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Abstract  

We consider the deadlock detection problem (DDP) of networks of communicating 
finite state machines (NCFSMs). The DDP problem is known to be undecidable for 
NCFSMs. In this paper, we provide a characterization of those subclasses of networks for 
which the deadlock problem is decidable. We also provide a proof technique based on our 
characterization and illustrate our technique on an example. 

1 I n t r o d u c t i o n  

Communicating finite state machines are a very useful abstract model for specifying, verifying 

and synthesizing communication protocols [2, 3]. In this model a system of communicating 

finite state machines can communicate typed messages a.synchronously with each other over 

uni-directional, unbounded FIFO channels. 

A central issue in this model is whether a network of communicating finite state ma- 

chines (NCFSMs) is free of progress errors. Several widely addressed progress properties are: 

freedom from deadlocks, freedom from unspecified receptions, and freedom from unbounded 

communication. The problem of checking for non-progress in NCFSMs is known to be unde- 

cidable [1, 2, 3]. Because of this negative conclusion a natural question is: "For what classes 

of NCFSMs is the progress problem decidable?" A large amount of literatures (e.g. [8, 6, 7]) 

has been devoted to identifying classes of NCFSMs for which some of the progress problems 

are decidable. Specific classes of NCFSMs are usually obtained by placing restrictions on the 

structure of the systems. For instance, the number of machines in the system, the number of 

message types allowed, and channel capacity (maximum number of pending messages allowed 

in channels) etc. However the underlying question 

For what classes of NCFSMs are the progress problems decidable? 

has not been answered before. 

In this paper, we investigate the deadlock detection problem from the language-theoretic 

point of view. Techniques developed here are applicable to other progress problems. Specifi- 

cally, we give a necessary and sufficient condition on execution sequences of a class of network 
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such that the deadlock detection problem is decidable for that class of NCFSMs. We believe 

that our work provides insight into the underlying nature of decidability of deadlock detection 

problem. We provide an example to illustrate our technique. 

This paper is organized as follows: In Section 2 we introduce necessary notations and 

definitions, we present our main result in Section 3, in Section 4 we give an example to 

illustrate the main result and conclude in Section 5. 

2 P r e l i m i n a r i e s  

A communicating finite state machine (CFSM) is a labeled directed graph with a distinguished 

initial state, where each edge is labeled by an event. The events of a CFSM are send and 
receive commands over a finite set of message types M. The communication between CFSMs 

is assumed to be asynchronous (i.e., non-blocking sends and blocking receives). Consequently, 

we assume the availability of an infinite buffer between each pair of machines to store pending 

messages. 

Let I = {1 , . . . ,  n}, where n _> 2 is some constant. Formally, we have 

Def in i t ion  2.1 ( CFSM) A CFSM PI is a four-tuple (Si, (Mi j ) jE IU(Mj , i ) jE I  , •i,Poi), where 

(1) Si is the set of local states, 

(2)  Mid is the set of message types that Pi can send to machine Pj, and Mj,i is the set of 

message types that Pi can receive from machine Pj. It is assumed that Mi,i = 0, since 

Pi can not directly send messages to or receive messages from itself. 

(Z) Let - M i d  = { -mi ra  ~ M~,j} and +M~,i = {+mira ~ Mj,i}. 

~i is a partial mapping, 5i: S i x  ( ( -Mid) jEl  U (-I-Mj,i)jE1) x I ----} 2 & . 6i(p,-ra,  j )  is 
the set of new states that machine Pi can possibly enter after sending message of type 

m to machine Pj, and 6i(p, +re, j )  is the set of new states that machine t~ can possibly 

enter after receiving message of type m from machine Pj. 

(4) Pol is the initial local state. 

A state p in Pi is said to be a send (receive, resp.) state iff all of its outgoing edges are 

send (receive, resp.) edges, p is said to be a mixed state iff it has both outgoing send and 

receive edges. Let RMsg(p)  be the set of message types that can be received in state p, i.e. 

RMsg(p)  = {ml31¢ 3j f E 5i (p ,+m,j )} .  Define 

Ms = uj z( i,j u Mj,i), 
M = Ui~1Mi, and 

- M i  = uj~z - Mid, 

rkMi = - M i  u +Mi, 

- M  = UiEl - Ms, 
4-M = + M  u - M .  

