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This paper is dedicated to Bruno Piombo. Bruno was a collegue of us, a good scientist who spent most of his

research work on vibration, modal analysis and signal processing applications, contributing with new and original

ideas. But, primarily, Bruno was a friend, an affectionate friend of many of us involved in modal analysis and

attending so many conferences together. His departure will deny us of his humor, profundity and respect, and left a

gap which will be hard to fill. We think that this modest contribution is a way to remember Bruno to those who

loved him but also to those who had not the chance of knowing him.

Abstract. Substructures coupling is still an important tool in several applications of modal analysis, especially structural

modification and structures assembling. The subject is particularly relevant in virtual prototyping of complex systems and

responds to actual industrial needs. This paper analyzes the possibility of assembling together different substructures’ models.

The important role of rotational DoFs is highlighted, underlying the difficulty of assembling theoretical and experimental models,

for which, usually, the rotational DoFs are not available. Expansion techniques can be used to provide this information as well as

appropriate modelling of joints. With this information FRF models, modal models and FE models can be appropriately combined

together and solutions for several cases of practical interest are presented. The analyzed procedures are tested on purpose-built

benchmarks, showing limits and capabilities of each of them.

1. Introduction

A major need in applied research that is increasingly accepted as a valid stimulus in the scientific community

is the possibility of using different models of substructures in the process of assembling complex systems. This

possibility, besides answering production needs, permits to perform local (substructure) optimizations and, in the

final stage, an overall optimization. Moreover, the possibility of using different models, obtained from a theoretical or

numerical analysis such as a Finite Element Model (FEM) or derived from experimental tests (Frequency Response

Functions: FRFs) provides the chance of performing a virtual prototyping of the system, eventually permitting

structural modifications of single components when the overall dynamic response of the assembled system is not

satisfactory.

It is worthwhile to point out clearly that, when speaking about substructures’ coupling, two different problems

can be actually considered. The first one refers typically to substructures that must be assembled together through

a number of joints. The second case involves a base structure that is coupled to a second system with the aim of

performing a structural modification to change the dynamic behaviour of the base structure. Although there is not a

substantial distinction between these types of coupling, in practice these two problems have been always considered
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separately, for several reasons. In particular the problem of structural modification was traditionally dealt as a

specific branch of modal analysis in that originally only the problem of lumped modifications was developed.
Dynamic models of structures can be classified according both to the type and to the source of information

that defines each model. With regard to the source, it is possible to distinguish between theoretical models and
experimental models, whilst relatively to the type it is possible to distinguish between physical models (characterized

by elasticity, inertia and eventually damping properties), modal models (characterized by natural frequencies,

vibration modes and modal dampings) and FRF models (described by an input-output relation in the frequency
domain). Overall, six different combinations exist, that are summarized in the following Table, where the chance of

occurrence of each combination is indicated.

Origin

{
Theoretical

Experimental

Type
︷ ︸︸ ︷

Physical Modal FRF

Always Typical Unusual

Never Typical Always

The coupling of structures described by different models – some by experimental FRFs, while others, especially

those not yet constructed and potentially amenable to modification, by theoretical models – can be obtained using
several procedures:

– coupling techniques using the FRF model, once the FRFs of the substructures have been experimentally

determined;
– coupling techniques using the modal model, that can be applied once the substructure modes have been either

identified from experimental FRFs or computed from an FE model;
– coupling techniques using the physical model, applicable when an FE model can be identified (e.g. at the end

of a model updating process) from substructures whose FRF or modal model is known;
– coupling techniques using a hybrid approach, that uses the FRF or modal model of some structures and an FE

model of others.

All the above methods are valid from a theoretical point of view, but any of them have peculiarities that make it
more or less convenient for the particular case of interest or for a particular application.

The coupling using the FRF model has limitations related to the difficulty of measuring the rotational degrees of
freedom (RDoFs), that are generally involved when joining together structures characterized by flexural behavior [1–

3]. In fact, neglecting the RDoFs, an important part of continuity and equilibrium conditions at the joint, are excluded
and the obtained results are generally meaningless. However, this approach is still appropriate when coupling

together substructures whose dynamic behaviors are known experimentally by FRFs. Besides the limitation related
to RDoFs, the coupling using the modal model [4,5] has additional drawbacks related to the identification of the

modal parameters and to mode truncation. The hybrid coupling still presents the problem of the rotational degrees
of freedom, while the coupling in the physical space does not have this limitation, but it implies that the physical

model is known. In the last case, the process usually starts from an initial model of the substructures and ends with

the model updating of some physical parameters to better reproduce the experimental dynamic behavior.
Furthermore, it should be recalled that substructures can be coupled together through several types of joints.

