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Abstract: In this paper, we study solutions to the Klein–Gordon equation on Bianchi
backgrounds. In particular, we are interested in the asymptotic behaviour of solutions in
the direction of silent singularities. The main conclusion is that, for a given solution u
to the Klein–Gordon equation, there are smooth functions ui , i = 0, 1, on the Lie group
under consideration, such that uσ (·, σ ) − u1 and u(·, σ ) − u1σ − u0 asymptotically
converge to zero in the direction of the singularity (where σ is a geometrically defined
time coordinate such that the singularity corresponds to σ → −∞). Here ui , i =
0, 1, should be thought of as data on the singularity. Interestingly, it is possible to
prove that the asymptotics are of this form for a large class of Bianchi spacetimes.
Moreover, the conclusion applies for singularities that arematter dominated; singularities
that are vacuum dominated; and even when the asymptotics of the underlying Bianchi
spacetime are oscillatory. To summarise, there seems to be a universality as far as the
asymptotics in the direction of silent singularities are concerned. In fact, it is tempting to
conjecture that as long as the singularity of the underlying Bianchi spacetime is silent,
then the asymptotics of solutions are as described above. In order to contrast the above
asymptotics with the non-silent setting, we, by appealing to known results, provide a
complete asymptotic characterisation of solutions to the Klein–Gordon equation on a
flat Kasner background. In that setting, uσ does, generically, not converge.

1. Introduction

The subject of this paper is the asymptotic behaviour of solutions to the Klein–Gordon
equation

�gu − m2u = 0 (1)

on a spacetime (M, g), where m is a constant. In practice, we are going to consider the
somewhat more general equation

�gu + ϕ0u = 0, (2)
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where ϕ0 is a function. We impose specific restrictions on ϕ0 as we go along. We are not
going to consider arbitrary (M, g), but rather focus on Bianchi spacetimes; i.e., Lorentz
manifolds of the following type.

Definition 1. A Bianchi spacetime is a Lorentz manifold (M, g), where M = G × I ;
I = (t−, t+) is an open interval; G is a connected 3-dimensional Lie group; and g is of
the form

g = −dt ⊗ dt + ai j (t)ξ
i ⊗ ξ j , (3)

where {ξ i } is the dual basis of a basis {ei } of the Lie algebra g and ai j ∈ C∞(I,R) are
such that ai j (t) are the components of a positive definite matrix a(t) for every t ∈ I .

We are interested in the asymptotic behaviour of solutions as t → t−, where we assume,
at the very minimum, t− to represent a singularity in the following sense.

Definition 2. Let (M, g)be aBianchi spacetime. Then t− is said to be amonotone volume
singularity if there is a t0 ∈ I such that the mean curvature, say θ(t), of Gt := G × {t}
is strictly positive on (t−, t0) and if

τ := 1

3
ln

√
det a → −∞ (4)

as t → t−, where a is the matrix with components ai j .

Remark 3. In what follows, we always assume, without loss of generality, that a mono-
tone volume singularity is such that τ(t0) > 0; note that this can be ensured by rescaling
the frame {ei }, if necessary.

1.1. Time coordinates. Let (M, g) be a Bianchi spacetime. If t− is a monotone volume
singularity, then τ can be used as a time coordinate in a neighbourhood of the singularity;
note that ∂tτ = θ/3. From now on, we refer to τ as the logarithmic volume density. In
some situations it is more convenient to use a time coordinate σ satisfying

dσ

dt
= 1

3
(det a)−1/2. (5)

In what follows, we define σ by, in addition, requiring σ = 0 to correspond to τ = 0. For
the monotone volume singularities of interest here, σ → −∞ corresponds to τ → −∞;
cf. Sect. 11.1 below for a more detailed discussion.

1.2. Silence. One aspectwhich is of central importance in the analysis of the asymptotics
is whether observers asymptotically lose the ability to communicate in the direction of
the singularity or not. To be more specific, let (M, g) be a Bianchi spacetime and t− be a
monotone volume singularity. Then t− is said to be a silent monotone volume singularity
if

‖a−1/2‖ ∈ L1(t−, t0], (6)

where a−1/2 denotes the inverse of the square root of the matrix a; cf. Lemma 46 below
for some of the consequences this assumption has for the causal structure. In the present
paper, we are mainly interested in silent monotone volume singularities. However, as an
illustration, we also describe the asymptotics for one Bianchi spacetime with a Cauchy
horizon; cf. Sect. 7 below.
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1.3. Main results, rough description. Consider the asymptotic behaviour of solutions
to the Klein–Gordon equation in the direction of a silent monotone volume singularity.
Assume the underlying Bianchi geometry to satisfy Einstein’s equations; cf. Sects. 2
and 3 below for details. Then there are two main conclusions. First, there are general
conditions on the stress energy tensor and the geometry ensuring that uσ is bounded
in the direction of the singularity, where u is a solution to the Klein–Gordon equation;
cf. Sect. 2.5 below. Second, there are convergence results; cf. Sects. 4–6 below. In each
of these sections, we formulate general results. However, we also provide examples,
illustrating that the results apply in the orthogonal perfect fluid setting. The typical con-
clusion is that, for a solution u to the Klein–Gordon equation on the relevant background,
there are functions u0 and u1 such that

uσ (·, σ ) − u1, u(·, σ ) − u1σ − u0 (7)

converge to zero asymptotically; cf. Sects. 4–6 below for details. In particular, it is of
interest to note that these asymptotics seem to be universal; i.e., independent of the
background, as soon as the monotone volume singularity under consideration is silent.
Combining the results of this paper with unpublished results by Bernhard Brehm yields
the conclusion that the asymptotics are such even in the case of generic oscillatory
vacuum Bianchi type VIII and IX solutions; cf. Examples 15 and 18 below. In order to
contrast the above asymptotics with the asymptotics of solutions to the Klein–Gordon
equation in the case of a non-silent monotone volume singularity, we consider the Klein–
Gordon equation on a flat Kasner background in Sect. 7 below.

1.4. Outline. The outline of the paper is as follows. In Sect. 2 below, we describe the
general assumptions we make concerning the background Bianchi spacetimes; describe
the notation we use; recall the Raychaudhuri equation (the coefficients of which play a
central role in the arguments); conformally rescale the metric; formulate the equation
with respect to the conformally rescaled metric; discuss the Bianchi classification; and
define the basic energies. We end the section by stating the main energy estimate; cf.
Sect. 2.5. This estimate implies a bound on uσ . Before turning to the question of conver-
gence, we devote Sect. 3 to a discussion of the developments corresponding to Bianchi
orthogonal perfect fluid initial data. In particular, we appeal to results in the literature
in order to demonstrate that the developments have monotone volume singularities. We
also discuss the silence of the monotone volume singularities and the maximality of the
developments. Given this backgroundmaterial, we turn to the question of convergence in
Sects. 4–6. In Sect. 4.1, we state a result ensuring convergence of uσ ; cf. Proposition 12
below. As an application, we demonstrate, e.g., that on generic Bianchi class A vacuum
backgrounds, solutions to the Klein–Gordon equation are such that uσ converges; cf.
Example 15. In Sect. 4.2, we provide conditions ensuring that the asymptotics are as
described in (7). We also note that on generic Bianchi class A vacuum backgrounds,
the conditions are satisfied; cf. Example 18. It is important to note that, due to unpub-
lished results of Bernhard Brehm (building on the arguments of [Bre]), the results of
Sect. 4 apply even in the generic oscillatory Bianchi type VIII and IX vacuum settings.
In Sect. 5, we turn to the convergent setting; here convergent means, in particular, that
a rescaled version of the second fundamental form converges and that θ̇/θ2 converges.
The main result is Proposition 19. This result is based on stronger assumptions than
those of Sect. 4, but it also gives stronger conclusions. Moreover, it applies in several
different settings. In Example 22, we demonstrate that it applies to stiff fluids for all
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Bianchi types except VI−1/9 (in the case of Bianchi type VI−1/9, we are unaware of any
appropriate results in the literature). In Examples 24, 29 and 30 we give further appli-
cations of Proposition 19. Finally, in Sect. 6, we treat an exceptional case, not covered
by Proposition 19.

The results of Sects. 4–6 concern silent monotone volume singularities. In order
to contrast the behaviour in the silent setting with the behaviour in the presence of a
horizon, we consider the Klein–Gordon equation on a flat Kasner background in Sect. 7.
In particular, we demonstrate that uσ does not converge in that case. It is also of interest
to consider the question of blow up of the solution. In the case of non-flat Kasner
backgrounds, as well as certain isotropic Bianchi type I backgrounds, this is done in
[AFaF]. In Sect. 8, we derive conclusions concerning blow up using the results of [Rin]
(for non-flat Kasner backgrounds). The reason for doing so is that the results of [Rin]
yield interesting information concerning the regularity of the function u1 appearing
in (7). Moreover, the corresponding observations naturally lead to an important open
problem.

In Sect. 9, we provide the geometric background material on which the arguments
of the paper is based. In particular, we derive the Raychaudhuri equation in the setting
of interest here; obtain geometric inequalities on which the energy estimates are based;
demonstrate a divergence type result that we use in the proof of the energy estimates; and
derive results concerning the causal structure in the silent setting. The results concerning
the causal structure are needed in order to justify that it is sufficient to consider solutions
to the Klein–Gordon equation with compactly supported initial data in the study of
the singularity. In Sects. 10 and 11, we discuss the conformal rescaling of the metric;
the corresponding reformulation of the equation; and the relation between the time
coordinates τ and σ . In Sects. 12 and 13, we then derive energy estimates. We also
prove the propositions appearing in Sects. 5 and 6. In Sect. 14 we write down the proofs
of the propositions and examples in Sect. 4; in Sect. 15 we write down the proofs of the
examples in Sect. 5; and in Sect. 16 we write down the proofs of the examples in Sect. 6.
Finally, in the appendix, we provide the background material concerning the Bianchi
developments needed in the examples in Sects. 4–6. We also prove the statements made
in Sect. 8.

1.5. Previous results. Clearly, there are several paperswith related and partially overlap-
ping results; cf., e.g., [ARen,Pet,Rin,AFaF,Bac] and references cited therein. In [ARen],
Alan Rendall and Paul Allen study perturbations of FLRW cosmological models which
are spatially flat and have T3 spatial topology. In particular, the authors consider a linear
hyperbolic equation on isotropic Bianchi type I backgrounds. In [Pet], Oliver Lindblad
Petersen considers the linear wave equation on Kasner backgrounds, including the flat
Kasner solution. In [Rin], we consider systems of linear wave equations on a class
of background geometries (for a detailed description of the requirements, cf. [Rin]).
The main results concern optimal energy estimates, but we also derive asymptotic in-
formation, in some cases a homeomorphism between initial data and asymptotic data.
In [AFaF] Artur Alho, Grigorios Fournodavlos and Anne Franzen consider the wave
equation on isotropic Bianchi type I backgrounds and on non-flat Kasner backgrounds.
Moreover, they provide an open criterion for L2-blow up of the solution. In [Bac], Alain
Bachelot considers Klein–Gordon type equations on FLRW backgrounds. In practice,
he considers warped product type geometries (in this sense, the results are more general
than FLRW). Moreover, he considers Big Bang, Big Crunch, Big Rip, Big Brake and
Sudden Singularities.



A Unified Approach to the Klein–Gordon Equation on Bianchi Backgrounds 603

2. Main Energy Estimate

In the previous section,we formulated the questions of interest for general Bianchi space-
times. However, we are here, in practice, interested in solutions to Einstein’s equations.
In other words, we assume that

Ric − 1

2
Sg + �g = T, (8)

where Ric and S are the Ricci tensor and scalar curvature of g respectively; � is the
cosmological constant; and T is the stress energy tensor. In some of the results, we only
impose general conditions on the stress energy tensor. However, we also illustrate that
the general conditions are satisfied for large classes of Bianchi spacetimes with matter
of orthogonal perfect fluid type.