+Ms = ui~z + M~,i, 

+M = ui~z + Ms, 
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Without  loss of generality, we assume that  Mid N Mk,t = 0 if ( i , j )  ~ (k, l) .  Due to this 

assumption, for any a E =l=Mi we can simplify the notation $i(P, a , j )  to  $/(p, a). 

Definition 2.2 (Network of communicating finite state machines) A network of communi- 
caring finite state machines (NCFSM) is a tuple N = (P1,'" ",Pn), where each Pi (i E I )  is 
a CFSM. 

A global state of N is a tuple [(Pi)iEz, (eld)i,jEi], where Pi is a local state of machine Pi, 
eid is the sequence of messages in the channel from machine Pi to Pj. Let V be the cartesian- 
product of the sets 81 , . . . ,Sn ,  i.e. V = $1 × . . .  x Sn, and let C be the cartesian-product of 

the sets M~.2,... , M~,n, M~,I, . . .  , M~,n_ 1 . 

Initially, N is in its initial state [(Pol)iel, (ei,j)i,jeI], where ei,j = e (i ¢ j ) .  Let 
[(Pi)iet, (cid)i,jEX] be a global state. The global state transition function $N : (V  x C) x rkM 

" 2 v × c  is a partial function defined as: 

(1) if 3i, j E I (i ¢ j )  such that p~ E ai(Pi, - r e , j )  then 

[(p~)tiEI,(~,j)tiEI] E ~N([(Pi) iEi , (ci , j ) idEi] ,--m),  where 
Pk = P~ (k ~ i), ck,t = c~, t (k ~ i or l ~ j) ,  and c~,j = c~,j.m. 

(2) if 3 i , j  E I (i ~ j )  such that p~ E ~i(pi, + m , j )  then 

[(p~)~EI,(C~,j)~EI] E ~N([(Pi)iE/,(ci , j) i , jEt],q-m), where 
ek, I ~ C t , = k,t (k C j or l ~ i), and m.c~i cs,i. 

We use Pi "* Pj to denote the channel from Pi to Pj. In essence, the first case in Definition 

2.2 denotes the event tha t  Pi sends a message m to Pj, which causes the message m to be 

appended to the end of channel Pi ~ Pj. The second case represents the event that  Pi receives 

a message of type m sent by Pj, which has the effect of removing the first message (which 

must  be of type m, or error (unspecified reception) would occur) in the channel Pj ~ Pi. 
In both cases, after the successful completion of the event, Pi enters local state ~ while all 

other machines remains in the same local states and the contents of all other channels are 

unchanged. 

To simplify the expressions, we will use the notation [v, c] to denote a global state whenever 

necessary, where by convention v = (Pl)iez E V, and c = (ci,j)i,jEl E C.  ['00, Co] will be used 

to denote the initial state. 

D e f i n i t i o n  2.3 (Reachability function) Let N = ( P 1 , ' " , P N )  be an NCFSM. The global 
state transition function 6N can be easily extended to the following teachability function 5~r : 
(V  x C) x +M* ~ 2 vxc ,  

(1) {[v,c]}. 

(e) = {[¢,e'] I 3[¢',c"1 e [¢ ,e ]  e aN([¢' ,e'] ,a)}.  

We often write a~([vo, c0], e) as a~(e). Furthermore, we will drop the subscripts in aN and 
~¢ if no confusion arises. 
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Given a reachability function ~*, we define the set of all states reached as a result of some 

execution to be the teachability set. More formally, 

D e f i n i t i o n  2.4 (Reachability sets) Let N = ( P 1 , ' " ,  P.)  be an NCFSM. The reaehability set 
R S ( N )  is the set of all reachable global states, R S ( N )  = {[v, e] I [v, e] e $*(e), e e +M*}.  

In the rest of  this paper sequences of  events will form the back bone of our discussions. 

Hence, we will use the following abbreviations: 

E v e n t  S e q u e n c e  A string e E +M* is an event sequence. 

E x e c u t a b l e  An event sequence e is executable, notated as 5*(e) ¢ 0, if 6*(e) is defined. 

