Algo. 3 are initialized as in Table 3.
ddl[0] = ∞ since l0 = v1 is neither origin nor destination of
r1. arr[0] = 5 since current time is 5. picked[0] = 0 because

Table 3: arr, ddl, slack, picked,Dio, P lc in Example 2.

k 0 1 2
ddl[k] ∞ 13 23
arr[k] 5 6 16

picked[k] 0 1 0

k 0 1 2
slack[k] 7 7 ∞
Dio[k] ∞ ∞ 5
Plc[k] NIL NIL 1

w1 picks up no requests. For k > 0, ddl[k], arr[k], picked[k]
are initialized using Eq. (6),Eq. (7) and Eq. (9). Specifi-
cally, ddl[1] = er1 − dis(or1 , dr1) = 13, ddl[2] = er1 = 23
since l1 = v2 is or1 and l2 = v4 is dr1 . arr[1] = arr[0] +
dis(v1, v2) = 6, arr[2] = arr[1]+ dis(v2, v4) = 16. According
to Eq. (8), slack[·] is calculated from n = 2 to 0. slack[n]
is always initialized with ∞ because all requests have been
delivered at ln. slack[1] = min{slack[2], ddl[2] − arr[2]} =
7, slack[0] = min{slack[1], ddl[1] − arr[1]} = 7. Then lines
3-9 of Algo. 3 work as follows. When j = 0, line 4 (i.e.,
route 〈v1, or2 , dr2 , v2, v4〉 as Fig. 2b) violates (4) of Lemma
4 because Δi,j = dis(v1, or2) + dis(or2 , dr2) + dis(dr2 , v2)−
dis(v1, v2) = 25 > slack[1] according to Eq. (5) (case i =
j < n). We then update Dio[1] = ∞, P lc[1] = ∞ since
det(v1, or2 , v2) = dis(v1, or2) + dis(or2 , v2) − dis(v1, v2) =
15 > slack[0] = 7 using Eq. (11) and Eq. (12). When j = 1,
line 4 (i.e., route 〈v1, v2, or2 , dr2 , v4〉 as Fig. 2b) also violates
(4) of Lemma 4 because Δi,j = dis(v2, or2) + dis(or2 , dr2) +
dis(dr2 , v4) − dis(v2, v4) = 9 > slack[1]. In line 5, Corol-
lary 1 (2) is obviously violated because Dio[1] = ∞. We
then update Dio[2] = min{Dio[1], det(v2, or2 , v4)} = 5 be-
cause picked[1] = 1 ≤ Kw − Kr = 3 and det(v2, or2 , v4) =
5 ≤ slack[1] in Eq. (11). Plc[2] = 2− 1 = 1 since Dio[1] >
det(v2, or2 , v4) according to Eq. (12). Finally, when j = 2,
line 4 ((i.e., route 〈v1, v2, v4, or2 , dr2〉 as Fig. 2a)) violates
Lemma 4 (3) because arr[2] + dis(v4, or2) + dis(or2 , dr2) =
33 > er2 . In line 5, all conditions in Corollary 1 are sat-
isfied. Thus, Δ∗

2 = det(v4, dr2 ,NIL) + Dio[2] = 8 in line 6
and Δ∗ = Δ∗

2 = 8, i∗ = Plc[2] = 1, j∗ = 2 in line 7. In
line 10, S∗ becomes 〈v1, v2, v3, v4, v5〉 by inserting or2 = v3
at li∗ = v2 and dr2 = v5 at lj∗ = v4.

Complexity Analysis. Line 2 and 10 take O(n) time.
There are O(n) iterations in lines 3-9 and it only takes O(1)
time in each iteration. Thus, the total time cost is O(n) and
the memory cost is still O(n). If a shortest distance query
takes O(q) time, the total time complexity is O(nq).

5. INSERTION BASED SOLUTION
This section presents pruneGreedyDP, an efficient and ef-

fective solution to the URPSM problem leveraging the linear
DP insertion. It consists of two phases. The first is a de-
cision phase to decide whether to serve a new request or
not. The second is a planning phase to add the request to
be served into a route. We also propose a pruning strat-
egy based on the results from the decision phase for route
planning. Since shortest distance queries are important for
applications on road networks, we also discuss how to min-
imize the usage of shortest distance queries.

5.1 Decision Phase
Since the unified cost defined in the URPSM problem con-

sists of the total travel distance and the total penalty of un-
served requests, it is reasonable to reject the request whose
penalty is smaller than the increased distance if serving it.
We propose a lower bound of the minimal increased distance
as the metric to decide whether to serve a new request or
not. The metric can be checked in O(n) time and requires
only one shortest distance query.

1639

5.1.1 Calculating Lower Bound of Δ∗

We calculate the lower bound of Δ∗ (denoted as LBΔ∗)
by adapting the calculation of Δi,j in linear DP insertion
with Euclidean distance. The reasons can be reflected in
three aspects.

• The Euclidean distance is usually smaller than the dis-
tance on a road network.

• It only takes O(n) time to calculate Δ∗ leveraging the
techniques proposed in Sec. 4.4.

• We can use the auxiliary arrays e.g., arr[·] for travel
time to calculate shortest distances without any query.

LBΔ∗ is derived from the lower bound of detour (denoted
as ldet(, ,)) and the lower bound of Δi,j in Eq. (5) (denoted
as LBΔi,j), as explained below.