Next, we introduce the terminology in terms of which we formulate the assumptions.
To begin with, we define the energy density and the mean pressure by

ρ := T00, p̄ := 1

3
ai j Ti j (9)

respectively, where the components are calculated with respect to the frame {eα}; here
e0 := ∂t and the ei are given in Definition 1. Moreover, ai j are the components of the
matrix a−1. From now on, sub- and superscripts refer to the frame {eα}, Greek indices
range from 0 to 3 and Latin indices range from 1 to 3. We denote the induced metric and
second fundamental form on Gt by ḡ and k̄ respectively, and we think of these objects
as being defined on G. Introduce

θ := trḡ k̄, σ̄i j := k̄i j − 1

3
θ ḡi j . (10)

These objects are referred to as themean curvature and the shear respectively. In analogy
with [WaH], it is also convenient to introduce the rescaled quantities

�i j := σ̄i j

θ
, �ρ := 3ρ

θ2
, � p̄ := 3 p̄

θ2
, �� := 3�

θ2
, �tot = �ρ + 3� p̄ − 2��. (11)

With the above notation, Raychaudhuri’s equation can be written

−3
θ̇

θ2
= 1 + q, (12)

where

q := 3�i j�i j +
1

2
�tot; (13)

cf. Sect. 9.1 below for a justification of this statement. We refer to q as the deceleration
parameter in analogy with the terminology introduced in [WaH, p. 1414].
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2.1. Conformal rescaling. In practice, it is convenient to rescale the metric according to
ĝ := θ2g/9; cf. Sect. 10 below for details. In the case of a monotone volume singularity,
ĝ can then be written

ĝ = −dτ ⊗ dτ + âi j (τ )ξ i ⊗ ξ i .

Here τ ∈ I0, where I0 := (−∞, τ0) is the image of (t−, t0) under τ . Moreover,
âi j = θ2ai j/9. Using this notation, (2) can be rewritten

−uττ + âi j ei [e j (u)] + (q − 2)uτ − 2X0(u) + ϕ̂0u = 0; (14)

cf. Sect. 11 below for a justification of this statement. Here q is defined by (13); ϕ̂0 :=
9θ−2ϕ0; and âi j are the components of the inverse of the matrix with components âi j .
In order to explain the origin of the vector field X0, let ξG : g → R be the one form
defined by

ξG(X) := 1

2
tr adX , (15)

where the linear map adX : g → g is defined by adXY = [X,Y ] for all X,Y ∈ g. Then
X0 is the metrically related vector field. In other words, if X0 = Xi

0ei and ξG,i = ξG(ei ),
then Xi

0 = âi jξG, j .

2.2. The Bianchi classification. Some of the results of the present paper are divided
according to the Bianchi classification. Next, we therefore explain the associated ter-
minology. Three-dimensional Lie groups can be divided according to whether they are
unimodular or non-unimodular. For completeness, we recall one characterisation of uni-
modularity.

Definition 4. A connected Lie group G is said to be unimodular if ξG = 0, where
ξG : g → R is defined by (15). A connected Lie group which is not unimodular is said
to be non-unimodular.

This definition leads to the division into Bianchi class A and Bianchi class B.

Definition 5. Let (M, g) be a Bianchi spacetime. Then, if the associated Lie group is
unimodular, the spacetime is said to be of Bianchi class A, and if the associated Lie
group is non-unimodular, the spacetime is said to be of Bianchi class B.

In what follows, we also speak of Bianchi class A and B Lie groups. Beyond the
division of Bianchi spacetimes and 3-dimensional Lie groups into classes, there is, for
each class, a division into types. This division can be found in many references, but in
the case of Bianchi class A, we refer the reader to [RinAtt, Table 1, p. 409] (since we
appeal to the results of [RinAtt] quite frequently in the present paper). In the case of
Bianchi class B, the division into types can be found in, e.g., [RadNon, Table 1, p. 16]
(again, we appeal to the results of [RadNon] quite frequently in the present paper).
In the case of Bianchi class B, there is one type which is considered “exceptional”,
namely Bianchi type VI−1/9. The reason for this is that if one considers (given a left
invariant Riemannian initial metric) the momentum constraint as a linear equation for a
left invariant second fundamental form, then this equation has a degeneracywhich occurs
exactly for Bianchi type VI−1/9; cf. [RadNon, Subsection 11.3, pp. 62–64], in particular
[RadNon, Lemma 11.13, p. 63], for more details. This means that for Bianchi class B,
the degrees of freedom are maximised for Bianchi type VI−1/9. In the applications of the
general results, we exclude the exceptional case due to the lack of references concerning
the asymptotics of the corresponding Bianchi spacetimes. Finally, let us refer the reader
interested in a historical overview of the origins of the Bianchi classification to [KraEtal].
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2.3. Orthogonal perfect fluids with a linear equation of state. A natural matter model
to consider is an orthogonal perfect fluid with a linear equation of state. In practice, this
means that the stress energy tensor is of the form

T = (ρ + p)dt ⊗ dt + pg, (16)

where p = (γ − 1)ρ and γ is a constant. Here ρ is the energy density, p is the pressure,
and ρ and p only depend on t . Note that p̄ introduced in (9) then equals p.We restrict our
attention to 0 ≤ γ ≤ 2. Moreover, we impose additional restrictions on γ in particular
cases. The special case that γ = 2 is referred to as a stiff fluid. When we consider an
orthogonal perfect fluid with a linear equation of state, we typically also assume that
� = 0.

2.4. Energies. In order to have a flexible notion of an energy, it is convenient to introduce
a function f with the following properties: f ∈ L1(−∞, 0]; f > 0; f ∈ C1; f′/f is
uniformly bounded on (−∞, 0]; and f′ ≥ 0. Note that the requirements on f imply that
f → 0 as τ → −∞. Given, e.g., a solution u to (14) corresponding to initial data at
τ = 0 that are compactly supported on G, define

E[u] := 1

2

∫
G

[
u2τ + âi j ei (u)e j (u) + f2u2

]
μh . (17)

Here

h := δi jξ
i ⊗ ξ j . (18)

Note that, due to Corollary 45 below, E[u] is well defined, smooth, and we are allowed to
differentiate under the integral sign. In what follows, we tacitly consider the constituents
of E[u], as well as E[u] itself, as depending on τ as opposed to t . In order to define higher
order energies, it is convenient to introduce the following terminology.

Definition 6. A vector field multiindex is an ordered set of pairs of integers

K = {(i1, j1), . . . , (ik, jk)}, (19)

where il ∈ {1, 2, 3}, l = 1, . . . , k; and 0 ≤ jl ∈ Z, l = 1, . . . , k. Moreover, jl is
only allowed to be zero if k = 1, and the vector field multiindices {(1, 0)}, {(2, 0)} and
{(3, 0)} should be thought of as being the same vector field multiindex, denoted by 0.
For the vector field multiindex K given by (19),

eK := e j1i1 · · · e jkik , |K | := j1 + · · · + jk .

Here |K | is referred to as the order of K . Moreover, if K = 0, then eK (φ) = φ.

With h and f as above, define

El [u] := 1

2

∫
G

∑
|K |≤l

([eK (u)]2τ + âi j ei [eK (u)]e j [eK (u)] + f2[eK (u)]2)μh . (20)
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2.5. The main energy estimate. Given the above terminology, we are in a position to
formulate the main energy estimate.

Theorem 7. Let (M, g) be a Bianchi spacetime with a monotone volume singularity t−.
Assume that g solves (8); that ρ ≥ p̄; that ρ ≥ 0; and that � ≥ 0. Let ϕ0 ∈ C∞(M) be
such that it only depends on t. Assume that γS̄ ∈ L1(−∞, 0], where

γS̄ := S̄+
θ2

, (21)

S̄+ := max{0, S̄} and S̄(τ ) is the scalar curvature of the spatial hypersurface corre-
sponding to τ . Assume, moreover, that

|ϕ̂0| + ‖â−1‖ ≤ f2 (22)

for all τ ≤ 0, where â−1 is the matrix with components âi j and f is a function with the
properties stated at the beginning of Sect. 2.4. Then there is a constant Cl such that for
every smooth solution u to (14) corresponding to compactly supported initial data,

El [u](τ ) ≤ ClEl [u](0) exp
[
2

∫ 0

τ

[2 − q(τ ′)]dτ ′
]

(23)

for all τ ≤ 0.

Remark 8. The theorem follows from Corollary 64 below. Note also that under the as-
sumptions of the theorem, τ → −∞ corresponds to σ → −∞; cf. Lemma 52 below.

Concerning the assumptions, let us remark the following. First, if T satisfies the
dominant energy condition, then ρ ≥ p̄ and ρ ≥ 0. For all the Bianchi types except
IX, S̄ ≤ 0, so that γS̄ = 0; cf., e.g., [RinSta, Appendix E]. The condition on γS̄ is thus
only non-trivial in the case of Bianchi type IX. Moreover, in the case of Bianchi type IX
orthogonal perfect fluids with 2/3 < γ ≤ 2, it can be demonstrated that γS̄ converges
to zero exponentially with respect to τ -time (though we do not provide a proof of this
statement here). In that sense, the condition on γS̄ is not even a restriction for a large
class of Bianchi type IX solutions. Next, we are mainly interested in singularities for
which θ → ∞. In that setting, �� converges to zero; cf. (11). If, in addition, either
the parameter � p̄ converges to zero asymptotically, or the average pressure p̄ is non-
negative, then q is≥ 0 asymptotically; cf. (11) and (13). Combining this observationwith
the fact that ∂τ θ = −(1+q)θ , cf. (12), it follows that θ tends to infinity exponentially. In
particular, in the case of the Klein–Gordon equation, ϕ̂0 converges to zero exponentially.
In that sense, the condition (22) is not very restrictive as far as ϕ̂0 is concerned. Finally,
note that if τ(ta) = 0, then

∫ ta

t−
‖a−1/2(t)‖dt =

∫ 0

−∞
‖â−1(τ )‖1/2dτ. (24)

In other words, the requirement that ‖â−1‖1/2 be integrable is equivalent to the require-
ment of silence. To demand that there be a function f such that (22) holds and such that f
is L1 is thus natural. At the beginning of Sect. 2.4, we require f to satisfy a few additional
technical conditions. However, the main requirement is integrability of f; i.e., silence.
Roughly speaking, we thus expect that if the underlying Bianchi geometry is silent, then
an estimate of the form (23) should hold.
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Next, let us point out that we only demand that the initial data for u have compact
support in order for the energies El to be well defined. Moreover, due to the causal
structure in the silent setting, analysing the asymptotics in the general case can be reduced
to analysing the asymptotics of solutions corresponding to initial data with compact
support. Even for non-compactLie groupsG and smooth solutionsu to theKlein–Gordon
equation (not necessarily corresponding to initial data with compact support), we are,
in fact, under quite general circumstances able to conclude the existence of functions
u1 and u0 such that the expressions appearing in (7) tend to zero asymptotically; cf.
Sects. 4–6 below.

Concerning the asymptotics, it can be verified that (23) implies that
∫
G

∑
|K |≤l [eK (uσ )]2μh ≤ ClEl [u](0), (25)

cf. Sect. 11.1, where we use the time coordinate σ introduced in (5). Combining this
observation with Sobolev embedding and the character of the causal structure in the
silent setting yields the conclusion that uσ (·, σ ) is asymptotically bounded in any local
(in space) Ck norm; cf. the arguments presented in the proof of Proposition 19 below
for a justification of this statement. Integrating this estimate, it is clear that u(·, σ ) does
not grow faster than linearly in any local Ck norm.