Feas ib l e  An event sequence e E q-E* is feasible, if 1 

1. Ve' E pre](e) Vg E ~ M+a < le'l-u; and 

2. Vi , j  E I,  if +gid is the k th receive event in lid(e), then -g id  is the k th send event 

in lid(e). 

Feasibility is a very strict requirement. We can easily show tha t  feasible sequences are 

context-sensitive. We will use F ( N )  to denote the set of all feasible event sequences of 

a network N .  

S t a b l e  An event sequence e is stable, if it is feasible and in addition it contains the same 

number  of  send and receive events of any message type, i.e., Va E ~ 1 e+= I=1 e_° I. We 

will use S E ( N )  to denote the set of all stable event sequences of  a network N.  

It  should be clear to the reader tha t  a definition of  deadlock (or any progress error) can be 

stated in terms of  execution sequences. Of course, execution sequences capture the semantics 

(and causality) of  processes and buffers present in a network. The causality constraints among 

possible actions in a network can be split into those imposed by the behavior of FIFO buffers 

and those imposed by the sequencing constraints of  the processes. The notion of  feasible 

and stable (event) sequences defined above capture th e constraints of  the FIFO buffers in the 

network. The  sequencing constraints of  the network can be easily captured as a shuffle of the 

sequencing constraints of the individual processes. Formally, we define: 

D e f i n i t i o n  2.5 (Shuffle-product of NCFSMs~ Let N = ( P 1 , ' " , P . )  be an NCFSM. The 
shuffle-product of N,  notated as S P( N ), is a f our-tuple (V, M, A,  v0), where 

(Ov=S~xS2x...xS.. 

(~) vo = [ p o l , p o 2 , . . . , p o . ]  e v .  

(3) The transition function A: V × :t:M ~ 2 v is defined as 

1For a string to, I~1 is the length of w, Iwl, is the number of occurrence of letter a in w and pre(to) is the 
set of all prefixes of to. 
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v' E A(v,a),  where a E -t-Mi C_ +M, iff v~ = vj (j  e I & j ¢ i) and v~ E $1(vi, a). 

The shuffle-product SP(N) can be viewed as a (nondeterministic, in general) finite automaton 

by identifying some subset of V as final state set. We use SP(N) (F)  to notate the finite 

automaton obtained from the shuffle-product with F C_ V as the final state set. 

A tuple v E V is a receive node if for each i E I v/ is a receive state in Pi. R E V ( N )  
denotes the set of all receive nodes in V. 

A number of progress properties have received wlde attention and one of the well known 

progress properties is the deadlock detection problem (DDP). 

Def in i t ion  2.6 (Deadlock) Let N = ( P i , ' " ,  Pn) be an NCFSM and Iv, c ] e  R S ( N )  be a 
global state. 

[v, e] is a deadlock state if the predicate 

d( [~ ,c ] )  : ~ e R E V ( I V )  ~ c = co 

holds. 

The network N is free of deadlocks, if the predicate 

V[v, c]E RS(N)  (not  d([v, c])) 

holds. 

It is well known that in general it is undecldable whether an NCFSM is free of deadlocks 

([2, 3]). We state this fact in following theorem. 

T h e o r e m  2.1 DDP is undecidable. 

3 A Unif ied Approach  to D D P  

Theorem 2.1 states that the problem of detecting deadlocks in a network is undecidable 
in general. To cope with this negative result, many special classes of NCFSMs have been 

identified for which the DDP is decidable. This usually involves finding sufficient conditions 

under which the problem becomes decidable. 

In this section we take a different approach to this problem. Instead of trying to find 

special classes of NCFSMs with decidable DDP, we give a necessary and sufficient condition 

under which the DDP of a given class of NCFSM is decidable. 

First let us formalize the concept of classes of NCFSMs. 

A class AI" of NCFSMs is a tuple (O, ~, T), where 

1. ~ is a finite (or countably infinite) set of message types, 

2. Q is a collection of NCFSMs each of which draws message types from ~, 
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3. T is a predicate which characterizes the properties of NCFSMs in the Q. For instance, 

T may be the predicate: "each N E Q has only two CFSMs", which is the class of 

NCFSMs with two CFSMs. 