Lower Bound of Detour. The detour when inserting
lj between li and lk is bounded by:

det(li, lj , lk) ≥ euc(li, lj)+ euc(lj , lk)− dis(li, lk) = ldet(li, lj , lk)

Lower Bound of Δi,j. Substituting ldet(, ,) into Eq. (5),
we have the following lemma.

Lemma 7. Given a worker w and a new request r, LBΔi,j

can be calculated as

LBΔi,j
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

euc(ln, or) + L, if i = j = n

euc(li, or) + L+ euc(dr, li+1)− (arr[i+ 1]− arr[i]),

if i = j < n

euc(li, or) + euc(or, li+1)− (arr[i+ 1]− arr[i])

+euc(lj , dr) + euc(dr, lj+1),

−(arr[j + 1]− arr[j]) otherwise

(15)

with only one shortest distance query, i.e., L = dis(or, dr).
Proof. When i = j = n, LBΔi,j = euc(ln, or) + L with-

out any extra shortest distance query.
When i = j < n, LBΔi,j = euc(li, or)+L+euc(dr, li+1)−

dis(li, li+1). Note that we cannot use any approximated dis-
tance which is smaller than the shortest distance. However,
as the auxiliary array arr[·] indicates the arriving time of
li, we have dis(li, li+1) = arr[i + 1] − arr[i] if we expect
travel time between li and li+1. Alternatively, an additional
auxiliary array can be used to store the travel distance be-
tween two adjacent vertices in Sw. It then directly repre-
sents dis(li, li+1) if travel distance is used.

Similarly, we can also use arr[i + 1] − arr[i] and arr[j +
1] − arr[j] to substitute the shortest distances dis(li, li+1)
and dis(lj , lj+1), respectively. Note that we only need one
shortest distance query, i.e., L = dis(or, dr).

Lower Bound of Δ∗. We calculate LBΔ∗ = min{LBΔi,j}
as follows. When i = j, we can calculate min{LBΔi,j} in
linear time based on Eq. (15), since there are O(n) possi-
ble cases. When i < j, we apply dynamic programming to
calculate the minimal from all the possible O(n2) values.

Firstly, we use arr[·] to substitute the shortest distance.

ldet(lj , dr, lj+1) = euc(lj , dr) + euc(dr, lj+1)− (arr[j + 1]− arr[j])

ldet(lj−1, or, lj) = euc(lj−1, or) + euc(or, lj)− (arr[j]− arr[j − 1])

Then we substitute both equations into Eq. (11). Dioeuc
is the value of Dio[·] substituted with Euclidean distance.

Dioeuc[j] =

⎧⎪⎨
⎪⎩

∞, if picked[j − 1] > Kw −Kr

Dioeuc[j − 1], if ldet(lj−1, or, lj) > slack[j − 1]

min{Dioeuc[j − 1], ldet(lj−1, or, lj)}, otherwise

(16)
Finally, LBΔ∗ can be calculated as follows.

Algorithm 4: Decision Algorithm

input : α, workers W and a request r
output: a set of lower bound LB for each w

1 L ← dis(or, er), LB ← ∅;
2 foreach w ∈ W do
3 LBΔ∗ ← Linear DP Insertion(w, r) by using

Euclidean distance and L according to Lemma 7
and Algo. 3;

4 LB ← LB ∪ {(LBΔ∗ , w)};
5 if pr < α ·minLB then reject r;
6 return LB;

LBΔ∗ =

min
i≤j,j=0,··· ,n

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

euc(ln, or) + L, if i = j = n

euc(li, or) + L+ euc(dr, li+1)

−(arr[i+ 1]− arr[i]), if i = j < n

det(lj , dr, lj+1) +Dioeuc[j] if i < j

(17)

5.1.2 Algorithm Sketch
Algo. 4 illustrates the process of the decision process. For

each worker in W , we calculate LBΔ∗ using Eq. (17). Note
that we use LB to store all LBΔ∗ for each worker since we
will use LBΔ∗ in the planning phase.

Time Complexity. Line 3 takes O(|W | + |R|) time in
total. Line 4 and 5 take O(|W |) time. Thus Algo. 4 takes
O(|W | + |R|) time. If a shortest distance query takes O(q)
time, the total time complexity is O(|W |+ |R|+ q).

5.2 Planning Phase
The planning phase first prunes candidate workers and

greedily adds a new request into the route of the best worker.

5.2.1 Pruning Candidate Workers
Although many pruning strategies [13][25][18] have been

proposed to filter candidate workers to serve the new re-
quest, they mostly rely on the duration of deadlines and grid
indices. These strategies can become ineffective with long
deadlines of requests or large number of workers. Hence we
propose a new pruning strategy to filter workers leveraging
the lower bounds (LB) from the decision phase. The prun-
ing strategy is based on the following lemma.

Lemma 8 (Pre Ordered Pruning). Assume workers
are already sorted according to LBΔ∗ in LB, which is cal-
culated in the decision phase. If wa is ahead of wb in the
sorted order and Δ∗ of wa is smaller than LBΔ∗ of wb, we
can safely ignore all workers after wa.

Proof. Δ∗ is the actual increased distance of worker wa

and LBΔ∗ is the lower bound of the actual increased dis-
tance of worker wb. Since the workers are already sorted
according to LBΔ∗ , Δ∗ of wa is also smaller than LBΔ∗ of
any worker after wb.

Note that existing studies [30][25] often iterate all candidate
workers with the actual shortest distances, making them
time-consuming in practice. As we will show in Sec. 6, the
pruning strategy based on Lemma 8 can save tens of billions
of shortest distance queries when the deadline of request is
long or when the number of workers is large.