3. Geometric Properties of Bianchi Developments

In the applications, we wish to deduce, rather than assume, that the Bianchi space-
times have a monotone volume singularity. In the present section, we therefore interrupt
the presentation of energy estimates in order to consider the implications of Einstein’s
equations. We use initial data as the starting point for our discussion and focus on the
orthogonal perfect fluid setting.

Definition 9. Bianchi orthogonal perfect fluid initial data for Einstein’s equations con-
sist of the following: a connected 3-dimensional Lie group G; a left invariant metric ḡ
on G; a left invariant symmetric covariant 2-tensor field k̄ on G; and a constant ρ0 ≥ 0
satisfying

S̄ − k̄i j k̄i j + (trḡ k̄)
2 = 2ρ0

∇ i trḡ k̄ − ∇ j
k̄i j = 0.

Remark 10. Here S̄ and ∇ denote the scalar curvature and Levi-Civita connection of ḡ
respectively. Moreover, indices are raised and lowered with ḡ.

Remark 11. When we speak of Bianchi orthogonal perfect fluid initial data we take it
for granted that � = 0.

Next, we consider the different Bianchi classes separately.

3.1. Bianchi class A. Given Bianchi orthogonal perfect fluid initial data such that G is
a unimodular Lie group, a corresponding development is introduced in [RinAtt, Defini-
tion 21.1, p. 489] (the value of γ should here be understood from the context and the
equation of state is given by p = (γ − 1)ρ). We here refer to it as the Bianchi class A
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development of the initial data. It is a Bianchi spacetime in the sense of Definition 1.
Moreover, a(t) is a diagonal matrix for every t ∈ I .

Bianchi class A developments which are not of type IX. In case the underlying uni-
modular Lie group is not of type IX, [RinAtt, Lemma21.5, p. 491], [RinAtt, Lemma21.8,
p. 493] and [RinCau, Lemma 20.6, p. 218] imply that either the development is a quo-
tient of Minkowski space (in particular, it is causally geodesically complete); or, after a
suitable choice of time orientation, t− > −∞, t+ = ∞ and θ(t) > 0 for all t ∈ I . In
what follows, we refer to the developments that are not quotients of Minkowski space
as non-Minkowski developments. For non-Minkowski developments, the interval I in
t-time corresponds to (−∞,∞) in τ -time; θ(t) → ∞ as t → t−; and θ(t) → 0 as
t → t+. This follows from [RinAtt, Lemma 22.4, p. 497] and its proof (note that the
τ appearing in [RinAtt] can be assumed to coincide with the τ of the present paper;
cf. the beginning of Sect. 17.1). In particular, for non-Minkowski developments, t−
is a monotone volume singularity. Finally, the non-Minkowski developments are past
causally geodesically incomplete and future causally geodesically complete; cf. [RinAtt,
Lemma 21.8, p. 493].

Bianchi type IX developments. Bianchi type IX developments typically recollapse in
the sense that they are past and future causally geodesically incomplete. For diagonal
Bianchi type IX solutions with a vanishing cosmological constant; non-negative mean
pressure; and matter satisfying the dominant energy condition, this was demonstrated by
Xue-feng Lin and Robert Wald in [LaW]. Here we, via [RinAtt,RinCau], appeal to this
result. From now on, we therefore take for granted that 1 ≤ γ ≤ 2 (in order to ensure that
the mean pressure is non-negative). Due to [RinAtt, Lemma 21.6, p. 492], it then follows
that there is a t0 ∈ I such that θ(t) > 0 in (t−, t0) and θ(t) < 0 in (t0, t+). In other
words, the spacetime expands; reaches a moment of maximal expansion (as measured
by the volume); and then starts to contract. Moreover, due to [RinAtt, Lemma 21.8,
p. 493], t+ < ∞, t− > −∞, and the spacetime is future and past causally geodesically
incomplete. By an argument which is essentially identical to the proof of [RinCau,
Lemma 20.8, p. 219] (this lemma covers the vacuum case), it can also be demonstrated
that θ(t) → ∓∞ as t → t±∓. Finally, due to [RinAtt, Lemma 22.5, p. 498], the
intervals (t−, t0) and (t0, t+) in t-time correspond to (−∞, τa) in τ -time for some τa ∈ R

corresponding to the maximal volume of the spatial hypersurfaces of homogeneity. In
particular, if 1 ≤ γ ≤ 2, then Bianchi type IX developments have monotone volume
singularities both to the future and to the past.

3.2. Non-exceptionalBianchi classBdevelopments. AssumingG to be anon-exceptional
Bianchi class B Lie group, the notion of initial data introduced in Definition 9 coincides
with that introduced in [RadNon, Definition 1.5, p. 4]. Moreover, there is a notion of
Bianchi class B development of the data, introduced in [RadNon,Definition 11.15, p. 71].
A Bianchi class B development is a Bianchi spacetime in the sense of Definition 1; cf.
Sect. 17.2 below.Moreover, due to [RadNon, Lemma 11.16, p. 71], it either has θ(t) > 0
for all t ∈ I , or it arises from initial data whose universal covering space is initial data for
Minkowski space; Bianchi type I is included in the framework of [RadNon]. Restricting
our attention to Bianchi class B, it is thus clear that θ(t) > 0 for all t ∈ I . Due to the
construction of the Bianchi class B development, (t−, t+) corresponds to (−∞,∞) in
τ -time; t− > −∞; t+ = ∞; θ(t) → ∞ as t → t−; and θ(t) → θ∞ as t → t+ for some
constant θ∞ ≥ 0. The reader interested in a justification of these statements is referred
to [RadNon, Subsection 11.5, pp. 66-67] (the τ appearing in [RadNon] can be assumed
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to coincide with the τ of the present paper; cf. the beginning of Sect. 17.2). Note, in
particular, that t− is a monotone volume singularity. Finally, note that a Bianchi class B
development with ρ = 0 or with ρ > 0 and 0 < γ ≤ 2 is past causally geodesically
incomplete and future causally geodesically incomplete; cf. [RadNon, Lemma 11.20,
p. 74].

3.3. Silence. To determine whether the singularity is silent or not is, in general, quite
complicated. For example, CharlesMisner suggested in 1969 that Bianchi type IX singu-
larities might not be silent; cf. [Mis]. He also suggested that the non-silent nature might
have important implications in physics. However, it was only 47 years later that rele-
vant results were obtained. In fact, in [Bre], Bernhard Brehm demonstrated that generic
Bianchi type VIII and IX vacuum spacetimes have silent monotone volume singularities;
here generic means that the relevant subsets of initial data have full measure. For this
reason, silence is part of the assumptions in the general results that we formulate. How-
ever, we also demonstrate that the assumptions are satisfied for large classes of Bianchi
developments.

3.4. Maximality. Next, we clarify in which sense the Bianchi class A and B devel-
opments described above are maximal. In the non-vacuum setting, i.e. if ρ > 0, the
spacetime Ricci curvature contracted with itself tends to infinity in the incomplete di-
rections of causal geodesics, assuming 0 < γ ≤ 2 in the case of Bianchi class B
and 1 ≤ γ ≤ 2 in the case of Bianchi class A. In the case of Bianchi class A, this
statement follows from [RinAtt, Lemma 22.3, p. 497] and the above observations con-
cerning causal geodesic incompleteness. In the case of Bianchi class B, it follows from
[RadNon, Lemma 12.1, p. 81] and the above observations concerning causal geodesic
incompleteness. In these settings, the Bianchi developments are thus inextendible as
C2-manifolds, and in this sense maximal; cf., e.g., the proof of [RinCau, Lemma 18.18,
pp. 204–205]. In the Bianchi class A vacuum developments, the Kretschmann scalar,
defined to be the contraction of the spacetime Riemann tensor with itself, blows up in
the incomplete directions of causal geodesics, except if the development is non-generic
in the following sense: it is a quotient of Minkowski space; it is a flat Kasner solution;
or it is a locally rotationally symmetric Bianchi type II, VIII or IX solution. This follows
from [RinCau, Theorem 24.12, p. 258]. Generic Bianchi class A vacuum developments
are thus maximal in the sense that they are C2-inextendible; cf. [RinCau, Lemma 18.18,
p. 204]. In the case of Bianchi class B vacuum developments, the same inextendibility
holds, except if the development belongs to one of the following non-generic types: it
is a plane wave solution or it is a locally rotationally symmetric Bianchi type VI−1 vac-
uum development. This follows from [RadNon, Theorem 1.11, p. 5]. To conclude: all
the developments of interest are such that they have monotone volume singularities and
are C2-inextendible. Since all the developments are Bianchi spacetimes in the sense of
Definition 1, and since Bianchi spacetimes are globally hyperbolic, cf. Lemma 44 below,
it is tempting to say that the relevant Bianchi developments are the maximal globally
hyperbolic developments (or maximal Cauchy developments) of the initial data. In the
vacuum setting, this is certainly true. However, it is important to note that in the case
that γ < 1, it is not clear that the underlying initial value problem is well posed; cf.,
e.g., [FaR, p. 211]. In that case, it is therefore not clear that it is possible to argue as
in, e.g., [CaG] in order to demonstrate the existence of a maximal globally hyperbolic
development.
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4. Convergence Results I

Theorem 7 ensures that uσ is bounded. Next, we provide conditions ensuring conver-
gence.

4.1. Leading order asymptotics. In order to deduce that uσ converges, it is sufficient to
make slightly stronger assumptions than those appearing in Theorem 7.

Proposition 12. Given that the conditions of Theorem 7 are satisfied, assume, in addi-
tion, that ∫ 0

−∞
〈τ 〉f2(τ )dτ < ∞. (26)

Then, if u is a smooth solution to (2), there is a u1 ∈ C∞(G) with the property that for
every compact subset K ⊆ G and 0 ≤ l ∈ Z,

lim
σ→−∞ ‖uσ (·, σ ) − u1‖Cl (K ) = 0.

Remark 13. For ξ ∈ C
d , the notation 〈ξ 〉 is defined by

〈ξ 〉 := (1 + |ξ |2)1/2. (27)

Remark 14. The proof of this proposition is to be found in Sect. 14.1 below. Note also
that under the assumptions of the proposition, τ → −∞ corresponds to σ → −∞; cf.
Remark 8.

Next, we give an example of the implications of this result.

Example 15 (Leading order asymptotics; cf. Sect. 14.1 below for a justification of the
statementsmade in this example). Let (G, ḡ, k̄, ρ0) beBianchi orthogonal perfect fluid
initial data in the sense of Definition 9. Assume, moreover, that G is a unimodular Lie
group and that 1 ≤ γ ≤ 2.Let (M, g)be the correspondingBianchi classAdevelopment;
cf. Sect. 3.1. Focusing on the non-Minkowski developments, we can assume the time
orientation to be such that t− is a monotone volume singularity. Assume now that ϕ0 is a
bounded function of t only. Assume, finally, that there are C0 and 0 < λ0, α0 ≤ 1 such
that

‖â−1(τ )‖ ≤ C0 exp(−2λ0〈τ 〉α0) (28)

for all τ ≤ 0. Note that this assumption implies that the monotone volume singularity
is silent; cf. (24). Then, if u is a smooth solution to (2), there is a u1 ∈ C∞(G) with the
property that for every compact subset K ⊆ G and 0 ≤ l ∈ Z, there is a constant CK ,l
such that

‖uσ (·, σ ) − u1‖Cl (K ) ≤ CK ,l〈τ 〉2−α0e−2λ0〈τ 〉α0 (29)

for all τ ≤ 0. In particular, the left hand side of this inequality converges to zero as
σ → −∞.