Among them, two main categories can be distinguished:

– point connections, ideally involving one or several discrete points. These connections are typical of substructures

coupled together through a finite set of joints as well as of lumped modifications. For such connections, the

coupling conditions can be imposed at all the interface degrees of freedom, so that in principle an exact solution
can be achieved;

– line and surface connections, involving a continuous interface along one or more ideal lines, or across one or
more surfaces. These joints are typical of distributed structural modifications as well as of substructures joined

along a line. For this types of connections, the coupling conditions can be imposed only at a discrete number
of points, so that, in general, it is not possible to satisfy the coupling conditions along/across the continuous

interface, unless this is described through appropriate shape functions. This issue is clearly mentioned in [7],
where the coupling techniques that are unable to ensure a mathematically convergent solution in case of

line/surface connections are referred to as heuristic.
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In all cases, the role of rotational degrees of freedom is crucial. At the state of the art, experimental testing is not

able to provide FRFs containing rotational responses and moments. Although it is possible now to obtain rotational

responses, albeit difficult to perform [6] and non standard [8–10], the problem of making tools capable of exciting

the structure with concentrated moments is still far from a satisfactory solution [11–13]. Therefore it is necessary to

provide an approximate description of the coupling mechanism trying to eliminate (condense) or expand the RDoFs.

However, once the importance of RDoFs is totally recognized, it is normal expectation to analyze whether the

description of coupling conditions could be achieved without using such DoFs, at least under particular conditions.

It is a matter of fact that several industrial problems are so complex that a satisfactory application of expansion

techniques is hardly achieved either because the problem conditioning is very bad or because good measurements

are difficult to obtain. Therefore an attempt is made to overcome the problem of estimating the RDoFs, by proposing

a particular model of the joint: to this end the coupling condition is described by an equivalent model that does not

transmit concentrated moments and rotations, i.e. does not need RDoFs. The results obtained by this analysis are

quite satisfactory, at least in the range of low frequencies, when using both simulated and experimental data.

2. Coupling techniques

In the wide range of coupling techniques so far proposed in the literature, it is possible to extract four main

important sets:

– FRF coupling techniques;

– modal coupling techniques;

– FE (physical) coupling techniques;

– hybrid coupling techniques, that can be further subdivided into:

∗ modal based hybrid coupling;

∗ FRF based hybrid coupling.

In the first group the mathematical model used for the structures is the FRF model; in the second group the

mathematical model is the modal model for both substructures; in the third it is the physical (FE) model for both

substructures; in the fourth the mathematical model is the physical model for one substructure, whilst for the other

substructure the model can be either the modal or the FRF model.

The discussion in this paper will not be addressed to FE coupling techniques, physical models being essentially

used within Finite Element software packages.

2.1. FRF coupling techniques

It is first necessary to divide the total set of DoFs of each substructure into internal DoFs (i), not belonging to the

joints, and coupling DoFs (c), that are those participating to the joint region.

It is assumed that the two substructures (A and B) are known through their FRF matrices, which can be partitioned

into internal DoFs i and coupling DoFs c:

HA(ω) =

[

HA
ii

HA
ic

HA
ci HA

cc

]

HB(ω) =

[

HB
ii

HB
ic

HB
ci HB

cc

]

(1)

Let uA, uB be the displacements and rotations of substructures A and B, respectively. Furthermore, let f A, fB

and f be the forces and moments acting on subsubstructures A and B, and on the coupled structure, respectively. The

compatibility of displacements and rotations, and the equilibrium of forces and moments at the coupling DoFs c can

be expressed as:

uA

c = uB

c ; fA

c + fB

c = fc (2)

This leads to the classical expression for the FRF of the coupled structure C:
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In it three matrix inversions are involved (two inversions for the complete FRF matrices of each substructure plus

the inversion of the assembled impedance matrix). Due to the number of matrix inversions and to the size of the

involved matrices, ill-conditioning may easily occur, leading to large numerical errors.

2.1.1. FRF coupling: the algorithm by Jetmudsen, Bielewa and Flannely

To reduce the number of matrix inversions and to improve possibly the problem conditioning, a different algorithm

was developed by Jetmundsen et al. [14] and subsequently generalized [15], leading to the following expression for

the FRF of the coupled structure:

HC =
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(4)

which involves one matrix inversion only. Furthermore, the size of the matrix to invert is given by the number of

interface DoFs. (In the classical procedure, the size of the FRF matrices to invert is given by the number of DoFs

of each substructure and the size of the final inversion is given by the number of DoFs of the assembled structure.)

Although a smaller size and a lower number of inversions does not ensure necessarily that the final conditioning of

the problem improves, this is generally very probable.