5.2.2 Finding the Best Worker
After pruning, the next step is to find the worker with

the minimal increased distance. In pruneGreedyDP, this is

1640

Algorithm 5: pruneGreedyDP

input : α, workers W and requests R
output: a set of route {Sw} and unified cost UC

1 Build grid index and initialize R− with ∅;
2 foreach new request r ∈ R do

/* Phase 1: Decision */

3 Cand ← filter the candidate according to grid
index, deadline, etc.;

4 LB ← Decision(α,Cand, r);
/* Phase 2: Planning */

5 if r is decided to be served then
6 w′ ← NIL,Δ∗

w′ ← ∞;
7 foreach (LBΔ∗ , w) in sorted LB do
8 if Δ∗

w′ < LBΔ∗ then break;
9 Δ∗

w ← Linear DP Insertion(w, r);
10 if Δ∗

w < Δ∗
w′ then w′ ← w,Δ∗

w′ ← Δ∗
w;

11 if w′ is not NIL then update Sw′ and arr of
w′ accordingly;

12 if r is rejected then R− ← R− ∪ {r} ;

13 UC ← α
∑

w∈W D(Sw) +
∑

r∈R− pr;

14 return {Sw} and UC;

performed using the DP insertion. We use auxiliary ar-
ray arr[·] to further reduce the times of shortest distance
queries. Compared with existing work [34] which needs 3n
shortest distance queries, we only need 2n+ 1.

Lemma 9. Using the auxiliary array arr[·], the linear DP
insertion only needs 2n+ 1 shortest distance queries.

Proof. By replacing Euclidean distance with the short-
est distance in Eq. (15), we can calculate Δ based on arr[·].
Beyond the shortest distance query for L = dis(or, dr), we
only need the shortest distance between or(dr) and l1, · · · , ln.
Thus, it is 2n+ 1 times in total.

5.3 Algorithm Sketch
Algo. 5 illustrates the pruneGreedyDP algorithm. In line

1, we build grid index and initialize R−. For each new re-
quest, we first filter a set of candidate workers in line 3 and
then start decision in line 4. If the request is decided to be
served in line 4, we add it into a route in lines 5-11. Iter-
ations in lines 7-10 are the implementation of our pruning
strategy in Lemma 8. Specifically, we use linear DP inser-
tion to calculate Δ∗ for each w in line 9 and update the
currently best worker w′ with minimal increased distance
(Δ∗

w′) in line 10. If a feasible worker w′ is found at the end
of an iteration, we update Sw′ with 2 (in Fig. 2a), 3 (in
Fig. 2b) or 4 (in Fig. 2c) shortest path queries together with
the auxiliary array arr[·]. Finally, we calculate the unified
cost in line 13.

Example 3. Back to the settings in Example 1. Suppose
that w1 is assigned to serve r1 at time 0 following route
Sw1 = 〈v7(location of w1), v2, v4〉 and w2 is assigned to serve
r2 at time 5 following route Sw2 = 〈v3(location of w2), v3, v5, 〉.
At time 11, both w1 and w2 travel to v8 when r3 is released.
In line 3 of Algo. 5, Cand = {w1, w2}, which is the input
of Algo. 4 to calculate a set of lower bounds LB. Note that
in line 1 of Algo. 4, we query the shortest distance L = 4
only once and use it to calculate LBΔ∗ with Euclidean dis-
tance of coordinates. According to Lemma 7, LBΔ∗ of w1

is euc(v8, v8) + L + euc(v5, v4) − (arrw1 [2] − arrw1 [1]) =
0 + 4 + 2.8 − 5 = 1.8, LBΔ∗ of w2 is euc(v8, v8) + L +

Table 4: Statistics of datasets.

Dataset #(Requests) #(Vertices) #(Edges)
NYC 517, 100 807, 795 2, 100, 632

Chengdu 259, 347 214, 440 466, 330

euc(v5, v5) − (arrw2 [2] − arrw2 [1]) = 4 − 4 = 0. We have
LB = {(1.8, w1), (0, w2)}. As the minimal lower bound is 0,
which is less than the penalty pr3 = 9, we decide to serve
the request. Then in the planning phase, (0, w2) is first ex-
tracted in line 7 and Δ∗

w2
= 0 in line 9. In line 8 of the

second round, since Δ∗
w′ = 0 < 1.8, we just break the itera-

tion. In line 13, UC = D(S1) +D(S2) = 25 when α = 1.

Time Complexity. There are O(|R|) iterations in line 2.
Line 3 takes O(|W |) time and line 4 takes O(|W |+ |R|) time
because there are |W | workers and |R| requests in total, and
the DP insertion takes linear time (i.e., O(|R|) in total).
Thus, the total time complexity of lines 3-4 is O(|R|2 +
|R||W |). The sorting in line 7 takes O(|W | log |W |) time
and lines 8-10 take O(|W | + |R|) time for the same reason.
Thus, the total time complexity of lines 5-11 is O(|R|2 +
|R||W | log |W |). Line 12 also takes O(|W |+|R|) time. Thus,
Algo. 5 takes O(|R|2 + |R||W | log |W |) time. If a shortest
path and distance query takes O(q) time, the total time
complexity is O(|R|2q + |R||W |q + |R||W | log |W |).

6. EXPERIMENTAL STUDY
This section presents the experimental evaluations of our

proposed algorithms.