Turning to the assumptions, the conditions on ϕ0 can be relaxed; the interested reader
is referred to the proof. However, the main assumption here is that (28) hold. Consider
non-Minkowski Bianchi type I, II, VI0 and VII0 vacuum developments. Assume the
corresponding monotone volume singularity to be silent (this only excludes a subset
of the locally rotationally symmetric developments, in case they exist for the given
Bianchi type). Then (28) holds with α0 = 1. Turning to Bianchi type VIII and IX
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vacuum developments, there are unpublished results by Bernhard Brehm demonstrating
that (28) holds generically. In fact, there is a subset G of the set of Bianchi type IX
vacuum initial data such that the following holds: G has full measure, and for a solution
corresponding to initial data in G, there is a constant C0 > 0 with the property that (28)
holds for all τ ≤ 0, λ0 = 1 and α0 = 1/6 (in fact, for any α0 < 1/5 such a statement
holds). The statement concerning Bianchi type VIII is similar.

4.2. Complete asymptotics. Strengthening the assumptions of Proposition 12 slightly
yields complete asymptotics.

Proposition 16. Given that the conditions of Theorem 7 are satisfied, assume, in addi-
tion, that (26) holds, and that

∫ 0

−∞

∫ τ

−∞
〈τ ′〉[|ϕ̂0(τ

′)| + ‖â−1(τ ′)‖] exp
(

−
∫ 0

τ ′
[q(τ ′′) − 2]dτ ′′

)
dτ ′dτ < ∞.

Then, if u is a smooth solution to (2), there are u0, u1 ∈ C∞(G) such that for every
compact subset K ⊆ G and 0 ≤ l ∈ Z,

lim
σ→−∞ ‖uσ (·, σ ) − u1‖Cl (K ) = 0, lim

σ→−∞ ‖u(·, σ ) − u1 · σ − u0‖Cl (K ) = 0.

Remark 17. The proof of this statement is to be found in Sect. 14.2 below.

Next, we give an example illustrating that the conditions are satisfied for generic
Bianchi class A vacuum solutions.

Example 18 (Complete asymptotics; cf. Sect. 14.2 below for a justification of the
statements made in this example). Given that the assumptions stated at the beginning
of Example 15 are satisfied, assume, in addition, that there are C0 and 0 < λ0, α0 ≤ 1
such that

‖â−1(τ )‖ exp
(

−
∫ 0

τ

(q − 2)dτ ′
)

≤ C1 exp(−2λ0〈τ 〉α0) (30)

for all τ ≤ 0. Then the conclusions of Proposition 16 hold. In fact, if u is a smooth
solution to (2), there are u0, u1 ∈ C∞(G) with the property that for each compact set
K and 0 ≤ l ∈ Z, there is a constant CK ,l such that (29) and

‖u(·, σ ) − u1 · σ − u0‖Cl (K ) ≤ CK ,l〈τ 〉3−2α0e−2λ0〈τ 〉α0 (31)

hold for all τ ≤ 0.
As in Example 15, the assumptions concerning ϕ0 can be relaxed. Consider non-

Minkowski Bianchi type I, II, VI0 and VII0 vacuum developments. Assume the corre-
sponding monotone volume singularity to be silent (this only excludes a subset of the
locally rotationally symmetric developments, in case they exist for the given Bianchi
type). Then the assumptions are satisfied with α0 = 1. Turning to Bianchi type VIII and
IX vacuum developments, there are unpublished results by Bernhard Brehm demonstrat-
ing that (30) holds generically. In fact, there is a subset G of the set of Bianchi type IX
vacuum initial data such that the following holds: G has full measure, and for a solution
corresponding to initial data in G, there is a constant C0 > 0 with the property that (30)
holds for all τ ≤ 0, λ0 = 1 and α0 = 1/6 (in fact, for any α0 < 1/5 such a statement
holds). The statement concerning Bianchi type VIII is similar.
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5. Convergence Results II

Recall the deceleration parameter q introduced in (13). Considering Theorem 7 and
Proposition 16, it is clear that the difference q−2 plays an important role in the analysis.
It is also of interest to note that for large classes of solutions, q − 2 converges to zero
exponentially. The following result is therefore of interest.

Proposition 19. Let (M, g) be a Bianchi spacetime with a monotone volume singularity
t−. Assume that g solves (8); that ρ ≥ p̄; that ρ ≥ 0; and that � ≥ 0. Let ϕ0 ∈ C∞(M)

be such that it only depends on t. Assume that there are constants C0 and η0 > 0 such
that

|q(τ ) − 2| + γS̄(τ ) + |ϕ̂0(τ )| + ‖â−1(τ )‖ ≤ C0e
η0τ (32)

for all τ ≤ 0. Then there is a constant η1 > 0 such that the following holds. Given a
smooth solution u to (2), there are ua, ub, ui ∈ C∞(G), i = 0, 1, such that for every
compact subset K ⊆ G, there are constants CK ,l , depending on 0 ≤ l ∈ Z, K and u,
such that

‖uτ (·, τ ) − u1‖Cl (K ) + ‖u(·, τ ) − u1τ − u0‖Cl (K ) ≤ CK ,l〈τ 〉eη0τ (33)

for all τ ≤ 0 and such that

‖uσ (·, σ ) − ub‖Cl (K ) + ‖u(·, σ ) − ubσ − ua‖Cl (K ) ≤ CK ,l〈σ 〉eη1σ (34)

for all σ ≤ 0.

Remarks 20. The proof is to be found in Sect. 13.3 below. In (33), it is assumed that u is
considered to be a function of the time coordinate τ introduced in Definition 2. In (34),
it is assumed that u is considered to be a function of the time coordinate σ introduced
in connection with (5). Note also that, under the assumptions of the proposition, σ and
τ are effectively related by an affine transformation; cf. Sect. 13.3 below, in particular
(83). Therefore, the asymptotics with respect to the τ -time and the σ -time are effectively
the same.

Remark 21. For generic Bianchi type IX orthogonal perfect fluids with 1 ≤ γ < 2, q
does not converge; cf., e.g., [RinAtt]. In particular, the proposition does not apply in
that case. However, as illustrated by Proposition 16 and Example 18, the asymptotics
can nevetheless be the same with respect to the σ -time, even though the error estimate
might be worse. In Sect. 6 below, we also consider the case that q converges to a limit
different from 2.

5.1. Applications to stiff fluids. Proposition 19 applies in several different situations.
We begin by considering stiff fluids.

Example 22 (Stiff fluids). Let (G, ḡ, k̄, ρ0) be Bianchi orthogonal perfect fluid initial
data in the sense of Definition 9. Assume, moreover, that G is not of type VI−1/9; that
ρ0 > 0; and that γ = 2 (i.e., that the fluid is stiff). The reason we exclude Bianchi
type VI−1/9 is that we are unaware of any results concerning the asymptotics of Bianchi
type VI−1/9 spacetimes. Let (M, g) be the Bianchi class A/Bianchi class B development
corresponding to the given initial data; cf. Sects. 3.1 and 3.2. If G is not of Bianchi type
IX, the development can be time oriented so that t− is a monotone volume singularity
and if G is of Bianchi type IX, t− and t+ are both monotone volume singularities; cf.
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Sects. 3.1 and 3.2. Fix a ϕ0 depending only on t . Fix, moreover, a monotone volume
singularity, say t−, and assume that there is a t0 ∈ I and constants Cϕ and ηϕ > 0 such
that

|ϕ0(t)| ≤ Cϕ[det a(t)]−1+ηϕ (35)

for all t ∈ (t−, t0). Then the conditions of Proposition 19 are fulfilled, so that the
conclusions apply to solutions to (2) in the direction of the monotone volume singularity
t−. We justify this statement in Sect. 15.1 below.

Even though it is of interest to study the Klein–Gordon equation on stiff fluid back-
grounds, it is worth pointing out that there are several full non-linear results concerning
Einstein’s equations in the stiff fluid setting.

Remark 23 (Full non-linear results). There is a construction of solutions to theEinstein-
stiff fluid equations with prescribed asymptotics by Lars Andersson and Alan Rendall;
cf. [AaR]. Note, however, that this construction is restricted to the case that K̄ i

j := k̄i j/θ
converges to a positive definite matrix, a restriction we do not impose in Example 22.
There is also a proof of full non-linear stability of Big Bang formation in the Einstein-
stiff fluid setting by Igor Rodnianski and Jared Speck; cf. [RaSLBB,RaSBB]. This result
concerns perturbations of isotropic Bianchi type I solutions. In particular, the behaviour
of solutions is such that K̄ is asymptotically close to the identity multiplied by 1/3. In
[SpeBB], Jared Speck also demonstrates past and future global non-linear stability of
Big Bang/Big Crunch formation in the case of isotropic Bianchi type IX solutions. In
particular, K̄ is again asymptotically close to a multiple of the identity.

5.2. Bianchi class A developments, non-stiff fluids. Next, we apply Proposition 19 to
Bianchi class A non-stiff fluids. In the oscillatory setting, q is not expected to converge.
For that reason, we exclude Bianchi types VIII and IX from the current discussion. This
leaves Bianchi types I, II, VI0 and VII0. To begin with, we consider the vacuum setting.

Example 24 (Non-oscillatoryBianchi classAvacuumdevelopments). Let (G, ḡ, k̄, ρ0)
be Bianchi orthogonal perfect fluid initial data in the sense of Definition 9. Assume that
G is a unimodular Lie group and that ρ0 = 0; i.e., the data are Bianchi class A vacuum
initial data. Assume, moreover, that G is neither of type VIII or IX. Let (M, g) be the
corresponding Bianchi class A development, cf. Sect. 3.1, and assume that it is not a
quotient of Minkowski space. Then, by an appropriate choice of time orientation, the
development is past causally geodesically incomplete and future causally geodesically
complete. Moreover, the incomplete direction corresponds to a monotone volume sin-
gularity, say, t−. Assume this monotone volume singularity to be silent. Finally, fix a ϕ0
depending only on t , and assume that there is a t0 ∈ I and constantsCϕ and ηϕ > 0 such
that (35) holds for all t ∈ (t−, t0). Then the conditions of Proposition 19 are fulfilled, so
that the conclusions apply to solutions to (2) in the direction of the monotone volume
singularity t−. We justify this statement in Sect. 15.2 below.

Remark 25. There are some Bianchi class A vacuum developments that can be extended
through Cauchy horizons; cf., e.g., [RinCau, Theorem 24.12, p. 258]. One example
is the flat Kasner solution, which is discussed in greater detail in Sect. 7 below. In
Example 24, these developments are excluded by the requirement that the monotone
volume singularity be silent; cf. Sect. 17.1 below for details.
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Next, we consider Bianchi class A orthogonal perfect fluids with 2/3 < γ < 2.
Again, we exclude Bianchi types VIII and IX for reasons mentioned above. However,
we also exclude Bianchi type VI0, since we are unaware of any appropriate results in the
literature. On the other hand, we expect the relevant conclusions concerning solutions
to the Klein–Gordon equation to hold in the Bianchi type VI0 setting as well.

Generic Bianchi class A solutions. Unfortunately, the above exclusions are not enough.
In order to explain why, it is of interest to note that in the Bianchi class A orthogonal
perfect fluid setting, there is a formulation of the equations due to Wainwright and
Hsu, cf. [WaH]. The formulation involves scale free variables �±, Ni , i = 1, 2, 3, and
�; we describe some of their properties in Sect. 17.1 below. Note, however, that the
variables are also introduced in [RinAtt, p. 487]. In the Wainwright-Hsu formulation of
the equations, there are fixed points F and P+

i (I I ), i = 1, 2, 3, defined as follows (cf.
[RinAtt, Definition 4.1, p. 417]).

