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A UNIFIED APPROACH TO THE HEAVY-TRAFFIC ANALYSIS OF

THE MAXIMUM OF RANDOM WALKS
∗

S. SHNEER†
AND V. WACHTEL‡

(Translated by the authors)

Abstract. For families of random walks {S
(a)
k } with ES

(a)
k = −ka < 0 we consider their

maxima M (a) = supk≧0 S
(a)
k . We investigate the asymptotic behavior of M (a) as a → 0 for random

walks from the domain of attraction of a stable law. This problem appeared first in the 1960s in the
analysis of a single-server queue when the traffic load tends to 1, and since then it is referred to as the
heavy-traffic approximation problem. Kingman and Prokhorov suggested two different approaches
which were later followed by many authors. We give two elementary proofs of our main result, using
each of these approaches. It turns out that the main technical difficulties in both proofs are rather
similar and may be resolved via a generalization of the Kolmogorov inequality to the case of an
infinite variance. Such a generalization is also obtained in this paper.

Key words. random walk, global maximum, stable law, Kolmogorov inequality generalization
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Assume that {Xi}
∞
i=1 is a sequence of independent identically distributed random vari-

ables with zero expectation EX1 = 0. Define a random walk

S0 = 0, Sk =

k
∑

i=1

Xi for k ≧ 1.

Along with the random walk {Sk}, for each a > 0 define a random walk {S
(a)
k } via

S
(a)
k = Sk − ka.

Now we can define
M (a) = sup

k≧0

S
(a)
k .

Since random walk S
(a)
k drifts to −∞, the maximum M (a) is a proper random variable for

each a > 0. However, M (a) → +∞ in probability as a → 0. From this fact the following
natural question arises: How fast does M (a) grow as a → 0?

It is well known that a stationary distribution of the waiting time of a customer in a
single-server first-come-first-served (GI/GI/1) queue coincides with that of the maximum of
a corresponding random walk. The condition on the mean of the random walk to get small
(a → 0) means in the context of a queue that the traffic load tends to 1. Thus, the problem
under consideration may be seen as an investigation of the growth rate of the stationary
waiting-time distribution in a GI/GI/1 queue. This is one of the most important problems
in queueing theory and is referred to as heavy-traffic analysis. The question was first posed
by Kingman [7], [8] (see also [9] for an extensive discussion) who considered the case when
|X1| has an exponential moment and proved that

P(aM (a)
≦ x) → 1− e−2x/σ2
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for all x ≧ 0 as a → 0, where σ2 = VarX1. In his proof, Kingman used an analytical
approach. Namely, he applied an expression for the Laplace transform of M (a) which follows
from the Wiener–Hopf factorization.

Prokhorov [10] generalized the latter result to for case when VarX1 ∈ (0,∞). Prokho-
rov’s approach was based on the functional central limit theorem.

These two approaches have become classical and have both been used to prove vari-
ous heavy-traffic results. However, they seem to have never been compared. Later in this
paper we shall discuss both approaches in more detail and point out their differences and
similarities. The analytical approach was used by Boxma and Cohen [3] (see also [4]) to
study the limiting behavior of M (a) in the case of infinite variance. They proved that if
P(X1 > x) is regularly varying at infinity with a parameter 1 < α < 2 (and under some
additional assumptions), then there exists a function ∆(a) such that ∆(a)M (a) converges in
distribution to a proper random variable. Furrer [5] and Resnick and Samorodnitsky [12]
proved similar results assuming that the random walk {Sn} belongs to the domain of at-
traction of a spectrally positive stable distribution and using functional limit theorems. It is
worth mentioning that Furrer has computed the corresponding limit distribution explicitly.
Borovkov in his recent paper [2] proved the convergence of ∆(a)M (a) for any random walk
from the domain of attraction of a stable law with index α ∈ (1, 2). His proof also relies on
functional limit theorems.

The main purpose of the present paper is to suggest a unified way of studying the
asymptotic behavior of M (a). In other words, we provide a method that works for any
random walk from the domain of attraction of a stable law.

