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Abstract

A unified view of the area of sparse signal processing is presented in tutorial form by bringing together various fields

in which the property of sparsity has been successfully exploited. For each of these fields, various algorithms and

techniques, which have been developed to leverage sparsity, are described succinctly. The common potential benefits

of significant reduction in sampling rate and processing manipulations through sparse signal processing are revealed.

The key application domains of sparse signal processing are sampling, coding, spectral estimation, array processing,

component analysis, and multipath channel estimation. In terms of the sampling process and reconstruction

algorithms, linkages are made with random sampling, compressed sensing, and rate of innovation. The redundancy

introduced by channel coding in finite and real Galois fields is then related to over-sampling with similar reconstruction

algorithms. The error locator polynomial (ELP) and iterative methods are shown to work quite effectively for both

sampling and coding applications. The methods of Prony, Pisarenko, and MUltiple SIgnal Classification (MUSIC) are

next shown to be targeted at analyzing signals with sparse frequency domain representations. Specifically, the

relations of the approach of Prony to an annihilating filter in rate of innovation and ELP in coding are emphasized; the

Pisarenko andMUSICmethods are further improvements of the Pronymethod under noisy environments. The iterative

methods developed for sampling and coding applications are shown to be powerful tools in spectral estimation. Such

narrowband spectral estimation is then related to multi-source location and direction of arrival estimation in array

processing. Sparsity in unobservable source signals is also shown to facilitate source separation in sparse component

analysis; the algorithms developed in this area such as linear programming and matching pursuit are also widely used

in compressed sensing. Finally, the multipath channel estimation problem is shown to have a sparse formulation;

algorithms similar to sampling and coding are used to estimate typical multicarrier communication channels.

1 Introduction
There are many applications in signal processing and

communication systems where the discrete signals are

sparse in some domain such as time, frequency, or space;

i.e., most of the samples are zero, or alternatively, their

transforms in another domain (normally called “frequency

coefficients”) are sparse (see Figures 1 and 2). There

are trivial sparse transformations where the sparsity is

preserved in both the “time” and “frequency” domains;

the identity transform matrix and its permutations are

extreme examples. Wavelet transformations that preserve

the local characteristics of a sparse signal can be regarded

as “almost” sparse in the “frequency” domain; in general,

for sparse signals, the more similar the transformation
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matrix is to an identity matrix, the sparser the signal is

in the transform domain. In any of these scenarios, sam-

pling and processing can be optimized using sparse signal

processing. In other words, the sampling rate and the pro-

cessing manipulations can be significantly reduced; hence,

a combination of data compression and processing time

reduction can be achieved.a

Each field has developed its own tools, algorithms,

and reconstruction methods for sparse signal process-

ing. Very few authors have noticed the similarities

of these fields. It is the intention of this tutorial to

describe these methods in each field succinctly and

show that these methods can be used in other areas

and applications often with appreciable improvements.

Among these fields are 1—Sampling: random sampling

of bandlimited signals [1], compressed sensing (CS)

[2], and sampling with finite rate of innovation [3];

2—Coding: Galois [4,5] and real-field error correction
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Figure 1 Sparse discrete time signal with its DFT.

codes [6]; 3—Spectral Estimation [7-10]; 4—Array Pro-

cessing: Multi-source location (MSL) and direction of

arrival (DOA) estimation [11,12], sparse array process-

ing [13], and sensor networks [14]; 5—Sparse Compo-

nent Analysis (SCA): blind source separation [15-17]

and dictionary representation [18-20]; 6—Channel Esti-

mation in Orthogonal Frequency Division Multiplexing

(OFDM) [21-23]. The sparsity properties of these fields

are summarized in Tables 1, 2, and 3.b The details of most

of the major applications will be discussed in the next

sections but the common traits will be discussed in this

introduction.

The columns of Table 1 consist of 0—category, 1—

topics, 2—sparsity domain, 3—type of sparsity, 4—

information domain, 5—type of sampling in information

domain, 6—minimum sampling rate, 7—conventional

reconstruction methods, and 8—applications. The first

rows (2–7) of column 1 are on sampling techniques. The

8–9th rows are related to channel coding, row 10 is on

spectral estimation and rows 11–13 are related to array

processing. Rows 14–15 correspond to SCA and finally,

row 16 covers multicarrier channel estimation, which is

a rather new topic. As shown in column 2 of the table,

depending on the topics, sparsity is defined in the time,

space, or “frequency” domains. In some applications, the

Figure 2 Sparsity is manifested in the frequency domain.

sparsity is defined as the number of polynomial coeffi-

cients (which in a way could be regarded as “frequency”),

the number of sources (which may depend on location

or time sparsity for the signal sources), or the number of

“words” (signal bases) in a dictionary. The type of sparsity

is shown in column 3; for sampling schemes, it is usually

low-pass, band-pass, or multiband [24], while for com-

pressed sensing, andmost other applications, it is random.

Column 4 represents the information domain, where the

order of sparsity, locations, and amplitudes can be deter-

mined by proper sampling (column 5) in this domain.

Column 7 is on traditional reconstruction methods; how-

ever, for each area, any of the reconstruction methods can

be used. The other columns are self explanatory and will

be discussed in more details in the following sections.

The rows 2–4 of Table 1 are related to the sampling

(uniform or random) of signals that are bandlimited in

the Fourier domain. Band-limitedness is a special case

of sparsity where the nonzero coefficients in the fre-

quency domain are consecutive. A better assumption in

the frequency domain is to have random sparsity [25-27]

as shown in row 5 and column 3. A generalization of

the sparsity in the frequency domain is sparsity in any

transform domain such as Discrete Cosine and Wavelet

Transforms (DCT and DWT); this concept is further gen-

eralized in CS (row 6) where sampling is taken by a linear

combination of time domain samples [2,28-30]. Sampling

of signals with finite rate of innovation (row 7) is related

to piecewise smooth (polynomial based) signals. The posi-

tions of discontinuous points are determined by annihilat-

ing filters that are equivalent to error locator polynomials

in error correction codes and the Prony’s method [10] as

discussed in Sections 4 and 5, respectively.

Random errors in a Galois field (row 8) and the additive

impulsive noise in real-field error correction codes (row

9) are sparse disturbances that need to be detected and

removed. For erasure channels, the impulsive noise can

be regarded as the negative of the missing sample value

[31]; thus the missing sampling problem, which can also

be regarded as a special case of nonuniform sampling, is

also a special case of the error correction problem. A sub-

class of impulsive noise for 2-D signals is salt and pepper

noise [32]. The information domain, where the sampling

process occurs, is called the syndromewhich is usually in a

transform domain. Spectral estimation (row 10) is the dual

of error correction codes, i.e., the sparsity is in the fre-

quency domain. MSL (row 11) and multi-target detection

in radars are similar to spectral estimation since targets

act as spatial sparse mono-tones; each target is mapped

to a specific spatial frequency regarding its line of sight

direction relative to the receiver. The techniques devel-

oped for this branch of science is unique; with examples

such as MUSIC [7], Prony [8], and Pisarenko [9]. We shall

see that the techniques used in real-field error correction
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Table 1 Various topics and applications with sparsity properties: the sparsity, whichmay be in the time/space or “frequency” domains, consists of unknown

samples/coefficients that need to be determined

0 1 2 3 4 5 6 7 8

1 Category Topics Sparsity Type of Information Type of Min number Conventional Applications

domain sparsity domain sampling in of required reconstruction

info. domain samples methods

2 Sampling Uniform Frequency Lowpass Time/space Uniform 2 × BW − 1 Lowpass A/D

sampling filtering/

Interpolation

3 Nonuniform Frequency Lowpass Time/space Missing samp- 2 × BW − 1 Iterative metho- Seismic/

sampling -les/jitter/per- (in some cases -ds/filter banks/ MRI/CT/

-iodic/random even BW) spline interp. FM/ PPM

4 Sampling of Frequency Union of Time/pace Uniform/jit- 2 ×
∑

BW Iterative metho- Data

multiband disjoint -ter/periodic/ -ds/filter banks/ compression/

signals intervals random interpolation radar

5 Random Frequency Random Time/space Random/ 2 ×
∑

# Iterative methods: Missing samp.

sampling uniform coeff. adapt. thresh. recovery/

RDE/ELP data comp.

6 Compressed An arbitrary Random Random Random c · k · log( nk ) Basis pursuit/ Data

sensing orthonormal mapping of mixtures matching compression

transform time/space of samples pursuit

7 Finite Time and Random Filtered Uniform # Coeff. + 1 + Annihilating ECG/

rate of polynomial time 2 · (# discont. filter OCT/

innovation coeff. domain epochs) (ELP) UWB

8 Channel Galois Time Random Syndrome Uniform 2 × # errors Berlekamp Digital

coding field or -Massey/Viterbi/ communic-

codes random belief prop. -tion

9 Real Time Random Transform Uniform 2 × # impulsive Adaptive Fault

field domain or noise thresholding tolerant

codes random RDE/ELP system

10 Spectral Spectral Frequency Random Time/ Uniform 2 × # tones MUSIC/ Military/

estimation estimation autocor- −1 pisarenko/ radars

-relation prony/MDL
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Table 1 Various topics and applications with sparsity properties: the sparsity, whichmay be in the time/space or “frequency” domains, consists of unknown

samples/coefficients that need to be determined (Continued)

11 Array MSL/ Space Random Space/ Uniform 2× MDL+ Radars/

processing DOA autocor- # sources MUSIC/ sonar/

estimation -relation ESPRIT ultrasound

12 Sparse arr- Space Random/ Space Peaks of 2 × # desired Optimiz- Radars/sonar/

-ay beam- missing sidelobes/ array -ation: LP/ ultrasound/

-forming elements [non]uniform elements SA/GA MSL

13 Sensor Space Random Space Uniform 2× BW Similar Seismic/

networks of random to row 5 meteorology/

field environmental

14 SCA BSS Active Random Time Uniform 2 × # active ℓl/ℓ2/ Biomedical

source/time sources SL0

15 SDR Dictionary Uniform/ Linear mix- Random 2×# sparse ℓl/ℓ2/ Data compression

random -ture of time words SL0

samples

16 Channel Multipath Time Random Frequency Uniform/ 2 × # Spa- ℓl/ Channel equaliz-

estimation channels or time nonuniform -rse channel MIMAT -ation/OFDM

components

The information domain consists of known samples/coefficients in the “frequency” or time/space domain (the complement of the sparse domain). A list of acronyms is given in Table 2 at the end of this section; also, a list of

common notations is presented in Table 3. For definition of ESPRIT on row 11 and column 7, see the footnote on page 41.
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Table 2 List of acronyms

ADSL Asynchronous Digital Subscriber Line AIC Akaike Information Criterion

ARMA Auto-Regressive Moving Average AR Auto-Regressive

BW BandWidth BSS Blind Source Separation

CFAR Constant False Alarm Rate CAD Computer Aided Design

CS Compressed Sensing CG Conjugate Gradient

DAB Digital Audio Broadcasting CT Computer Tomography

DCT Discrete Cosine Transform DC Direct Current: Zero-Frequency Coefficient

DFT Discrete Fourier Transform DHT Discrete Hartley Transform

DOA Direction Of Arrival DST Discrete Sine Transform

DT Discrete Transform DVB Digital Video Broadcasting

DWT Discrete Wavelet Transform EEG ElectroEncephaloGraphy

ELP Error Locator Polynomial ESPRIT Estimation of Signal Parameters via

FDTD Finite-Difference Time-Domain Rotational Invariance Techniques

FETD Finite-Element Time-Domain FOCUSS FOCal Under-determined System Solver

FPE Final Prediction Error GPSR Gradient Projection Sparse Reconstruction

GA Genetic Algorithm ICA Independent Component Analysis

HNQ Hannan and Quinn method IDT Inverse Discrete Transform

IDE Iterative Detection and Estimation ISTA Iterative Shrinkage-Threshold Algorithm

IMAT Iterative Methods with Adaptive Thresholding KLT Karhunen Loeve Transform

ℓ1 Absolute Summable Discrete Signals ℓ2 Finite Energy Discrete Signals

LDPC Low Density Parity Check LP Linear Programming

MA Moving Average MAP Maximum A Posteriori probability

MDL Minimum Description Length ML Maximum Likelihood

MIMAT Modified IMAT MSL Multi-Source Location

MMSE MinimumMean Squared Error NP Non-Polynomial time

MUSIC MUltiple SIgnal Classification OFDM Orthogonal Frequency Division Multiplex

OCT Optical Coherence Tomography OMP Orthogonal Matching Pursuit

OFDMA Orthogonal Frequency Division Multiple Access PCA Principle Component Analysis

OSR Over Sampling Ratio PHD Pisarenko Harmonic Decomposition

PDF Probability Density Function PPM Pulse-Position Modulation

POCS Projection Onto Convex Sets RIP Restricted Isometry Property

RDE Recursive Detection and Estimation RV Residual Variance

RS Reed-Solomon SCA Sparse Component Analysis

SA Simulated Annealing SDFT Sorted DFT

SDCT Sorted DCT SER Symbol Error Rate

SDR Sparse Dictionary Representation SL0 Smoothed ℓ0-norm

SI Shift Invariant ULA Uniform Linear Array

SNR Signal-to-Noise Ratio WIMAX Worldwide Inter-operability for Microwave Access

UWB Ultra Wide Band WLAN Wireless Local Area Network

WMAN Wireless Metropolitan Area Network
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codes such as iterative methods (IMAT) can also be used

in this area.

The array processing category (rows 11–13) consists

of three separate topics. The first one covers MSL in

radars, sonars, and DOA. The techniques developed for

this field are similar to the spectral estimation methods

with emphasis on the minimum description length (MDL)

[33]. The second topic in the array processing category

is related to the design of sparse arrays where some of

the array elements are missing; the remaining nodes form

a nonuniform sparse grid. In this case, one of the opti-

mization problems is to find the sparsest array (number,

locations, and weights of elements) for a given beampat-

tern. This problem has some resemblance to the missing

sampling problem but will not be discussed in this article.

The third topic is on sensor networks (row 13). Dis-

tributed sampling and recovery of a physical field using an

array of sparse sensors is a problem of increasing inter-

est in environmental and seismic monitoring applications

of sensor networks [34]. Sensor fields may be bandlimited

or non-bandlimited. Since the power consumption is the

most restricting issue in sensors, it is vital to use the lowest

possible number of sensors (sparse sensor networks) with

the minimum processing computation; this topic also will

not be discussed in this article.

In SCA, the number of observations is much less than

the number of sources (signals). However, if the sources

are sparse in the time domain, then the active sources and

their amplitudes can be determined; this is equivalent to

error correction codes. Sparse dictionary representation

(SDR) is another new area where signals are represented

by the sparsest number of words (signal bases) in a dictio-

nary of finite number of words; this sparsity may result in

a tremendous amount of data compression.When the dic-

tionary is over complete, there are many ways to represent

the signal; however, we are interested in the sparsest rep-

resentation. Normally, for extraction of statistically inde-

pendent sources, independent component analysis (ICA)

is used for a complete set of linear mixtures. In the case of

a non-complete (underdetermined) set of linear mixtures,

Table 3 Common notations used throughout the article

n Length of original vector

k Order of sparsity

m Length of observed vector

x Original vector

s Corresponding sparse vector

y Observed vector

ν Noise vector

A Transformation matrix relating s to y

‖un×1‖ℓp

(∑n
i=1 |ui|

p
)
(
1
p

)

ICA can work if the sources are also sparse; for this special

case, ICA analysis is synonymous with SCA.

Finally, channel estimation is shown in row 16. Inmobile

communication systems, multipath reflections create a

channel that can be modeled by a sparse FIR filter. For

proper decoding of the incoming data, the channel charac-

teristics should be estimated before they can be equalized.

For this purpose, a training sequence is inserted within the

main data, which enables the receiver to obtain the out-

put of the channel by exploiting this training sequence.

The channel estimation problem becomes a deconvo-

lution problem under noisy environments. The sparsity

criterion of the channel greatly improves the channel esti-

mation; this is where the algorithms for extraction of a

sparse signal could be employed [21,22,35].

When sparsity is random, further signal processing is

needed. In this case, there are three items that need to

be considered. 1—Evaluating the number of sparse coef-

ficients (or samples), 2—finding the positions of sparse

coefficients, and 3—determining the values of these coef-

ficients. In some applications, only the first two items are

needed; e.g., in spectral estimation. However, in almost

all the other cases mentioned in Table 1, all the three

items should be determined. Various types of linear pro-

gramming (LP) and some iterative algorithms, such as the

IMAT with adaptive thresholding (IMAT), determine the

number, positions, and values of sparse samples at the

same time. On the other hand, the minimum description

length (MDL) method, used in DOA/MSL and spectral

estimation, determines the number of sparse source loca-

tions or frequencies. In the subsequent sections, we shall

describe, in more detail, each algorithm for various areas

and applications based on Table 1.

Finally, it should be mentioned that the signal model for

each topic or application may be deterministic or stochas-

tic. For example, in the sampling category for rows 2–4

and 7, the signal model is typically deterministic although

stochastic models could also be envisioned [36]. On the

other hand, for random sampling and CS (rows 5–6), the

signal model is stochastic although deterministic mod-

els may also be envisioned [37]. In channel coding and

estimation (rows 8–9 and 16), the signal model is nor-

mally deterministic. For Spectral and DOA estimation

(rows 10–11), stochastic models are assumed, whereas for

array beam-forming (row 12), deterministic models are

used. In sensor networks (row 13), both deterministic and

stochastic signal models are employed. Finally, in SCA

(rows 14–15), statistical independence of sources may be

necessary and thus stochastic models are applied.

2 Underdetermined system of linear equations
In most of the applications where sparsity constraint plays

a significant role, we are dealing with under-determined

system of linear equations; i.e., a sparse vector sn×1 is
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observed through a linear mixing system denoted by

Am×n wherem < n:

xm×1 = Am×n · sn×1 (1)

Since m < n, the vector sn×1 cannot be uniquely recov-

ered by observing themeasurement vector xm×1; however,

among the infinite number of solutions to (1), the spars-

est solution may be unique. For instance, if no 2k columns

of Am×n are linearly dependent, the null-space of Am×n

does not include any 2k-sparse vector (at most 2k non-

zero elements) and therefore, the measurement vectors

(xm×n) of different k-sparse vectors are different. Thus, if

sn×1 is sparse enough (k-sparse), the sparsest solution of

(1) is unique and coincides with sn×1; i.e., perfect recovery.

Unfortunately, there are two obstacles here: (1) the vector

xm×1 often includes an additive noise term, and (2) finding

the sparsest solution of a linear system is an NP problem

in general.