6.1 Experimental Setup
Datasets. We conduct experimental evaluations on two

real citywide taxi datasets. The first is collected by Didi
Chuxing [3] in Chengdu, China, which is published through
its GAIA initiative [4]. The second is a public dataset [8]
collected from two types of taxis (yellow and green) in New
York City, USA, and has been used in previous large-scale
ride-sharing studies as benchmarks [11][13][39][41]. We use
the data from the day with the most requests for evalua-
tion (November 18, 2016 in Chengdu, and April 09, 2016
in New York), which are denoted as Chengdu and NYC,
respectively. Each tuple in the two datasets is a taxi re-
quest consisting of a pickup latitude/longitude, a drop off
latitude/longitude and a release time. Since only NYC con-
tains the request capacity Kr, we generate Kr for Chengdu
according to its distribution in NYC. The road network of
NYC is downloaded from Geofabrik [5]. For Chengdu, we
use the latest city boundaries [1] and extract its road net-
work out of the national road network of China from Geofab-
rik via Osmconvert [7]. Each road network is represented as
an undirected graph. Table 4 summarizes the number of re-
quests as well as the amounts of vertices and edges in each
graph. NYC is the largest dataset among existing stud-
ies [25][17][41][18][30][11][13]. For instance, |V | and |E| in
NYC are 6.6 and 11.1 times larger than those of the road
network used in [25][17]. The number of requests in NYC
is 47.7% more than that in [41]. Chengdu has a larger road
network and comparable requests than existing literature.

Implementation. We simulate ride-sharing, a repre-
sentative shared mobility application following the settings
in [25][13]. The origin and the destination of each request
are pre-mapped to the closest vertex in the road network.
The initial location of a worker is randomly chosen from

1641

Table 5: Parameter settings.

Parameters Settings
Grid size g (kilometer) 1, 2, 3, 4, 5

Delivery deadline er (minute) 5, 10, 15, 20, 25
Capacity Kw 3, 4, 6, 10, 20
Weight α 1

Penalty pr (×dis(or, dr))
Chengdu: 2, 5, 10, 20, 30
NYC : 10, 20, 30, 40, 50

Number of workers |W | Chengdu: 2k, 5k, 10k, 20k, 30k
NYC : 10k, 20k, 30k, 40k, 50k

the vertices in the road network. When a worker is serving
a request, he/she follows the planned route and moves to
the destination. Since a taxi usually travels with different
speeds on different types of roads e.g., 23 m/s in motor-
ways or 6 m/s in residential streets, we assign a constant
speed for each type of road i.e., 80% of the maximum legal
speed limit in their cities [2] and assume the taxi travels
at the different speeds on different types of roads. Table 5
summarizes the major parameters of experiments. The de-
fault values are marked in bold. The delivery deadline is
calculated as the release time of a request added by the pa-
rameter in the table. For example, the default deadline for a
request with release time tr is tr + 10min. Kw is generated
using a gaussian distribution with μ = 3, · · · , 20, because
neither dataset specifies this information. We fix α to 1 so
that the first term of UC(W,R) in Eq. (1) is equivalent to
the total travel distance. The penalty of a request is set
by a parameter in the table multiplied by the shortest dis-
tance between origin and destination of the request, e.g.,
pr = 10 × dis(or, dr) by default. Note that α is fixed to 1
and pr = 2, · · · , 50(×dis(or, dr)), which is equivalent to ad-
justing the proportion between cr and cw when maximizing
the total revenue. Both pr and |W | of NYC are larger than
Chengdu for its larger road network and number of drivers.

The experiments are conducted on a server with 40 In-
tel(R) Xeon(R) E5 2.30GHz processors with hyper-threading
enabled and 128GB memory. The simulation implemen-
tation is single-threaded, and the total running time (the
time to construct spatial index and labels for shortest path
and distance query excluded) is limited to 10/20 hours for
Chengdu and NYC. Based on the results of some work [25]
on real-time ride-sharing, a real-time solution should stop
before the time limitation. All the algorithms are imple-
mented in GNU C++. Each experimental setting is re-
peated 30 times and the average results are reported. We
only store the vertices and edges of the road network (i.e.,
graph) through weighted adjacency list. The shortest dis-
tance and shortest path query are both on the fly, using a
hub-based labeling algorithm implemented for road network
[9]. An LRU cache [25] is maintained for shortest distance
and path queries, and is used by all the algorithms.

Compared Algorithms. We compare pruneGreedyDP
with the following state-of-the-art algorithms.

• tshare [30]. It first filters workers via a searching pro-
cess and then applies basic insertion to find a worker
with minimal increased distance for each new request.

• kinetic [25]. It uses a kinetic tree to maintain ev-
ery possible route to serve all the remaining requests.
Unlike tshare, the insertion operation is recursively ex-
ecuted based on the tree structure.

• batch [11]. It first generates groups of requests in
a batch (e.g., 6 seconds) and sorts the groups. Then

|W|(103)

2 5 10 20 30

U
ni

fie
d

C
os

t

108

0

2

4

6

8

10

12

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(a) Unified cost (Chengdu)
|W|(103)

10 20 30 40 50

U
ni

fie
d

C
os

t

1011

0.5

1

1.5

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(b) Unified cost (NYC)

|W|(103)

2 5 10 20 30

Se
rv

ed
 R

at
e

0

0.2

0.4

0.6

0.8

1

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(c) Served rate (Chengdu)
|W|(103)

10 20 30 40 50

Se
rv

ed
 R

at
e

0

0.2

0.4

0.6

0.8 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(d) Served rate (NYC)

|W|(103)

2 5 10 20 30

R
es

po
ns

e
Ti

m
e(

se
cs

)

0

0.1

0.2

0.3

0.4

0.5

0.6

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(e) Resp. time (Chengdu)
|W|(103)

10 20 30 40 50

R
es

po
ns

e
Ti

m
e(

se
cs

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(f) Resp. time (NYC)

Figure 3: Performance of varying number of workers |W |.

it greedily assigns requests in each group by inserting
each request into the route of current workers, and
finally chooses the worker who can serve more requests
with minimal increased distance.