To avoid inconsistencies of the FRF model and to reduce the number of measurements necessary to define an

FRF matrix, it is beneficial to measure just a row or column of the FRF instead of the entire matrix (or its lower or

upper triangular part). Then, the modal parameters can be identified and the necessary FRFs can be synthesized in

the required frequency range. To reduce modal truncation effects, out of range modes can be accounted by using

theoretically derived lower and upper residuals, for instance obtained from a raw FE model of each substructure.

2.2. Modal coupling techniques: fixed versus free interface methods

In modal coupling techniques, a reduced number of principal coordinates is used to describe each substructure

through a Ritz-type transformation. Generally, higher order vibration modes are discarded. According to the choice

of such principal coordinates, it is possible to distinguish two groups of methods: fixed interface methods and free

interface methods.

In fixed interface methods [5], the total displacement of each substructure is obtained as a superposition of fixed

interface normal modes plus constraint modes, i.e. static displacements caused by a unit displacement of each

connection DoF, with other interface DoFs fixed. Fixed interface methods are easy to implement whenever mass

and stiffness matrices of the substructures are known theoretically, i.e. by an FE model. However, they are difficult

to apply when dealing with experimental data: in fact it is almost impossible to build up a perfectly fixed support for

dynamic tests; furthermore, the influence coefficients from which constraint modes could be derived are also hardly

obtained by static or dynamic testing.

In free interface methods, such as [16–18], the total displacement of each substructure is obtained as a superposition

of normal modes with free interface plus (according to the particular method) rigid body modes, attachment modes,

inertia relief modes, etc. Free interface methods are the most appropriate when dealing with experimental data,

since the necessary vibration modes are obtained from a substructure with free interface or even freely supported,

the condition most commonly used in modal testing.
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2.3. Hybrid coupling: modal based versus FRF based techniques

It is assumed that substructure A is known either through the experimental FRF matrixH A(ω) or through identified

modal parameters ΛA and ΦA. On the contrary, substructure B is known through an FE model providing mass

and stiffness matrices ∆MB and ∆KB . It can be pointed out that ∆MB and ∆KB must represent the difference

between the mass and the stiffness matrices of the coupled structure (A+B) and those of substructure A, hence the use

of the symbol ∆. In fact, in many cases, it is not sufficient to consider the mass and stiffness matrices of substructure

B alone. For instance, it is easy to realize that, when coupling a beam A with a reinforcing rib B to increase the

thickness of the structure, the bending stiffness of the coupled (thicker) structure is not just the sum of the bending

stiffness of the two components, but it is a more complex combination of both. Thus, the need of considering ∆M B

and ∆KB .

For the sake of simplicity, it is further assumed that substructure B has no internal DoFs, i.e. all the DoFs of

substructure B are coupling DoFs c : ∆MB = ∆MB
cc, ∆KB = ∆KB

cc.

2.3.1. Hybrid coupling using the modal database

After enforcing the compatibility of displacements (rotations) and the equilibrium of forces (moments), the

equation of free undamped motion of the coupled structure (N DoFs), partitioned into internal DoFs i and coupling

DoFs c, is:
[
MA

ii
MA

ic

MA
ci MA

cc + ∆MB

] (
üA

i

üc

)

+

[
KA

ii
KA

ic

KA
ci KA

cc + ∆KB

] (
uA

i

uc

)

= 0 (5)

The mass and stiffness matrices of substructure A, MA and KA, are not available. By ideally solving the

eigenvalue problem (KA − λMA)φ = 0, N eigenvalues ΛA = diag(ω2
n1

, . . . , ωn2

N

) and eigenvectors ΦA =

[φA

1 φA

2 . . . φA

N ] are obtained, that satisfy the orthonormal conditions ΦA
T

MAΦA = I and ΦA
T

KAΦA = ΛA.

By introducing the coordinate transformation ΦA from the physical displacements uA to the modal coordinates q of

substructure A, one obtains, after pre-multiplying by ΦA
T

and in view of the orthonormal conditions:

(I + ΦA
T

c ∆MBΦA

c )q̈ + (ΛA + ΦA
T

c ∆KBΦA

c )q = 0 (6)

where ΦA

c is the mode shape matrix at the coupling DoFs c.