Let Af = (Q,~ . ,T)  be a class of NCFSMs, and let N = ( P x , ' " , P ~ )  EAf .  We say that  

the DDP is decidable for a network class Af, if the predicate 

: W V  e 3Iv, c] RS(N)  V(N)S e = co). 

is decidable. In the following we would like to relate the decidability of deadlock to conditions 

on execution sequences. It is easy to see that  if an execution sequence e leads to a deadlock 

state, then it should have the property that  for every send event in e there should be a 

corresponding receive event. In fact, e should be a stable event sequence. 

In general the set S E ( N )  is context-sensitive, since we can easily construct a linear 

bounded automaton (LBA) that  accepts SE(N).  Even for some trivial classes of NCFSMs 

S E ( N )  remains context-sensitive. However in order to check if DDP is decidable for N,  it 

is not  necessary to know every member in SE(N).  This observation is based on the fact 

tha t  there a number  of  event sequences that  are really interleavings of  the same set of ac- 

tions of  the processes, and hence lead to the same global state. We should therefore consider 

these interleavings as being equivalent. Formally we have, two event sequences ea and e2 are 

equivalent, notated as ea ~ e2, iff 

1. el and e2 axe permutat ions of each other, 

2. 

Since we are really interested in stable event sequences, we will say two event sequences 

el and e2 are stable equivalent, notated as el -~st e2, i f fel  -~ e2 and both el and e2 are stable. 

Define class(e) = {d  I e'  -~st e}. It  is easy to see that  -~,t is an equivalence relation on 

S E ( N )  and class(e I is an equivalence class. 

As mentioned earlier, we only need a representative from each equivalence class of SE(N)  
to check for existence of  deadlock in N.  To that  end, we define a language CN C SE(N)  to 

be a stable cover set for N if 

Ve E SE(N)(equiv(e) N C # 0). (1) 

With the concepts of  stable cover sets and shuffle-product automata,  we have the following 

theorem regarding the decidability of DDP for classes of  NCFSMs. 

T h e o r e m  3.1 LetAf = (Q, ~..,T) be a class of NCFSMs. LetT~ = {L(M~) I My = SPA(N, {v}):  

v E VN}, i.e. T~ is the collection of shuffle-product automata, each of which has some node 
v E VN as the single final state. The DDP is decidable for ]if if and only i~for every network 
N E Af, there exists a stable coverset CN C SE(N)  such that for every My E T~, the predicate 

CN N L(M~) = 0 is decidable. 
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P r o o f i  Let Af = (Q, ~ , T )  be a class of  NCFSMs. 

If. Let N be a member in .Af, and assume that  we have a stable cover set CN C_ SE(N) 
which satisfies the condition listed in the theorem. 

Claim: [v, co] is a deadlock state if and only if CN N L(M~) ~ {~. 

Proof  of  the claim: 

Assume that  CNNL(Mv) ~ 0. Since CN is a stable cover, each e E CN is stable. Moreover 

CA, contains at  least one element from each equivalence class equiv(e). As L(M~) contains all 

executable event sequences which can lead to a reachable global state of  the form [v, c], there 

must  be at least one executable event sequence e E CN n L(M~). such that  [v, co] E ~(e). 

Conversely assume that  [v, co] is a reachable deadlock state. Therefore there exists an 

executable sequence e where [v, Co] E ~(e). As CN is a stable cover, there must exist e' ~st e 

and e' E C. Obviously e ~ E L(1~/v), hence CIv N L(Mt,) ~ 0. 

By definition DDP is decidable for N. Since DDP is decidable for any N EAf we conclude 

that DDP is decidable for the class N'. 