Definition 26. The critical point F is defined by the condition that � = 1; �+ = �− =
0; and Ni = 0, i = 1, 2, 3. In case 2/3 < γ < 2, the critical point P+

1 (I I ) is defined to
be the type II point with�− = 0; N1 > 0;�+ = (3γ −2)/8; and� = 1− (3γ −2)/16.

Remark 27. Combining the requirement that P+
1 (I I ) be a type II point with the require-

ment that N1 > 0 implies that N2 = N3 = 0. Moreover, the Hamiltonian constraint,
cf., e.g., [RinAtt, (11), p. 415], together with the requirements stated in the definition
determines the value of N1 uniquely.

Remark 28. The fixed points P+
i (I I ), i = 2, 3, are defined analogously; cf. [RinAtt,

Definition 4.1, p. 417].

Note that the fixed point F corresponds to the isotropic Bianchi type I solutions. More-
over, in the case of both F and P+

i (I I ), the deceleration parameter is constant. However,
the relevant constant is different from 2, assuming γ < 2. In particular, it is thus clear
that Proposition 19 does not apply. In addition to the fixed points introduced in Defi-
nition 26, there are solutions converging to them. Let PII and PVII0 be the subsets of
Bianchi type II and VII0 initial data such that the corresponding solutions converge to
one of the P+

i (I I ), i = 1, 2, 3. ThenPII consists of points (in a state space of dimension
3); and PVII0 is a C

1-submanifold of dimension 1 (in a state space of dimension 4); cf.
[RinAtt, p. 417] for a justification. In particular, the set of solutions converging to one
of the P+

i (I I ), i = 1, 2, 3, is clearly non-generic.
Next, let FI, FII and FVII0 be the subsets of Bianchi type I, II and VII0 initial data

respectively such that the corresponding solutions converge to F . Then FI consists of
the point F (in a state space of dimension 2); FII is a C1-submanifold of dimension 1
(in a state space of dimension 3); and FVII0 is a C

1-submanifold of dimension 2 (in a
state space of dimension 4); cf. [RinAtt, p. 417] for a justification. Again, it is clear that
the set of solutions converging to F is non-generic.

Due to the above observations, it is convenient to refer to Bianchi type I, II and VII0
initial data that do not belong to any of FI,FII,FVII0 , PII or PVII0 as generic. We return
to a discussion of non-generic initial data in Sect. 6 below. However, we here focus on
the generic case.

Example 29 (Generic Bianchi type I, II and VII0 developments). Let (G, ḡ, k̄, ρ0)
be Bianchi orthogonal perfect fluid initial data in the sense of Definition 9. Assume,
moreover, that G is a unimodular Lie group of type I, II or VII0; that ρ0 > 0; and that
2/3 < γ < 2. Assume, finally, that the initial data are generic in the sense described
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immediately prior to the statement of the present example. Let (M, g) be the corre-
sponding Bianchi class A development; cf. Sect. 3.1. Then, by an appropriate choice of
time orientation, the development is past causally geodesically incomplete and future
causally geodesically complete. Moreover, the incomplete direction corresponds to a
monotone volume singularity, say, t−. Assume the monotone volume singularity to be
silent (this only excludes a subset of the locally rotationally symmetric developments).
Finally, fix a ϕ0 depending only on t , and assume that there is a t0 ∈ I and constants
Cϕ and ηϕ > 0 such that (35) holds for all t ∈ (t−, t0). Then the conditions of Proposi-
tion 19 are fulfilled, so that the conclusions apply to solutions to (2) in the direction of
the monotone volume singularity t−. We justify this statement in Sect. 15.2 below.

5.3. Bianchi class B developments, non-stiff fluids. As a final application of Proposi-
tion 19, we consider non-exceptional Bianchi class B developments in the non-stiff fluid
setting. We restrict our attention to the case that 0 ≤ γ < 2/3. The reason for this is
that there are results in this setting due to [RadNon]. It would be of interest to extend
the results of [RadNon] to 2/3 ≤ γ < 2. However, we do not attempt to do so here.

Example 30 (Non-exceptional Bianchi class B developments). Let (G, ḡ, k̄, ρ0) be
Bianchi orthogonal perfect fluid initial data in the sense of Definition 9. Assume, more-
over, that G is a non-exceptional Bianchi class B Lie group and that 0 ≤ γ < 2/3. Let
(M, g) be the corresponding Bianchi class B development; cf. Subsection 3.2. Then,
by an appropriate choice of time orientation, the development is past causally geodesi-
cally incomplete and future causally geodesically complete. Moreover, the incomplete
direction corresponds to a monotone volume singularity, say, t−. Assume this volume
singularity to be silent. Assume, moreover, that the development is not a locally rota-
tionally symmetric Bianchi type VI−1 development. Finally, fix a ϕ0 depending only
on t , and assume that there is a t0 ∈ I and constants Cϕ and ηϕ > 0 such that (35)
holds for all t ∈ (t−, t0). Then the conditions of Proposition 19 are fulfilled, so that the
conclusions apply to solutions to (2) in the direction of the monotone volume singularity
t−. We justify this statement in Sect. 15.2 below.

6. Convergence Results III

Due to the results of Sect. 5, it is clear that solutions to the Klein–Gordon equation on
non-oscillatory Bianchi orthogonal perfect fluid backgrounds quite generally have the
asymptotics described in Proposition 19. However, for Proposition 19 to be applicable,
the deceleration parameter q introduced in (13) has to converge to 2. On the other hand,
even in the generic oscillatory Bianchi typeVIII and IX vacuum settings, the asymptotics
with respect to σ -time are as described in Proposition 19, though the estimate concerning
the error term is worse; cf. Example 18. This is true in spite of the fact that q does not
converge in the oscillatory setting. Finally, in the analysis in Sect. 5.2, we exclude a
non-generic subset. In the corresponding Bianchi developments q converges, but to a
q∞ �= 2. In the present section, we therefore consider the case that q converges to a
number different from 2. We also apply the corresponding result to the Klein–Gordon
equation on backgrounds corresponding to the non-generic subset excluded in Sect. 5.2.

Proposition 31. Let (M, g) be a Bianchi spacetime with a monotone volume singularity
t−. Assume that g solves (8); that ρ ≥ p̄; that ρ ≥ 0; and that � ≥ 0. Let ϕ0 ∈ C∞(M)
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be such that it only depends on t. Assume that there are constants C0 and η0 > 0 such
that

γS̄(τ ) + |ϕ̂0(τ )| + ‖â−1(τ )‖ ≤ C0e
η0τ (36)

for all τ ≤ 0. Assume, moreover, that there is a q∞ < 2 such that q(τ ) → q∞ as
τ → −∞ and such that ∫ 0

τ

[q(τ ′) − q∞]dτ ′

converges as τ → −∞. Finally, let ηc be defined by

ηc := η0

2 − q∞
. (37)

If ηc ≤ 1, then, given a smooth solution u to (2), there is a function u1 ∈ C∞(G) such
that for every compact subset K ⊆ G, there are constants CK ,l , depending on 0 ≤ l ∈ Z,
K and u, such that

‖uσ (·, σ ) − u1‖Cl (K ) ≤ CK ,l〈σ 〉−ηc (38)
for all σ ≤ 0. If ηc > 1, then, given a smooth solution u to (2), there are ui ∈ C∞(G),
i = 0, 1, such that for every compact subset K ⊆ G, there are constants CK ,l , depending
on 0 ≤ l ∈ Z, K and u, such that

〈σ 〉‖uσ (·, σ ) − u1‖Cl (K ) + ‖u(·, σ ) − u1σ − u0‖Cl (K ) ≤ CK ,l〈σ 〉1−ηc

for all σ ≤ 0.

Remark 32. The proof is to be found in Sect. 13.4 below.

Remark 33. In Proposition 19, we consider the case that q converges to 2. In Proposi-
tion 31, we consider the case that q converges to q∞ < 2. Naively, it is then of interest to
ask what happens if q converges to q∞ > 2. Note, however, that if� ≥ 0 and ρ ≥ p̄ (the
latter inequality follows from the dominant energy condition), then Remark 41 below
implies that q − 2 ≤ 3γS̄ . In other words, q ≤ 2 for all Bianchi types except IX. More-
over, as was noted in the comments following the statement of Theorem 7, γS̄ converges
to zero even in the case of Bianchi type IX orthogonal perfect fluid developments. If
q converges, the limit should thus belong to the disc of radius 2. In Proposition 19 we
consider convergence to the boundary, and in Proposition 31 we consider convergence
to the interior.

Remark 34. In case ηc ≤ 1, the asymptotics are incomplete. On the other hand, inserting
the information that (38) holds into the equation (strictly speaking, the estimate (38), as
well as an integrated version of it, should be inserted into (68) below) yields improved
asymptotics; cf. the proof in Sect. 13.4 below.

Next, we consider the non-generic subset excluded in Sect. 5.2.

Example 35 (Non-genericBianchi classAdevelopments). Let (G, ḡ, k̄, ρ0) beBianchi
orthogonal perfect fluid initial data in the sense of Definition 9. Assume that G is uni-
modular and that ρ0 > 0. If G is not of type IX, assume that 2/3 < γ < 2. If G is
of type IX, assume that 1 ≤ γ < 2. Let (M, g) be the corresponding Bianchi class
A development; cf. Sect. 3.1. If G is of type IX, the corresponding development has a
monotone volume singularity both to the future and to the past. Fix, in that case, one
monotone volume singularity, say t−. If G is not of type IX, then the development can
be assumed to be past causally geodesically incomplete and future causally geodesically
complete. Moreover, t− is a monotone volume singularity. Fix a bounded ϕ0 depending
only on t . Next, we consider two cases:
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• Assume the asymptotics in the direction of the monotone volume singularity t− to be
such that the Wainwright-Hsu variables converge to one of the Pi (I I ), i = 1, 2, 3.
Then the conditions of Proposition 31 are satisfied with q∞ = (3γ − 2)/2 and
η0 = 3q∞/2. In particular, if γ ≤ 6/5, then ηc ≤ 1 and the first conclusion of the
proposition holds. If 6/5 < γ < 2, then the second conclusion holds.

• Assume the asymptotics in the direction of the monotone volume singularity t− to
be such that the Wainwright-Hsu variables converge to the fixed point F . Then the
conditions of Proposition 31 are satisfied with q∞ = (3γ − 2)/2 and η0 = 2q∞. In
particular, if γ ≤ 10/9, then ηc ≤ 1 and the first conclusion of the proposition holds.
If 10/9 < γ < 2, then the second conclusion holds.

We justify the above statements in Sect. 16 below.

Remark 36. Isotropic Bianchi type I backgrounds are also discussed in [AFaF]. Note
that these backgrounds correspond to the fixed point F itself. In that case, the metric
coefficients are explicit functions of proper time. In [AFaF], the question of blowup of
solutions is also addressed. We return to this topic in Sect. 8 below.

7. A Non-silent Example

In order to contrast the asymptotics derived in the present paper with the non-silent
setting, it is of interest to describe the asymptotics of solutions to the Klein–Gordon
equation in the case of a flat Kasner background. Here, we therefore consider

gfK := −dt ⊗ dt + t2dx ⊗ dx + dy ⊗ dy + dz ⊗ dz (39)

onMfK := T
3×(0,∞). In this case the Klein–Gordon equation�gu−m2u = 0 (where

m is a constant) can be written

t∂t (tut ) − uxx − t2uyy − t2uzz + m2t2u = 0.

On the other hand, the logarithmic volume density corresponding to (39) is τ = ln t/3.
With respect to this time coordinate, the Klein–Gordon equation takes the form

uττ − 9uxx − 9e6τuyy − 9e6τuzz + 9m2e6τu = 0.