Note that ∆M̃ = ΦA
T

c ∆MBΦA

c and ∆K̃ = ΦA
T

c ∆KBΦA

c are not usually diagonalized by the coordinate

transformation ΦA based on the eigenvectors of substructure A only. To obtain eigenvalues and eigenvectors of the

coupled structure, the eigenvalue problem associated with Eq. (6) must be solved. Eq. (6) does not contain the mass

and stiffness matrices of substructure A, but requires the modal parameters Λ A and ΦA, which are assumed to be

known. For practical reasons, a number m ≪ N of modes is used, so that the matrices in Eq. (6) are truncated

to m rows and m columns, and the modal parameters of the modified structure are not determined exactly, but are

approximate values (modal truncation problem). Furthermore, the mode shapes might be known only on a subset of

the coupling DoFs (spatial incompleteness), calling for reduction or expansion techniques. In fact, Eq. (6) requires

ΦA

c , ∆KB and ∆MB to be referred to the same set of DoFs.

2.3.2. Hybrid coupling using the FRF database

The relationship providing the FRF of the coupled structure is given in [19]:

HC(ω) =

[

HA
ii

HA
ic

HA
ci

HA
cc

]

−

[

HA
ic

HA
cc

]

× ∆ZB

cc

[
Icc + HA

cc∆ZB

cc

]
−1 [

HA

ci HA

cc

]
(7)

where HC is the FRF of the coupled structure, and ∆ZB = ∆KB + jω∆CB − ω2∆MB is the dynamic stiffness

matrix due to the addition of substructure B.

In view of Eq. (7), the matrices HA
cc and ∆ZB must be referred to the same set of DoFs.
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3. Techniques to account for rotational DoFs

Whatever the coupling technique (impedance, modal or hybrid), experimental testing does not usually involve

rotational DoFs. Hence the need of expanding experimentally determined mode shapes to include unmeasured
rotational DoFs (SEREP expansion or static expansion). Just for hybrid coupling, an alternative is to perform a sort

of dynamic reduction, involving the local models of the two substructures [20].

A further alternative can be to avoid the use of rotational DoFs by assuming that a rigid connection at a given

point – involving displacement and rotation compatibility, and forces and moments equilibrium – can be substituted

by an equivalent connection through several close points – involving only displacement compatibility and force
equilibrium (translational DoFs only).

3.1. SEREP expansion

In SEREP (System Equivalent Reduction Expansion Technique [21]) the expanded mode shapes (including the

rotational DoFs) are obtained from the experimental modes using the transformation matrix:

T =

[
ΦA1

ΦA2

]
(
ΦT

A1ΦA1

)
−1

ΦT

A1 =⇒

[
ΦE1

ΦE2

]

= TΦX1 (8)

where the subscripts A, X and E denote analytical, experimental and expanded modes, respectively, and the subscripts
1 and 2 refer to measured (some translational) DoFs and unmeasured (rotational plus the remaining translational)

DoFs, respectively.

The main advantage of SEREP when used as an expansion technique is that the expanded modes are a linear

combination of the analytical modes, so that measured data are in some sense smoothed out by the procedure. The

main disadvantage of SEREP is that an FE model is required to obtain the analytical modes, and the quality of such
model is crucial for the success of the procedure.

Moreover, the SEREP technique has some well known advantages when used for model reduction: invariance of

the selected mode shapes and natural frequencies when passing from the full to the reduced model, and insensitivity

of the quality of the results to the set of selected modes and DoFs.

3.2. Static expansion using a local interface model

In the static expansion using a local interface model [22,23], a local model of substructure A, i.e. a model including
the interface region common to both the structures, can be considered (L DoFs, c ⊆ L). Then, u c = TcLuL, with

TcL boolean, and equal to I if c ≡ L. DoFs L can be partitioned into test DoFs (subscript 1) and unmeasured DoFs

(subscript 2), so that the stiffness and mass matrices are:

KA

LL =

[
KA

11 KA
12

KA
21 KA

22

]

MA

LL =

[
MA

11 MA
12

MA
21 MA

22

]

(9)

By using the static (Guyan) condensation over the test DOFs 1, one obtains:

uL =

[
I

−KA
−1

22 KA
21

]

u1 = TL1u1 (10)

The Guyan transformation is exact under the assumpion that inertia actions are zero and that no actions are applied

at DoFs 2. In practice, results are acceptable provided that negligible actions are exchanged at the unmeasured

DoFs 2 and that inertia actions are negligible too.