• GreedyDP. It is a variant of our pruneGreedyDP al-
gorithm without the pruning strategy in Lemma 8.

Metrics. All the algorithms are evaluated in terms of
total unified cost, served rate (|R+|/|R|) and response time
(average waiting time to process a single request, resp. time
for short). Served rate and response time are the metrics in
many large-scale real-time ride-sharing proposals [30][25].
We also assess the memory cost of each algorithm. Note
that the memory usage of auxiliary arrays can be omitted
compared to the size of the graph, cache and grid index.
Since the memory cost of graph and cache is constant for
every algorithm, we only evaluate the memory cost of grid
index when varying the size of grid g. We also evaluate the
number of saved shortest distance query (distance query for
short) between pruneGreedyDP and GreedyDP to show the
effectiveness of the pruning strategy.

6.2 Experimental Results
Impact of Number of Workers |W |. Fig. 3 presents

the results of varying the number of workers. Overall, prune-
GreedyDP outperforms the rest in terms of unified cost by
12.41% to 85.36% on Chengdu and NYC. The unified costs
of all the algorithms decrease with the increasing number of
workers, because more requests can be served. For the same
reason, the served rates of all the algorithms increase on
both datasets. pruneGreedyDP has the highest served rate,
54.94% and 141.61% higher than batch. The results of served
rate in Chengdu indicate that pruneGreedyDP is competi-
tive with kinetic and better than batch when maximizing the
number of served requests. For a larger road network, the

1642

Kw

3 4 6 10 20

U
ni

fie
d

C
os

t
108

0

2

4

6

8

10

12

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(a) Unified cost (Chengdu)

Kw

3 4 6 10 20

U
ni

fie
d

C
os

t

1010

2

4

6

8

10

12

14

16

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(b) Unified cost (NYC)

Kw

3 4 6 10 20

Se
rv

ed
 R

at
e

0

0.2

0.4

0.6

0.8

1

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(c) Served rate (Chengdu)

Kw

3 4 6 10 20

Se
rv

ed
 R

at
e

0

0.2

0.4

0.6

0.8

1

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(d) Served rate (NYC)

Kw

3 4 6 10 20

R
es

po
ns

e
Ti

m
e(

se
cs

)

0

0.1

0.2

0.3

0.4

0.5

0.6

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(e) Resp. time (Chengdu)

Kw

3 4 6 10 20

R
es

po
ns

e
Ti

m
e(

se
cs

)

0

0.1

0.2

0.3

0.4

0.5

0.6

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(f) Resp. time (NYC)

Figure 4: Performance of varying capacity Kw.

served rates of all algorithms dramatically decrease, which
aligns with Lemma 1, i.e., the number of served requests is
affected by |V |. The response time of all baselines increase
with the increase of |W |. tshare is the fastest because its
searching process mistakenly removes many possible work-
ers, which leads to the lowest served rate (from 1%to 16%).
pruneGreedyDP is the second fastest, 2.46 to 32.08 times
faster than kinetic and batch. Note that kinetic fails to fin-
ish the simulation in 20 hours when |W | is 40k and 50k. By
using the proposed pruning strategy, the total number of
saved shortest distance query increases from 5.27 billion to
42.20 billion in NYC, and from 22.26 billion to 45.16 billion
in Chengdu. Thus, the response time of pruneGreedyDP is
2.76 times faster than GreedyDP in average, validating the
efficiency of our pruning strategy.

Impact of Capacity of Workers Kw. Fig. 4 shows the
results of varying the capacity of workers. With a larger
capacity, all the algorithms incur a lower unified cost on
Chengdu. Our pruneGreedyDP algorithm has a unified cost
up to 71% lower than the others. kinetic fails to stop in
case of a large Kw because of its exponential time com-
plexity (2Kw)! [17]. In contrast, batch is more stable with
a slight decrease in unified cost. In terms of served rate,
pruneGreedyDP is still the best, outperforming the others
by up to 96%. In terms of response time, tshare is the fastest
for the same reason as varying the number of workers. The
reduction in response time of pruneGreedyDP over kinetic
and batch is 41% to 95% times on Chengdu and 47% to 93%
times on NYC.

Impact of Grid Size g. Fig. 5 plots the results of
varying the grid size g. In terms of unified cost, both ki-
netic and tshare are relatively insensitive to the change of
grid size, and pruneGreedyDP outputs the lowest unified
cost on both datasets. In terms of served rate, batch al-
most constantly yields 40.1% on Chengdu and 25.7% on

g

1 2 3 4 5

U
ni

fie
d

C
os

t

108

0

2

4

6

8

10

12

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(a) Unified cost (Chengdu)
g

1 2 3 4 5

U
ni

fie
d

C
os

t

1011

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(b) Unified cost (NYC)

g

1 2 3 4 5

Se
rv

ed
 R

at
e

0

0.2

0.4

0.6

0.8

1

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(c) Served rate (Chengdu)
g

1 2 3 4 5

Se
rv

ed
 R

at
e

0

0.1

0.2

0.3

0.4

0.5

0.6

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(d) Served rate (NYC)

g

1 2 3 4 5

R
es

po
ns

e
Ti

m
e(

se
cs

)

0

0.1

0.2

0.3

0.4

0.5

0.6

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(e) Resp. time (Chengdu)
g

1 2 3 4 5

R
es

po
ns

e
Ti

m
e(

se
cs

)

0

0.1

0.2

0.3

0.4

0.5

0.6

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(f) Resp. time (NYC)

Figure 5: Performance of varying grid size g.