Since in the rest of the article, we are frequently dealing

with the problem of reconstructing the sparsest solution

of (1), we first review some of the important reconstruc-

tion methods in this section.

2.1 Greedy methods

Mallat and Zhang [38] have developed a general iterative

method for approximating sparse decomposition. When

the dictionary is orthogonal and the signal x is composed

of k ≪ n atoms, the algorithm recovers the sparse decom-

position exactly after n steps. The introduced method

which is a greedy algorithm [39], is usually referred to

as Matching Pursuit. Since the algorithm is myopic, in

some certain cases, wrong atoms are chosen in the first

few iterations, and thus the remaining iterations are spent

on correcting the first few mistakes. The concepts of this

method are the basis of other advanced greedy meth-

ods such as OMP [40] and CoSaMP [41]. The algorithms

of these greedy methods (MP, OMP, and CoSaMP) are

shown in Table 4.

2.2 Basis pursuit

The mathematical representation of counting the number

of sparse components is denoted by ℓ0. However, ℓ0 is not

a proper norm and is not computationally tractable. The

closest convex norm to ℓ0 is ℓ1. The ℓ1 optimization of

an overcomplete dictionary is called Basis Pursuit. How-

ever the ℓ1-norm is non-differentiable and we cannot use

gradient methods for optimal solutions [42]. On the other

hand, the ℓ1 solution is stable due to its convexity (the

global optimum is the same as the local one) [20].

Formally, the Basis Pursuit can be formulated as:

min ‖s‖ℓ1 s.t. x = A · s (2)

Table 4 Greedy algorithms

1. Let ŝ = 0n×1 , r
(0) = x,S(0) = ∅ and i = 1.

2. Evaluate cj = 〈r(i−1) , aj〉 for j = 1, . . . , n where aj ’s are the columns of
the mixing matrix A (atoms) and sort cj ’s as |cj1 | ≥ · · · ≥ |cjn |.

3. • MP: SetS(i) = S(i−1) ∪ j1 .
• OMP: SetS(i) = S(i−1) ∪ j1 and Am×|S(i)| =

[

aj
]

j∈S(i) .

• CoSaMP: SetS(i) = S(i−1) ∪ {j1 , . . . , j2k} and
Am×|S(i)| =

[

aj
]

j∈S(i) .

4. • MP: − − −
• OMP & CoSaMP: Find s̃ that A(i) · s̃ = x.

5. • MP & OMP: − − −
• CoSaMP: Sort the values of s̃ as |s̃t1 | ≥ |s̃t2 | ≥ . . . and redefine

j1 , . . . , jk as the indices of the columns in A that correspond to
the columns t1 , . . . , tk in A(i) . Also setS(i) = {j1 , . . . , jk}.

6. • MP: Set ŝj1 = cj1 .
• OMP & CoSaMP: Set ŝjl = s̃l for l = 1, . . . , k and ŝl = 0 where

l /∈ S(i) .
7. Set r(i) = x − A · ŝ.
8. Stop if ‖r(i)‖ℓ2 is smaller than a desired threshold or when a maximum

number of iterations is reached; otherwise, increase i and go to step 2.

We now explain how the Basis Pursuit is related to LP.

The standard form of LP is a constrained optimization

problem defined in terms of variable x ∈ R
n by:

minCTx s.t. Ax = b, ∀i : xi ≥ 0 (3)

where CTx is the objective function, Ax = b is a set of

equality constraints and ∀i : xi ≥ 0 is a set of bounds.

Table 5 shows this relationship. Thus, the solution of (2)

can be obtained by solving the equivalent LP. The Interior

Point methods are the main approaches to solve LP.

2.3 Gradient projection sparse reconstruction (GPSR)

The GPSR technique [44] is considered as one of the fast

variations of the ℓ1-minimization method and consists of

solving the following minimization problem:

argmin
s

J(s) =
1

2
||x − As||2ℓ2 + τ ||s||ℓ1 (4)

Note that J(s) is almost the Lagrange form of the con-

straint problem in (2) where the Lagrange multiplier is

defined as 1
2τ , with the difference that in (4), the mini-

mization procedure is performed exclusively on s and not

on τ . Thus, the outcome of (4) coincides with that of (2)

Table 5 Relation between LP and basis pursuit (the

notation for LP is from [43])

Basis pursuit Linear programming

m 2p

s x

(1, . . . , 1)1×m C

±A A

x b
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only when the proper τ is used. For a fast implementation

of (4), the positive and negative elements of s are treated

separately, i.e.,

s = u − v, ∀j : uj , vj ≥ 0

Now by assuming that all the vectors andmatrices are real,

it is easy to check that the minimizer of the following cost

function (F) corresponds to the minimizer of J(s):

F(z) = cTz +
1

2
zTBz s.t. z ≥ 0 (5)

where

z =

[

u

v

]

c = τ12n×1 +

[

− ATx

ATx

]

B =

[

ATA − ATA

− ATA ATA

]

(6)

In GPSR, the latter cost function is iterativelyminimized

by moving in the opposite direction of the gradient while

respecting the condition z ≥ 0. There step-wise expla-

nation of the basic GPSR method is given in Table 6. In

this table, (a)+ denotes the value max{a, 0} while (a)+
indicates the element-wise action of the same function on

the vector a. There is another adaptation of this method

known as Barzilai-Borwein (BB) GPSR which is not dis-

cussed here.

2.4 Iterative shrinkage-threshold algorithm (ISTA)

Instead of using the gradient method for solving (4), it is

possible to approximate the cost function. To explain this

idea, let s(0) be an estimate of the minimizer of (4) and let

J̃(s) be a cost function that satisfies:

∀ s : J̃(s) ≥ J(s) & J̃(s(0)) = J(s(0)) (7)

Now if s(1) is the minimizer of J̃(.), we should have

J(s(1)) ≤ J(s(1)); i.e., s(1) better estimates the minimizer

Table 6 Basic GPSR algorithm

1. Initialize β ∈ (0, 1), μ ∈ (0, 12 ), α0 and z(0) . Also set i = 0.

2. Choose α(i) to be the largest number of the form α0β
j , j ≥ 0, such that

F

(
(

z(i) − α(i)∇F(z(i))

)

+

)

≤ F(z(i))−

μ∇F(z(i))T
(

z(i) −
(

z(i) − α(i)∇F(z(i))

)

+

)

3. Set z(i+1) =
(

z(i) − α(i)∇F(z(i))
)

+
.

4. Check the termination criterion. If neither the maximum number of
iterations has passed nor a given stopping condition is fulfilled,
increase i and return to the 2nd step.

of J(.) than s(0). This technique is useful only when find-

ing the minimizer of J̃(.) is easier than solving the original

problem. In ISTA [45], at the kth iteration and by having

the estimate s(i), the following alternative cost function is

used:

J̃i(s) = J(s) +
β

2
‖s − s(i)‖2ℓ2 −

1

2
‖A(s − s(i))‖2ℓ2 (8)

where β is a scalar larger than all squared singular values

of A to ensure (7). By modifying the constant terms and

rewriting the above cost function, one can check that the

minimizer of J̃i(.) is essentially the same as

argmin
s

β

2
‖s − z(i)‖2ℓ2 + τ‖s‖ℓ1 (9)

where

z(i) = s(i) +
1

β
AH

(

x − As(i)
)

(10)

Note that the minimization problem in (9) is separable

with respect to the elements of s and we just need to find

the minimizer of the single-variable cost function β
2 (s −

z)2 + τ |s|, which is the well-known shrinkage-threshold

operator:

S[β ,τ ](z) =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

z −
τ

β
z >

τ

β

0 |z| ≤
τ

β

z +
τ

β
z < −

τ

β

(11)

The steps of the ISTA algorithm are explained in Table 7.

2.5 FOCal underdetermined system solver (FOCUSS)

FOCal underdetermined system solver is a non-

parametric algorithm that consists of two parts [46].

It starts by finding a low resolution estimation of the

sparse signal, and then pruning this solution to a sparser

signal representation through several iterations. The

solution at each iteration step is found by taking the

pseudo-inverse of a modified weighted matrix. The

pseudo-inverse of the modified weightedmatrix is defined

by (AW)+ = (AW)H(AW · (AW)H)−1. This iterative

Table 7 ISTA algorithm

1. Choose the scalar β larger than all the singular values of A and set
i = 0. Also initialize s(0) , e.g, s(0) = A+x.

2. Set z(i) = s(i) + 1
β
AH(x − As(i)).

3. Apply the shrinkage-threshold operator defined in (11):

s
(i+1)
j = S[β ,τ ](z

(i)
j ), 1 ≤ j ≤ n

4. Check the termination criterion. If neither the maximum number of
iterations has passed nor a given stopping condition is fulfilled,
increase i and return to the 2nd step.
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Table 8 FOCUSS (Basic)

• Step 1:Wpi = diag(si−1)

• Step 2: qi =
(

AWpi

)+
x

• Step 3: si = Wpi · qi

algorithm is the solution of the following optimization

problem:

Find s = Wq, where: min ‖q‖ℓ2 s.t. x = AWq (12)

Description of this algorithm is given in Table 8 and an

extended version is discussed in [46].

2.6 Iterative detection and estimation (IDE)

The idea behind this method is based on a geometrical

interpretation of the sparsity. Consider the elements of

vector s are i.i.d. random variables. By plotting a sample

distribution of vector s, which is obtained by plotting a

large number of samples in the S-space, it is observed that

the points tend to concentrate first around the origin, then

along the coordinate axes, and finally across the coordi-

nate planes. The algorithm used in IDE is given in Table 9.

In this table, sis are the inactive sources, sas are the active

sources, Ai is the column of A corresponding to the inac-

tive si and Aa is the column of A corresponding to the

active sa. Notice that IDE has some resemblances to the

RDEmethod discussed in Section 4.1.2, IMATmentioned

in Section 4.1.2, and MIMAT explained in Section 8.1.2.

2.7 Smoothed ℓ0-norm (SL0) method

As discussed earlier, the criterion for sparsity is the ℓ0-

norm; thus our minimization is

min ‖s‖ℓ0 s.t. A · s = x (13)

Table 9 IDE steps

• Detection Step: Find indices of inactive sources:

Il =

⎧

⎨

⎩
1 ≤ i ≤ m :

∣
∣aTi · x −

m
∑

j =i

ŝlja
T
i · aj

∣
∣ < ǫ l

⎫

⎬

⎭

• Estimation Step: Find the following projection as the new estimate:

sl+1 = argmins

∑

i∈Il

s2i s.t. x(t) = A · s(t)

The solution is derived from Karush-Kuhn-Tucker system of
equations. At the (l + 1)th iteration

si = AT
i · P (x − Aa · sa)

sa =
(

AT
aPAa

)−1
AT
aP · x

where the matrices and vectors are partitioned into inactive/active

parts as Ai ,Aa , si , sa and P =
(

AiA
T
i

)−1

• Stop after a fixed number of iterations.

The ℓ0-norm has two major drawbacks: the need for a

combinatorial search, and its sensitivity to noise. These

problems arise from the fact that the ℓ0-norm is discon-

tinuous. The idea of SL0 is to approximate the ℓ0-norm

with functions of the type [47]:

fσ (s) � e
− s2

2σ2 (14)

where σ is a parameter which determines the quality of

the approximation. Note that we have

lim
σ→0

fσ (s) =

{

1 if s = 0

0 if s = 0
(15)

For the vector s, we have ‖s‖ℓ0 ≈ n − Fσ (s), where

Fσ (s) =
∑n

i=1 fσ (si). Now minimizing ‖s‖ℓ0 is equivalent

to maximizing Fσ (s) for some appropriate values of σ . For

small values of σ , Fσ (s) is highly non-smooth and con-

tains many local maxima, and therefore its maximization

over A · s = x may not be global. On the other hand, for

larger values of σ , Fσ (s) is a smoother function and con-

tains fewer local maxima, and its maximization may be

possible (in fact there are no local maxima for large values

of σ [47]). Hence we use a decreasing sequence for σ in

the steepest ascent algorithm andmay escape from getting

trapped into local maxima and reach the actual maximum

for small values of σ , which gives the minimum ℓ0-norm

solution. The algorithm is summarized in Table 10.

Table 10 SL0 steps

• Initialization:

1. Set ŝ0 equal to the minimum ℓ2-norm solution of As = x,
obtained by pseudo-inverse of A.

2. Choose a suitable decreasing sequence for σ , [ σ1 , . . . , σK ].

• For i = 1, . . . , K :

1. Set σ = σi ,
2. Maximize the function Fσ on the feasible setS = {s|As = x}

using L iterations of the steepest ascent algorithm (followed by
projection onto the feasible set):

– Initialization: s = ŝi−1 .
– for j = 1, . . . , L (loop L times):

(a) Let: �s =[ s1e
−

s2
1

2σ2 , . . . , sne
−

s2n
2σ2 ]T .

(b) Set s ← s − μ�s (where μ is a small positive
constant).

(c) Project s back onto the feasible setS :

s ← s − AT
(

AAT
)−1

(As − x)

3. Set ŝi = s.

• Final answer is ŝ = ŝK
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Figure 3 Performance of various methods with respect to the standard deviation when n = 1, 000,m = 400, and k = 100.

2.8 Comparison of different techniques

The above techniques have been simulated and the results

are depicted in Figure 3. In order to compare the effi-

ciency and computational complexity of these methods,

we use a fixed synthetic mixing matrix and source vec-

tors. The elements of the mixing matrix are obtained

from zero mean independent Gaussian random variables

with variance σ 2 = 1. Sparse sources have been artifi-

cially generated using a Bernoulli–Gaussian model: si =

p N(0, σon)+(1−p)N(0, σoff ). We set σoff = 0.01, σon = 1

and p = 0.1. Then, we compute the noisy mixture vector x

from x = As+ν, where ν is the noise vector. The elements

of the vector ν are generated according to independent

zero mean Gaussian random variables with variance σ 2
ν .

We use orthogonal matching pursuit (OMP) which is a

variant ofMatching Pursuit [38]. OMP has a better perfor-

mance in estimating the source vector in comparison to

Matching Pursuit. Figure 4 demonstrates the time needed

for each algorithm to estimate the vector s with respect

to the number of sources. This figure shows that IDE and

SL0 have the lowest complexity.

Figures 5 and 6 illustrate a comparison of several sparse

reconstructionmethods for sparse DFT signals and sparse

random transformations, respectively. In all the simula-

tions, the block size of the sparse signal is 512 while the

number of sparse signal components in the frequency

domain is 20. The compression rate is 25% which leads to

a selection of 128 time domain observation samples.

In Figure 5, the greedy algorithms, COSAMP and OMP,

demonstrate better performances than ISTA and GPSR,

especially at lower input signal SNRs. IMAT shows a bet-

ter performance than all other algorithms; however its

performance in the higher input signal SNRs is almost

similar to OMP and COSAMP. In Figure 6, OMP and

COSAMP have better performances than the other ones

while ISTA, SL0, and GPSR have more or less the same

performances. In sparse DFT signals, the complexity of

the IMAT algorithm is less than the others while ISTA is

Figure 4 Computational time (complexity) versus the number of sources form = 0.4 n and k = 0.1 n.
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Figure 5 Performance comparison of some reconstruction techniques for DFT sparse signals.

the most complex algorithm. Similarly in Figure 6, SL0 has

the least complexity.

3 Sampling: uniform, nonuniform, missing,
random, compressed sensing, rate of
innovation

Analog signals can be represented by finite rate discrete

samples (uniform, nonuniform, or random) if the signal

has some sort of redundancies such as band-limitedness,

finite polynomial representation (e.g., periodic signals

that are represented by a finite number of trigonometric

polynomials), and nonlinear functions of such redun-

dant functions [48,49]. The minimum sampling rate is the

Nyquist rate for uniform sampling and its generalizations

for nonuniform [1] and multiband signals [50]. When a

signal is discrete, the equivalent discrete representation in

the “frequency” domain (DFT, DCT, DWT, Discrete Hart-

ley Transform (DHT), Discrete Sine Transform (DST))

may be sparse, which is the discrete version of bandlimited

or multiband analog signals where the locations of the

bands are unknown.

For discrete signals, if the nonzero coefficients (“fre-

quency” sparsity) are consecutive, depending on the loca-

tion of the zeros, they are called lowpass, bandpass, or

multiband discrete signals; if the locations of the nonzero

coefficients do not follow any of these patterns, the “fre-

quency” sparsity is random. The number of discrete time

samples needed to represent a frequency-sparse signal

with known sparsity pattern follows the law of algebra, i.e.,

the number of time samples should be equal to the num-

ber of coefficients in the “frequency” domain; since the

two domains are related by a full rank transform matrix,

recovery from the time samples is equivalent to solving

an invertible k × k system of linear equations where k is

the number of sparse coefficients. For band-limited real

signals, the Fourier transform (sparsity domain) consists

of similar nonzero patterns in both negative and posi-

tive frequencies where only the positive part is counted

Figure 6 Performance comparison of some reconstruction techniques for sparse random trasnformations.
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Figure 7 Block diagram of the iterative reconstruction method. The mask is an appropriate filter with coefficients of 1’s and 0’s depending on

the type of sparsity in the original signal.

as the bandwidth; thus, the law of algebra is equiva-

lent to the Nyquist rate, i.e., twice the bandwidth (for

discrete signals with DC components it is twice the band-

width minus one). The dual of frequency-sparsity is time-

sparsity, which can happen in a burst or a random fashion.

The number of “frequency” coefficients needed follows

the Nyquist criterion. This will be further discussed in

Section 4 for sparse additive impulsive noise channels.

3.1 Sampling of sparse signals

If the sparsity locations of a signal are known in a trans-

form domain, then the number of samples needed in

the time (space) domain should be at least equal to the

number of sparse coefficients, i.e., the so-called Nyquist

rate. However, depending on the type of sparsity (lowpass,

bandpass, or random) and the type of sampling (uniform,

periodic nonuniform, or random), the reconstruction may

be unstable and the corresponding reconstruction matrix

may be ill-conditioned [51,52]. Thus in many applications

discussed in Table 1, the sampling rate in column 6 is

higher than the minimum (Nyquist) rate.

When the location of sparsity is not known, by the

law of algebra, the number of samples needed to specify

the sparsity is at least twice the number of sparse coef-

ficients. Again for stability reasons, the actual sampling

rate is higher than this minimum figure [1,50]. To guar-

antee stability, instead of direct sampling of the signal,

a combination of the samples can be used. Donoho has

recently shown that if we take linear combinations of the

samples, the minimum stable sampling rate is of the order

O(k log(nk )), where n and k are the frame size and the

sparsity order, respectively [29].