A random walk {Sn} is said to belong to the domain of attraction of a stable law with
index α ∈ (0, 2] if there exist sequences bn and cn such that

Sn − bn
cn

→ ξ weakly,

where ξ has the corresponding stable distribution.
It is known that the random walk {Sn} belongs to the domain of attraction of a stable

law with index α ∈ (0, 2] if and only if the function

V (x) := E (X2
1 ; |X1| ≦ x), x > 0,

is regularly varying at infinity with index 2− α. The latter implies that we can choose

cn := inf

{

u > 0:
V (u)

u2
≦

1

n

}

, n ≧ 1.

In this case the sequence {cn} is regularly varying with index 1/α and, furthermore,

(1)
V (cn)

c2n
∼

1

n
, n → ∞.

In this paper we consider the case when {Sn} belongs to the domain of attraction of a stable
law with index α ∈ (1, 2] and EX1 = 0. It is known that under these assumptions we can
choose bn ≡ 0. Hence, we have the convergence

Sn

cn
→ ξ weakly.

Let {ξt, t ≥ 0} denote a stable Lévy process, where ξ1 is equal in distribution to ξ. We
also need to define the supremum of the process {ξt − t}t≧0 via

M∗ = sup
t≧0

{ξt − t},

which is a proper random variable as ξt − t drifts to −∞ as t → ∞.
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334 S. SHNEER AND V. WACHTEL

For any α ∈ (1, 2] one can choose a positive integer-valued function n(a) such that

(2) an(a) ∼ cn(a) as a → 0.

It follows from the regular variation of {cn} that n(a) is regularly varying at zero with index
−α/(α− 1). This, in turn, implies that cn(a) is regularly varying with index −1/(α− 1).

Theorem. Suppose that {Sn} belongs to the domain of attraction of a stable law with

index α ∈ (1, 2]. Then, as a → 0,

(3)
M (a)

cn(a)

→ M∗
in distribution.

The theorem implies that M (a) grows as a regularly varying at zero function with index
−1/(α − 1). The limit distribution (that of M∗) is only known explicitly in two particular
cases. If {ξt} has no positive jumps, then one has an exponential distribution. If {ξt} has
no negative jumps and α < 2, then M∗ has a Mittag–Leffler distribution (see, e.g., [5]). In
the other cases an explicit form of the distribution is unknown; however, one can easily find
its tail asymptotics P(M∗ > x) ∼ Cx1−α as x → ∞.

This result is the only new one in the case when α = 2 and EX2
1 = ∞, and all other cases

may be found in the literature mentioned at the beginning of the introduction. As we have
already mentioned, our motivation consists of providing a unified proof for all asymptotically
stable random walks. We will in fact give two different proofs of the theorem, with the use
of both classical methods mentioned above. However, we would like to start by giving a brief
description and comparison of the two methods.

The first, analytical, method is based on the analysis of the Laplace transform of the
normalized maximum of a random walk. The idea is to use a corollary of the Wiener–Hopf
factorization:

E e−µM(a)/cn(a) = exp

{

−

∞
∑

k=1

1

k
E (1− e−µS

(a)
k

/cn(a) ;S
(a)
k > 0)

}

, µ ≧ 0.

In [9] a heuristic argument is given stating that the main contribution to the infinite series
in the exponent on the RHS is due to the values of k of order n(a). This, however, was not
proved formally. Instead, the author represented the exponent in the form of an integral along
the imaginary axis and gave a proof of the statement by solving a Wiener–Hopf boundary-
value problem. The same method was used later in [3] in the case of an infinite variance.

Our proof justifies the heuristic argument of Kingman. The main difficulty consists of
showing that the contribution to the infinite series on the RHS of the latter equality from
values of k ≫ n(a) is negligible. We will show that it follows from

(4) lim
T→∞

∑

k≧Tn(a)

1

k
P(S

(a)
k > 0) = 0

uniformly in a > 0. Thus, the derivation of (4) is a key point in our proof.
We now turn to the second method used in the literature, namely the method based on

functional limit theorems. Consider the maximum of {S
(a)
n } on a finite-time interval

M
(a)
T = sup

k≦Tn(a)

S
(a)
k .