NYC. pruneGreedyDP achieves the highest served rate on
both datasets, 3.0% and 87.6% higher than the baselines on
Chengdu, 16.9% and 96.5% higher on NYC. Again, tshare
has the shortest response time yet extremely low served rate.
kinetic and batch are up to 3.11 and 25.98 times slower than
pruneGreedyDP in terms of response time. For the memory
usage of grid index, tshare consumes the most from 609.46
to 5.38 MB in NYC and 9389.72 to 326.98 MB in Chengdu
while others consume up to 0.30 MB for Chengdu and 3.23
MB for NYC. This is because the grid index of the other
algorithms only stores the IDs of workers in the grid instead
of a sorted list of grids like tshare.

Impact of Deadline er. Fig. 6 shows the results of
varying the deadline er. With a larger deadline, the unified
costs of all the algorithms decrease while the served rates
of all the algorithms increase. The reason is that a longer
deadline allows more requests to be served, and thus a lower
unified cost and a higher served rate. In terms of effective-
ness (unified cost and served rate), pruneGreedyDP is still
the best. Note that when α = 1 and the served rate closed
to 100%, the unified cost approximates the total travel dis-
tance. Thus pruneGreedyDP yields a smaller travel distance
than kinetic [25] and tshare [30]. The response time of batch
and pruneGreedyDP is stable while that of the others no-
tably increases. The increase of GreedyDP is 1.63 and 4.12
times in both datasets when er increases from 5 to 25 min-
utes. Conversely, the response time of pruneGreedyDP re-
mains within 50ms. This is because when varying er, 24.95
to 83.99 billions of shortest distance queries are saved in
Chengdu and 16.43 to 57.90 billions are saved in NYC using
the new pruning strategy.

Impact of Penalty pr. Fig. 7 presents the results of
varying the penalty. The unified costs of all the baselines
increase with the penalty while that of pruneGreedyDP is al-
ways the smallest. This indicates that pruneGreedyDP actu-

1643

er

5 10 15 20 25

U
ni

fie
d

C
os

t
108

0

2

4

6

8

10

12

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(a) Unified cost (Chengdu)

er

5 10 15 20 25

U
ni

fie
d

C
os

t

1011

0.4

0.6

0.8

1

1.2

1.4

1.6

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(b) Unified cost (NYC)

er

5 10 15 20 25

Se
rv

ed
 R

at
e

0

0.2

0.4

0.6

0.8

1

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(c) Served rate (Chengdu)

er

5 10 15 20 25

Se
rv

ed
 R

at
e

0

0.2

0.4

0.6

0.8

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(d) Served rate (NYC)

er

5 10 15 20 25

R
es

po
ns

e
Ti

m
e(

se
cs

)

0

0.1

0.2

0.3

0.4

0.5

0.6

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(e) Resp. time (Chengdu)

er

5 10 15 20 25

R
es

po
ns

e
Ti

m
e(

se
cs

)

0

0.1

0.2

0.3

0.4

0.5

0.6

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(f) Resp. time (NYC)

Figure 6: Performance of varying deadline er.

ally remains competitive when maximizing the total revenue
when the proportion between cr and cw varies. The served
rate of kinetic slightly increases because a higher penalty
may force it to try to serve more requests i.e., pr is larger
than α ·minLB in the decision phase. In terms of response
time, our proposed algorithm is 4.17 and 16.34 times faster
than kinetic and batch.

Summary of Results. We summarize our experimental
findings as follows.

• Our pruneGreedyDP algorithm usually achieves a uni-
fied cost 1.2 to 12.8 times lower than the three state-
of-the-art algorithms [25][11], while being able to serve
more requests (at least 9% higher) in large-scale datasets.
These results validate the effectiveness of our solution
in route planning with multiple objectives.

• The algorithms with DP-based insertion, GreedyDP
and pruneGreedyDP, are 2.62 to 20.72 times faster
than the state-of-the-arts [25][11]. In many cases, prune-
GreedyDP is 2.8 times faster than GreedyDP, due to
tens of billions of shortest distance queries saved.

• Among the state-of-the-arts, kinetic [25] often fails to
halt in time on large-scale datasets for its exponential
time complexity. batch [11] is less effective and efficient
than our solution but more scalable than kinetic in
large-scale datasets. tshare [30] always has the fastest
response time, but has the lowest served rate and the
highest unified cost.