When analysing the asymptotics in the direction τ → −∞, it is convenient to divide a
given solution, say u, into two parts: u = ua + ub, where

ua(x, y, z, τ ) := 1

2π

∫ 2π

0
u(x ′, y, z, τ )dx ′;

here we think of T3 as being [0, 2π ]3 with the ends identified. Due to arguments similar
to those presented in [Rin, Example 4.19, pp. 41–42] and [Rin, Example 4.20, pp. 42–43],
there are functions ua,i ∈ C∞(T2,R), i = 0, 1, such that

∂τua − ua,1, ua(·, τ ) − ua,1τ − ua,0

converge to zero exponentially in any Ck norm. In fact, there is a homeomorphism
between the initial data to x-independent solutions to the Klein–Gordon equation and
the functions ua,i , i = 0, 1.
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Turning to ub, an argument similar to that presented in [Rin, Section 5.5, pp. 56–57]
ensures that there is a unique corresponding Ub ∈ C∞(T3 × R,R) with the following
properties: Ub solves the equation uττ − 9uxx = 0;

1

2π

∫ 2π

0
Ub(x

′, y, z, τ )dx ′ = 0

for all τ ; and

∂τub − ∂τUb, ub −Ub

converge to zero exponentially in any Ck norm as τ → −∞. In fact, there is a homeo-
morphism in the C∞-topology corresponding to the map from the initial data for ub to
the initial data for Ub.

Returning to the solution u to the Klein–Gordon equation, it follows that there are
functions ua,i ∈ C∞(T2,R), i = 0, 1, and aUb ∈ C∞(T3×R,R), solving the equation
Uττ − 9Uxx = 0 and with zero mean value in the x-direction, such that

∂τu − ∂τUb − ua,1, u −Ub − ua,1τ − ua,0

converge to zero exponentially with respect to any Ck-norm. Moreover, there is a home-
omorphism (in the C∞-topology) taking the initial data of u to ua,0, ua,1 and the initial
data for Ub. One particular consequence of the above observations is that uτ does, in
general, not converge. Moreover, σ and τ are, in the present setting, related by an affine
transformation, so that uσ also does not converge in the present setting.

8. Blow Up of Solutions

In [AFaF], the authors discuss the question of blow up of solutions to the wave equation
on certainBianchi type I backgrounds; cf. Remark 36. It is conceivable that the arguments
presented in the present paper could also be used to derive blow up criteria. However,
we here focus on conclusions that follow from [Rin]. The reason for this is that applying
the methods of [Rin] give an indication of what it would be desirable to prove more
generally. Here we restrict ourselves to the special case of the Klein–Gordon equation
(1) on non-flat Kasner backgrounds (where we allowm = 0 as well as purely imaginary
m). In particular, we assume the background metric to be given by

g = −dt ⊗ dt +
∑n

i=1t
2pi dxi ⊗ dxi

on Tn × (0,∞), where 2 ≤ n ∈ Z. Here the pi are constants satisfying∑n
i=1 pi = ∑n

i=1 p
2
i = 1

and the non-flatness condition corresponds to the requirement that pi < 1 for all i .
Letting τ := − ln t , the Klein–Gordon equation on these backgrounds can be written

uττ − ∑d
i=1e

2βi τuii + m2e−2τu = 0 (40)

on Mcon := T
n ×R, wherem is a constant and βi = pi −1 < 0. The reader interested in

a justification of this statement is referred to [Rin, Example 4.20, pp. 42–43]. Note that
the choice of time coordinate is such that τ → ∞ corresponds to the singularity. Letμ be
the smallest of the−βi . Then, given s and a smooth solution u to (40), there is a constant
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Cs (depending only on s, the coefficients of the equation and the solution); a constant N
(depending only on the coefficients of the equation); and functions v∞, u∞ ∈ C∞(Tn)

such that ∥∥∥∥
(

u(·, τ )

uτ (·, τ )

)
−

(
v∞τ + u∞

v∞

)∥∥∥∥
(s)

≤ Cs〈τ 〉Ne−2μτ (41)

for all τ ≥ 0. Note that the v∞ appearing in (41) corresponds to the AKasner appearing in
[AFaF, Theorem 1.1]. Due to [Rin, Example 4.20, pp. 42–43], there is a homeomorphism
(with respect to the C∞-topology) taking [u(·, 0), uτ (·, 0)] to (v∞, u∞), let us denote it
by �∞. However, this statement can be improved substantially. In fact, for every s ∈ R

and ε > 0, �∞ extends to a bounded linear map

�∞,s,ε : H (s+1/2+ε)(Tn) × H (s−1/2+ε)(Tn) → H (s)(Tn) × H (s)(Tn); (42)

cf. Sect. 17.3 below for a justification of this statement. Note, in particular, that even if
uτ (·, 0) only belongs to H (s−1/2+ε)(Tn), it follows from the continuity of �∞,s,ε that

v∞ = lim
τ→∞ uτ (·, τ ) ∈ H (s)(Tn).

In other words, the limit of uτ is in general more regular than the initial datum for uτ ,
and the gain is, essentially, half a derivative. Let �∞ := �−1∞ . Then, for every s ∈ R

and ε > 0, �∞ extends to a bounded linear map

�∞,s,ε : H (s+1/2+ε)(Tn) × H (s+1/2+ε)(Tn) → H (s+1)(Tn) × H (s)(Tn); (43)

cf. Sect. 17.3 below for a justification of this statement. Combining (42) and (43) yields
the conclusion that the regularity properties of both �∞,s,ε and �∞,s,ε are essentially
optimal (up to the loss of an ε).

L2-blow up. Turning to blow up criteria, there is, for every ε > 0, a subset, say Aε ,
of the set of smooth initial data. This set is open with respect to the H (1/2+ε)(Tn) ×
H (−1/2+ε)(Tn)-topology and dense with respect to the C∞-topology. Moreover, if u
is a solution arising from initial data in Aε , then the corresponding v∞ is such that
‖v∞‖L2 > 0, and ‖u(·, τ )‖L2 → ∞ as τ → ∞. The reader interested in a justification
of these statements is referred to Sect. 17.3 below. For comparison, note that [AFaF,
Theorem 1.2] yields an open criterion ensuring that ‖v∞‖L2 > 0. However, the openness
is with respect to the H2(Tn) × H1(Tn)-topology on initial data. It is of course not
necessary to restrict one’s attention to smooth initial data; we encourage the interested
reader to derive the relevant statements in lower regularity.

C1-blow up.Next, let us formulate a criterion ensuringC1-blow up of the solution. First,
let C be the subset of C∞(Tn) such that ϕ ∈ C if and only if dϕ(x̄) �= 0 for every x̄ such
that ϕ(x̄) = 0. Then there is, for every ε > 0, a subset, sayBε , of the set of smooth initial
data. This set is open with respect to the H ((n+3)/2+ε)(Tn) × H ((n+1)/2+ε)(Tn)-topology
and dense with respect to the C∞-topology. Moreover, if u is a solution arising from
initial data in Bε , then the corresponding v∞ belongs to C. In particular, �∞ := v−1∞ (0)
is a smooth hypersurface in Tn . Moreover, if x̄ /∈ �∞, then |u(x̄, τ )| → ∞ as τ → ∞.
If, on the other hand, x̄ ∈ �∞, then |d̄u(x̄, τ )|ḡ0 → ∞ as τ → ∞. Here d̄ is the spatial
d-operator; in other words, we consider u to be a function of the spatial variable only
and calculate the differential on T

n . Moreover, ḡ0 is the standard Riemannian metric
on T

n . The conclusion is thus that at a given x̄ ∈ T
n , either u blows up, or the spatial

derivative of u blows up. Again, it is of course not necessary to restrict one’s attention
to smooth initial data.
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Comparison. Comparing (in the special case of (40)) the methods and results of [AFaF]
and the present paper with those of [Rin], it is clear that the methods used in the first two
papers have an advantage in that one would expect them to be more robust. On the other
hand, it is unclear how to use energy-type methods to prove continuity results such as
(42). In order to emphasize the importance of this continuity, note the following:

• The limit of uτ determines the blow up of solutions.
• Using the results of [Rin], the limit of uτ is roughly half a derivative more regular
than the initial data for the first derivatives.

• Due to (42) and (43), the gain of half a derivative can be expected to be, essentially,
optimal.

It would of course be desirable to obtain continuity as in (42) using energy-typemethods.
We leave this as an open problem. The interested reader is also encouraged to apply the
methods of [Rin, Chapter 8] to the Klein–Gordon equation on other Bianchi type I
backgrounds.

9. Geometric Background Material

In this section, we collect background information concerning the geometry that will be
of importance in what follows.

9.1. The Raychaudhuri equation. In the analysis of the asymptotic behaviour in the
direction of the singularity, �i

j := σ̄ i
j/θ and θ̇/θ2 play a central role; here we use

the notation introduced in (10) and Latin indices are raised and lowered with ḡ. In the
present subsection, we focus on the second of these objects.

Lemma 37. Let (M, g) be a Bianchi spacetime satisfying the Einstein equations (8).
Then

−3
θ̇

θ2
= 1 + q, (44)

where we use the notation introduced in (11) and (13).

Remark 38. With respect to the time coordinate τ , (44) can be written

θ ′ = −(1 + q)θ, (45)

where θ ′ := ∂τ θ .

Proof. Note, first of all, that

k̄i j := k̄(ei , e j ) = 〈∇ei ∂t , e j 〉 = 1

2
ȧi j , (46)

where 〈·, ·〉 := g. Raising indices with ai j , this relation implies that ȧm j = 2ami k̄i j . It
can also be calculated that

∂t k̄lm = 2k̄il k̄mi − (trḡ k̄)k̄lm + Rlm − R̄lm,
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where Rlm and R̄lm are the lm’th components of the Ricci curvatures of the spacetime
and hypersurface respectively; cf., e.g., [RinSta, (25.12), p. 438]. On the other hand,
(46) yields ȧ jl = −2k̄ jl . Combining these two observations yields

∂t k̄
j
m = −(trḡ k̄)k̄

j
m + a jl Rlm − a jl R̄lm .

In particular,

θ̇ = −θ2 + R00 + S − S̄,

where R00 is the 00 component of the spacetime Ricci curvature and S and S̄ are the
scalar curvatures of the spacetime and hypersurface respectively. Taking the trace of (8)
yields

S = 4� − trT = 4� + T00 − ai j Ti j , (47)

where Tαβ := T (eα, eβ). Combining this observation with (8) yields

R00 + S = T00 + � +
1

2
S = 3

2
(ρ − p̄ + 2�),

where we used the terminology introduced in (9). Summarising,

θ̇ = −θ2 − S̄ + 3� +
3

2
(ρ − p̄). (48)

On the other hand, the Hamiltonian constraint reads

1

2
[S̄ − k̄i j k̄i j + (trḡ k̄)

2] − � = ρ.

This equality can be rewritten

S̄ = σ̄ i j σ̄i j − 2

3
θ2 + 2� + 2ρ. (49)

Combining this observation with (48) yields the conclusion of the lemma. ��

9.2. Geometric estimates. Before proceeding, it is of interest to develop some intuition
concerning the matrix with components 2δim − 3�i

m . The reason for this is that this
object appears in the basic energy estimate, cf. (70) below.