It easily follows from the functional limit theorems for asymptotically stable random walks
that

lim
a→0

P

(

M
(a)
T

cn(a)

≧ x

)

= P(M∗
T ≧ x)

for any x ≧ 0, where
M∗

T = sup
t≦T

{ξt − t}.
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The latter convergence implies that

lim
T→∞

lim
a→0

P

(

M
(a)
T

cn(a)

≧ x

)

= P(M∗
≧ x).

However, in order to prove the theorem, one needs to show that

lim
a→0

lim
T→∞

P

(

M
(a)
T

cn(a)
≧ x

)

= P(M∗
≧ x).

Therefore, it remains to justify the interchange of limits. It is easy to see that a sufficient
condition could be written as

(5) lim
T→∞

P
(

sup
k≧n(a)T

S
(a)
k ≧ 0

)

= 0

uniformly in a > 0. This was shown by Prokhorov [10] in the case of a finite variance by
applying the classical Kolmogorov inequality. Later, Asmussen [1, p. 289] proved the same
result using the fact that the sequence {Sn/n} is a backward martingale. This fact was also
utilized by Furrer [5] and Resnick and Samorodnitsky [12] in the case of an infinite variance.

It is worth mentioning that relations (4) and (5) are equivalent under the conditions of
the theorem. A proof of this fact will be given at the end of this paper.

We now state and prove a generalization of the Kolmogorov inequality when the variance
is not necessarily finite. This inequality allows one to overcome the technical difficulties in
both approaches described above, namely, to prove (4) and (5).

Lemma. There exists C > 0 such that the inequality

(6) P
(

max
k≦n

Sk ≧ x
)

≦ C
nV (x)

x2

holds for all x > 0 and n ≧ 1.
Proof. According to inequality (1.2) in [11],

(7) P
(

max
k≦n

Sk ≧ x
)

≦ Cn(P(|X1| > x) + x−1|E (X1; |X1| ≦ x)|+ x−2V (x))

(here and in what follows, C denotes a generic positive and finite constant).
It is easy to see that

P(|X1| > x) =

∞
∑

j=0

P(|X1| ∈ (2jx, 2j+1x]) ≦

∞
∑

j=0

V (2j+1x)

22jx2

≦
V (x)

x2
· 4C(γ)

∞
∑

j=1

2−(α−γ)j ,

where in the last step we used the inequality

(8)
V (y)

V (x)
≦ C(γ)

(

y

x

)2−α+γ

, y ≧ x,

which follows from the Karamata representation; see [15, Theorem 1.2] (recall that V (x) is
regularly varying with index 2− α). Choosing γ < α, we get

(9) P(|X1| > x) ≦ C
V (x)

x2
.

In a way similar to that used in obtaining (9), we can get the bound

(10) |E (X1; |X1| ≦ x)| = |E (X1; |X1| > x)| ≦ C
V (x)

x
.
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336 S. SHNEER AND V. WACHTEL

Combining (7), (9), and (10), we get inequality (6). The proof is thus complete.
Proof of the theorem via Wiener–Hopf. The Wiener–Hopf factorization implies that

E e−λM(a)

= exp

{ ∞
∑

k=1

1

k
E (e−λS

(a)
k − 1;S

(a)
k > 0)

}

for any λ > 0; see, e.g., [16, Proposition 19.2]. For the purpose of our proof, we set λ =
µ/cn(a) where µ > 0. In these terms the latter equality takes the form

(11) E e−µM(a)/cn(a) = exp

{

−
∞
∑

k=1

1

k
E (1− e−µS

(a)
k

/cn(a) ;S
(a)
k > 0)

}

.

We aim to show that a pointwise limit as a → 0 of this Laplace transform is equal to the
Laplace transform of M∗.

Fix ε ∈ (0, 1), T > 1 and divide the sum in the exponent in (11) into three parts:

∞
∑

k=1

=

εn(a)
∑

k=1

+

Tn(a)
∑

k=εn(a)

+
∞
∑

k=Tn(a)

=: Σ1 + Σ2 + Σ3.