7. CONCLUSION
In this paper, we propose the URPSM problem, a unified

formulation of route planning for shared mobility. It pro-
vides a flexible multi-objective function where mainstream
optimization goals in existing studies can be reduced to spe-
cial cases of the URPSM problem. We prove that there is

pr

2 5 10 20 50

U
ni

fie
d

C
os

t

109

0

1

2

3

4

5

6
 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(a) Unified cost (Chengdu)

pr

10 20 30 40 50

U
ni

fie
d

C
os

t

1011

0

0.5

1

1.5

2

2.5
 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(b) Unified cost (NYC)

pr

2 5 10 20 50

Se
rv

ed
 R

at
e

0

0.2

0.4

0.6

0.8

1

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(c) Served rate (Chengdu)

pr

10 20 30 40 50

Se
rv

ed
 R

at
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(d) Served rate (NYC)

pr

2 5 10 20 50

R
es

po
ns

e
Ti

m
e(

se
cs

)

0

0.1

0.2

0.3

0.4

0.5

0.6

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(e) Resp. time (Chengdu)

pr

10 20 30 40 50

R
es

po
ns

e
Ti

m
e(

se
cs

)

0

0.1

0.2

0.3

0.4

0.5

0.6

 tshare
 kinetic
 pruneGreedyDP

 batch
 GreedyDP

(f) Resp. time (NYC)

Figure 7: Performance of varying penalty pr.

no polynomial-time algorithm with constant competitive ra-
tio to solve the URPSM problem and its variants proposed
in previous studies. Since insertion is a basic yet ineffec-
tive operation in many existing solutions to route planning,
we develop a novel dynamic programming based algorithm,
which reduces the time complexity of insertion from cubic or
quadric time to linear time. We then devise an effective and
efficient two-phased solution leveraging the above DP-based
insertion algorithm to address the URPSM problem approx-
imately. Extensive experiments on real datasets show that
our proposed solution outperforms the state-of-the-arts in
both effectiveness and efficiency by a large margin. Our pa-
per serves as a comprehensive theoretical reference for route
planning in shared mobility, and opens up new opportunities
for future research to design efficient solutions to large-scale
shared mobility applications.

Acknowledgment
We are grateful to anonymous reviewers for their construc-
tive comments. Yongxin Tong and Ke Xu’s works are par-
tially supported by the National Science Foundation of China
(NSFC) under Grant No. 61502021 and 71531001, National
Grand Fundamental Research 973 Program of China under
Grant 2014CB340300, the Science and Technology Major
Project of Beijing under Grant No. Z171100005117001 and
Didi Gaia Collborative Research Funds for Young Scholars.
Yuxiang Zeng and Lei Chen’s works are partially supported
by the Hong Kong RGC GRF Project 16207617, the Na-
tional Grand Fundamental Research 1090 973 Program of
China under Grant 2014CB340303, the National Science
Foundation of China (NSFC) under Grant No. 61729201,
the Science and Technology Planning Project of Guang-
dong Province, China, No. 2015B010110006, Microsoft Re-
search Asia Collaborative Research and HKUST SSTP un-
der Project FP305.

1644

8. REFERENCES
[1] Boundary of Chengdu.

https://www.openstreetmap.org/node/244077729.

[2] Default Speed Limits in OpenStreetMap.
https://wiki.openstreetmap.org/wiki/OSM_tags_

for_routing/Maxspeed.

[3] Didi Chuxing. http://www.didichuxing.com/.

[4] GAIA. https:
//outreach.didichuxing.com/research/opendata/.

[5] Geofabrik. https://download.geofabrik.de/.

[6] OpenStreetMap. http://www.openstreetmap.com/.

[7] Osmconvert.
https://wiki.openstreetmap.org/wiki/Osmconvert.

[8] TLC Trip Record Data. http://www.nyc.gov/html/
tlc/html/about/trip_record_data.shtml.

[9] I. Abraham, D. Delling, A. V. Goldberg, and R. F.
Werneck. A hub-based labeling algorithm for shortest
paths in road networks. In International Symposium
on Experimental Algorithms, pages 230–241, 2011.

[10] N. Agatz, A. Erera, M. Savelsbergh, and X. Wang.
Optimization for dynamic ride-sharing: A review.
European Journal of Operational Research,
223(2):295–303, 2012.

[11] J. Alonso-Mora, S. Samaranayake, A. Wallar,
E. Frazzoli, and D. Rus. On-demand high-capacity
ride-sharing via dynamic trip-vehicle assignment.
Proceedings of the National Academy of Sciences,
114(3):462–467, 2017.

[12] N. Ascheuer, S. O. Krumke, and J. Rambau. Online
dial-a-ride problems: Minimizing the completion time.
In Annual Symposium on Theoretical Aspects of
Computer Science, pages 639–650, 2000.

[13] M. Asghari, D. Deng, C. Shahabi, U. Demiryurek, and
Y. Li. Price-aware real-time ride-sharing at scale: an
auction-based approach. In SIGSPATIAL, pages
3:1–3:10, 2016.

[14] M. Asghari and C. Shahabi. An on-line truthful and
individually rational pricing mechanism for
ride-sharing. In SIGSPATIAL, pages 7:1–7:10, 2017.

[15] A. Borodin and R. El-Yaniv. Online computation and
competitive analysis. Cambridge University Press,
2005.

[16] M. Charikar and B. Raghavachari. The finite capacity
dial-a-ride problem. In FOCS, pages 458–467, 1998.

[17] L. Chen, Q. Zhong, X. Xiao, Y. Gao, P. Jin, and C. S.
Jensen. Price-and-time-aware dynamic ridesharing. In
ICDE, pages 1061–1072, 2018.

[18] P. Cheng, H. Xin, and L. Chen. Utility-aware
ridesharing on road networks. In SIGMOD, pages
1197–1210, 2017.

[19] B. Cici, A. Markopoulou, and N. Laoutaris. Designing
an on-line ride-sharing system. In SIGSPATIAL,
pages 60:1–60:4, 2015.

[20] G. B. Dantzig and J. H. Ramser. The truck
dispatching problem. Management science, 6(1):80–91,
1959.