Only If. Assume that DDP is decidable for Af. We must show that for every network 

N E Af there exists a stable cover set CA, for N such that the emptiness problem of CNnL(M~) 
is decidable for all v E VN. In the following argument, the symbol =:~ is used to express 

logical implication. "A ~ B" means that the decidability of A implies the decidability of 

B. We have following logical reasoning: 

D(~V) 
= ~  v # ~Ar  (~ Iv, c] ~ RS(N)  (~ ~ R V ( # )  ~ c = co)) 
==~ V N e ~V (3 e e # L ( # )  3 [~,c] e ~(e) (~ e R V ( N )  ~ ~ = ~o)) 

V iV e JV (3 e e S E ( # )  3 [~, co] e ~(e)) 
V # E ~V (3 ~ ~ S E ( # )  3 ~ ~ RV(IV) (e ~ L(M,))  
V ~ C ~V (3 ~ ~ RV(H) (e e SE(N)  n L(M,)))  

= ~  V # e Ar (3 ,, ~ R V ( N )  (SE(H) n L(M,)  # ~)). 

However, SE(N) itself is a stable cover set. 
n 

I t  is obvious that  the problem of finding a cover set with the stated properties is unde- 

cidable. However Theorem 3.1 presents a unified view of DDP for NCFSMs. It sheds new 

light on the decidability of DDP for NCFSMs in following sense: Given a specific class JV" of 

NCFSMs, to test if DDP is decidable for Af we try to find a cover set satisfying the theorem. 

If  we can find such a cover, we can conclude that  DDP is decidable for Af. We shall illustrate 

this idea in next section. 

In the methodology engendered by this characterization, we expect to be able to define 

the cover set CN for a network N independent of the transitions (or semantics) of a particular 

network N.  Furthermore, we expect to be able to check that  such a cover set has the necessary 

properties. Based on the fact tha t  the language of a shuffle-product automaton is regular, we 

have the following: 
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C o r o l l a r y  3.1 For a class of networks Af , let £ be a family of languages such that the cover 

set CN for every network N E Af belongs to £. If  

1. £ is closed under intersection with regular languages, and 

2. The emptiness problem is decidable for £ 

then the deadlock detection problem is decidable for the class of networks Af. 

The Corollary given above provides a very tight sufficient condition to show that  a class of 

networks has decidable DDP. 

4 A p p l i c a t i o n s  

An NCFSM N = IP1 , . . . ,  Pn / i s  cyclic if the topology graph of the network N is a simple 

cycle. More formally, N is a cyclic network if there exists a permutation { i l , i2 , . . . , in}  of 

the set I such that  Pi i can only send message to P/j+1 and receiving message from Pij_l 

(1 < j < n, module n + 1). 

All two-machine networks are cyclic. As it is known that  DDP is even undecidable for 

the class of two-mardaine networks, so DDP is undecidable for general cyclic networks. 

However DDP is dhcidable for cyclic networks where only one channel is unbounded. Let 

J~l -~-~c  be the class of cyclic networks of which only one channel is unbounded (referred to 

as 1-U cyclic NCFSMs, for short). 

Let N = ( P 1 , ' " , P n )  be a 1-U cyclic NCFSM. To simplify the discussion we assume 

without loss of generality t h a t / ~  can only send to Pi+l sad  receive from Pi-1 (1 < i < n, 

module n q- 1) and only the channel P1 -'* P2 is unbounded. Let L = (A*B)*H, where 

A = (u2< i< . -1  - :~i,i+l) u ( -~ . . . 1 )  u (u2_<i<.-~ + r.~,~+~) u (+r , . ,~) ,  

B = (-~.1,2)(+~1,2), 

= CA U (-r.~,2))'. 
The following lemma is a generalization of a lemma from [4]. 

L e m m a  4.1 Let N = (191,'" ",Pn} be a 1-U cyclic NCFSM. For each executable event se- 

quence e there exists another event sequence e ~ ~- e and e ~ E L. 

Proof :  Let N = ( P 1 , ' " , P , )  be a 1-U cyclic NCFSM. The proof is by induction on the 

number k of receive events from +~1,2. 

Basis: k = 0. Since e does not contain events from +~1,~, e E H.  Clearly the conclusion 

is true. 

Induction: Assume that  the conclusion holds for some k > 0. Let e be an executable 

event sequence which contains k + 1 receive events from +~1,2. Let sl,2 be the first send 

event from -]E1,2 and rl,2 be the first receive event from +~1,2 in e. We can rewrite e as 

e = wl.sl,2.w2.rl,2.w3, where wl and w2 do not contain any events from (+~1,2). 