We will now analyze these three summands separately.
It follows from the inequalities 0 ≦ 1− e−t ≦ t for any positive t that

0 ≦ E (1− e−µS
(a)
k

/cn(a) ;S
(a)
k > 0) ≦

µ

cn(a)

E (S
(a)
k ;S

(a)
k > 0).

Note that E (S
(a)
k ;S

(a)
k > 0) = E (Sk − ka;Sk > ka) ≦ E (Sk;Sk > 0). Since Sn is asymptot-

ically stable with α > 1,

lim
n→∞

c−1
n E (Sn;Sn > 0) = E (ξ1; ξ1 > 0).

This implies that E (Sk;Sk > 0) ≦ Cck for all k ≥ 1. As a result we have the bound

0 ≦ E (1− e−µS
(a)
k

/cn(a) ;S
(a)
k > 0) ≦ Cµ

ck
cn(a)

.

Hence,

(12) 0 ≦ Σ1 ≦
Cµ

cn(a)

εn(a)
∑

k=1

ck
k
.

Since the sequence {ck} is regularly varying with index 1/α ∈ (0, 1),

n
∑

k=1

ck
k

∼
cn
α

as n → ∞.

Consequently,

(13)

εn(a)
∑

k=1

ck
k

≦ Ccεn(a) ≦ Cε1/αcn(a).

Estimates (12) and (13) imply

(14) 0 ≦ Σ1 ≦ Cε1/αµ.

In order to bound Σ3 we note that

0 ≦ E (1− e−µS
(a)
k

/cn(a) ;S
(a)
k > 0) ≦ P(S

(a)
k > 0) = P(Sk > ka).
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Using the lemma, we obtain

0 ≦ Σ3 ≦

∞
∑

k=Tn(a)

1

k
P(Sk > ka) ≦ C

∞
∑

k=Tn(a)

V (ka)

(ka)2
≦ C

1

a

∫ ∞

Tan(a)

V (x)

x2
dx.

Recalling that V (x) is regularly varying with index 2− α, we continue with

(15) Σ3 ≦ C
V (Tan(a))

Ta2n(a)
≦ CT 1−α V (an(a))

a2n(a)
≦ CT 1−α.

In the last step we used the relations

(16)
V (an(a))

a2n(a)
∼

V (cn(a))

(cn(a))2
n(a) ∼ 1, a → 0,

which follow from (1).
It now remains to analyze Σ2. Using the assumption that Sk/ck converges in distribution

to ξ1, we get

(17)
S

(a)
k

cn(a)

=
Sk

cn(a)

−
ka

cn(a)

=
Sk

ck

ck
cn(a)

−
ka

cn(a)

−→ v1/αξ1 − v

in distribution as a → 0 and k/n(a) → v ∈ (0,∞). In the last step we used (2) and the
regular variation of {ck}. It follows from the scaling property of the stable process {ξt} that
v1/αξ1 and ξv are equal in distribution. From this relation and (17) we conclude that

E (1− e−µS
(a)
k

/cn(a) ;S
(a)
k > 0) −→ E (1− e−µ(ξv−v); ξv − v > 0)

as a → 0 and k/n(a) → v ∈ (0,∞). Using now the dominated convergence we see that, as
a → 0,

Σ2 =

Tn(a)
∑

k=εn(a)

n(a)

k
E (1− e−µS

(a)
k

/cn(a) ;S
(a)
k > 0)

1

n(a)

−→

∫ T

ε

1

v
E (1− e−µ(ξv−v); ξv − v > 0) dv.(18)

It is clear that the process ξt − t drifts to −∞. Then, using [14, Theorem 48.1], we obtain

lim
ε→0, T→∞

∫ T

ε

1

v
E (1− e−µ(ξv−v); ξv − v > 0) dv

=

∫ ∞

0

1

v
E (1− e−µ(ξv−v); ξv − v > 0) dv < ∞.(19)

Hence, combining (11), (14), (15), and (18) and letting ε → 0, T → ∞, we get

E e−µM(a)/cn(a) −→ exp

{

−

∫ ∞

0

1

v
E (1− e−µ(ξv−v); ξv − v > 0) dv

}

.