Therefore the expanded mode shapes at the coupling DoFs ΦA

c can be obtained from experimental modes ΦA

X1

using the transformation matrix:

Tc1 = TcLTL1 = TcL

[
I

−KA
−1

22 KA
21

]

=⇒ ΦA

Ec = Tc1Φ
A

X1 (11)

which could be used immediately for expansion. A different and more effective transformation matrix can be

obtained if a further step is taken in order to smooth experimental mode shapes so as to reduce the effect of bad
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sensors. Smoothing can be performed by expressing the displacement at the test DoFs through a truncated Ritz basis
made by NG < N1 eigenvectors Φ̃ (interface modes) of the local model of substructure A, statically condensed to
the test DoFs, i.e.:

u1s
= Φ̃qG (12)

where the subscript s stands for smoothed and qG is found so as to minimize ‖u1 − u1s‖. The final form of the
transformation matrix is [23]:

Tc1s
= TcLTL1Φ̃

(

Φ̃
T

Φ̃
)
−1

Φ̃
T

(13)

An indicator of the accuracy of the procedure is also presented in [23]. It is necessary to compute the first natural
frequency of substructure A for fixed test DoFs: such frequency must be high enough when compared with the
frequency range of interest.

The main advantage of the expansion using a local interface model is that, unlike in SEREP, a fairly accurate FE
model of the entire substructure is not required, but only a model of the region involved with the joint is necessary.
This kind of expansion can be efficiently used whenever the joint between the substructures extends across a surface,
as in the distributed structural modification case.

3.3. Dynamic reduction using a quasi-local model

A dynamically reduced dynamic stiffness matrix ∆Z̃B , including the contribution of substructure B can be
obtained as:

∆Z̃B = Z̃ − Z̃A (14)

where Z̃ and Z̃A are the dynamically reduced dynamic stiffness matrices of the coupled structure and of substructure
A, respectively. In [20] it is shown that,because of the quasi-local character of∆Z̃, the difference can be approximated
by using a local model of substructure A, that must include obviously the coupling DoFs c. The suggested approach
is:

– a local model of substructure A is considered, providing MA
LL

, KA
LL

(and CA
LL

);
– a local model of the coupled structure is also considered, providing M LL, KLL (and CLL). These matrices, as

those of the previous item, include unmeasured DoFs;
– dynamic reduction is performed on the two previous models, yielding the reduced dynamic stiffness matrices

Z̃ and Z̃A. This operation introduces some approximation;
– the difference between the two previous matrices provides the reduced dynamic stiffness matrix, that can be

used to determine the FRF of the coupled structure through Eq. (7).

3.4. Interface model without RDoFs: equivalent multi-point connection

When a rigid connection between two structures is considered at a given point, the coupling conditions involve
equilibrium of both forces and moments, and compatibility of both displacements and rotations. If coupling is
assumed through a single point, neglecting rotational DoFs provides meaningless results. However, if coupling
is rather assumed through several close points, some information about rotations and moments can be implicitly
recovered from forces and displacements, even if rotational DoFs are neglected.

For a joint between two parallel plates subjected to bending, coupling can be assumed through three points of the
joint region, not lying on the same straight line – e.g. at a triangle’s vertices. Only translational DoFs orthogonal
to the joint are considered. This amounts to assume that, at these points, only forces orthogonal to the plates
are transmitted. The combination of such forces provides a resultant force and a resultant moment approximating
the real dynamic actions exchanged between the coupled structures. In terms of joint’s displacement and rotation
compatibility, the use of translational DoFs only at the three points requires that – for a reasonable accuracy of the
procedure – the joint region lies approximately on a plane. In this case, from the values of the three displacements,
the average displacement and the rotation of the joint plane could be implicitly obtained.

The limitation of this approach is related to the ratio between the points distance in the joint and the frequency
(wavelength) of interest: when a quarter of the involved wavelength equals the points distance, the joint region is
not anymore approximated by a plane and the procedure becomes more and more inaccurate.
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Fig. 1. Frame and plate coupled along four regions.

3.5. Discussion about expansion techniques

A number of advantages and disadvantages of the presented expansion techniques have been already summarized

in the description of each technique. However, further comments can be made, particularly about which type of joint

is more suitably described by each technique.

SEREP expansion is well suited both for point connections and for line and surface connections, but, as mentioned

previously, it has the disadvantage of requiring a fairly accurate FE model of the entire substructure, which is often

in contrast with the premise of this work that assumes that some substructures are difficult to model theoretically.

Methods based on local models (static expansion and dynamic reduction) are well suited for line and surface

connections: in this case the local model is able to capture the essential characteristics of the interface behavior.

Finally, the technique based on the equivalent multi-point connection is well suited for point connections, as long

as the interface around each connection can be reasonably thought to lie on a plane.

4. Results and comparison on benchmarks

Two benchmark structures are considered to test the reliability of the different coupling techniques on both types

of joints. The first benchmark is characterized by a coupling that ideally involves four discrete point connections,

whilst the second benchmark involves coupling across a surface (continuously distributed structural modification).

4.1. FRF coupling of a plate-frame benchmark

The benchmark is made of a plate and a frame, both in aluminium. The two substructures are supposed to be

coupled along four regions as shown in Fig. 1 that includes the dimensions of the coupled system.