3.1.1 Reconstruction algorithms

There are many reconstruction algorithms that can be

used depending on the sparsity pattern, uniform or ran-

dom sampling, complexity issues, and sensitivity to quan-

tization and additive noise [53,54]. Among these methods

are LP, lagrange interpolation [55], time varying method

[56], spline interpolation [57], matrix inversion [58], error

locator polynomial (ELP) [59], iterative techniques [52,60-

65], and IMAT [25,31,66,67]. In the following, we will only

concentrate on the last three methods as well as the first

(LP) that have been proven to be effective and practical.

Iterative methods when the location of sparsity is

known The reconstruction algorithms have to recover

the original sparse signal from the information domain

and the type of sparsity in the transform domain. We

know the samples in the information domain (both posi-

tion and amplitude) and we know the location of sparsity

in the transform domain. An iteration between these two

domains (Figure 7 and Table 11) or consecutive Projec-

tions Onto Convex Sets (POCS) should yield the original

signal [51,61,62,65,68-71].

In the case of the usual assumption that the sparsity is

in the “frequency” domain and for the uniform sampling

case of lowpass signals, one projection (bandlimiting in

the frequency domain) suffices. However, if the frequency

sparsity is random, the time samples are nonuniform,

or the “frequency” domain is defined in a domain other

than the DFT, then we need several iterations to have a

good replica of the original signal. In general, this iterative

method converges if the “Nyquist” rate is satisfied, i.e., the

number of samples per block is greater than or equal to the

number of coefficients. Figure 8 shows the improvement

Table 11 The iterative algorithm based on the block

diagram of Figure 7

1. Take the transform (e.g. the Fourier transform) of the input to the ith

iteration (x(i)) and denote it as X(i) ; x(0) is normally the initial received
signal.

2. Multiply X(i) by a mask (for instance a band-limiting filter).
3. Take the inverse transform of the result in step 2 to get r(i) .
4. Set the new result as: x(i+1) = x(0) + x(i) − r(i) .
5. Repeat for a given number of iterations.
6. Stop when ‖x(i+1) − x(i)‖ℓ2 < ǫ .
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Figure 8 SNR improvement vs. the no. of iterations for a random

sampling set at the Nyquist rate (OSR = 1) for a bandpass signal.

in dB versus the number of iterations for a random sam-

pling set for a bandpass signal. In this figure, besides the

standard iterative method, accelerated iterations such as

Chebyshev and conjugate gradient methods are also used

(please see [72] for the algorithms).

Iterative methods are quite robust against quantization

and additive noise. In fact, we can prove that the itera-

tive methods approach the pseudo-inverse (least squares)

solution for a noisy environment; specially, when the

matrix is ill-conditioned [50].

Iterative method with adaptive threshold (IMAT) for

unknown location of sparsity As expected, when spar-

sity is assumed to be random, further signal processing is

needed. We need to evaluate the number of sparse coeffi-

cients (or samples), the position of sparsity, and the values

of the coefficients. The above iterative method cannot

work since projection (the masking operation in Figure 7)

onto the “frequency” domain is not possible without the

knowledge of the positions of sparse coefficients. In this

scenario, we need to use the knowledge of sparsity in some

way. The introduction of an adaptive nonlinear thresh-

old in the iterative method can do the trick and thus

the name, IMAT; the block diagram and the pseudo-code

are depicted in Figure 9 and Table 12, respectively. The

algorithms in [23,25,31,73] are variations of this method.

Figure 9 shows that by alternate projections between

information and sparsity domains (adaptively lowering or

raising the threshold levels in the sparsity domain), the

sparse coefficients are gradually picked up after several

iterations. This method can be considered as a modified

version of Matching Pursuit as described in Section 2.1;

the results are shown in Figure 10. The sampling rate in

the time domain is twice the number of unknown sparse

coefficients. This is called the full capacity rate; this figure

shows that after approximately 15 iterations, the SNR

reaches its peak value. In general, the higher the sam-

pling rate relative to the full capacity, the faster is the

convergence rate and the better the SNR value.

Matrix solutions When the sparse nonzero locations

are known, matrix approaches can be utilized to deter-

mine the values of sparse coefficients [58]. Although these

methods are rather straightforward, they may not be

robust against quantization or additive noise when the

matrices are ill conditioned.

There are other approaches such as Spline interpola-

tion [57], nonlinear/time varying methods [58], Lagrange

interpolation [55] and error locator polynomial (ELP)

[74] that will not be discussed here. However, the ELP

approach will be discussed in Section 4.1; variations of

this method are called the annihilating filter in sampling

with finite rate of innovation (Section 3.3) and Prony’s

method in spectral and DOA estimation (Section 5.1).

These methods work quite well in the absence of addi-

tive noise but they may not be robust in the presence

of noise. In the case of additive noise, the extensions

Figure 9 The IMAT for detecting the number, location, and values of sparsity.
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Table 12 Generic IMAT of Figure 9 for any sparsity in the

DT, which is typically DFT

1. Use the all-zero block as the initial value of the sparse domain signal
(0th iteration)

2. Convert the current estimate of the signal in the sparse domain into
the information domain (for instance the time domain into the Fourier
domain)

3. Where possible, replace the values with the known samples of the
signal in the information domain.

4. Convert the signal back to the sparse domain.
5. Use adaptive hard thresholding to distinguish the original nonzero

samples.
6. If neither the maximum number of iterations has past nor a given

stopping condition is fulfilled, return to the 2nd step.

of the Prony method (ELP) such as Pisarenko harmonic

decomposition (PHD), MUSIC and Estimation of signal

parameters via rotational invariance techniques (ESPRIT)

will be discussed in Sections 5.2, 5.3, and 6.

3.2 Compressed sensing (CS)

The relatively new topic of CS (Compressive) for sparse

signals was originally introduced in [29,75] and further

extended in [30,76,77]. The idea is to introduce sam-

pling schemes with low number of required samples

which uniquely represent the original sparse signal; these

methods have lower computational complexities than

the traditional techniques that employ oversampling and

then apply compression. In other words, compression is

achieved exactly at the time of sampling. Unlike the clas-

sical sampling theorem [78] based on the Fourier trans-

form, the signals are assumed to be sparse in an arbitrary

transform domain. Furthermore, there is no restricting

assumption for the locations of nonzero coefficients in

the sparsity domain; i.e., the locations should not follow

a specific pattern such as lowpass or multiband structure.

Figure 10 SNR vs. the no. of iterations for sparse signal recovery

using the IMAT (Table 12).

Clearly, this assumption includes a more general class of

signals than the ones previously studied.

Since the concept of sparsity in a transform domain is

more convenient to study for discrete signals, most of the

research in this field is focused along discrete type sig-

nals [79]; however, recent results [80] show that most of

the work can be generalized to continuous signals in shift-

invariant subspaces (a subclass of the signals which are

represented by Riesz basis).c Wefirst study discrete signals

and then briefly discuss the extension to the continuous

case.

3.2.1 CSmathematical modeling

Let the vector x ∈ R
n be a finite length discrete signal

which has to be under-sampled. We assume that x has a

sparse representation in a transform domain denoted by a

unitary matrix �n×n; i.e., we have:

x = � · s (16)

where s is an n×1 vector which has atmost k non-zero ele-

ments (k-sparse vectors). In practical cases, s has at most

k significant elements and the insignificant elements are

set to zero which means s is an almost k-sparse vector.

For example, x can be the pixels of an image and � can

be the corresponding IDCT matrix. In this case, most of

the DCT coefficients are insignificant and if they are set to

zero, the quality of the image will not degrade significantly.

In fact, this is the main concept behind some of the lossy

compression methods such as JPEG. Since the inverse

transform on x yields s, the vector s can be used instead

of x, which can be succinctly represented by the locations

and values of the nonzero elements of s. Although this

method efficiently compresses x, it initially requires all the

samples of x to produce s, which undermines the whole

purpose of CS.

Now let us assume that instead of samples of x, we take

m linear combinations of the samples (called generalized

samples). If we represent these linear combinations by the

matrix �m×n and the resultant vector of samples by ym×1,

we have

ym×1 = �m×n · xn×1 = �m×n · �n×n · sn×1 (17)

The question is how the matrix � and the size m should

be chosen to ensure that these samples uniquely repre-

sent the original signal x. Obviously, the case of � = In×n

where In×n is an n× n identity matrix yields a trivial solu-

tion (keeping all the samples of x) that does not employ

the sparsity condition. We look for � matrices with as few

rows as possible which can guarantee the invertibility, sta-

bility, and robustness of the sampling process for the class

of sparse inputs.

To solve this problem, we introduce probabilistic mea-

sures; i.e., instead of exact recovery of signals, we focus

on the probability that a random sparse signal (according
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to a given probability density function) fails to be recon-

structed using its generalized samples. If the probability δ

of failure can be made arbitrarily small, then the sampling

scheme (the joint pair of � ,�) is successful in recovering

x with probability 1 − δ, i.e., with high probability.

Let us assume that �(m) represents the submatrix

formed by m random (uniform) rows of an orthonormal

matrix�n×n. It is apparent that if we use {�(m)}nm=0 as the

sampling matrices for a given sparsity domain, the failure

probabilities for �(0) and �(n) are, respectively, one and

zero, and as the index m increases, the failure probabil-

ity decreases. The important point shown in [81] is that

the decreasing rate of the failure probability is exponen-

tial with respect to m
k . Therefore, we expect to reach an

almost zero failure probability much earlier than m = n

despite the fact that the exact rate highly depends on the

mutual behavior of the two matrices � ,�. More precisely,

it is shown in [81] that

Pfailure < n · e
− c

μ2(� ,�)
·m
k (18)

where Pfailure is the probability that the original signal

cannot be recovered from the samples, c is a positive con-

stant, and μ(� ,�) is the maximum coherence between

the columns of � and rows of � defined by [82]:

μ(� ,�) = max
1≤a,b≤n

∣
∣〈ψa , φb〉

∣
∣ (19)

where ψa,φb are the ath column and the bth row of the

matrices � and �, respectively. The above result implies

that the probability of reconstruction is close to one for

m ≥ μ2(� ,�)
︸ ︷︷ ︸

≥ μ2(� ,�(m))

k · ln n

c
(20)

The above derivation implies that the smaller the maxi-

mum coherence between the two matrices, and the lower

is the number of required samples. Thus, to decrease the

number of samples, we should look for matrices � with

low coherence with � . For this purpose, we use a ran-

dom �. It is shown that the coherence of a randommatrix

with i.i.d. Gaussian distribution with any unitary� is con-

siderably small [29], which makes it a proper candidate

for the sampling matrix. Investigation of the probability

distribution has shown that the Gaussian PDF is not the

only solution (for example binary Bernouli distribution

and other types are considered in [83]) but may be the

simplest to analyze.

For the case of random matrix with i.i.d. Gaussian dis-

tribution (or more general distributions for which the

concentration inequality holds [83]), a stronger inequal-

ity compared with (20) is valid; this implies that for the

reconstruction with a probability of almost one, the fol-

lowing condition for the number of samples m suffices

[2,79]:

m ≥ c′ k log
(n

k

)

(21)

Notice that the required number of samples given in (20)

is for random sampling of an orthonormal basis while

(21) represents the required number of samples with i.i.d.

Gaussian distributed samplingmatrix. Typically, the num-

ber in (21) is less than that of (20).

3.2.2 Reconstruction from compressedmeasurements

In this section, we consider reconstruction algorithms and

the stability robustness issues. We briefly discuss the fol-

lowing three methods: a—geometric, b—combinatorial,

and c—information theoretic. The first two methods are

standard while the last one is more recent.

Geometricmethods The oldest methods for reconstruc-

tion from compressed sampling are geometric, i.e., ℓ1
minimization techniques for finding a k-sparse vector

s ∈ R
n from a set of m = O

(

k log(n)
)

measurements

(yis); see e.g., [29,81,84-86]. Let us assume that we have

applied a suitable � which guarantees the invertibility of

the sampling process. The reconstruction method should

be a technique to recover a k-sparse vector sn×1 from the

observed samples ym×1 = �m×n · �n×n · sn×1 or possi-

bly ym×1 = �m×n · �n×n · sn×1 + νm×1 , where ν denotes

the noise vector. Suitability of � implies that sn×1 is the

only k-sparse vector that produces the observed samples;

therefore, sn×1 is also the sparsest solution for y = �·� ·s.

Consequently, s can be found using

minimize ‖s‖ℓ0 subject to y = � · � · s (22)

Good methods for the minimization of an ℓ0-norm

(sparsity) do not exist. The ones that are known are either

computationally prohibitive or are not well behaved when

the measurements are corrupted with noise. However, it

is shown in [82] and later in [76,87] that minimization of

an ℓ1-norm results in the same vector s for many cases:

minimize ‖s‖ℓ1 subject to y = � · � · s (23)

The interesting part is that the number of required sam-

ples to replace ℓ0 with ℓ1-minimization has the same order

of magnitude as the one for the invertibility of the sam-

pling scheme. Hence, s can be derived from (22) using

ℓ1-minimization. It is worthwhile to mention that replace-

ment of ℓ1-norm with ℓ2-norm, which is faster to imple-

ment, does not necessarily produce reasonable solutions.

However, there are greedy methods (Matching Pursuit as

discussed in Section 7 on SCA [40,88]) which iteratively

approach the best solution and compete with the ℓ1-

norm optimization (equivalent to Basis Pursuit methods

as discussed in Section 7 on SCA).
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To show the performance of the BP method, we have

reported the famous phase transition diagram from [89]

in Figure 11; this figure characterizes the perfect recon-

struction region with respect to the parameters k/m and

m/n. In fact, the curve represents the points for which the

BP method recovers the sparse signal measured through

a Gaussian random matrix with probability 50%. The

interesting point is that the transition from the high-

probability region (below the curve) to the low-probability

one (above the curve) is very sharp and when n → ∞ the

plotted curve separates the regions for probabilities 0 and

100%. The empirical results show that by deviating from

theGaussian distribution, the curve does not change while

it is yet to be proved [89].

A sufficient condition for these methods to work is that

the matrix � · � must satisfy the so-called restricted iso-

metric property (RIP) [75,83,90]; which will be discussed

in the following section.

Restricted isometric property It is important to note

that the ℓ1-minimization algorithm produces almost opti-

mal results for signals that are not k-sparse. For exam-

ple, almost sparse signals (compressible signals) are more

likely to occur in applications than exactly k-sparse vec-

tors, (e.g., the wavelet transform of an image consists

mostly of small coefficients and a few large coefficients).

Moreover, even exactly k-sparse signals may be corrupted

by additive noise. This characteristic of ℓ1-minimization

algorithms is called stability. Specifically, if we let βk(s)

denote the smallest possible error (in the ℓ1-norm) that

can be achieved by approximating a signal s by a k-sparse

vector z

βk(s) := inf{‖s − z‖ℓ1 , ‖z‖ℓ0 ≤ k},

then the vector ŝ produced by the ℓ1-reconstruction

method is almost optimal in the sense that ‖s − ŝ‖ℓ1 ≤

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

m / n

k
 /

 m

Figure 11 The phase transition of the BPmethod for

reconstruction of the sparse vector from Gaussian random

measurement matrices; the probability of perfect reconstruction

for the pairs of k

m
and m

n
that stand above and below the curve

are, respectively, 0 and 1 asymptotically.

Cβk(s) for some constant C independent of s. An impli-

cation of stability is that small perturbations in the signal

caused by noise result in small distortions in the out-

put solution. The previous result means that if s is not

k-sparse, then ŝ is close to the k-sparse vector sok that

has the k-largest components of s. In particular, if s is k-

sparse, then sok = s. This stability property is different

from the so-called robustness which is another important

characteristic that we wish to have in any reconstruc-

tion algorithm. Specifically, an algorithm is robust if small

perturbations in the measurements are reflected in small

errors in the reconstruction. Both stability and robustness

are achieved by the ℓ1-minimization algorithms (after a

slight modification of (22), see [83,91]). Although the two

concepts of robustness and stability can be related, they

are not the same.

In compressed sensing, the degree of stability and

robustness of the reconstruction is determined by the

characteristics of the sampling matrix �. We say that the

matrix � has RIP of order k, when for all k-sparse vectors

s, we have [30,76]:

1 − δk ≤
‖� · s‖2ℓ2

‖s‖2ℓ2

≤ 1 + δk (24)

where 0 ≤ δk < 1 (isometry constant). The RIP is a suf-

ficient condition that provides us with the maximum and

minimum power of the samples with respect to the input

power and ensures that none of the k-sparse inputs fall in

the null space of the sampling matrix. The RIP property

essentially states that every k columns of the matrix �m×n

must be almost orthonormal (these submatrices preserve

the norm within the constants 1 ± δk). The explicit con-

struction of a matrix with such a property is difficult for

any given n, k and m ≈ k log n; however, the problem has

been studied in some cases [37,92]. Moreover, given such

a matrix �, the evaluation of s (or alternatively x) via the

minimization problem involves numerical methods (e.g.,

linear programming, GPSR, SPGL1, FPC [44,93]) for n

variables andm constraints which can be computationally

expensive.

However, probabilistic methods can be used to con-

struct m × n matrices satisfying the RIP property for a

given n, k and m ≈ k log n. This can be achieved using

Gaussian random matrices. If � is a sample of a Gaus-

sian random matrix with the number of rows satisfying

(20), � · � is also a sample of a Gaussian random matrix

with the same number of rows and thus it satisfies RIP

with high probability. Using matrices with the appropriate

RIP property in the ℓ1-minimization, we guarantee exact

recovery of k-sparse signals that are stable and robust

against additive noise.

Without loss of generality, assume that � is equal to the

identity matrix I, and that instead of � · s, we measure
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� ·s+ν, where ν represents an additive noise vector. Since

� · s + ν may not belong to the range space of � over k-

sparse vectors, the ℓ1 minimization of (25) is modified as

follows:

minimize ‖s‖ℓ1 subject to ‖y − � · s‖ℓ2 ≤ ǫ (25)

where ǫ2 is the maximum noise power. Let us denote the

result of the above minimization for y = � · s + ν by ŝ.

With the above algorithm, it can be shown that

‖ŝ − s‖ℓ2 ≤ ǫ (26)

This shows that small perturbations in the measure-

ments cause small perturbations in the output of the

ℓ1-minimization method (robustness).

Combinatorial Another standard approach for recon-

struction of compressed sampling is combinatorial. As

before, without loss of generality � = I. The sampling

matrix � is found using a bipartite graph which con-

sists of binary entries, i.e., entries that are either 1 or 0.

Binary search methods are then used to find an unknown

k-sparse vector s ∈ R
n, see, e.g., [84,94-100] and the ref-

erences therein. Typically, the binary matrix � has m =

O(k log n) rows, and there exist fast algorithms for finding

the solution x from the m measurements (typically a lin-

ear combination). However, the construction of � is also

difficult.