The latter expression is known to be the Laplace transform of M∗; see again [14, Theorem
48.1]. This completes the proof.

Proof of the theorem via functional limit theorems. According to the functional limit
theorem for asymptotically stable random walks (see, for example, Theorem 9.6.2 of [6]), we
get

{

S[nt]

cn
; t ∈ [0;T ]

}

−→ {ξt; t ∈ [0; T ]}
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in distribution. Therefore, as a ↓ 0,

{

S[n(a)t] − [an(a)t]

cn(a)

; t ∈ [0; T ]

}

−→ {ξt − t; t ∈ [0;T ]}.

This convergence implies that

lim
a↓0

P
(

max
k≦n(a)T

S
(a)
k ≧ xcn(a)

)

= P
(

sup
t≦T

(ξt − t) ≧ x
)

, x ≧ 0.

Since supt≦T (ξt − t) converges to M∗, the theorem will be proved if we show that

(20) lim
T→∞

P
(

max
k≧n(a)T

S
(a)
k ≧ 0

)

= 0

uniformly in a > 0.
Note that

{

max
k≧n(a)T

S
(a)
k ≧ 0

}

=
∞
⋃

j=0

{

max
k∈[2jn(a)T,2j+1n(a)T )

(Sk − ka) ≧ 0
}

⊂
∞
⋃

j=0

{

max
k≦2j+1n(a)T

Sk ≧ 2jan(a)T
}

.

From this relation and the lemma we obtain

P
(

max
k≧n(a)T

S
(a)
k ≧ 0

)

≦

∞
∑

j=0

P
(

max
k≦2j+1n(a)T

Sk ≧ 2jan(a)T
)

≦ C

∞
∑

j=0

2j+1n(a)TV (2jan(a)T )

(2jan(a)T )2
=

2C

a

∞
∑

j=0

V (2jan(a)T )

2jan(a)T
.

With the use of (8) with some γ < α − 1 the latter expression can be estimated by
CV (an(a)T )/(a2n(a)T ). The regular variation of V (x) and the relation (16) yield the bound
V (an(a)T )/(a2n(a)T ) ≦ CT 1−α, which implies (20), completing our proof.

To conclude, we would like to make a few remarks. First, we note that our assumption
on the family of random walks can be weakened. We assumed that S

(a)
k = Sk − ka for the

transparency of all proofs. However, our argument remains valid if we assume, for instance,
that

S
(a)
k = Sk − ka+

k
∑

i=1

Y
(a)
i ,

where {Y
(a)
i } is a sequence of independent identically distributed random variables such that

EY
(a)
1 = 0 and E|Y

(a)
1 |γ < ∞ uniformly in a for some γ > α. Indeed, one can easily verify

that, uniformly in a,

S
(a)
n + na

cn
→ ξ weakly

and, furthermore,

E ((S
(a)
1 + a)2; |S

(a)
1 + a| ≦ x) ≦ CV (x),

with the latter bound allowing us to apply the lemma to the random walk {S
(a)
n + na}.

Moreover, in the case of finite variance, for our argument to remain valid, it is sufficient
that a Lindeberg-type condition holds, i.e.,

S
(a)
k =

k
∑

i=1

X
(a)
i ,
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where {X
(a)
i } is a sequence of independent identically distributed random variables such that

EX
(a)
1 = −a, lima→0 VarX

(a)
1 = σ2 ∈ (0,∞), and

(21) lim
a→0

E

(

(X
(a)
1 )2; |X

(a)
1 | >

ε

a

)

= 0 for all ε > 0.

The latter condition seems to be optimal. On one hand, it is necessary, according to the
Lindeberg theorem, for the normal approximation of aS

(a)

1/a2 . On the other hand, Sakha-

nenko [13] gave an example of a family S(a) such that (21) fails and M (a) = 0 for all a.
Our last remark concerns the equivalence of relations (4) and (5).
Proof of the equivalence of (4) and (5). We start by showing that (5) is equivalent to

the relation

(22) lim
T→∞

P(M (a) > Tcn(a)) = 0 uniformly in a > 0.