At a first stage, both substructures were modelled by finite elements to check, step by step, the different phases of

the coupling techniques, acquiring, in such a way, a particular sensitivity on each problem. First the analysis was

performed without introducing any kind of error in the data and then polluting them with Gaussian random noise,

enlightening a set of different drawbacks and showing when the procedures are able to produce good results or not.
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Table 1

Experimental vs. theoretical natural frequencies of the frame using beam elements

Natural frequencies of the frame [Hz] Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Experimental 14.79 45.67 68.15 108.19 110.81

FE beam model of the frame 19.10 45.69 71.70 115.51 120.41

Table 2

Experimental vs. theoretical natural frequencies of the frame using shell elements

Natural frequencies of the frame [Hz] Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Experimental 14.79 45.67 68.15 108.19 110.81

FE shell model of the frame 14.95 47.15 70.17 111.61 118.51

At a second stage, experimental tests were performed and the coupling techniques were applied to these data to

check the problems arising when working with real data: issues concerning ill-conditioning, level of noise, how

many and which degrees of freedom to measure were analysed.

By the first analysis it was observed that a correct description of the frame (as verified by comparing the model with

experimental tests) cannot be obtained by beam elements because such FE model produces some natural frequencies

that are in error by about 50% with respect to the experimental data (see Table 1). In fact, the cross-sections of

the beam elements remain plane and parallel during the torsion. In other words, with such elements, the torsion of

the intermediate horizontal beam induces displacements of the two vertical beams along the normal direction to the

structure plane (z direction) only, whilst displacements along the x direction (parallel to the intermediate beam) are

also experimentally observed. Such displacements are allowed by the shell elements. Therefore it was necessary to

use shell elements for both the frame and the plate, obtaining much better results as seen in Table 2.

The FE model of the plate, obtained by shell elements, did not show any problem and the results of the model

fitted quite precisely the experimental data.

Once obtained a correct FE model of both substructures, a detailed analysis of the FRF coupling technique was

developed. When using simulated data, it was assumed that only the translational FRFs of both structures were

known, as those practically available from experiments.

4.1.1. FRF coupling with expansion of translational DoFs using SEREP

A first analysis is addressed to the FRF coupling procedure that, for a correct application, needs that the rotational

FRFs (rotation/force, translation/moment, rotation/moment) are estimated. This estimate is obtained by an expansion

technique using SEREP, that requires the theoretical mode shapes (FE) of the component substructures. The FE

model, that must be purpose-built for the application of SEREP, should satisfy two conflicting requirements: on one

side it should not be too complex, while, on the contrary, it should provide accurate modes to avoid significant errors

in the expansion.

With this in mind, the sensitivity to a decrease of the model accuracy – i.e. to a decrease of the number of DoFs in

the FE mesh – is evaluated. When using simulated data, it is observed that a small decrease of the model accuracy

of both substructures induces relevant errors, making such procedure very sensitive to the quality of the model.

However, when applying the same technique to FRFs determined experimentally for both the plate and the frame,

which is expected to be the most critical case, the results of the coupling are incredibly in good agreement with

reference FRFs (Figs 2 and 3).

The conditioning of the modal matrices that must be inverted for the application of SEREP is also analyzed.

The FRFs of the plate and the frame are measured at seven points – the only measured degree of freedom being

the acceleration along the transverse direction z. In the measured frequency range, seven modes are identified for

the plate and six modes for the frame. Since the SEREP expansion needs a determined or overdetermined matrix

(Eq. (5)), the minimum number of test points is seven. The use of more test points worsens the conditioning of

the matrix to invert, and probably leads to a SEREP transformation matrix much more sensitive to errors in the

identified mode shapes. Figs 4 and 5 show a reconstructed acceleration/moment FRF element of the frame, using 7

test points and 10 test points, respectively. Results are compared with the theoretical FRF. It can be noticed that the

FRF expanded using 7 points is more accurate than the other one.
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Fig. 2. Frame-plate coupling. Translation/force FRFs: complete FE model (–); coupling procedure (- - -) using experimental data.
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Fig. 3. Frame-plate coupling. Translation/moment FRFs: complete FE model (–); coupling procedure (- - -) using experimental data.

4.1.2. FRF coupling: equivalent multi-point connection

Whether or not expansion techniques to estimate the RDoFs necessary to perform the FRF coupling can be

effectively used, one is tempted to analyze whether an appropriate description of the interface region can be obtained

without using the rotational DoFs, as outlined previously. This approach would avoid the expansion operation that

in any case depends on several factors difficult to control.

To this aim, three non aligned points in the interface region were considered for coupling. The maximum distance

between such points was about 21 mm. The only DoFs retained for coupling were those orthogonal to the joint.