Information theoretic A more recent approach is adap-

tive and information theoretic [101]. In this method, the

signal s ∈ R
n is assumed to be an instance of a vec-

tor random variable s = (s1, . . . , sn)
t , where (.)t denotes

transpose operator, and the ith row of � is constructed

using the value of the previous sample yi−1. Tools from

the theory of Huffman coding are used to develop a deter-

ministic construction of a sequence of binary sampling

vectors (i.e., their components consist of 0 or 1) in such

a way as to minimize the average number of samples

(rows of �) needed to determine a signal. In this method,

the construction of the sampling vectors can always be

obtained. Moreover, it is proved that the expected total

cost (number of measurements and reconstruction com-

bined) needed to sample and reconstruct a k-sparse vector

in Rn is no more than k log n + 2k.

3.3 Sampling with finite rate of innovation

The classical sampling theorem states that

x(t) =
∑

i∈Z

x

(
i

2B

)

· sinc(2Bt − i) (27)

where B is the bandwidth of x(t) with the Nyquist interval

Ts = 1/2B. These uniform samples can be regarded as the

degrees of freedom of the signal; i.e., a lowpass signal with

bandwidth B has one degree of freedom in each Nyquist

interval Ts. Replacing the sinc function with other kernels

in (27), we can generalize the sparsity (bandlimitedness)

in the Fourier domain to a wider class of signals known as

the shift invariant (SI) spaces:

x(t) =
∑

i∈Z

ci · ϕ

(
t

Ts
− i

)

(28)

Similarly, the above signals have one degree of freedom

in each Ts period of time (the coefficients ci). A more

general definition for the degree of freedom is introduced

in [3] and is named the Rate of Innovation. For a given

signal model, if we denote the degree of freedom in the

time interval of [ t1, t2] by Cx(t1, t2), the local rate of inno-

vation is defined by 1
t2−t1

Cx(t1, t2) and the global rate of

innovation (ρ) is defined as

ρ = lim
τ→∞

1

2τ
Cx(t − τ , t + τ) (29)

provided that the limit exists; in this case, we say that

the signal has finite rate of innovation [3,27,102,103]. As

an example, for the lowpass signals with bandwidth B we

have ρ = 2B, which is the same as the Nyquist rate. In fact

by proper choice of the sampling process, we are extract-

ing the innovations of the signal. Now the question that

arises is whether the uniform sampling theorems can be

generalized to the signals with finite rate of innovation.

Answer is positive for a class of non-bandlimited signals

including the SI spaces. Consider the following signals:

x(t) =
∑

i∈Z

R
∑

r=1

ci,r · ϕr

(
t − ti

Ts

)

(30)

where {ϕr(t)}
k
r=1 are arbitrary but known functions and

{ti}i∈Z is a realization of a point process with mean

μ. The free parameters of the above signal model are

{ci,r} and {ti}. Therefore, for this class of signals we have

ρ = 2
μ
; however, the classical sampling methods cannot

reconstruct these kinds of signals with the sampling rate

predicted by ρ. There are many variations for the pos-

sible choices of the functions ϕr(t); nonetheless, we just

describe the simplest version. Let the signal x(t) be a finite

mixture of sparse Dirac functions:

x(t) =

k
∑

i=1

ci · δ(t − ti) (31)

where {ti} is assumed to be an increasing sequence. For

this case, since there are k unknown time instants and k

unknown coefficients, we have Cx(t1, tk) = 2k. We intend

to show that the samples generated by proper sampling

kernels ϕ(t) can be used to reconstruct the sparse Dirac
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functions. In fact, we choose the kernel ϕ(t) to satisfy the

so called Strang-Fix condition of order 2k:

∀ 0 ≤ r ≤ 2k − 1, ∃ {αr,i}i∈Z :
∑

i∈Z

αr,iϕ(t − i) = tr (32)

The above condition for the Fourier domain becomes
{

�
(

� = 0
)

= 0

�(r)
(

� = 2π i
)

= 0, ∀ i = 0 ∈ Z

r = 0, . . . , 2k − 1 (33)

where �(�) denotes the Fourier transform of ϕ(t), and

the superscript (r) represents the rth derivative. It is also

shown that such functions are of the form ϕ(t) = f (t) ∗

β2k(t), where β2k(t) is the B-spline of order 2k
th and f (t)

is an arbitrary function with nonzero DC frequency [102].

Therefore, the function β2k(t) is itself among the possible

options for the choice of ϕ(t).

We can show that for the sampling kernels which satisfy

the Strang-Fix condition (32), the innovations of the signal

x(t) (31) can be extracted from the samples (y[ j]):

y[ j]=

(

x(t) ∗ ϕ

(

−
t

Ts

))∣
∣
∣
∣
t=j·Ts

=

k
∑

i=1

ciϕ(ti − j) (34)

Thus,

τr �
∑

j∈Z

αr,jy[ j]

=

k
∑

i=1

ci
∑

j∈Z

αr,jϕ(ti − j) =

k
∑

i=1

cit
r
i (35)

In other words, we have filtered the discrete samples

(y[ j]) in order to obtain the values τr ; (35) shows that these

values are only a function of the innovation parameters

(amplitudes ci and time instants ti). However, the values τr
are nonlinearly related to the time instants and therefore,

the innovations cannot be extracted from τr using linear

algebra.d However, these nonlinear equations form a well-

known system which was studied by Prony in the field of

spectral estimation (see Section 5.1) and its discrete ver-

sion is also employed in both real and Galois field versions

of Reed-Solomon codes (see Section 4.1). This method

which is called the annihilating filter is as follows:

The sequence {τr} can be viewed as the solution

of a recursive equation. In fact if we define H(z) =
∑k

i=0 hiz
i =

∏k
i=1(z−ti), we will have (see Section 4.1 and

Appendices 1, 2 for the proof of a similar theorem):

∀ r : τr+k = −

k
∑

i=1

hi · τr+i−1 (36)

In order to find the time instants ti, we find the polyno-

mial H(z) (or the coefficients hi) and we look for its roots.

A recursive relation for τr becomes

⎡

⎢
⎢
⎢
⎣

τ1 τ2 . . . τk
τ2 τ3 . . . τk+1

...
...

. . .
...

τk τk+1 . . . τ2k−1

⎤

⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎣

h1
h2
...

hk

⎤

⎥
⎥
⎥
⎦

= −

⎡

⎢
⎢
⎢
⎣

τk+1

τk+2

...

τ2k

⎤

⎥
⎥
⎥
⎦

(37)

By solving the above linear system of equations, we

obtain coefficients hi (for a discussion on invertibility

of the left side matrix see [102,104]) and consequently,

by finding the roots of H(z), the time instants will be

revealed. It should be mentioned that the choice of

τ1, . . . , τ2k in (37) can be replaced with any 2k consecutive

terms of {τi}. After determining {ti}, (35) becomes a linear

system of equations with respect to the values {ci} which

could be easily solved.

This reconstruction method can be used for other types

of signals satisfying (30) such as the signals represented

by piecewise polynomials [102] (for large enough n, the

nth derivative of these signals become delta functions). An

important issue in nonlinear reconstruction is the noise

analysis; for the purpose of denoising and performance

under additive noise the reader is encouraged to see [27].

A nice application of sampling theory and the concept

of sparsity is error correction codes for real and com-

plex numbers [105]. In the next section, we shall see that

similar methods can be employed for decoding block and

convolutional codes.

4 Error correction codes: Galois and real/complex
fields

The relation between sampling and channel coding is the

result of the fact that over-sampling creates redundancy

[105]. This redundancy can be used to correct for “sparse”

impulsive noise. Normally, the channel encoding is per-

formed in finite Galois fields as opposed to real/complex

fields; the reason is the simplicity of logic circuit imple-

mentation and insensitivity to the pattern of errors. On

the other hand, the real/complex field implementation of

error correction codes has stability problems with respect

to the pattern of impulsive, quantization and additive

noise [52,59,74,106-109]. Nevertheless, such implemen-

tation has found applications in fault tolerant computer

systems [110-114] and impulsive noise removal from

1-D and 2-D signals [31,32]. Similar to finite Galois fields,

real/complex field codes can be implemented in both

block and convolutional fashions.

A discrete real-field block code is an oversampled sig-

nal with n samples such that, in the transform domain

(e.g., DFT), a contiguous number of high-frequency com-

ponents are zero. In general, the zeros do not have to be

the high-frequency components or contiguous. However,
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if they are contiguous, the resultantm equations (from the

syndrome information domain) and m unknown erasures

form a Vandermonde matrix, which ensures invertibility

and consequently erasure recovery. The DFT block codes

are thus a special case of Reed-Solomon (RS) codes in the

field of real/complex numbers [105].

Figure 12 represents convolutional encoders of rate 1/2

of finite constraint length [105] and infinite precision per

symbol. Figure 12a is a systematic convolutional encoder

and resembles an oversampled signal discussed in Section

3 if the FIR filter acts as an ideal interpolating filter.

Figure 12b is a non-systematic encoder used in the simula-

tions to be discussed subsequently. In the case of additive

impulsive noise, errors could be detected based on the side

information that there are frequency gaps in the original

oversampled signal (syndrome). In the following subsec-

tions, various algorithms for decoding along with simu-

lation results are given for both block and convolutional

codes. Some of these algorithms can be used in other

applications such as spectral and channel estimation.

4.1 Decoding of block codes—ELPmethod

Iterative reconstruction for an erasure channel is iden-

tical to the missing sampling problem [115] discussed

in Section 3.1.1 and therefore, will not be discussed

here. Let us assume that we have a finite discrete signal

xorig[ i], where i = 1, . . . , l. The DFT of this sequence

yields l complex coefficients in the frequency domain

(Xorig[ j] , j = 1, . . . , l). If we insert p consecutive zerose

to get n = l + p samples (X[ j] , j = 1, . . . , n) and

take its inverse DFT, we end up with an oversampled

version of the original signal with n complex samples

(a)

(b)

Figure 12 Convolutional encoders. (a) A real-field systematic

convolutional encoder of rate 1
2 ; f [ i]s are the taps of an FIR filter. (b) A

non-systematic convolutional encoder of rate 1
2 , f1[ i]s and f2[ i]s are

the taps of 2 FIR filters.

(x[ i] , i = 1, . . . , n). This oversampled signal is real if

Hermitian symmetry (complex conjugate symmetry) is

preserved in the frequency domain, e.g., the set � of p

zeros is centered at n
2 . For erasure channels, the sparse

missing samples are denoted by e[ im]= x[ im], where ims

denote the positions of the lost samples; consequently,

for i = im, e[ i]= 0. The Fourier transform of e[ i] (called

E[ j] , j = 1, . . . , n) is known for the syndrome positions

�. The remaining values of E[ j] can be found from the

following recursion (see Appendix 1):

E[ r]= −
1

hk

k
∑

t=1

E[ r + t] hk−t (38)

where hks are the ELP coefficients as defined in (36) and

Appendix 1, r is a member of the complement of �, and

the index additions are in mod(n). After finding E[ j]

values, the spectrum of the recovered oversampled signal

X[ j] can be found by removing E[ j] from the received sig-

nal (see (99) in Appendix 1). Hence the original signal can

be recovered by removing the inserted zeros at the syn-

drome positions of X[ j]. The above algorithm, called the

ELP algorithm, is capable of correcting any combination

of erasures. However, if the erasures are bursty, the above

algorithm may become unstable. To combat bursty era-

sures, we can use the Sorted DFT (SDFTf) [1,59,116,117]

instead of the conventional DFT. The simulation results

for block codes with erasure and impulsive noise channels

are given in the following two subsections.

4.1.1 Simulation results for erasure channels

The simulation results for the ELP decoding implementa-

tion for n = 32, p = 16, and k = 16 erasures (a burst

of 16 consecutive missing samples from position 1 to 16)

are shown in Figure 13; this figure shows we can have per-

fect reconstruction up to the capacity of the code (up to

the finite computer precision which is above 320 dB; this

is also true for Figures 14 and 15). By capacity we mean

the maximum number of erasures that a code is capable of

correcting.

Since consecutive sample losses represent the worst case

[59,116], the proposed method works better for random

samples. In practice, the error recovery capability of this

technique degrades with the increase of the block and/or

burst size due to the accumulation of round-off errors. In

order to reduce the round-off error, instead of the DFT, a

transform based on the SDFT, or Sorted DCT (SDCT) can

be used [1,59,116]. These types of transformations act as

an interleaver to break down the bursty erasures.

4.1.2 Simulation results for random impulsive noise channel

There are several methods to determine the number, loca-

tions, and values of the impulsive noise samples, namely

Modified Berlekamp-Massey for real fields [118,119],
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Figure 13 Recovery of a burst of 16 sample losses.

ELP, IMAT, and constant false alarm rate with recur-

sive detection estimation (CFAR-RDE). The Berlekamp-

Massey method for real numbers is sensitive to noise and

will not be discussed here [118]. The other methods are

discussed below.

ELP method [104] When the number and positions of

the impulsive noise samples are not known, ht in (38) is

not known for any t; therefore, we assume the maximum

possible number of impulsive noise samples per block, i.e.,

k = ⌊n−l
2 ⌋ as given in (96) in Appendix 1. To solve for ht ,

we need to know only n − l samples of E in the positions

where zeros are added in the encoding procedure. Once

the values of ht are determined from the pseudo-inverse

[104], the number and positions of impulsive noise can be

found from (98) in Appendix 1. The actual values of the

impulsive noise can be determined from (38) as in the era-

sure channel case. For the actual algorithm, please refer

to Appendix 2. As we are using the above method in the

field of real numbers, exact zeros of {Hk}, which are the

DFT of {hi}, are rarely observed; consequently, the zeros

can be found by thresholding the magnitudes ofHk . Alter-

natively, the magnitudes of Hk can be used as a mask for

soft-decision; in this case, thresholding is not needed.

CFAR-RDE and IMAT methods [31] The CFAR-RDE

method is similar to the IMAT with the additional inclu-

sion of the CFAR module to estimate the impulsive noise;

CFAR is extensively used in radars to detect and remove

clutter noise from data. In CFAR, we compare the noisy

signal with its neighbors and determine if an impulsive

(sparse) noise is present or not (using soft decision [31]).g

After removing the impulsive noise in a “soft” fashion,

we estimate the signal using the iterative method for an

erasure channel as described in Section 3.1.1 for random

sampling or using the ELP method. The impulsive noise

Figure 14 Simulation results of a convolutional decoder, using the iterative method with the generator matrix, after 30 CG iterations (see

[72]); SNR versus the relative rate of erasures (w.r.t. full capacity) in an erasure channel.
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Figure 15 Simulation results by using the IMATmethod for

detecting the location and amplitude of the impulsive noise,

λ = 1.9.

and signal detection and estimation go through several

iterations in a recursive fashion as shown in Figure 16. As

the number of recursions increases, the certainty about

the detection of impulsive noise locations also increases;

thus, the soft decision is designed to act more like the hard

decision during the later parts of the iteration steps, which

yields the error locations. Meanwhile, further iterations

are performed to enhance the quality of the original signal

since suppression of the impulsive noise also suppresses

the original signal samples at the location of the impul-

sive noise. The improvement of using CFAR-RDE over a

simple soft decision RDE is shown in Figure 17.

4.2 Decoding for convolutional codes

The performance of convolutional decoders depends on

the coding rate, the number and values of FIR taps for

the encoders, and the type of the decoder. Our simulation

results are based on the structure given in Figure 12b, and

the taps of the encoder are

f1 =[ 1, 2, 3, 4, 5, 16] ,

f2 =[ 16, 5, 4, 3, 2, 1] (39)

The input signal is taken from a uniform random distri-

bution of size 50 and the simulations are run 1, 000 times

and then averaged. The following subsections describe

the simulation results for erasure and impulsive noise

channels.

4.2.1 Decoding for erasure channels

For the erasure channels, we derive the generator matrix

of a convolutional encoder (Figure 12b with taps given in

(39)) as shown below [4]

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1[ 1] 0 . . .

f2[ 1] 0 . . .

f1[ 2] f1[ 1] . . .

f2[ 2] f2[ 1] . . .
...

... . . .

f1[ n] f1[ n − 1] . . .

f2[ n] f2[ n − 1] . . .

0 f1[ n] . . .

0 f2[ n] . . .

0 0 . . .
...

...
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

(40)

An iterative decoding scheme for this matrix represen-

tation is similar to that of Figure 7 except that the operator

G consists of the generator matrix, a mask (erasure opera-

tion), and the transpose of the generator matrix. If the rate

of erasure does not exceed the encoder full capacity, the

Figure 16 CFAR-RDEmethod with the use of adaptive soft thresholding and an iterative method for signal reconstruction.
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Figure 17 Comparison of CFAR-RDE and a simple soft decision RDE for DFT block codes.

matrix form of the operator G can be shown to be a non-

negative definite square matrix and therefore its inverse

exists [51,60].

Figure 14 shows that the SNR values gradually decrease

as the rate of erasure reaches its maximum (capacity).

4.2.2 Decoding for impulsive noise channels

Let us consider x and y as the input and the output streams

of the encoder, respectively, related to each other through

the generator matrix G as y = Gx.

Denoting the observation vector at the receiver by ŷ, we

have ŷ = y + ν, where ν is the impulsive noise vector.

Multiplying ŷ by the transpose of the parity check matrix

HT , we get

HT ŷ = HTν (41)

Multiplying the resultant by the right pseudo-inverse of

theHT , we derive

H(HTH)−1HT ŷ = H(HTH)−1HTν = ν̃ (42)

Thus by multiplying the received vector by

H(HTH)−1HT (projection matrix into the range space of

H), we obtain an approximation of the impulsive noise. In

the IMAT method, we apply the operator H(HTH)−1HT

in the iteration of Figure 9; the threshold level is reduced

exponentially at each iteration step. The block diagram of

IMAT in Figure 9 is modified as shown in Figure 18.

For simulation results, we use the generator matrix

shown in (40), which can be calculated from [4].
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Figure 18 The modified diagram of the IMATmethod from

Figure 9.

In our simulations, the locations of the impulsive noise

samples are generated randomly and their amplitudes

have Gaussian distributions with zero mean and variance

equal to 1, 2, 5, and 10 times the variance of the encoder

output. The results are shown in Figure 15 after 300 iter-

ations. This figure shows that the high variance impulsive

noise has a better performance.

5 Spectral estimation
In this section, we review some of the methods which

are used to evaluate the frequency content of data [7-10].

In the field of signal spectrum estimation, there are sev-

eral methods which are appropriate for different types

of signals. Some methods are more suitable to estimate

the spectrum of wideband signals, whereas some others

are better for the extraction of narrow-band components.