Lemma 39. Let (M, g) be a Bianchi spacetime. Assume, moreover, that g solves (8),
that ρ ≥ 0 and that � ≥ 0. Then for all v ∈ R

3 and t ∈ I such that θ(t) �= 0,

(2δim − 3�i
m)amjviv j ≥ −3

2

S̄+
θ2

ai jviv j , (50)

where S̄+ is the positive part of the spatial scalar curvature S̄; i.e., S̄+ := max{S̄, 0}.
Remark 40. Only Bianchi type IX is consistent with S̄ > 0. In other words, only if the
universal covering group of the Lie group G appearing in Definition 1 is isomorphic
to SU(2) can S̄ be strictly positive. For a proof of this statement, see, e.g., [RinSta,
Appendix E].
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Proof. Note, to begin with, that the Hamiltonian constraint can be written

1 = 3

2
�i j�i j − 3

2

S̄

θ2
+ �� + �ρ; (51)

cf. (49).On the other hand, sinceρ,� ≥ 0,weknow that��,�ρ ≥ 0.As a consequence,
� satisfies the estimate

�i
j�

j
i = �i j�i j ≤ 2

3
+
S̄+
θ2

= 2

3
+ γS̄ (52)

where γS̄ is defined by (21) and we used the fact that � is symmetric. Note that � can
be considered to be an element of Hom(TG). Moreover, this element is symmetric with
respect to the inner product defined by ḡ. In particular, there are thus real eigenvalues λl ,
l = 1, 2, 3, and corresponding eigenvectors vl such that �i

kv
k
l = λlv

i
l (no summation

on l). Moreover, if λ1 ≤ λ2 ≤ λ3, then

λ1ai jv
iv j ≤ ai j�

i
kv

kv j ≤ λ3ai jv
iv j .

Note also that the matrix with components �k
j�

j
i has eigenvectors vl , but eigenvalues

λ2l . Thus (52) implies that

λ21 + λ22 + λ23 ≤ 2

3
+ γS̄ . (53)

The sum of the λl ’s vanishes, since � is trace free. We therefore focus on

λ+ := 3

2
(λ2 + λ3), λ− :=

√
3

2
(λ2 − λ3).

Using this terminology, the estimate (53) can be written

λ2+ + λ2− ≤ 1 +
3

2
γS̄ .

In particular, 9λ21 = 4λ2+ ≤ 4 + 6γS̄ . Similarly,

9λ22 = (λ+ +
√
3λ−)2 = λ2+ + 2

√
3λ+λ− + 3λ2− ≤ 4(λ2+ + λ2−) ≤ 4 + 6γS̄ .

The estimate for λ3 is similar, so that

3�i
ma

mjviv j = 3ail�
i
m(amjv j ) · (alkvk) ≤ 3λ3ai j (a

ikvk)(a
jlvl) = 3λ3a

i jviv j

≤ (2 + 3γS̄/2)a
i jviv j .

In particular,

(2δim − 3�i
m)amjviv j ≥ −3γS̄a

i jviv j/2.

The lemma follows. ��
There is a related upper bound on q which we simply state as a remark.

Remark 41. Due to the definition of q and (51), it follows that

q = 2 + 3
S̄

θ2
+
3

2
(� p̄ − �ρ − 2��).

Here, we are mainly interested in the case that � ≥ 0 and ρ ≥ p̄ (note that the latter
inequality follows from the dominant energy condition). In that case,

q − 2 ≤ 3γS̄ .
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9.3. Partial integration. The analysis of the asymptotic behaviour of solutions is based
on a study of energies. In order to evaluate how the energies evolve, we need to integrate
by parts. In that context, the following simple observation is useful.

Lemma 42. Let G be a connected Lie group, X ∈ g and h be a left invariant Riemannian
metric on G. Then there is a constant cX such that for every f ∈ C∞

0 (G),

∫
G
X ( f )μh = 2cX

∫
G

f μh . (54)

Moreover,

cX = ξG(X),

where ξG : g → R is defined by (15). In particular, if G is a unimodular Lie group, then
cX = 0.

Remark 43. The notation f ∈ C∞
0 (G) signifies that f is a smooth function from G to

R with compact support.

Proof. Note, to begin with, that

∫
G
X ( f )μh =

∫
G
LX ( f μh) −

∫
G

f LXμh

=
∫
G
d[iX ( f μh)] −

∫
G

f (divh X)μh = −
∫
G

f (divh X)μh, (55)

where we used Cartan’s magic formula and Stokes’s theorem. Next, let {ēi } be an or-
thonormal frame of the Lie algebra (relative to h). Then

divh X = ∑
i h(∇h

ēi
X, ēi ) = ∑

i h(ēi , [ēi , X ]) = −∑
i h(ēi , adX ēi ) = −2ξG(X),

where ∇h is the Levi-Civita connection associated with h. In particular, cX := ξG(X)

is a constant, and the statements of the lemma follow. ��

9.4. Causal structure. As a first step in the study of the Klein–Gordon equation, we
wish to know that there is a unique solution corresponding to initial data specified on a
hypersurface Gt . The following results ensure that this is the case.

Lemma 44. Let (M, g) be a Bianchi spacetime. Then (M, g) is globally hyperbolic, and
each Gt , t ∈ I , is a Cauchy hypersurface.

Proof. The statement follows by an argument which is essentially identical to that pre-
sented at the end of the proof of [RinCau, Proposition 20.3, p. 215]; cf. [RinCau, p. 217].

��
Due to this observation, we can solve the Klein–Gordon equation on a Bianchi space-

time. In fact, the following result holds.



624 H. Ringström

Corollary 45. Let (M, g) be a Bianchi spacetime and ϕi ∈ C∞(M), i = 0, 1. Then,
given ui ∈ C∞(G), i = 0, 1, and t0 ∈ I , there is a unique smooth solution to

�gu + ϕ0u = ϕ1, (56)

u(·, t0) = u0, (57)

ut (·, t0) = u1. (58)

Assume, moreover, that the ui have compact support and that for every compact interval
J ⊂ I , the support of ϕ1|G×J is compact. Then the solution to (56)–(58) is such that for
every compact interval J ⊂ I , the support of u|G×J is compact.

Proof. That there is a unique smooth solution to (56)–(58) follows, e.g., from [RinCau,
Theorem 12.19, p. 144]. Next, let J ⊂ I be a compact interval and assume, without loss
of generality, that t0 ∈ J . Let

K := suppϕ1|G×J ∪ (suppu0 × {t0}) ∪ (suppu1 × {t0}).
Then, due to the global hyperbolicity of (M, g),

K1 := J+(K ) ∩ Gt0

is compact; cf., e.g., [RinSta, Lemma 21.6, p. 361]. LetU1 ⊆ G be the open subset such
that K1 = (G −U1) × {t0}. Defining ta and tb by J = [ta, tb], let, moreover,

K2 := J−(K1) ∩ J+(Gta ).

Note that K2 is a compact subset of G ×[ta, t0]; cf., e.g., [RinSta, Lemma 21.6, p. 361].
Assume that p ∈ G × [ta, t0] does not belong to K2. We then wish to prove that

p ∈ D−(U1 × {t0}). Assume, to this end, that γ is a future inextendible causal curve
through p that does not meet U1 × {t0}. Since Gt0 is a Cauchy surface, there is an s0 in
the domain of definition of γ such that γ (s0) ∈ Gt0 . Since γ does not meet U1 × {t0},
we conclude that γ (s0) ∈ K1. In particular, p ∈ J−(K1), so that p ∈ K2. This is a
contradiction. Thus p ∈ D−(U1 × {t0}).

Next, we wish to prove that ϕ1 vanishes in D−(U1 × {t0}) ∩ J+(Gta ). Assume, to
this end, that p belongs to this set and that ϕ1(p) �= 0. Then p ∈ K , and every future
inextendible curve through p intersects K1. In particular, there is a future inextendible
causal curvewhich does not intersectU1×{t0}. Thus p /∈ D−(U1×{t0}), a contradiction.

Combining the aboveobservationswith [RinCau,Corollary 12.14, p. 141] and [RinCau,
Remark 12.15, p. 141] yields the conclusion that the support of u|G×[ta ,t0] is contained
in K2. The argument concerning u|G×[t0,tb] is similar, and the corollary follows. ��

Consider a silent geometry; i.e., assume that (6) is satisfied. Then the following holds.

Lemma 46. Let (M, g) be a Bianchi spacetime. Assume t− to be a silent monotone
volume singularity. Then for every compact K0 ⊆ G, there is a compact subset K1 of
G such that

J−(K0 × {t0}) ⊆ K1 × (t−, t0]. (59)

Similarly, for every compact K0 ⊆ G, there is a compact subset K1 of G such that

J+(K0 × (t−, t0]) ∩ J−(Gt0) ⊆ K1 × (t−, t0]. (60)

In particular,
K0 × (t−, t0] ⊆ D−(K1 × {t0}). (61)
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Proof. Ifλmin(t) > 0 is the smallest eigenvalueofa(t), then‖a−1/2(t)‖ = [λmin(t)]−1/2;
note that a is a symmetric matrix. In particular, if γ is a causal curve such that γ (t) =
[γ̄ (t), t] and the ˙̄γ i are defined by γ̇ = ∂t + ˙̄γ i ei , then 0 ≥ −1 + ai j ˙̄γ i ˙̄γ j . As a conse-
quence,

| ˙̄γ (t)|h ≤ ‖a−1/2(t)‖.
In particular, the length of γ̄ |(t−,t0] with respect to h (defined by (18)) is bounded. Since
h is a complete Riemannian metric, it follows that if K0 ⊂ G is a compact set, then there
is a compact subset K1 of G such that (59) holds. The proof of the second statement is
similar. In order to prove (61), let p ∈ K0 × (t−, t0] and let γ be a future inextendible
causal curve through p. Since Gt0 is a Cauchy hypersurface, γ intersects Gt0 . The
intersection point belongs to the left hand side of (60). Thus, due to (60), the intersection
point belongs to K1 × {t0}. To conclude: every future inextendible causal curve through
p intersects K1 × {t0}. Thus p ∈ D−(K1 × {t0}) and (61) follows. ��

10. Conformal Rescaling

The analysis is simplified by writing down the Klein–Gordon equation with respect to a
conformally rescaled metric. In fact, in analogy with the arguments presented in [Rin,
Section 1.3, pp. 8–13], it is convenient to multiply the metric with the mean curvature
squared. It is also convenient to change the time coordinate. In what follows, we use the
following rescaling.

Lemma 47. Let (M, g) be a Bianchi spacetime with a monotone volume singularity t−.
Then τ : I0 → I0 is a diffeomorphism, where I0 := (t−, t0), I0 := (−∞, τ0) and
τ0 := τ(t0). Moreover, if ĝ := θ2g/9, then ĝ is a Lorentz metric on M0 := G × I0 and

ĝ = −dτ ⊗ dτ + âi j (τ )ξ i ⊗ ξ i , (62)

where âi j = θ2ai j/9.

Remark 48. In the statement of the lemma, we use the terminology introduced in Defi-
nitions 1 and 2.

Proof. Note that dτ = (θ/3)dt and that θ > 0 on I0. The lemma follows. ��

11. The Klein–Gordon Equation on a Bianchi Spacetime

Next, let us formulate the Klein–Gordon equation with respect to the conformally
rescaled metric introduced in Lemma 47.

Lemma 49. Let (M, g) be a Bianchi spacetime with a monotone volume singularity t−.
Then, on M0 introduced in Lemma 47, the equation

�gu + ϕ0u = ϕ1 (63)

can be written

−uττ + âi j ei [e j (u)] + (q − 2)uτ − 2X0(u) + ϕ̂0u = ϕ̂1, (64)
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where q is defined by (13),

X0 := ξ
�
G = 1

2
âilγ j

l j ei , (65)

ξG is given by (15), the constants γ i
jk are defined by [e j , ek] = γ i

jkei and ϕ̂i := 9θ−2ϕi

for i = 0, 1. Here the operator � is calculated with respect to ǧ, where ǧ is the metric
induced on Gt by ĝ; i.e., for all Y ∈ g,

ǧ(ξ �
G,Y ) = ξG(Y ).

Remark 50. In the statement, we use the terminology introduced in Lemma 47 as well
as in Definitions 1 and 2.