The results obtained from this type of analysis were quite satisfactory, when using both noise polluted simulated

data (not reported in the paper) and experimental data, as can be observed from Fig. 6 where the reference FRF

of the coupled system is compared with the coupled FRF obtained by using the measured translational DoFs only.

The agreement is very good, at least for low frequencies, that, in any case, are the most interesting in structural

dynamics. The result confirms that the limitation of this approach is related to the ratio between the points distance

in the joint and the frequency (wavelength) of interest: for the given points distance the upper limiting frequency

can be estimated at about 150 Hz.

Furthermore, it can be stressed that this procedure is much less sensitive to random noise and systematic modelling

errors, and, of course, it is computationally much more convenient in that it does not need the application of expansion

procedures such as SEREP.
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Fig. 4. SEREP expansion of translation/moment frame FRFs: theoretical FRF from FE model (–); SEREP expansion using 7 test points (- - -).

0 50 100 150 200 250 300
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Hz

A
z
/M

y

Fig. 5. SEREP expansion of translation/moment frame FRFs: theoretical FRF from FE model (–); SEREP expansion using 10 test points (- - -).

4.2. Hybrid coupling of a plate-reinforcing plate benchmark

The benchmark consists in one aluminium plate, with size 600 mm × 800 mm × 3 mm. Another aluminium
plate, with the same thickness, is coupled to the first plate across its surface. The second plate is smaller than the
first one and is bolted to it. In Fig. 7(a) draft of the structure under test is presented.

As a first step for simulation, a finite element model of the larger plate is built to perform preliminary computations
assuming free-free support conditions. The model is built with four node shell elements with 6 DoFs per node by
means of the ANSYS code. The mesh of the model is 50 mm × 50 mm for a total number of 1326 DoFs.

The frequency range of interest is 0 –150 Hz in which 10 flexible modes are found. In Table 3 the natural
frequencies computed by the finite element model are compared to those obtained by experimental tests on the base
structure.

Another finite element model is built for the coupled structure and the same elements and mesh dimensions are
used as in the original structure for the same total number of DoFs. This model is used as a reference to compare
results obtained using simulated data.

To obtain ∆KB and ∆MB , two more local FE models are built to describe the interface region of the base plate
and of the coupled structure, using four node plate elements with 3 DoFs per node. In this case a coarser mesh,

100 mm × 100 mm, is used, for a total number of 36 DoFs. The related code is written in Matlab and it is used
within the algorithm which implements the whole procedure.
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Table 3

Finite Element vs. experimental natural frequencies of the base

plate

Natural Frequencies of the base structure [Hz]

F.E. model Experimental

Mode 1 20.60 19.6

Mode 2 24.52 24.8

Mode 3 45.56 45.5
Mode 4 48.85 47.2

Mode 5 59.64 58.0

Mode 6 71.64 72.4

Mode 7 93.43 91.3

Mode 8 99.64 96.4

Mode 9 124.52 124.5

Mode 10 137.86 138.8
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Fig. 6. Frame-plate coupling. Translation/force FRFs: complete FE model (–); coupling by omitting the rotational DoFs (- - -) and using test
data.

Fig. 7. Coupled structure: plate modified by a reinforcing plate.

Experimental tests are carried out by measuring the translational FRFs at the 12 points corresponding to the nodes
of the region described by the local FE models.

4.2.1. Hybrid coupling: local static expansion vs. dynamic reduction and SEREP

The method is first applied using simulated data, then it is applied using data identified from experimental tests.

Simulated data are obtained by the theoretical FE model of the base plate, which provides theoretical natural
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Table 4

Finite element vs. predicted natural frequencies of the coupled structure

Natural frequencies of the base structure [Hz]

F.E.M. Predicted

Noise 0% Noise 10% Noise 20% Noise 30%

Mode 1 22.25 22.07 22.35 22.65 21.19

Mode 2 25.06 24.65 24.66 24.88 26.75

Mode 3 51.41 51.34 51.88 52.56 51.82

Mode 4 58.68 58.94 59.14 60.09 58.36

Mode 5 72.08 68.35 68.19 68.68 69.49

Mode 6 79.06 78.12 77.80 78.57 79.58

Mode 7 109.00 109.80 110.44 107.82 111.59

Mode 8 113.73 114.70 113.68 116.30 118.12
Mode 9 131.64 130.97 130.99 131.50 130.58

Mode 10 150.94 133.74 133.82 135.38 134.83

Table 5

Identified vs. predicted natural frequencies of the coupled structure

Natural frequencies of the base structure [Hz]