As the network is cyclic (P2 can only send to P3 and receive from P1), we can move all the 

send events from (-~2,3) in w2 before sl,2. Let w = w~.sa,2.w~.rl,2.w3 be the event sequence 
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after such a reordering of e, where w~ does not  contain any events  from ( -E2 ,3)  U (+E1,2). 

I t  is easy to  see tha t  w -~ e. Since w~ does not  contain  events  in i t ia ted  by P~, we can move 

the event rl,2 as the  immedia te  successor of sl,2. Let w ~ = wl.sl,2.rl,2.w 2 . ~  ~ w3 be the  event  

sequence after  such reordering of w. Still  w ~ -~ e holds. 

Since w3 contains k receive events from +~1,2, by induct ion hypothesis  there exists another  

event  sequence w~ -~ w3 and w~ E L. Hence e -~ e'  E L, where e t = w~.w2.sl,~.rl,2.w~. 

0 

Lemma 4.1 says tha t  for any  executable sequence e there is another  sequence e ~ ~ e 

such tha t  when e I is executed,  there is at  most  one pending message in the only unbounded 

channel  -Pl --* P2 as long as P2 can still  receive. Therefore to  check for deadlocks,  we need 

only concentrate  on the behavior  of other  bounded channels. 

T h e o r e m  4.1 There exists a regular stable cover set for  each network N E All-u-eve. 

P r o o f :  Let N = (P1,'" ",Pn) be a 1-U cyclic NCFSM.  

To find a s table cover set for N ,  we need to construct  a language which contains at  least  

one element  from each equivalent class S E ( e )  where e is a s table  event  sequence. 

Let L t = (A*B)*A*,  where A, B are defined as above. Notice tha t  each e E L ~ contains 

the  same number  of events from -E1,2 and +~'1,2. We can conclude from Lemma 4.1 tha t  

for each s table  event  sequence e, there  exists e ~ - e and e t E L ~. 

We can construct  a finite s ta te  au tomaton  F to accept the  set of all s table events in L I 

as follows. Let each s ta te  in F record the number  of pending  event  types ,  message types  

and message posi t ions i t  has seen so far. The only exception is t ha t  when F sees an event 

- g  E -~1 ,2 ,  i t  will expect  another  event + g  E +~1,2 in i ts next  step.  Notice tha t  since all 

the  channels except P1 -~ P2 are bounded and the number  of message types  each machine 

can send is finite, the  number  of states in F is finite. The  final s ta te  set in F includes only 

those s ta tes  in which F has seen a s table event  sequence (only the  s ta r t  s ta te  need be in the  

final s ta te  set).  Therefore L(F) ,  the language accepted by F is a cover set for N .  

0 

By Corollary 3.1, the  DDP is decidable for X l -~ -cuc .  

5 Conclus ions  

Deadlock detect ion problem for networks of communicat ing  finite s ta te  machines has been 

known to be undecidable.  The  undecidabi l l ty  stems from the fact  t ha t  even a two-machine 

NCFSM has the same comput ing power as a Turing machine.  Wi th  special restr ict ions,  spe- 

cific classes of NCFSMs have been found for which the deadlock detect ion problem is decid- 

able. However the underlying question "For what  classes of NCFSMs is the DDP decidable,"  

has not  been answered before. 

In this paper  we considered the deadlock detect ion problem in NCFSMs from the formal 

language point  of view. We have given a necessary and sufficient condit ion to  show decidabi l i ty  
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of detecting deadlocks in classes of NCFSMs. We believe our work reveals the nature of 
decidability vs. undecidability of DDP. 

The language concepts were first (as far as the authors know) introduced in the analysis 
of NCFSMs by K. Okumura [5]. The work in [5] concentrated mainly on establishing corre- 

spondence between the languages and the networks, in analogy with the traditional formal 
languages theory. However, the executable event sequences are context-sensitive even for 
many trivial networks. It appears that a direct use of the executable event sequences would 
not aid the analysis. This was our main motivation for introducing the concept of cover set 
for a particular property (DDP in Chis paper). Although we only discussed the decidability 
of DDP in this paper, the idea can also be applied to the decidability of detecting other 
properties such as unspecified receptions and unboundedness. 
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