Since our focus is on sparse signals, it would be reason-

able to assume sparsity in the frequency domain, i.e., we

assume the signal to be a combination of several sinusoids

plus white noise.

Conventional methods for spectrum analysis are non-

parametric methods in the sense that they do not assume

anymodel (statistical or deterministic) for the data, except

that it is zero or periodic outside the observation inter-

val. For example, the periodogram P̂per(f ) is a well-known

nonparametric method that can be computed via the FFT

algorithm:

P̂per(f ) =
1

mTs

∣
∣
∣
∣
∣
Ts

m−1
∑

r=0

xre
−j2π frTs

∣
∣
∣
∣
∣

2

(43)

where m is the number of observations, Ts is the sam-

pling interval (usually assumed as unity), and xr is the

signal. Although non-parametric methods are robust with

low computational complexity, they suffer from funda-

mental limitations. The most important limitation is their

resolution; too closely spaced harmonics cannot be dis-

tinguished if the spacing is smaller than the inverse of the

observation period.

To overcome this resolution problem, parametric meth-

ods are devised. Assuming a statistical model with some

unknown parameters, we can increase resolution by esti-

mating the parameters from the data at the cost of more

computational complexity. Theoretically, in parametric

methods, we can resolve closely spaced harmonics with

limited data length if the SNR goes to infinity.h
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In this section, we shall discuss three parametric

approaches for spectral estimation: the Pisarenko, the

Prony, and the MUSIC algorithms. The first two are

mainly used in spectral estimation, while the MUSIC

algorithm was first developed for array processing and

later has been extended to spectral estimation. It should

be noted that the parametric methods unlike the non-

parametric approaches require prior knowledge of the

model order (the number of tones). This can be decided

from the data using the minimum discription length

(MDL) method discussed in the next section.

5.1 Prony method

The Prony method was originally proposed for modeling

the expansion of gases [120]; however, now it is known

as a general spectral estimation method. In fact, Prony

tried to fit a weighted mixture of k damped complex expo-

nentials to 2k data measurements. The original approach

is related to the noiseless measurements; however, it has

been extended to produce the least squared solutions

for noisy measurements. We focus only on the noiseless

case here. The signal is modeled as a weighted mixture

of k complex exponentials with complex amplitudes and

frequencies:

xr =

k
∑

i=1

biz
r
i (44)

where xr is the noiseless discrete sparse signal consisting

of k exponentials with parameters

bi = aie
jθi

zi = ej2π fiTs (45)

where ai, θi, fi represent the amplitude, phase, and the fre-

quency (fi is a complex number in general), respectively.

Let us define the polynomial H(z) such that its roots rep-

resent the complex exponential functions related to the

sparse tones (see Section 3.3 on FRI, (38) on ELP and

Appendix 1):

H(z) =

k
∏

i=1

(z − zi) =

k
∑

i=0

hiz
k−i (46)

By shifting the index of (44) andmultiplying by the param-

eter hj and summing over j we get

k
∑

j=0

hjxr−j =

k
∑

i=1

biz
r−k
i

k
∑

j=0

hjz
k−j
i = 0 (47)

where r is indexed in the range k + 1 ≤ r ≤ 2k.

This formula implies a recursive equation to solve for

his [8]. After the evaluation of the his, the roots of (46)

yield the frequency components. Hence, the amplitudes

of the exponentials can be evaluated from a set of linear

equations given in (44). The basic Prony algorithm is given

in Table 13.

The Prony method is sensitive to noise, which was also

observed in the ELP and the annihilating filter methods

discussed in Sections 3.3 and 4.1. There are extended

Prony methods that are better suited for noisy measure-

ments [10].

5.2 Pisarenko harmonic decomposition (PHD)

The PHD method is based on the polynomial of the

Prony method and utilizes the eigen-decomposition of

the data covariance matrix [10]. Assume k complex tones

are present in the spectrum of the signal. Then, decom-

pose the covariance matrix of k + 1 dimensions into a

k-dimensional signal subspace and a 1-dimensional noise

subspace that are orthogonal to each other. By including

the additive noise, the observations are given by

yr = xr + νr (48)

where y is the observation sample and ν is a zero-mean

noise term that satisfies E{νrνr+i} = σ 2δ[ i]. By replacing

xr = yr − νr in the difference equation (47), we get

k
∑

i=0

hiyr−i =

k
∑

i=0

hiνr−i (49)

which reveals the auto-regressive moving average

(ARMA) structure (order (k, k)) of the observations yr
as a random process. To benefit from the tools in linear

algebra, let us define the following vectors:

y = [ yr , . . . , yr−k]
T

h = [ 1, h1, . . . , hk]
T

ν = [ νr , . . . , νr−k]
T (50)

Now (49) can be written as

yHh = νHh (51)

Multiplying both sides of (51) by y and taking the

expected value, we get E{yyH}h = E{yνH}h. Note that

E{yyH} = Ryy (52)

E{yνH} = E{(x + ν)νH} = E{ννH} = σ 2I (53)

We thus have an eigen-equation

Ryyh = σ 2h (54)

Table 13 Basic prony algorithm

1. Solve the recursive equation in (47) to evaluate his.
2. Find the roots of the polynomial represented in (46); these roots are

the complex exponentials defined as zi in (44).
3. Solve (44) to obtain the amplitudes of the exponentials (bis).
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which is the key equation of the Pisarenko method. The

eigen-equation of (54) states that the elements of the

eigenvector of the covariance matrix, corresponding to

the smallest eigenvalue (σ 2), are the same as the coeffi-

cients in the recursive equation of xr (coefficients of the

ARMA model in (49)). Therefore, by evaluating the roots

of the polynomial represented in (46) with coefficients

that are the elements of this vector, we can find the tones

in the spectrum.

Although we started by eigen-decomposition of Ryy, we

observed that only one of the eigenvectors is required;

the one that corresponds to the smallest eigenvalue. This

eigenvector can be found using simple approaches (in con-

trast to eigen-decomposition) such as power method. The

PHD method is briefly shown in Table 14.

A different formulation of the PHD method with linear

programming approach (refer to Section 2.2 for descrip-

tion of linear programming) for array processing is studied

in [121]. The PHD method is shown to be equivalent to a

geometrical projection problemwhich can be solved using

ℓ1-norm optimization.

5.3 MUSIC

MUltiple SIgnal Classification (MUSIC), is a method orig-

inally devised for high-resolution source direction esti-

mation in the context of array processing that will be

discussed in the next section [122]. The inherent equiv-

alence of array processing and time series analysis paves

the way for the employment of this method in spectral

estimation. MUSIC can be understood as a generalization

and improvement of the Pisarenko method. It is known

that in the context of array processing, MUSIC can attain

the statistical efficiencyi in the limit of asymptotically large

number of observations [11].

In the PHD method, we construct an autocorrelation

matrix of dimension k + 1 under the assumption that its

smallest eigenvalue (σ 2) belongs to the noise subspace.

Then we use the Hermitian property of the covariance

matrix to conclude that the noise eigenvector should

be orthogonal to the signal eigenvectors. In MUSIC, we

extend this method using a noise subspace of dimension

greater than one to improve the performance. We also use

some kind of averaging over noise eigenvectors to obtain

a more reliable signal estimator.

Table 14 PHD algorithm

1. Given themodel order k (number of sinusoids), find the autocorrelation
matrix of the noisy observations with dimension k + 1 (Ryy).

2. Find the smallest eigenvalue (σ 2) of Ryy and the corresponding
eigenvector (h).

3. Set the elements of the obtained vector as the coefficients of the
polynomial in (46). The roots of this polynomial are the estimated
frequencies.

The data model for the sum of exponentials plus noise

can be written in the matrix form as

ym×1 = Am×kbk×1 + νm×1 (55)

where the length of data is taken as m > k and the

elements of A are

ap,q � ej(p−1)ωq for 1 ≤ p ≤ m , 1 ≤ q ≤ k (56)

where ν represents the noise vector. Since the frequen-

cies are different, A is of rank k and the first term in (55)

forms a k-dimensional signal subspace, while the second

term is randomly distributed in both signal and noise sub-

spaces; i.e., unlike the first term, it is not confined to a

subspace of lower dimension. The correlation matrix of

the observations is given by

R = AbbHAH + σ 2I (57)

where the noise is assumed to be white with variance σ 2. If

we decompose R into its eigenvectors, k eigenvalues cor-

responding to the k-dimensional subspace of the first term

of (57) are essentially greater than the remaining m − k

values, σ 2, corresponding to the noise subspace; thus, by

sorting the eigenvalues, the noise and signal subspaces

can be determined. Assume ω is an arbitrary frequency

and e(ω) =[ 1, ejω, . . . , ej(m−1)ω]. TheMUSICmethod esti-

mates the spectrum content of the signal at frequency

ω by projecting the vector e(ω) into the noise subspace.

When the projected vector is zero, the vector e(ω) falls in

the signal subspace and most likely, ω is among the spec-

tral tones. In fact, the frequency content of the spectrum

is inversely proportional to the ℓ2-norm of the projected

vector:

PMU(ω) =
1

eH(ω)	⊥e(ω)
(58)

	⊥ =

m
∑

i=k+1

viv
H
i (59)

where vis are eigenvectors of R corresponding to the noise

subspace.

The k peaks of PMU(ω) are selected as the frequencies

of the sparse signal. The determination of the number

of frequencies (model order) in MUSIC is based on the

MDL and Akaike information criterion (AIC) methods to

be discussed in the next section. The MUSIC algorithm is

briefly explained in Table 15.

Figure 19 compares the results (in the order of improved

performance) for various spectral line estimation meth-

ods. The first upper figure shows the original spectral

lines, and the four other figures show the results for Prony,

PHD, MUSIC, and IMAT methods. We observe that the

Prony method (which is similar to ELP and annihilating

filter of Section 3.3 and (38)) does not yield good results

due to its sensitivity to noise, while the IMAT method is

the best. The application of IMAT to spectral estimation
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Table 15 MUSIC algorithm

1. Find the autocorrelation matrix of the noisy observations (Ryy) with
the available size as shown in (57).

2. Using a given value of k or a method to determine k (such as MDL),
separate them − k smallest eigenvalues of Ryy and the corresponding
eigenvectors (vk+1 , . . . , vm).

3. Use (58) to estimate the spectral content at frequency ω.

is a clear confirmation of our contention that we can apply

tools developed in some areas to other areas for better

performance.

6 Sparse array processing
There are three types of array processing: 1—estimation

of multi-source location (MSL) and Direction of Arrival

(DOA), 2—sparse array beam-forming and design, and

3—sparse sensor networks. The first topic is related to

estimating the directions and/or the locations of multi-

ple targets; this problem is very similar to the problem of

spectral estimation dealt with in the previous section; the

relations among sparsity, spectral estimation, and array

processing were discussed in [123,124]. The second topic

is related to the design of sparse arrays with some missing

and/or random array sensors. The last topic, depending

on the type of sparsity, is either similar to the second topic

or related to CS of sparse signal fields in a network. In the

following, we will only consider the first kind.

6.1 Array processing for MSL and DOA estimation

Among the important fields of active research in array

processing areMSL andDOA estimation [122,125,126]. In

such schemes, a passive or active array of sensors is used

to locate the sources of narrow-band signals. Some appli-

cations may assume far-field sources (e.g., radar signal

processing) where the array is only capable of DOA esti-

mation, while other applications (e.g. biomedical imaging

systems) assume near-field sources where the array is

capable of locating the sources of radiation. A closely

related field of study is spectral estimation due to similar

linear statistical models. The stochastic sparse signals pass

through a partially known linear transform (e.g., array

response or inverse Fourier transform) and are observed

in a noisy environment.

In the array processing context, the common temporal

frequency of the source signals is known. Spatial sampling

of the signal is used to extract the direction of the sig-

nal (spatial frequency). As a far-field approximation, the

signal wavefronts are assumed to be planar. Consider a

signal arriving with angle ϕ as in Figure 20. Simultane-

ous sampling of this wavefront on the array will exhibit

a phase change of the signal from sensor to sensor. In

this way, discrete samples of a complex exponential are

obtained, where its frequency can be translated to the

direction of the signal source. The response of a uniform

linear array (ULA) to a wavefront impinging on the array

from direction ϕ is

a(ϕ) =[ 1, ej2π
d
λ
sin(ϕ), . . . , ej(n−1)2π d

λ
sin(ϕ)] (60)

where d is the inter-element spacing of the array, λ is the

wavelength, and n is the number of sensors in the array.

When multiple sources are present, the observed vector is

the sum of the response (sweep) vectors and noise. This
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Figure 19 A comparison of various spectral estimation methods for a sparse mixture of sinusoids (the top figure) using Prony, Pisarenko,

MUSIC, and IMATmethods (in the order of improved performance); input SNR is 5dB and 256 time samples are used.
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Figure 20 Uniform linear array with element distance d, element length I, and a wave arriving from direction ϕ.

resembles the spectral estimation problem with the differ-

ence that sampling of the array elements is not limited in

time. In fact in array processing, an additional degree of

freedom (the number of elements) is present; thus, array

processing is more general than spectral estimation.

Two main fields in array processing are MSL and DOA

for estimating the source locations and directions, respec-

tively; for both purposes, the angle of arrival (azimuth and

elevation) should be estimated while for MSL an extra

parameter of range is also needed. The simplest case is the

1-D ULA (azimuth-only) for DOA estimation.

For the general case of k sources with angles ϕ1, . . . ,ϕk

with respect to the array, the ULA response is given by

the matrix A(ϕ) =[ a(ϕ1), . . . , a(ϕk)], where the vector

ϕ of DOA’s is defined as ϕ =[ϕ1, . . . , ϕk]. In the above

notation, A is a matrix of size n× k and a(ϕi)s are column

vectors. Now, the vector of observations at array elements

(y[ i]) is given by

y[ i]= As[ i]+ν[ i] (61)

where the vector s[ i] represents the multi-source signals

and ν[ i] is the white Gaussian noise vector. Source sig-

nals and additive noise are assumed to be zero-mean and

i.i.d. normal processes with covariance matrices P and

σ 2I, respectively.With these assumptions, the observation

vector y[ i] will also follow an n-dimensional zero-mean

normal distribution with the covariance matrix

R = E{yyH} = APAH + σ 2I (62)

In the field of DOA estimation, extensive research has

been accomplished in (1) source enumeration, and (2)

DOA estimation methods. Both of the subjects corre-

spond to the determination of parameters k and ϕ.

Although some methods are proposed for simultaneous

detection and estimation of the model statistical charac-

teristics [127], most of the literature is devoted to two-

stage approaches; first, the number of active sources is

detected and then their directions are estimated by tech-

niques such as estimation of signal parameters via rota-

tional invariance techniques (ESPRIT)j [128-132]. Usually,

the joint detection-estimation methods outperform the

two-stage approaches with the cost of higher compu-

tational complexity. In the following, we will describe

Minimum Description Length (MDL) as a powerful tool

to detect the number of active sources.

6.1.1 Minimumdescription length

One of the most successful methods in array processing

for source enumeration is the use of the MDL criterion

[133]. This technique is very powerful and outperforms its

older versions including AIC [134-136]. Hence, we confine

our discussion to MDL algorithms.

6.1.2 Preliminaries

Minimum description length is an optimum method of

finding themodel order and parameters for themost com-

pressed representation of the observed data. For the pur-

pose of statistical modeling, the MAP probability or the

suboptimal criterion of ML is used; more precisely, con-

ditioned on the observed data, the maximum probability

among the possible options is found (hypotheses test-

ing) [137]. When the model parameters are not known,

the MAP and ML criteria result in the most complex

approach; consider fitting a finite sequence of data to a

polynomial of unknown degree [33]:

y(ti) = P(ti) + ν(ti), i = 1, . . . , m (63)

where P(t) = a0 + a1t + · · · + akt
k , ν(t) is the observed

Gaussian noise and k is the unknownmodel order (degree

of the polynomial P(t)) which determines the complexity.

Clearly, m − 1 is the maximum required order for unique

description of the data (m observed samples), and the ML

criterion always selects this maximum value (k̂ML = m −

1); i.e., the ML method forces the polynomial P(t) to pass

through all the points. MDL, on the other hand, yields a

sparser solution (k̂MDL < m − 1).

Due to the existence of additive noise, it is quite ratio-

nal to look for a polynomial with degree less thanmwhich

also takes the complexity order into account. In MDL, the

idea of how to consider the complexity order is borrowed

from information theory: given a specific statistical dis-

tribution, we can find an optimum source coding scheme

(e.g., Huffman coding) which attains the lowest average
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code length for the symbols. Furthermore, if ps is the dis-

tribution of the source s and qs is another distribution, we

have [138]:

H(s) = −

∫

(ps log ps)ds ≤ −

∫

(ps log qs)ds (64)

where H(s) is the entropy of the signal. This implies that

the minimum average code length is obtained only for

the correct source distribution (model parameters); in

other words, the choice of wrong model parameters (dis-

tribution function) leads to larger code lengths. When a

particular model with the set of parameters θ is assumed

for the data a priori, each time a sequence y is received,

the parameters should first be estimated. The optimum

estimation method is usually the ML estimator which

results in θ̂ML. Now, the probability distribution for a

received sequence y becomes p
(

y|θ̂ML

)

which according

to information theory, requires an average code length

of − log
(

p
(

y|θ̂ML

(

y
)
))

bits. In addition to the data, the

model parameters should also be encoded which in turn

requires κ
2 log(m) bits where κ is the number of indepen-

dent parameters to be encoded in the model and m is the

number of data points.k Thus, the two-part MDL selects

the model that minimizes the whole required code length

which is given by [139]:

− log
(

p
(

y|θ̂ML

))

+
κ

2
log(m) (65)

The first term is the ML term for data encoding, and the

second term is a penalty function that inhibits the number

of free parameters of the model to become very large.

Example of using MDL in spectral estimation An

example from spectral estimation can help clarify how the

MDL method works (for more information refer to the

previous section on spectral estimation). The mathemat-

ical formulation of the problem is as follows: If there are

k (unknown) sinusoids with various frequencies, ampli-

tudes, and phases (3k unknown parameters) observed in a

noisy data vector x (sampled at n distinct time slots), the

maximum likelihood function for this observed data with

additive Gaussian noise is as follows:

L(θk , x) =
1

(2πσ 2)
n
2

n
∏

t=1

e
−

(

xt−�k
j=1aj sin(ωit+φi)

)2

2σ2 , (66)

here θk = {aj,ωj,φj}
k
j=1 are the unknown sinusoidal

parameters to be estimated to compute the likelihood

term in (65), which in this case is computed from (66).