[21] P. M. d’Orey, R. Fernandes, and M. Ferreira.
Empirical evaluation of a dynamic and distributed
taxi-sharing system. In 15th International IEEE
Conference on Intelligent Transportation Systems,
pages 140–146, 2012.

[22] E. Feuerstein and L. Stougie. On-line single-server
dial-a-ride problems. Theoretical Computer Science,
268(1):91–105, 2001.

[23] A. Gupta, M. Hajiaghayi, V. Nagarajan, and R. Ravi.
Dial a ride from k-forest. ACM Transactions on
Algorithms (TALG), 6(2):41, 2010.

[24] W. M. Herbawi and M. Weber. A genetic and
insertion heuristic algorithm for solving the dynamic
ridematching problem with time windows. In
Proceedings of the 14th annual conference on Genetic
and evolutionary computation, pages 385–392, 2012.

[25] Y. Huang, F. Bastani, R. Jin, and X. S. Wang. Large
scale real-time ridesharing with service guarantee on
road networks. PVLDB, 7(14):2017–2028, 2014.

[26] H. Hung, R. Chapman, W. Hall, and E. Neigut. A
heuristic algorithm for routing and scheduling
dial-a-ride vehicles. In ORSA/TIMS National Meeting,
1982.

[27] J. J. Jaw. Solving large-scale dial-a-ride vehicle
routing and scheduling problems. PhD thesis,
Massachusetts Institute of Technology, 1984.

[28] J. J. Jaw, A. R. Odoni, H. N. Psaraftis, and N. H. M.
Wilson. A heuristic algorithm for the multi-vehicle
advance request dial-a-ride problem with time
windows. Transportation Research Part B
Methodological, 20(3):243–257, 1986.

[29] A. Kleiner, B. Nebel, and V. A. Ziparo. A mechanism
for dynamic ride sharing based on parallel auctions. In
IJCAI, volume 11, pages 266–272, 2011.

[30] S. Ma, Y. Zheng, and O. Wolfson. T-share: A
large-scale dynamic taxi ridesharing service. In ICDE,
pages 410–421, 2013.

[31] S. Ma, Y. Zheng, and O. Wolfson. Real-time city-scale
taxi ridesharing. IEEE Transactions on Knowledge
and Data Engineering, 27(7):1782–1795, 2015.

[32] R. Mole and S. Jameson. A sequential route-building
algorithm employing a generalised savings criterion.
Journal of the Operational Research Society,
27(2):503–511, 1976.

[33] M. Ota, H. Vo, C. Silva, and J. Freire. A scalable
approach for data-driven taxi ride-sharing simulation.
In Big Data, pages 888–897, 2015.

[34] M. Ota, H. Vo, C. Silva, and J. Freire. Stars:
Simulating taxi ride sharing at scale. IEEE
Transactions on Big Data, PP(99):1–1, 2017.

[35] D. Pelzer, J. Xiao, D. Zehe, M. H. Lees, A. C. Knoll,
and H. Aydt. A partition-based match making
algorithm for dynamic ridesharing. IEEE Transactions
on Intelligent Transportation Systems,
16(5):2587–2598, 2015.

[36] S. Roy and U. de Montréal. Centre de recherche
sur les transports. The construction of routes and
schedules for the transportation of the handicapped.
Montréal: Université de Montréal, Centre de recherche
sur les transports, 1983.

[37] Z. B. Rubinstein, S. F. Smith, and L. Barbulescu.
Incremental management of oversubscribed vehicle
schedules in dynamic dial-a-ride problems. In AAAI,
pages 1809–1815, 2012.

[38] S. Shaheen, A. Cohen, and I. Zohdy. Shared mobility:
Current practices and guiding principles. Technical
report, 2016.

1645

[39] P. Santi, G. Resta, M. Szell, S. Sobolevsky, S. H.
Strogatz, and C. Ratti. Quantifying the benefits of
vehicle pooling with shareability networks. Proceedings
of the National Academy of Sciences,
111(37):13290–13294, 2014.

[40] D. O. Santos and E. C. Xavier. Dynamic taxi and
ridesharing: A framework and heuristics for the
optimization problem. In IJCAI, volume 13, pages
2885–2891, 2013.

[41] R. S. Thangaraj, K. Mukherjee, G. Raravi,
A. Metrewar, N. Annamaneni, and K. Chattopadhyay.
Xhare-a-ride: A search optimized dynamic ride
sharing system with approximation guarantee. In
ICDE, pages 1117–1128, 2017.

[42] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and
K. Xu. A unified approach to route planning for
shared mobility.
http://home.cse.ust.hk/~yzengal/yz.pdf, 2018.

[43] N. H. Wilson, R. Weissberg, B. Higonnet, and
J. Hauser. Advanced dial-a-ride algorithms. Technical
report, 1975.

[44] N. H. Wilson, R. W. Weissberg, and J. Hauser.
Advanced dial-a-ride algorithms research project.
Technical report, 1976.

[45] SUMC. What is shared-use mobility?
https://goo.gl/3Jw6z7, 2018.

[46] A. C. C. Yao. Probabilistic computations: Toward a
unified measure of complexity. In FOCS, pages
222–227, 1977.

[47] S. Yeung, E. Miller, and S. Madria. A flexible
real-time ridesharing system considering current road
conditions. In MDM, volume 1, pages 186–191, 2016.

[48] Y. Zheng. Trajectory data mining: an overview. ACM
Transactions on Intelligent Systems and Technology
(TIST), 6(3):29, 2015.

1646