To this end we first note that

P
(

sup
k≧n(a)T

S
(a)
k ≧ 0

)

≦ P(S
(a)

Tn(a)
≧ −Tan(a)/2) +P(M (a) > Tcn(a)/2)

and
P
(

sup
k≧n(a)T

S
(a)
k ≧ 0

)

≧ P(M (a) > 2Tcn(a))−P(S
(a)

Tn(a)
≧ −2Tan(a)).

It follows from our lemma that the probabilities P(S
(a)
Tn(a) ≧ −Tan(a)/2) and P(S

(a)
Tn(a) ≧

−2Tan(a)) converge, as T → ∞, to zero uniformly in a. Hence, recalling that an(a) ∼ cn(a),
we get the equivalence of (5) and (22).

It is easy to see that

P(M (a)
≦ Tcn(a)) ≧ E

[

exp

{

− µ
M (a)

cn(a)

}

;M (a)
≦ Tcn(a)

]

≧ E exp

{

− µ
M (a)

cn(a)

}

− e−µT
P(M (a) > Tcn(a)).

Putting here µ = T−1, we have the inequality

(23) P(M (a) > Tcn(a)) ≦
1−E exp{−M (a)/(Tcn(a))}

1− e−1
.

Using (14) with ε = T and µ = T−1, we obtain

∞
∑

k=1

1

k
E (1− e−S

(a)
k

/(Tcn(a));S
(a)
k > 0) ≦ CT 1/α−1 +

∞
∑

k=Tn(a)

1

k
P(S

(a)
k > 0).

From this bound we infer that (4) yields

lim
T→∞

∞
∑

k=1

1

k
E (1− e−S

(a)
k

/(Tcn(a));S
(a)
k > 0) = 0 uniformly in a > 0.

Therefore, from (23) and (11) we conclude that (4) implies (22).
In order to prove the reverse implication we use an obvious inequality

P(M (a)
≦ Tcn(a)) ≦ eµT E exp

{

− µ
M (a)

cn(a)

}

.

Choosing µ = T−2 and letting T → ∞, one can easily see that (22) implies that

lim
T→∞

logE exp

{

−
M (a)

T 2cn(a)

}

= 0 uniformly in a > 0.
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With the use of (11), we have

lim
T→∞

∞
∑

k=T6n(a)

1

k
E (1− e−S

(a)
k

/(T2cn(a));S
(a)
k > 0) = 0 uniformly in a > 0.

Noting that

E (1− e−S
(a)
k

/(T2cn(a));S
(a)
k > 0) ≧ (1− e−1)P(S

(a)
k > T 2cn(a)),

we get

(24) lim
T→∞

∞
∑

k=T6n(a)

1

k
P(S

(a)
k > T 2cn(a)) = 0 uniformly in a > 0.

Since the density of any stable law is bounded, it follows from the local limit theorems for
Sn that P(Sn ∈ [0, z)) ≦ C(z + 1)/cn for any z > 0. Hence,

P(S
(a)
k > T 2cn(a)) ≧ P(S

(a)
k > 0) −C

T 2cn(a)

ck
.

Consequently,

∞
∑

k=T6n(a)

1

k
P(S

(a)
k > T 2cn(a)) ≧

∞
∑

k=T6n(a)

1

k
P(S

(a)
k > 0)− CT 2cn(a)

∞
∑

k=T6n(a)

1

kck

≧

∞
∑

k=T6n(a)

1

k
P(S

(a)
k > 0)− CT 2−6/α,

where in the last step we used the fact that {cn} is regularly varying with index 1/α. Using
this bound, we make sure that (24) yields

lim
T→∞

∞
∑

k=T6n(a)

1

k
P(S

(a)
k > 0) = 0 uniformly in a > 0,

which is equivalent to (4). Thus, the proof is finished.
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