The 3k unidentified parameters are estimated by the grid

search, i.e., all possible values of frequency and phase

(amplitude can be estimated using the assumed frequency

and phase by using this relation; âj =
�tx(t) sin(ω̂jt+φ̂)

�t(x(t) sin(ω̂jt+φ̂))2

[140] are tested and the one maximizing the likelihood

function (66) is selected as the best estimate.

To find the number of embedded sinusoids in the noisy

observed data, it is initially assumed that k = 0 and

(65) is calculated, then k is increased and by using the

grid search, the maximum value of the likelihood for the

assumed k is calculated from (66), and this calculated

value is then used to compute (65). This procedure should

be followed as long as (65) decreases and consequently

aborted when it starts to rise. The k minimizing (65) is the

k selected by MDL method and hopefully reveals the true

number of the sinusoids in the noisy observed data. It is

obvious that the sparsity condition, i.e., k << n, is neces-

sary for the efficient operation of MDL. In addition to the

number of sinusoids, MDL has apparently estimated the

frequency, amplitude, and phase of the embedded sinu-

soids. This should make it clear why such methods are

called detection–estimation algorithms.

The very same method can be used to find the num-

ber, position, and amplitude of an impulsive noise added

to a low-pass signal in additive noise. If the samples of

the added impulsive noise are statistically independent

from each other, the high-pass samples of the discrete

fourier transform (DFT) of the noisy observed data with

impulsive noise should be taken and the same method

applied.

MDL source enumeration In the source enumeration

problem, our model is a multivariate Gaussian random

process with zero mean and covariance of the type shown

in (62), where the number of active sources is unknown. In

some enumeration methods (other than MDL), the exact

form of (62) is employed which results in high compu-

tational complexity. In the conventional MDL method, it

is assumed that the model is a covariance matrix with

a spherical subspacel of dimension n − k. Suppose the

sample covariance matrix is

R̂ =
1

m

m
∑

i=1

xixi
H (67)

and assume the ordered eigenvalues of R̂ are λ̂1 ≥ λ̂2 ≥

· · · ≥ λ̂n, while the ordered eigenvalues of the exact

covariance matrix R are λ1 ≥ · · · ≥ λk ≥ λk+1 = · · · =

λn = σ 2. The normal distribution function of the received

complex data x is [129]

p(x;R) =
1

det(πR)m
e−tr{R−1R̂} (68)

where tr(.) stands for the trace operator. The ML esti-

mate of signal eigenvalues in R are λ̂i, i = 1, . . . , k

with the respective eigenvectors {v̂i}
k
i=1. Since λk+1 =

· · · = λn = σ 2, the ML estimate of the noise eigenvalue
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is σ̂ 2
ML = 1

n−k

∑n
i=k+1 λ̂i and {v̂i}

n
i=k+1 are all noise eigen-

vectors. Thus, the ML estimate of R given R̂ is

RML =

k
∑

i=1

λ̂iv̂iv̂
H
i + σ̂ 2

ML

n
∑

i=k+1

v̂iv̂
H
i (69)

In fact, since we know that R has a spherical subspace of

dimension n−k, we correct the observed R̂ to obtainRML.

Now, we calculate − log
(

p(x|RML)
)

; it is easy to show

that

tr
{

R−1
MLR̂

}

= n (70)

which is independent of k and can be omitted in the min-

imization of (65). Thus, for the first term of (65) we only

need the determinant |RML| which is the product of the

eigenvalues, and the MDL criterion becomes

m

k
∑

i=1

log(λ̂i) + m(n − k) log

⎛

⎝
1

n − k

n
∑

i=k+1

λ̂i

⎞

⎠

+
κ

2
log(m) (71)

where κ is the number of free parameters in the distri-

bution. This expression should be computed for different

values of 0 ≤ k ≤ n − 1 and its minimum point should be

k̂MDL. Note that we can subtract the term m
∑n

i=1 log(λ̂i)

from the expression, which is not dependent on k to get

the well-known MDL criterion [129]:

m(n − k) log

⎡

⎣

1
n−k

∑n
i=k+1 λ̂i

∏n
i=k+1 λ̂

1
n−k

i

⎤

⎦+
κ

2
log(m) (72)

where the first term is the likelihood ratio for the spheric-

ity test of the covariance matrix. This likelihood ratio is a

function of arithmetic and geometric means of the noise

subspace eigenvalues [141]. Figure 21 is an example of

MDL performance in determining the number of sources

in array processing. It is evident that in low SNRs, the

MDL has a strong tendency to underestimate the number

of sources, while as SNR increases, it gives a consistent

estimate. Also at high SNRs, underestimation is more

probable than overestimation.

Now we compute the number of independent parame-

ters (κ) in the model. Since the noise subspace is spherical,

the choice of eigenvectors in this subspace can accept any

arbitrary orthonormal set; i.e., no information is revealed

when these vectors are known. Thus, the set of parame-

ters is {λ1, . . . , λk , σ
2, v1, . . . , vk}. The eigenvalues of

a hermitian matrix (correlation matrix) are all real while

the eigenvectors are normal complex vectors. Therefore,

the eigenvalues (including σ 2) introduce k + 1 degrees of

freedom. The first eigenvector has 2n − 2 degrees of free-

dom (since its first nonzero element can be adjusted to

unity), while the second, due to its orthogonality to the

first eigenvector, has 2n − 4 degrees of freedom. With the

same argument, it can be shown that there are 2(n−i) free

parameters in the ith eigenvector; hence

κ = 1 + k +

k
∑

i=1

2(n − i) = n(2n − k) + 1 (73)

where the last integer 1 can be omitted since it is indepen-

dent of k.

The two-part MDL, despite its very low computational

complexity, is among the most successful methods for

source enumeration in array processing. Nonetheless, this

method does not reach the best attainable performance
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Figure 21 AnMDL example; the vertical axis is the probability of order detection. And the other two axes are the number of sources and the

SNR values. The MDL method estimates the number of active sources (which is 2) correctly when the SNR value is relatively high.
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for finite number of measurements [142]. The new version

ofMDL, called one-part or RefinedMDL has improved the

performance for the cases of finite measurements which

has not been applied to the array processing problem [33].

6.2 Sparse sensor networks

Wireless sensor networks typically consist of a large num-

ber of sensor nodes, spatially distributed over a region of

interest, that observe some physical environment includ-

ing acoustic, seismic, and thermal fields with applications

in a wide range of areas such as health care, geographi-

cal monitoring, homeland security, and hazard detection.

The way sensor networks are used in practical applica-

tions can be divided into two general categories:

(1) There exists a central node known as the fusion

center (FC) that retrieves relevant field information

from the sensor nodes and communication from the

sensor nodes to FC generally takes place over a

power- and bandwidth-constrained wireless channel.

(2) Such a central node does not exist and the nodes take

specific decisions based on the information they

obtain and exchange among themselves. Issues such

as distributed computing and processing are of high

importance in such scenarios.

In general, there are three main tasks that should be

implemented efficiently in a wireless sensor network:

sensing, communication, and processing. The main chal-

lenge in design of practical sensor networks is to find an

efficient way of jointly performing these tasks, while using

the minimum amount of system resources (computation,

power, bandwidth) and satisfying the required system

design parameters (such as distortion levels). For exam-

ple, one such metric is the so-called energy-distortion

tradeoff which determines how much energy the sensor

network consumes in extracting and delivering relevant

information up to a given distortion level. Although many

theoretical results are already available in the case of

point-to-point links in which separation between source

and channel coding can be assumed, the problem of

efficiently transmitting or sharing information among a

vast number of distributed nodes remains a great chal-

lenge. This is due to the fact that well-developed theories

and tools for distributed signal processing, communica-

tions, and information theory in large-scale networked

systems are still under development. However, recent

results on distributed estimation or detection indicate

that joint optimization through some form of source-

channelmatching and local node cooperation can result in

significant system performance improvement [143-147].

6.2.1 How sparsity can be exploited in a sensor network

Sparsity appears in many applications for which sensor

networks are deployed, e.g., localization of targets in a

large region or estimation of physical phenomena such as

temperature fields that are sparse under a suitable trans-

formation. For example, in radar applications, under a

far-field assumption, the observation system is linear and

can be expressed as a matrix of steering vectors [148,149].

In general, sparsity can arise in a sensor network from two

main perspectives:

(1) Sparsity of node distribution in spatial terms

(2) Sparsity of the field to be estimated

Although nodes in a sensor network can be assumed

to be regularly deployed in a given environment, such

an assumption is not valid in many practical scenarios.

Therefore, the non-uniform distribution of nodes can lead

to some type of sparsity in spatial domain that can be

exploited to reduce the amount of sensing, processing,

and/or communication. This issue is subsequently related

to extensions of the nonuniform sampling techniques to

two-dimensional domains through proper interpolation

and data recovery when samples are spatially sparse [34,

150]. The second scenario that provides a proper basis for

exploiting the sparsity concepts arises when the field to be

estimated is a sparse multi-dimensional signal. From this

point of view, ideas such as those presented earlier in the

context of compressed sensing (Section 3.2) provide the

proper framework to address the sparsity in such fields.

Spatial sparsity and interpolation in sensor networks

Although general 2-D interpolation techniques are well-

known in various branches of statistics and signal pro-

cessing, the main issue in a sensor network is exploring

proper spatio/temporal interpolation such that commu-

nication and processing are also efficiently accomplished.

While there is a wide range of interpolation schemes

(polynomial, Fourier, and least squares [151]), many of

these schemes are not directly applicable for spatial inter-

polation in sensor networks due to their communication

complexity.

Another characteristic of many sensor networks is the

non-uniformity of node distribution in the measurement

field. Although non-uniformity has been dealt with exten-

sively in contexts such as signal processing, geo-spatial

data processing, and computational geometry [1], the

combination of irregular sensor data sampling and intra-

network processing is a main challenge in sensor net-

works. For example, reference [152] addresses the issue of

spatio-temporal non-uniformity in sensor networks and

how it impacts performance aspects of a sensor network

such as compression efficiency and routing overhead. In

order to reduce the impact of non-uniformity, the authors

in [152] propose using a combination of spatial data

interpolation and temporal signal segmentation. A sim-

ple interpolation wavelet transform for irregular sampling



Marvasti et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:44 Page 30 of 45

http://asp.eurasipjournals.com/content/2012/1/44

which is an extension of the 2-D irregular grid transform

to 3-D spatio-temporal transform grids is also proposed in

[153]. Such a multi-scale transform extends the approach

in [154] and removes the dependence on building a dis-

tributed mesh within the network. It should be noted

that although wavelet compression allows the network to

trade reconstruction quality for communication energy

and bandwidth usage, such energy savings are naturally

offset by the overhead cost of computing the wavelet

coefficients.

Distributed wavelet processing within sensor networks

is yet another approach to reduce communication energy

and wireless bandwidth usage. Use of such distributed

processing makes it possible to trade long-haul transmis-

sion of raw data to the FC for less costly local commu-

nication and processing among neighboring nodes [153].

In addition, local collaboration among nodes decorrelates

measurements and results in a sparser data set.

Compressive sensing in sensor networks Most natu-

ral phenomena in SNs are compressible through rep-

resentation in a natural basis [86]. Some examples of

these applications are imaging in a scattering medium

[148], MIMO radar [149], and geo-exploration via under-

ground seismic data. In such cases, it is possible to con-

struct a highly compressed version of a given field, in

a decentralized fashion. If the correlations between data

at different nodes are known a-priori, it is possible to

use schemes that have very favorable power-distortion-

latency tradeoffs [143,155,156]. In such cases, distributed

source coding techniques, such as Slepian-Wolf coding,

can be used to design compression schemes without col-

laboration between nodes (see [155] and the references

therein). Since prior knowledge of such correlations is

not available in many applications, collaborative, intra-

network processing and compression are used to deter-

mine unknown correlations and dependencies through

information exchange between network nodes. In this

regard, the concept of compressive wireless sensing has

been introduced in [147] for energy-efficient estimation

at the FC of sensor data, based on ideas from wireless

communications [143,145,156-158] and compressive sam-

pling theory [29,75,159]. The main objective in such an

approach is to combine processing and communications

in a single distributed operation [160-162].

Methods to obtain the required sparsity in a SN While

transform-based compression is well-developed in tradi-

tional signal and image processing domains, the under-

standing of sparse transforms for networked data is not

as trivial [163]. There are methods such as associating

a graph with a given network, where the vertices of the

graph represent the nodes of the network, and edges

between vertices represent relationships among data at

adjacent nodes. The structure of the connectivity is the

key to obtaining effective sparse transformations for net-

worked data [163]. For example, in the case of uniformly

distributed nodes, tools such as DFT or DCT can be

adopted to exploit the sparsity in the frequency domain. In

more general settings, wavelet techniques can be extended

to handle the irregular distribution of sampling locations

[153]. There are also scenarios in which standard signal

transforms may not be directly applicable. For example,

network monitoring applications rely on the analysis of

communication traffic levels at the network nodes where

network topology affects the nature of node relation-

ships in complex ways. Graph wavelets [164] and diffusion

wavelets [165] are two classes of transforms that have been

proposed to address such complexities. In the former case,

the wavelet coefficients are obtained by computing the

digital differences of the data at different scales. The coef-

ficients at the first scale are differences between neighbor-

ing data points, and those at subsequent spatial scales are

computed by first aggregating data in neighborhoods and

then computing differences between neighboring aggre-

gations. The resulting graph wavelet coefficients are then

defined by aggregated data at different scales and comput-

ing differences between the aggregated data [164]. In the

latter scheme, diffusion wavelets are based on construc-

tion of an orthonormal basis for functions supported on

a graph and obtaining a custom-designed basis by ana-

lyzing eigenvectors of a diffusion matrix derived from the

graph adjacency matrix. The resulting basis vectors are

generally localized to neighborhoods of varying size and

may also lead to sparse representations of data on a graph

[165]. One example of such an approach is where the node

data correspond to traffic rates of routers in a computer

network.

Implementation of CS in a wireless SN Two main

approaches to implement random projections in a SN are

discussed in the literature [163]. In the first approach,

the CS projections are simultaneously calculated through

superposition of radio waves and communicated using

amplitude-modulated coherent transmissions of ran-

domly weighted values directly from the nodes in the

network to the FC (Figure 22). This scheme, introduced

in [147,157] and further refined in [166], is based on the

notion of the so-calledmatched source-channel communi-

cation [156,157]. Although the need for complex routing,

intra-network communications, and processing are allevi-

ated, local phase synchronization among nodes is an issue

to be addressed properly in this approach.

In the second approach, the projections can be com-

puted and delivered to every subset of nodes in the net-

work using gossip/consensus techniques, or be delivered

to a single point using clustering and aggregation. This

approach is typically used for networked data storage and
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Figure 22 Computation of CS projections through superposition of radio waves of randomly weighted values directly from the nodes in

the network to the FC (from [163]).

retrieval applications. In this method, computation and

distribution of each CS sample is accomplished through

two simple steps [163]. In the first step, each of the sen-

sors multiplies its data with the corresponding element

of the compressing matrix. Then, in the second step, the

resulting local terms are simultaneously aggregated and

distributed across the network using randomized gossip

[167], which is a simple iterative decentralized algorithm

for computing linear functions. Because each node only

exchanges information with its immediate neighbors in

the network, gossip algorithms are more robust to failures

or changes in the network topology and cannot be eas-

ily compromised by eliminating a single server or fusion

center [168].

Finally, it should be noted that in addition to the encod-

ing process, the overall system performance is signifi-

cantly affected by the decoding process [44,88,169]; this

study and its extensions to sparse SNs remain as challeng-

ing tasks.

6.2.2 Sensing capacity

Despite wide-spread development of SN ideas in recent

years, understanding of fundamental performance limits

of sensing and communication between sensors is still

under development. One of the issues that has recently

attracted attention in theoretical analysis of sensor net-

works is the concept of sensor capacity. The sensing

capacity was initially introduced for discrete alphabets

in applications such as target detection [170] and later

extended in [14,171,172] to the continuous case. The

questions in this area are related to the problem of sam-

pling of sparse signals, [29,76,159] and sampling with

finite rate of innovation [3,103]. In the context of the CS,

sensing capacity provides bounds on the maximum sig-

nal dimension or complexity per sensormeasurement that

can be recovered to a pre-defined degree of accuracy.

Alternatively, it can be interpreted as the minimum num-

ber of sensors necessary to monitor a given region to a

desired degree of fidelity based on noisy sensor measure-

ments. The inverse of sensing capacity is the compression

rate; i.e., the ratio of the number of measurements to

the number of signal dimensions which characterizes the

minimum rate to which the source can be compressed. As

shown in [14], sensing capacity is a function of SNR, the

inherent dimensionality of the information space, sensing

diversity, and the desired distortion level.

Another issue to be noted with respect to the sensing

capacity is the inherent difference between sensor net-

work and CS scenarios in the way in which the SNR is

handled [14,172]. In sensor networks composed of many

sensors, fixed SNR can be imposed for each individual

sensor. Thus, the sensed SNR per location is spread across

the field of view leading to a row-wise normalization of

the observation matrix. On the other hand, in CS, the

vector-valued observation corresponding to each signal

component is normalized by each column. This difference

has led to different regimes of compression rate [172]. In

SN, in contrast to the CS setting, sensing capacity is gen-

erally small and correspondingly the number of sensors

required does not scale linearly with the target sparsity.

Specifically, the number ofmeasurements is generally pro-

portional to the signal dimension and is weakly dependent

on target density sparsity. This issue has raised questions

on compressive gains in power-limited SN applications

based on sparsity of the underlying source domain.

7 Sparse component analysis: BSS and SDR
7.1 Introduction

Recovery of the original source signals from their mix-

tures, without having a priori information about the

sources and the way they are mixed, is called blind source

separation (BSS). This process is impossible if no assump-

tion about the sources can be made. Such an assumption

on the sources may be uncorrelatedness, statistical inde-

pendence, lack of mutual information, or disjointness in

some space [18,19,49].
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The signal mixtures are often decomposed into their

constituent principal components, independent compo-

nents, or are separated based on their disjoint character-

istics described in a suitable domain. In the latter case,

the original sources should be sparse in that domain.

Independent component analysis (ICA) is often used for

separation of the sources in the former case, whereas SCA

is employed for the latter case. These two mathematical

tools are described in the following sections followed by

some results and illustrations of their applications.

7.2 Independent component analysis (ICA)

The main assumption in ICA is the statistical indepen-

dence of the constituent sources. Based on this assump-

tion, ICA can play a crucial role in the separation and

denoising of signals (BSS).

There has been recent research interest in the field of

BSS due to its practicality in a wide range of problems.

For example, BSS of acoustic signals measured in a room

is often referred to as the Cocktail Party problem, which

means separation of individual sounds from a number of

recordings in an echoic and noisy environment. Figure 23

illustrates the BSS concept, wherein the mixing block

represents the multipath propagation model between the

original sources and the microphone measurements.