Experimental Predicted

Modal based FRF based FRF based

static exp. dyn. red. SEREP

Mode 1 20.2 21.46 24.1 27.0

Mode 2 25.2 25.55 28.0 30.5

Mode 3 51.5 49.99 50.5 52.1

Mode 4 55.0 55.73 57.0 57.6
Mode 5 72.5 68.37 71.1 71.4

Mode 6 81.5 76.00 79.4 87.5

Mode 7 103.0 100.59 100.2 101.0

Mode 8 110.1 113.70 111.0 112.0

Mode 9 131.9 131.48 130.1 137.2

frequencies and mode shapes (only translational components are required). The hybrid coupling procedure outlined

by Eqs (6) and (13) is applied, by truncating the number of modes representing the dynamic behavior of the larger

plate to m = 20 and by using NG = 8 interface modes. (Also, the first natural frequency for fixed test DoFs is

744 Hz, ensuring a fair accuracy of the expansion technique). To try to reproduce the effect of measurement errors,

the theoretical mode shapes are polluted with noise: a uniform random distribution is used for each modal vector

component, with a maximum deviation ranging from 10% to 30% of the theoretical value. In Table 4, the natural

frequencies predicted by the structural modification procedure are compared with those provided by the FE model

of the modified structure.

The results are very good, except for the 5th and the 10th mode, which are in error even when noise free data

are considered. Being the natural frequencies lower than expected, the error should be ascribed to the expansion

procedure (modal truncation, similarly to an additional constraint, would have produced higher natural frequencies).

However, the technique is quite robust to noise introduced into eigenvectors.

The procedure is then applied starting from the experimental FRFs measured on the base structure. The measured

FRFs are used to identify the modal parameters of the original structure. The hybrid coupling procedure is applied

again, by using m = 14 modes for the base plate (3 rigid body modes + 11 identified flexible modes) and by

using NG = 8 interface modes. In Table 5, the predicted natural frequencies are compared with those identified

from experimental tests on the modified structure. Furthermore, Table 5 shows the results obtained, using the same

experimental data and the same modification, by the FRF based condensation procedure and by the FRF based

SEREP expansion procedure.

It can be noticed that the modal based static expansion technique provides much better results than the FRF based

dynamic reduction and SEREP, especially for the 1st and 2nd mode. An exception is represented by the 5th and 6th

mode: while expansion is probably responsible for the 5th mode, nothing can be said about the 6th mode.

The FRFs of the modified structure can be synthesized in the required frequency range from the predicted modal

parameters, by using theoretically derived upper and lower residuals.
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Fig. 8. FRF of the coupled structure: measured (–) vs. predicted (- - -) using static expansion and identified mode shapes.

In Fig. 8, an FRF measured on the modified structure is compared with the corresponding synthesized FRF. The

agreement is satisfactory, at least for low frequencies.

5. Conclusion

When performing structure coupling, the knowledge of rotational DoFs is of paramount importance: in general,

if they are neglected, meaningless results are obtained. The problem arises if any of the coupled substructures is

known from experimental tests (FRFs or output-only tests), where it is quite difficult to measure the rotational DoFs.

In this paper some possibilities to deal with unmeasured rotational DoFs are analyzed. One solution is to estimate

the rotational DoFs of the experimental substructure by expansion techniques from the measured translational DoFs.

Among the many possibilities, the SEREP is a classical procedure that works independently of the connection

considered, but has the drawback of requiring a theoretical model of the entire substructure. As an alternative to

SEREP, the static expansion is well suited for line and surface connections and, thus, it can be used successfully for

distributed structural modification in the low frequency range.

A second approach, that can be applied to point connections, is developed to avoid the use of rotational DoFS. An

equivalent set of points, involving only forces and displacements, is used to model each point connection, involving

also moments and rotations. Such model is capable of describing, through measurement of translational DoFs only,

an average rotation of the joint.

The above procedures are tested on suitable benchmarks – one formed by a plate and a frame, the second one by

a reinforcing plate coupled to a base plate – to deal in turn with point and surface connections. For the plate-frame

benchmark the SEREP yields good results, provided that the number of test points is sufficiently low to avoid

ill-conditioning. The equivalent multi-point modelling of the joint permits to obtain quite reliable results, at least

in the low frequency range, indicating that this could be a promising alternative in practical situations. This is an

appealing result because it indicates that it is possible in principle to use the procedure requiring only translational

DoFs, thus avoiding the application of expansion techniques while obtaining a significant computational advantage.

For the reinforced plate benchmark, the application of the static expansion provides better results at low frequencies

than the SEREP expansion and the dynamic reduction, confirming that a technique appropriately developed for a

particular connection is usually more efficient than a general purpose technique.
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