Generally, BSS algorithms make assumptions about the

environment in order tomake the problemmore tractable.

There are typically three assumptions about the mixing

medium. The most simple but widely used case is the

instantaneous case, where the source signals arrive at the

sensors at the same time. This has been considered for

separation of biological signals such as the EEG where

the signals have narrow bandwidths and the sampling fre-

quency is normally low [173]. The generative model for

BSS in this case can be easily formulated as

x[ i]= H · s[ i]+ν[ i] (74)

where s[ i], x[ i], and ν[ i] denote, respectively, the vector

of source signals, size n × 1, observed signal size m × 1,

and noise signal sizem × 1.H is the mixing matrix of size

m×n. Generally, themixing process can be nonlinear (due

to inhomogenity of the environment and that the medium

can change with respect to the source signal variations;

e.g., stronger vibration of a drum as amedium, with louder

sound). However, in an instantaneous linear case where

the above problems can be avoided or ignored, the sepa-

ration is performed by means of a separating matrix, W

of size n × m, which uses only the information contained

in x[ i] to reconstruct the original source signals (or the

independent components) as

y[ i]= W · x[ i] (75)

where y[ i] is the estimate for the source signal s[ i].

The early approaches in instantaneous BSS started from

the work by Herault and Jutten [174] in 1986. In their

approach, they considered non-Gaussian sources with

equal number of independent sources and mixtures. They

proposed a solution based on a recurrent artificial neural

network for separation of the sources.

In the cases where the number of sources is known,

any ambiguity caused by false estimation of the number

of sources can be avoided. If the number of sources is

unknown, a criterion may be established to estimate the

number of sources beforehand. In the context of model

identification, this is referred to as Model Order Selec-

tion and methods such as the final prediction error (FPE),

AIC, residual variance (RV),MDL andHannan andQuinn

(HNQ) methods [175] may be considered to solve this

problem.

In acoustic applications, however, there are usually time

lags between the arrival times of the signals at the sen-

sors. The signals also may arrive through multiple paths.

This type of mixing model is called a convolutive model

[176]. The convolutive mixing model can also be classi-

fied into two subcategories: anechoic and echoic. In both

cases, the vector representations of mixing and separat-

ing processes are modified as x[ i]= H[ i] ∗s[ i]+ν[ i] and

y[ i]= W[ i] ∗x[ i], respectively, where ∗ denotes the con-

volution operation. In an anechoic model, however, the

expansion of the mixing process may be given as

xr[ i]=

n
∑

j=1

hr,jsj[ i − δr,j]+νr[ i] , for r = 1, . . . ,m

(76)

Figure 23 The BSS concept; the unobservable sources s1[ i] , . . . , sn[ i] are mixed and corrupted by additive zero mean noise to generate

the observations x1[ i] , . . . , xm[ i]. The target of BSS is to estimate an unmixing system to recover the original sources in y1[ i] , . . . , yn[ i].
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where the attenuation, hr,j, and delay δr,j of source j to sen-

sor r would be determined by the physical position of the

source relative to the sensors. Then the unmixing process

to estimate the sources will be given as

yj[ i]=

m
∑

r=1

wj,rxr[ i − δj,r] , for j = 1, . . . , n (77)

where the wj,rs are the elements ofW. In an echoic mixing

environment, it is expected that the signals from the same

sources reach the sensors through multiple paths. There-

fore, the expansion of the mixing and separating models

will be changed to

xr[ i]=

n
∑

j=1

L
∑

l=1

hlr,jsj[ i − δlr,j]+νr[ i] , r = 1, . . . ,m

(78)

where L denotes the maximum number of paths for the

sources, νr[ i] is the accumulated noise at sensor r, and (.)l

refers to the lth path. The unmixing process will be formu-

lated similarly to the anechoic one. For a known number

of sources, an accurate result may be expected if the num-

ber of paths is known; otherwise, the overall number of

observations in an echoic case is infinite.

The aim of BSS using ICA is to estimate an unmixing

matrixW such that Y = WX best approximates the inde-

pendent sources S, where Y and X are respectively matri-

ces with columns y[ i]=
[

y1[ i] , y2[ i] , . . . , yn[ i]
]T

and

x[ i]= [x1[ i] , x2[ i] , . . . , xm[ i] ]
T . Thus the ICA sepa-

ration algorithms are subject to permutation and scaling

ambiguities in the output components, i.e. W = PDH−1,

where P and D are the permutation and scaling (diag-

onal) matrices, respectively. Permutation of the outputs

is troublesome in places where either the separated seg-

ments of the signals are to be joined together or when a

frequency-domain BSS is performed.

Mutual information is a measure of independence and

maximizing the non-Gaussianity of the source signals is

equivalent tominimizing themutual information between

them [177].

In those cases where the number of sources is more

than the number of mixtures (underdetermined systems),

the above BSS schemes cannot be applied simply because

the mixing matrix is not invertible, and generally the

original sources cannot be extracted. However, when the

signals are sparse, the methods based on disjointness of

the sources in some domain may be utilized. Separation

of the mixtures of sparse signals is potentially possible in

the situation where, at each sample instant, the number of

nonzero sources is not more than a fraction of the number

of sensors (see Table 1, row and column 6). The mixtures

of sparse signals can also be instantaneous or convolutive.

7.3 Sparse component analysis (SCA)

While the independence assumption for the sources is

widely exploited in the design of BSS algorithms, the

possible disjointness of the sources in some domain has

not been considered. In SCA, this property is directly

employed. Blind source separation by sparse decomposi-

tion has been addressed by Zibulevsky and Pearlmutter

[178] for both over-determined/exactly-determined and

underdetermined systems using the maximum a poste-

riori approach. One way of formulating SCA is by rep-

resenting the sources using a proper signal dictionary:

sr[ i]=

n
∑

l=1

cr,lφl[ i] (79)

where r = 1, . . . , m and n is the number of basis functions

in the dictionary. The functions φl[ i] are called atoms or

elements of the dictionary. These atoms do not have to be

linearly independent and may form an overcomplete dic-

tionary. The sparsity property requires that only a small

number of the coefficients cr,l differ significantly from

zero. Based on this definition, the mixing and unmixing

systems are modeled as follows:

x[ i] = As[ i]+ν[ i]

s[ i] = C�[ i] (80)

where ν[ i] is anm× 1 vector. A and C can be determined

by optimization of a cost function based on an exponential

distribution for ci,j [178]. In places where the sources are

sparse and at each time instant, at most one of the sources

has significant nonzero value, the columns of the mixing

matrix may be calculated individually, which makes the

solution to the underdetermined case possible.

The SCA problem can be stated as a clustering problem

since the lines in the scatter plot can be separated based

on their directionalities by means of clustering. A number

of works on this method have been reported [18,179,180].

In the work by Li et al. [180], the separation has been per-

formed in two different stages. First, the unknown mixing

matrix is estimated using the k-means clustering method.

Then, the source matrix is estimated using a standard

linear programming algorithm. The line orientation of a

data set may be thought of as the direction of its greatest

variance. One way is to perform eigenvector decomposi-

tion on the covariance matrix of the data, the resultant

principal eigenvector, i.e., the eigenvector with the largest

eigenvalue, indicates the direction of the data, since it

has the maximum variance. In [179], GAP statistics as

a metric which measures the distance between the total

variance and cluster variances, has been used to estimate

the number of sources followed by a similar method to

Li’s algorithm explained above. In line with this approach,

Bofill and Zibulevsky [15] developed a potential func-

tion method for estimating the mixing matrix followed by
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ℓ1-norm decomposition for the source estimation. Local

maxima of the potential function correspond to the esti-

mated directions of the basis vectors. After the mixing

matrix is identified, the sources have to be estimated.

Even when A is known, the solution is not unique. So,

a solution is found for which the ℓ1-norm is minimized.

Therefore, for x[ i]=
∑

ajsj[ i],
∑

j |sj| is minimized using

linear programming.

Geometrically, for a given feasible solution, each source

component is a segment of length |sj| in the direction

of the corresponding aj and, by concatenation, their sum

defines a path from the origin to x[ i]. Minimizing
∑

j |sj|

amounts therefore to finding the shortest path to x[ i]

over all feasible solutions j = 1, . . . , n, where n is the

dimension of space of the independent basis vectors [18].

Figure 24 shows the scatter plot and the shortest path from

the origin to the data point x[ i].

There are many cases for which the sources are disjoint

in other domains, rather than the time-domain, or when

(a)

(b)

Figure 24Measurement points for data structures consisting of

multiple lower dimensional subspaces. (a) the scatter plot and (b)

the shortest path from the origin to the data point, x[ i], extracted

from [15].

they can be represented as sum of themembers of a dictio-

nary which can consist for example of wavelets or wavelet

packets. In these cases the SCA can be performed in those

domains more efficiently. Such methods often include

transformation to time-frequency domain followed by a

binary masking [181] or a BSS followed by binary mask-

ing [176]. One such approach, called degenerate unmixing

estimation technique (DUET) [181], transforms the ane-

choic convolutive observations into the time-frequency

domain using a short-time Fourier transform and the rel-

ative attenuation and delay values between the two obser-

vations are calculated from the ratio of corresponding

time-frequency points. The regions of significant ampli-

tudes (atoms) are then considered to be the source compo-

nents in the time-frequency domain. In this method only

two mixtures have been considered and as a major limit of

this method, only one source has been considered active

at each time instant.

For instantaneous separation of sparse sources, the

common approach used by most researchers is to attempt

to maximize the sparsity of the extracted signals at the

output of the separator. The columns of the mixing matrix

A assign each observed data point to only one source

based on some measure of proximity to those columns

[182], i.e., at each instant only one source is considered

active. Therefore the mixing system can be presented as:

xr[ i]=

n
∑

j=1

aj,rsj[ i] r = 1, . . . ,m (81)

where in an ideal case, aj,r = 0 for r = j. Minimiza-

tion of the ℓ1-norm is one of the most logical methods for

estimation of the sources as long as the signals can be con-

sidered sparse. ℓ1-normminimization is a piecewise linear

operation that partially assigns the energy of x[ i] to the

m columns of A around x[ i] in R
n space. The remaining

n−m columns are assigned zero coefficients, therefore the

ℓ1-norm minimization can be manifested as:

min ‖s[ i] ‖ℓ1 subject to A · s[ i]= x[ i] (82)

A detailed discussion of signal recovery using ℓ1-norm

minimization is presented by Takigawa et al. [183] and

described below. As mentioned above, it is important to

choose a domain that sparsely represents the signals.

On the other hand, in the method developed by Ped-

ersen et al. [176], as applied to stereo signals, the binary

masks are estimated after BSS of the mixtures and then

applied to the microphone signals. The same technique

has been used for convolutive sparse mixtures after the

signals are transformed to the frequency domain.

In another approach [184], the effect of outlier noise

has been reduced using median filtering then hybrid fast

ICA filtering, and ℓ1-norm minimization have been used

for separation of temporomandibular joint sounds. It has
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been shown that for such sources, this method outper-

forms both DUET and Li’s algorithms. The authors of

[185] have recently extended the DUET algorithm to sep-

aration of more than two sources in an echoic mixing

scenario in the time-frequency domain.

In a very recent approach, it has been considered that

brain signal sources in the space-time frequency domain

are disjoint. Therefore, clustering the observation points

in the space-time-frequency-domain can be effectively

used for separation of brain sources [186].

As it can be seen, generally, BSS exploits independence

of the source signals, whereas SCA benefits from the dis-

jointness property of the source signals in some domain.

While the BSS algorithms mostly rely on ICA with statis-

tical properties of the signals, SCA uses their geometrical

and behavioral properties. Therefore, in SCA, either a

clustering approach or a masking procedure can result

in estimation of the mixing matrix. Often, an ℓ1-norm is

used to recover the source signals. Generally, in places

where the source signals are sparse, the SCA methods

often result inmore accurate estimation of the signals with

less ambiguities in the estimation.

7.4 SCA algorithms

There are three main steps for the solution of an SCA

problem as shown in Table 16 [187]. The first step of

Table 16 shows a linear model for the SCA problem, the

second step consists of estimating the mixing matrix A

using sparsity information, and finally the third step is to

estimate the sparse source representation based on the

estimate of A [17].

A brief review of major approaches that are suggested

for the third step was given in Section 2.

7.5 Sparse dictionary representation (SDR) and signal

modeling

A signal x ∈ R
n may be sparse in a given basis but not

sparse in a different basis. For example, an image may be

sparse in a wavelet basis (i.e., most of the wavelet coef-

ficients are small) even though the image itself may not

Table 16 SCA steps

1. Consider the model x = A · s; we need a linear transformation that
applies to both sides of the equation to yield a new sparse source
vector.

2. Estimate the mixing matrix A. Several approaches are presented for
this step, such as natural gradient ICA approaches, and clustering
techniques with variants of k-means algorithm [18,187].

3. Estimate the source representation based on the sparsity assumption.
A majority of proposed methods are primarily based on minimizing
some norm or pseudo-norm of the source representation vector. The
most effective approaches are Matching Pursuit [38,187], Basis Pursuit,
[85,178,188,189], FOCUSS [46], IDE [73] and Smoothed ℓ0-norm [47].

be sparse (i.e., many of the gray values of the image are

relatively large). Thus, given a class S ⊂ R
n, an impor-

tant problem is to find a basis or a frame in which all

signals in S can be represented sparsely. More specifi-

cally, given a class of signals S ⊂ R
n, it is important to

find a basis (or a frame) D = {wj}
d
j=1 (if it exists) for Rn

such that every data vector x ∈ S can be represented

by at most k ≪ n linear combinations of elements of

D. The dictionary design problem has been addressed in

[18-20,40,75,190]. A related problem is the signal model-

ing problem in which the class S is to be modeled by a

union of subspacesM =
⋃l

i=1 Vi where each Vi is a sub-

space of Rn with the dimension of Vi ≤ k where k ≪ n

[49]. If the subspaces Vi are known, then it is possible to

pick a basis Ei = {eij}j for each Vi and construct a dictio-

nary D =
⋃l

i=1 E
i in which every signal of S has sparsity

k (or is almost k sparse). The model M =
⋃l

i=1 Vi can

be found from an observed set of data F = {f1, . . . , fm} ⊂

S by solving (if possible) the following non-linear least

squares problem:

Find subspaces V1, . . . ,Vl of R
n that minimize the

expression

e (F , {V1, . . . ,Vl}) =

m
∑

i=1

min
1≤j≤l

d2(fi,Vj) (83)

over all possible choices of l subspaces with dimension of

Vi ≤ k < n. Here d denotes the Euclidian distance in

R
n and k is an integer with 1 ≤ k < n for i = 1, . . . , l.

Note that e (F , {V1, . . . ,Vl}) is calculated as follows: for

each fi ∈ F and fixed {V1, . . . ,Vl}, the subspace Vj ∈

{V1, . . . ,Vl} closest to fi is found and the distance d
2(fi,Vj)

is computed. This process is repeated for all fi ∈ F and

the squares of the distances are added together to find

e (F , {V1, . . . ,Vl}). The optimal model is then obtained as

the union M =
⋃

i V
o
i , where {V o

1 , . . . ,V
o
l } minimize the

expression (83). When l = 1 this problem reduces to

the classical least squares problem. However, when l > 1

the set
⋃

i Vi is a nonlinear set and the problem is fully

non-linear (see Figure 25). A more general nonlinear least

squares problem has been studied for finite and infinite

Hilbert spaces [49]. In that general setting, the existence

of solutions is proved and a meta-algorithm for searching

for the solution is described.

For the special finite dimensional case of Rn in (83), the

search algorithm is an iterative algorithm that alternates

between data partition and the optimization of a simpler

least squares problem. This algorithm, which is equivalent

to the k-means algorithm, is summarized in Table 17.

In some new attempts sparse representation and the

compressive sensing concept have been extended to

solving multichannel source separation [191-194]. In

[191,192] separation of sparse sources with different
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(b)

(a)

Figure 25 Objective function. (a)

e = d2(f1 , V2) + d2(f2 , V1) + d2(f3 , V1) and (b)

e = d2(f1 , V2) + d2(f3 , V2) + d2(f2 , V1). Configuration of V1 , V2 in a)

creates the partition P1 = {f1} and P2 = {f2 , f3} while the

configuration in (b) causes the partition P1 = {f1 , f3} and P2 = {f2}.

morphologies has been presented by developing a multi-

channel morphological component analysis approach. In

this scheme, the signals are considered as combination

of features from different dictionaries. Therefore, differ-

ent dictionaries are assumed for different sources. In [193]

inversion of a random field from pointwise measurements

collected by a sensor network is presented. In this article,

it is assumed that the field has a sparse representation in

a known basis. To illustrate the approach, the inversion of

an acoustic field created by the superposition of a discrete

number of propagating noisy acoustic sources is consid-

ered. The method combines compressed sensing (sparse

reconstruction by ℓ1-constrained optimization) with dis-

tributed average consensus (mixing the pointwise sensor

measurements by local communication among the sen-

sors). [194] addresses source separation from a linear mix-

ture under source sparsity and orthogonality of themixing

matrix assumptions. A two-stage separation process is

proposed. In the first stage recovering a sparsity pattern of

the sources is tried by exploiting the orthogonality prior.

In the second stage, the support is used to reformulate the

recovery task as an optimization problem. Then a solution

based on alternating minimization for solving the above

problems is suggested.

8 Multipath channel estimation
In wireless systems, channel estimation is required for

the compensation of channel distortions. The transmit-

ted signal reflects off different objects and arrives at the

receiver from multiple paths. This phenomenon causes

the received signal to be a mixture of reflected and scat-

tered versions of the transmitted signal. The mobility of

the transmitter, receiver, and scattering objects results in

rapid changes in the channel response, and thus the chan-

nel estimation process becomes more complicated. Due

to the sparse distribution of scattering objects, a multi-

path channel is sparse in the time domain as shown in

Figure 26. By taking sparsity into consideration, channel

estimation can be simplified and/or made more accurate.

The sparse time varying multipath channel is modeled as

h(t, τ) =

k−1
∑

l=0

αl(t)δ(τ − τl(t)) (84)

where k is the number of taps, αl is the lth complex path

gain, and τl is the corresponding path delay. At time t, the

transfer function is given by

H(t, f ) =

+∞∫

−∞

h(t, τ)e−j2π f τdτ (85)

Table 17 Search algorithm

• Input:

– initial partition {F11 , . . . , F
1
l }

– Data setF

• Iterations:

1. Use the SVD to find {V11 , . . . , V
1
l } by minimizing e

(

F1i , V
1
i

)

for each

i, and compute Ŵ1 =
∑

i e
(

F1i , V
1
i

)

;
2. Set j = 1;

3. While Ŵj =
∑

i e
(

F
j
i , V

j
i

)

> e
(

F , {V
j
1 , . . . , V

j
l }
)

4. Choose a new partition
{

F
j+1
1 , . . . , F

j+1
l

}

that satisfies, f ∈ F
j+1
k

implies that d
(

f , V
j
k

)

≤ d
(

f , V
j
h

)

, h = 1, . . . , l;

5. Use SVD to find and choose {V
j+1
1 , . . . , V

j+1
l }, by minimizing

e
(

F
j+1
i , Vi

)

for each i, and compute Ŵj+1 =
∑

i e
(

F
j+1
i , V

j+1
i

)

;

6. Increment j by 1, i.e., j → j + 1;
7. End while

• Output:

– {F
j
1 , . . . , F

j
l} and {V

j
1 , . . . , V

j
l }.
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Figure 26 The impulse response of two typical multipath

channels. (a) Brazil-D and (b) TU6 channel profiles.

The estimation of the multipath channel impulse

response is very much similar to the determination of ana-

log epochs and amplitudes of discontinuities for finite rate

of innovation as shown in (31). Essentially, if a known train

of impulses is transmitted and the received signal from the

multipath channel is filtered and sampled (information

domain as discussed in Section 3.3), the channel impulse

response can be estimated from these samples using an

annihilating filter (the Prony or ELP method) [27] defined

with the Z-transform and a pseudo-inverse matrix inver-

sion, in principle.m Once the channel impulse response is

estimated, its effect is compensated; this process can be

repeated according to the dynamics of the time varying

channel.

A special case of multipath channel is an OFDM

channel, which is widely used in ADSL, DAB, DVB,

WLAN,WMAN, andWIMAX.n OFDM is a digital multi-

carrier transmission technique where a single data stream

is transmitted over several sub-carrier frequencies to

achieve robustness against multipath channels as well as

spectral efficiency [195]. Channel estimation for OFDM

is relatively simple; the time instances of channel impulse

response is now quantized and instead of an annihilat-

ing filter defined in the Z-transform, we can use DFT

and ELP of Section 4.1. Also, instead of a known train

of impulses, some of the available sub-carriers in each

transmitted symbol are assigned to predetermined pat-

terns, which are usually called comb-type pilots. These

pilot tones help the receiver to extract some of the DFT

samples of the discrete time varying channel (84) at the

respective frequencies in each transmitted symbol. These

characteristics make the OFDM channel estimation simi-

lar to unknown sparse signal recovery of Section 3.1.1 and

the impulsive noise removal of Section 4.1.2. Because of

these advantages, our main example and simulations are

related to OFDM channel estimation.

8.1 OFDM channel estimation

For OFDM, the discrete version of the time varying chan-

nel of (85) in the frequency domain becomes

H[ r, i]� H(rTf , i�f ) =

n−1
∑

l=0

h[ r, l] e−
j2π il
n (86)

where

h[ r, l]= h(rTf , lTs) (87)

where Tf and n are the symbol length (including cyclic

prefix) and number of sub-carriers in eachOFDM symbol,

respectively. �f is the sub-carrier spacing, and Ts = 1
�f

is the sample interval. The above equation shows that for

the rth OFDM symbol, H[ r, i] is the DFT of h[ r, l].

Two major methods are used in the equalization pro-

cess [196]: (1) zero forcing and (2) minimunmean squared

error (MMSE). In the zero forcing method, regardless

of the noise variance, equalization is obtained by divid-

ing the received OFDM symbol by the estimated channel

frequency response; while in the MMSE method, the

approximation is chosen such that the MSE of the trans-

mitted data vector
(

E
[

‖X − X̂‖2
])

is minimized, which

introduces the noise variance in the equations.

8.1.1 Statement of the problem

The goal of the channel estimation process is to obtain

the channel impulse response from the noisy values of the

channel transfer function in the pilot positions. This is

equivalent to solving the following equation for h.

H̃ip = Fiph + νip (88)

where ip is an index vector denoting the pilot positions

in the frequency spectrum, H̃ip is a vector containing the

noisy value of the channel frequency spectrum in these

pilot positions and Fip denotes the matrix obtained from

taking the rows of the DFT matrix pertaining to the pilot

positions. νip is the additive noise on the pilot points in

the frequency domain. Thus, the channel estimation prob-

lem is equivalent to finding the sparse vector h from the

above set of equations for a set of pilots. Various chan-

nel estimation methods [197] have been used with the

usual tradeoffs of optimality and complexity. The least

square (LS) [197], ML [198], MMSE [199-201], and Linear

Minimum Mean Squared Error (LMMSE) [198,199,202]
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techniques are among some of these methods. However,

none of these techniques use the inherent sparsity of the

multipath channel h, and thus, they are not as accurate.

8.1.2 Sparse OFDM channel estimation

In the following, we present two methods that utilize this

sparsity to enhance the channel estimation process.

CS-based channel estimation The idea of using time-

domain sparsity in OFDM channel estimation has been

proposed by [203-205]. There are two main advantages in

including the sparsity constraint of the channel impulse

response in the estimation process:

(1) Decrease in the MSE: By applying the sparsity

constraint, the energy of the estimated channel

impulse response will be concentrated into a few

coefficients while in the conventional methods, we

usually observe a leakage of the energy to the

neighboring coefficients of the nonzero taps. Thus, if

the sparsity-based methods succeed in estimating the

support of the channel impulse response, the MSE

will be improved by prevention of the leakage effect.

(2) Reduction in the overhead: The number of pilot

sub-carriers is in fact, the number of (noisy) samples

that we obtain from the channel frequency response.

Since the pilot sub-carriers do not convey any data,

they are considered as the overhead imposed to

enhance the estimation process. The theoretical

results in [203] indicate that by means of

sparsity-based methods, the perfect estimation can

be achieved with an overhead proportional to the

number of non-zero channel taps (which is

considerably less than that of the current standards).

In the sequel, we present two iterative methods which

exploit the inherent sparsity of the channel impulse

response to improve the channel estimation task in

OFDM systems.

8.1.3 Iterativemethodwith adaptive thresholding (IMAT)

for OFDM channel estimation [206]

Here we apply a similar iterative method as in Section

4.2 for the channel estimation problem in (88). The main

goal is to estimate h from H̃ip given that h has a few non-

zero coefficients. To obtain an initial estimate ĥ0, we use

the Moore-Penrose pseudo-inverse of Fip which yields a

solution with minimum ℓ2-norm:

ĥ0 = F+
ip
H̃ip = F+

ip
Fiph + F+

ip
νip

=
1

N
FHipFip

︸ ︷︷ ︸

GN×N

h +
1

N
Fip

Hνip (89)

where we used

Fip
+ = FHip (FipF

H
ip

)
−1

︸ ︷︷ ︸

1
N INP×Np

=
1

N
FHip . (90)

The non-zero coefficients of h are found through a set

of iterations followed by adaptively decreasing thresholds:

h̃i = λ(ĥ0 − G · ĥi−1) + ĥi−1, (91)

ĥi(k) =

⎧

⎨

⎩

h̃i(k) |h̃i(k)| > βe−αi

0 otherwise

, (92)

where λ and i are the relaxation parameter and the iter-

ation number, respectively, k is the index of channel

impulse response and G = 1
N FHipFip is defined in (89).

The block diagram of the proposed channel estimation

method is shown in Figure 27.

8.1.4 Modified IMAT (MIMAT) for OFDM channel estimation

[23]

In this method, the spectrum of the channel is initially

estimated using a simple interpolation method such as

linear interpolation between pilot sub-carriers. This ini-

tial estimate is further improved in a series of itera-

tions between time (sparse) and frequency (information)

domains to find the sparsest channel impulse response

by using an adaptive thresholding scheme; in each itera-

tion, after finding the locations of the taps (locations with

previously estimated amplitudes higher than the thresh-

old), their respective amplitudes are again found using

the MMSE criterion. In each iteration, due to threshold-

ing, some of the false taps that are noise samples with

amplitudes above the threshold are discarded. Thus, the

new iteration starts with a lower number of false taps.

Moreover, because of the MMSE estimator, the valid taps

approach their actual values in each new iteration. In the

last iteration, the actual taps are detected and the MMSE

estimator gives their respective values. This method is

Figure 27 Block diagram of the IMATmethod.
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similar to RDE and IDE methods discussed in Sections

2.6 and 4.1.2. The main advantage of this method is its

robustness against side-band zero-padding.o

Table 18 summarizes the steps in the MIMAT algo-

rithm. In the threshold of the MIMAT algorithm, α and

β are constants which depend on the number of taps and

initial powers of noise and channel impulses. In the first

iteration, the threshold is a small number, and with each

iteration it is gradually increased. Intuitively, this grad-

ual increase of the threshold with the iteration number,

results in a gradual reduction of false taps (taps that are

created due to noise). In each iteration, the tap values are

obtained from

ĤLSip = Hip + νip = F̃ · ht + νip (93)

where t denotes the index of nonzero impulses obtained

from the previous step and F̃ is obtained from Fip by

keeping the columns determined by t. The amplitudes

of nonzero impulses can be obtained from simple iter-

ations, pseudo-inverse, or the MMSE equation (94) of

Table 18 that yields better results under additive noise

environments.

The equation that has to be solved in (93) is usually

over-determined which helps the suppression of the noise

in each iteration step. Note that the solution presented in

(94) represents a variant of the MMSE solution when the

location of discrete impulses are known. If further statis-

tical knowledge is available, this solution can be modified

and a better estimation is obtained; however, this makes

the approximation process more complex. This algorithm

does not needmany steps of iterations; the positions of the

non-zero impulses are perfectly detected in three or four

iterations for most types of channels.

Table 18 MIMAT algorithm for OFDM channel estimation

• Initialization:

– Find an initial estimate of the time domain channel using

linear interpolation: ĥ(0) = ĥlinear

• Iterations:

1. Set Threshold= βeαi .
2. Using the threshold from the previous step, find the locations of

the taps t by thresholding the time domain channel from the

previous iteration(ĥ(i−1)).
3. Solve for the values of the non-zero impulses using MMSE:

ĥt = SNR · F̃H(F̃ · SNR · F̃H + I)
−1

(94)

4. Find the new estimate of the channel (ĥ(i)) by substituting the
taps in their detected positions.

5. Stop if the estimated channel is close enough to the previous
estimation or when a maximum number of iterations is reached.

Figure 28 SER vs. CNR for the ideal channel, linear interpolation,

GPSR, OMP, and the IMAT for the Brazil channel at Fd = 0

without zeropadding effect.

8.2 Simulation results and discussions

For OFDM simulations, the DVB-H standard was used

with the 16-QAM constellation in the 2K mode (211

FFT size). The channel profile was the Brazil channel D.

Figures 28, 29, 30, and 31 show the symbol error rate

(SER) versus the carrier-to-noise ratio (CNR) after equal-

izing using different sparse reconstruction methods such

as orthogonal matching pursuit (OMP) [88], compressive

sampling matching pursuit (CoSaMP) [41], gradient pro-

jection for sparse reconstruction (GPSR) [44], IMAT and

MIMAT. Also the standard linear interpolation in the fre-

quency domain using the noisy pilot samples is simulated.

In these simulations, we have considered the effects of

zero-padding and Doppler frequency in the SER of esti-

mation. As can be seen in Figures 28, 29, 30, and 31, the

SER obtained from the sparsity-based algorithms reveal

almost perfect approximation of the hypothetical ideal

channel (where the exact channel frequency response is

used for equalization).

Figure 29 SER vs. CNR for the ideal channel, linear interpolation,

GPSR, CoSaMP, and the IMAT for the Brazil channel at

Fd = 50Hz without zeropadding effect.
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Figure 30 SER vs. CNR for the ideal channel, linear interpolation,

GPSR, CoSaMP and the MIMAT for the Brazil channel at Fd = 0

including zeropadding effect.

9 Conclusion
A unified view of sparse signal processing has been pre-

sented in tutorial form. The sparsity in the key areas

of sampling, coding, spectral estimation, array process-

ing, component analysis, and channel estimation has been

carefully exploited. Some form of uniform or random

sampling has been shown to underpin the associated

sparse processing methods used in each of these fields.

The reconstruction methods used in each application

domain have been introduced and the interconnections

among them have been highlighted.

This development has revealed, for example, that the

iterative methods developed for random sampling can

be applied to real-field block and convolutional channel

coding for impulsive noise (salt-and-pepper noise in the

case of images) removal, SCA, and channel estimation

for orthogonal frequency division multiplexing systems.

These iterative reconstruction methods have been shown

to be naturally extendable to spectral estimation and

sparse array processing due to their similarity to channel

Figure 31 SER versus CNR for the ideal channel, linear

interpolation, GPSR, OMP, and the MIMAT for the Brazil channel

at Fd = 50Hz including zeropadding effect.

coding in terms of mathematical models with signifi-

cant improvements. Conversely, the minimum descrip-

tion length method developed for spectral estimation and

array processing has potential for application in other

areas. The error locator polynomial method developed for

channel coding has, moreover, been shown to be a discrete

version of the annihilating filter used in sampling with a

finite rate of innovation and the Prony method in spec-

tral estimation; the Pisarenko and MUSIC methods are

further improvements of the Prony method when additive

noise is also considered.

Linkages with emergent areas such as compressive sens-

ing and channel estimation have also been considered.

In addition, it has been suggested that the linear pro-

gramming methods developed for compressive sensing

and SCA can be applied to other applications with pos-

sible reduction of sampling rate. As such, this tutorial

has provided a route for new applications of sparse signal

processing to emerge, which can potentially reduce com-

putational complexity and improve performance quality.

Other potential applications of sparsity are in the areas of

sensor networks and sparse array design.

Endnotes
aSparse Signal Processing, Panel Session organized and

chaired by F. Marvasti and lectured by Profs. E. Candes,

R. G. Baraniuk, P. Marziliano, and Dr. A. Cichoki, ICASSP

2008, Las Vegas, May 2008.
bA list of acronyms is given in Table 2 at the end of this

section.
cThe sequence of vectors {vn} is called a Riesz basis if

there exist scalars 0 < A ≤ B < ∞ such that for every

absolutely summable sequence of scalars {an}, we have the

following inequalities [207]:

A

(

∑

n

|an|
2

)

≤

∥
∥
∥
∥
∥

∑

n

anvn

∥
∥
∥
∥
∥

2

ℓ2

leqB

(

∑

n

|an|
2

)

.

dNote that the Strang-Fix condition can also be used for

an exponential polynomial assuming the delta functions

are non-uniformly periodic; in that case τr in equation

(35) is similar toE, the DFT of the impulses, as defined in

Appendices 1 and 2.
eWe call the set of indices of consecutive zeros syndrome

positions and denote it by�; this set includes the complex

conjugate part of the Fourier domain.
fThe kernel of SDFT is exp

(
2π j
n i q

)

, where q is relatively

prime w.r.t. n; this is equivalent to a sorted version of DFT

coefficients according to a mod rule, which is a kind of

structured interleaving pattern.
gThis has some resemblance to soft decision iteration for

turbo codes [109].
hSimilar to array processing to be discussed in the next
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section, we can resolve any closely spaced sources condi-

tioned on (1) limited snapshots and infinite SNR, or (2)

limited SNR and infinite number of observations, while

the spatial aperture of the array is kept finite.
iStatistical efficiency of an estimator means that it is

asymptotically unbiased and its variance goes to zero.
jThe array in ESPRIT is composed of sensor doublets with

the same displacement. The parameters of the impinging

signals can be estimated via a rotational invariant prop-

erty of the signal subspace. The complexity and storage

of ESPRIT is less than MUSIC; it is also less vulnerable

to array imperfections. ESPRIT, unlike MUSIC results in

an unbiased DOA estimate; nonetheless, MUSIC outper-

forms ESPRIT, in general.
kFor a video introduction to these concepts, please refer

to http://videolectures.net/icml08 grunwald mdl.
lSpherical subspace implies the eigenvalues of the auto-

correlation matrix are equal in that subspace.
mSimilar to Pisarenko method for spectral estimation in

Section 5.2.
nThese acronyms are defined in Table 2 at the end of

Section 1.
oIn current OFDM standards, a number of subcarriers at

both edges of the bandwith are set to zero to ease the

process of analog bandpass filtering.

Appendix 1
ELP decoding for erasure channels [59]
For lost samples, the polynomial locator for the erasure

samples is

H(zi) =

k
∏

m=1

(

zi − ej
2π ·im

n

)

=

k
∑

t=0

ht z
k−t
i (95)

H(zim) = 0, m = 1, 2, . . . , k (96)

where zi = ej
2π ·i
n . The polynomial coefficients ht , t =

0, . . . , k can be found from the product in (95); it is easier

to find ht by obtaining the inverse FFT of H(z). Multi-

plying (96) by e[ im] ·
(

zim
)r

(where r is an integer) and

summing overm, we get

k
∑

t=0

ht ·

k
∑

m=1

(

e[ im] ·
(

zim
)k+r−t

)

= 0 (97)

Since the inner summation is the DFT of the missing

samples e[ im], we get

k
∑

t=0

ht · E[ k + r − t]= 0 (98)

where E[ .] is the DFT of e[ i]. The received samples, d[ i],

can be thought of as the original over-sampled signal, x[ i],

minus the missing samples e[ im]. The error signal, e[ i],

is the difference between the corrupted and the original

over-sampled signal and hence is equal to the values of the

missing samples for i = im and is equal to zero otherwise.

In the frequency domain, we have

E[ j]= X[ j]−D[ j] , j = 1, . . . , n (99)

Since X[ j]= 0 for j ∈ � (see the footnote on page 40),

then

E[ j]= −D[ j] , j ∈ � (100)

The remaining values of E[ j] can be found from (98), by

the following recursion:

E[ r]=
−1

hk

k
∑

t=1

hk−tE[ r + t] (101)

where r /∈ � and the index additions are inmod(n).

Appendix 2
ELP decoding for impulsive noise channels [31,104]
For all integer values of r such that r ∈ � and r + k ∈ �,

we obtain a system of k equations with k+1 unknowns (ht
coefficients). These equations yield a unique solution for

the polynomial with the additional condition that the first

nonzero ht is equal to one. After finding the coefficients,

we need to determine the roots of the polynomial in (95).

Since the roots of H(z) are of the form ej
2π ·im

n , the inverse

DFT (IDFT) of the {hm}km=0 can be used. Before perform-

ing IDFT, we have to pad n − 1 − k zeros at the end of the

{hm}km=0 sequence to obtain an n-point signal. We refer to

the new signal (after IDFT) as {Hi}
n−1
i=0 . Each zero in {Hi}

represents an error in r[ i] at the same location.
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