Remark 51. The unimodular Lie groups are characterised by the property that X0 = 0.
In particular, for Bianchi class A, X0 = 0 and for Bianchi class B, X0 �= 0.

Proof. Let � = θ/3. It can then be calculated that

�−2�gu = �ĝu − 2ĝ(gradĝ ln�, gradĝu).

Here,

ĝ(gradĝ ln�, gradĝu) = ĝαβ∂α ln�∂βu = −∂τ ln(θ/3)uτ = (1 + q)uτ ,

wherewe appealed to (45) in the last step. Next, if {eα} is the frame consisting of e0 := ∂τ

combined with the {ei }, then
�ĝu = ĝαβeα[eβ(u)] − �̂αeα(u),

where �̂α is defined by the relations

∇̂eαeβ = �̂
γ
αβeγ , �̂γ := ĝαβ�̂

γ
αβ

and ∇̂ is the Levi-Civita connection associated with ĝ. Note that

�̂0
αβ = −〈∇̂eαeβ, e0〉,

where 〈·, ·〉 = ĝ. In particular, �̂0
00 = 0 and

�̂0
i j = 1

2
∂τ 〈ei , e j 〉 = 1

2
∂τ âi j .

On the other hand, (46) can be written ȧm j = 2ami k̄i j , so that

∂τamj = 6ami

(
�i

j +
1

3
δij

)
.

Combining this observation with (45) yields

∂τ âm j = 6âmi

(
�i

j − 1

3
qδij

)
. (66)
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Thus

�̂0 = −�̂0
00 + âi j �̂0

i j = âi j
1

2
· 6âil

(
�l

j − 1

3
qδlj

)
= −3q,

where we used the fact that � j
j = 0. Next, note that

�̂i
αβ = âi j 〈∇̂eαeβ, e j 〉.

Thus

�̂i
00 = âi j 〈∇̂e0e0, e j 〉 = −âi j 〈e0, ∇̂e0e j 〉 = −âi j 〈e0, ∇̂e j e0〉 = 0.

Moreover, the Koszul formula yields

�̂i
jk = âil〈∇̂e j ek, el〉 = 1

2
âil(−γm

kl â jm + γm
l j âkm + γm

jk âlm),

where the constants γ i
jk are defined by [e j , ek] = γ i

jkei . In particular, it can thus be
computed that

�̂i = â jk�̂i
jk = âilγ j

l j .

In order to calculate which vector field the �̂i correspond to, let Y ∈ g, Y = Y lel and
compute

〈�̂i ei ,Y 〉 = âilγ j
l j âimY

m = γ
j
l j Y

l .

On the other hand, if we define ξG,i := ξG(ei ) (so that ξG = ξG,iξ
i ), then

ξG,i = 1

2
tr adei = 1

2
γ

j
i j .

Thus

ξG(Y ) = ξG,iξ
i (Y ) = 1

2
γ

j
i j Y

i = 1

2
〈�̂i ei ,Y 〉.

Thus, defining X0 by the first relation in (65), the second relation in (65) follows.
Moreover, �̂i ei = 2X0. To conclude,

−�̂αeα(u) = 3quτ − 2X0(u).

Combining the above observations yields the conclusion of the lemma. ��
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11.1. Additional change of time coordinate. The form of the Eq. (64) indicates that it
would be of interest to change time coordinate according to

dσ

dτ
= Cσ exp

(
−

∫ 0

τ

(q − 2)dτ ′
)

(67)

for some Cσ > 0. In fact, with respect to such a time coordinate, (64) takes the form

−uσσ + ǎi j ei [e j (u)] − 2X̌0(u) + ϕ̌0u = ϕ̌1, (68)

where

ǎi j :=C−2
σ exp

(
2

∫ 0

τ

(q − 2)dτ ′
)
âi j , ϕ̌0 := C−2

σ exp

(
2

∫ 0

τ

(q − 2)dτ ′
)

ϕ̂0,

X̌0 :=C−2
σ exp

(
2

∫ 0

τ

(q − 2)dτ ′
)
X0, ϕ̌1 := C−2

σ exp

(
2

∫ 0

τ

(q − 2)dτ ′
)

ϕ̂1.

On the other hand, if σ satisfies (5), then

dσ

dτ
= dσ

dt

dt

dτ
= 1

3
(det a)−1/2 3

θ
= [θ(0)]−1 exp

(
−

∫ 0

τ

(q − 2)dτ ′
)

, (69)

where we appealed to (4), (5) and (45). In particular, a time coordinate σ satisfying (5)
is of the desired type. In the applications, the following observation is of interest.

Lemma 52. Let (M, g) be a Bianchi spacetime with a monotone volume singularity
t−. Assume that g solves (8); that ρ ≥ p̄; that ρ ≥ 0; and that � ≥ 0. Assume that
γS̄ ∈ L1(−∞, 0], where γS̄ is given by (21). Then σ → −∞ corresponds to τ → −∞.

Remark 53. The assumption γS̄ ∈ L1(−∞, 0] is automatically fulfilled for all Bianchi
types except IX.

Proof. Due to Remark 41, we know that q − 2 ≤ 3γS̄ . Combining this estimate with
the assumptions, it is clear that (q − 2)+ ∈ L1(−∞, 0]. In particular, (67) implies that
dσ/dτ ≥ c0 for all τ ≤ 0 and some c0 > 0. Thus, using the fact that σ(0) = 0 (cf. the
requirement following (5)),

−σ(τ) ≥ −c0τ

for all τ ≤ 0, so that σ(τ) → −∞ as τ → −∞. On the other hand, due to (67), the
only way for σ to tend to −∞ is if τ → −∞. The lemma follows. ��

12. The Basic Energy

Next, we analyse how the energy (17) evolves over time. Assume, to this end, ϕ1|G×J
to have compact support for every compact interval J ⊂ I . Next, fix an f with the
properties stated in connection with (17) and let h be given by (18). Given a solution
u to (64) corresponding to initial data at τ = 0 that are compactly supported on G,
define E[u] by (17); recall that we, without loss of generality, can assume τ0 > 0, cf.
Remark 3. Note that, due to Corollary 45, E[u] is well defined, smooth, and we are
allowed to differentiate under the integral sign. In what follows, we tacitly consider the
constituents of E[u], as well as E[u] itself, as depending on τ as opposed to t .
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Lemma 54. Let (M, g) be a Bianchi spacetime with a monotone volume singularity t−.
Let ϕi ∈ C∞(M), i = 0, 1, be given and assume ϕ1|G×J to have compact support for
every compact interval J ⊂ I . Let h be given by (18) and fix an f with the properties
stated in connection with (17). Let u be a solution to (63) corresponding to initial data
that are compactly supported onG.Finally, defineE[u] by (17), where all the constituents
are considered to be functions of τ . Then

∂τE[u] =
∫
G

[
(q − 2)[u2τ + âi j ei (u)e j (u)] + (2δim − 3�i

m)âm j ei (u)e j (u)
]
μh

+
∫
G

[
ϕ̂0uuτ − ϕ̂1uτ + f′fu2 + f2uuτ

]
μh . (70)

Remark 55. In the statement, we use the terminology introduced in Lemma 47 and
Definitions 1 and 2.

Remark 56. Considering (70), it is clear that the estimate (50) is of interest. Assume,
therefore, that g solves (8), that ρ ≥ 0 and that � ≥ 0. Then the second term in the
integrand (on the first line of the right hand side of (70)) is non-negative for all the
Bianchi types except IX (since S̄ ≤ 0 for all the Bianchi types except IX); cf. (50). In
the Bianchi type IX cases of interest here, the positive part of the scalar curvature, say
S̄+, is such that S̄+/θ2 decays exponentially as τ → −∞. Returning to (70), it is then
clear that the second term in the integrand (on the first line of the right hand side) does
not contribute to any significant growth of the energy as τ → −∞.

Proof. Time differentiating E[u] yields

∂τE[u] =
∫
G

[
uτuττ +

1

2
(∂τ â

i j )ei (u)e j (u) + âi j ei (u)e j (uτ ) + f′fu2 + f2uuτ

]
μh .

However,∫
G
âi j ei (u)e j (uτ )μh =

∫
G
e j

[
âi j ei (u)uτ

]
μh −

∫
G
âi j e j [ei (u)]uτμh

=
∫
G
2c j â

i j ei (u)uτμh −
∫
G
âi j e j [ei (u)]uτμh

=
∫
G
2X0(u)uτμh −

∫
G
âi j e j [ei (u)]uτμh,

where ci := ξG(ei ) and we appealed to (54); cf. Lemma 42 and the proof of Lemma 49.
Combining this observation with (64) yields

∂τE[u] =
∫
G

[
uτ

(
uττ − âi j e j [ei (u)] + 2X0(u)

)
+
1

2
(∂τ â

i j )ei (u)e j (u)

]
μh

+
∫
G

[
f′fu2 + f2uuτ

]
μh

=
∫
G

[
(q − 2)u2τ − (3�i

m − qδim)âm j ei (u)e j (u) + ϕ̂0uuτ − ϕ̂1uτ

]
μh

+
∫
G

[
f′fu2 + f2uuτ

]
μh,

where we appealed to (66). The lemma follows. ��
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Next, we give an example of an estimate of E that follows from the above calculations.

Corollary 57. Let (M, g) be a Bianchi spacetime with a monotone volume singularity
t−. Assume that g solves (8); that ρ ≥ p̄; that ρ ≥ 0; and that � ≥ 0. Let ϕ0 ∈ C∞(M)

be given and let ϕ1 := 0. Let h be given by (18) and fix an f with the properties
stated in connection with (17). Assume, moreover, that γS̄ , given by (21), satisfies γS̄ ∈
L1((−∞, 0]) and that there is a function fϕ̂ ∈ L1(−∞, 0] such that |ϕ̂0| ≤ fϕ̂f for
all τ ≤ 0. Then there is a constant C0 such that for every smooth solution u to (64)
corresponding to compactly supported initial data,

E[u](τ ) ≤ C0E[u](0) exp
[
2

∫ 0

τ

[2 − q(τ ′)]dτ ′
]

for all τ ≤ 0.

Remark 58. In the statement, we use the terminology introduced in Lemma 47 and
Definitions 1 and 2.

Remark 59. The constant C0 only depends on ‖f‖L1(−∞,0], ‖fϕ̂‖L1(−∞,0] and
‖γS̄‖L1(−∞,0].

Proof. Combining Lemmas 39, 54, Remark 41 and the assumptions, it follows that

∂τE ≥ 2(q − 2)E − γtotE
for all τ ≤ 0, where γtot ∈ L1((−∞, 0]). Moreover, ‖γtot‖L1(−∞,0] only depends on
‖f‖L1(−∞,0], ‖fϕ̂‖L1(−∞,0] and ‖γS̄‖L1(−∞,0]. The lemma follows. ��

13. Higher Order Energies

In order to estimate higher order energies, we apply eK to (64), where K is a vector field
multiindex; cf. Definition 6. We then appeal to Lemma 54. To be allowed to do so, we
need to calculate the commutator of eK with the operator defined by the left hand side
of (64).

13.1. Commutators. To begin with, we compute the commutator of ek and âi j ei e j :

âi j ekei e j = âi j [ek, ei ]e j + âi j ei eke j = âi jγ l
ki ele j + âi j ei [ek, e j ] + âi j ei e j ek

= âi jγ l
kiγ

m
l j em + âi jγ l

ki e j el + âi jγ l
k j ei el + âi j ei e j ek

= âi jγ l
kiγ

m
l j em + 2âi jγ l

ki e j el + âi j ei e j ek .

(71)

Next, we calculate the commutator [eK , âi j ei e j ].
Lemma 60. Let G be a 3-dimensional Lie group, {ei } be a basis of the Lie algebra
and âi j , i, j = 1, 2, 3, be the components of a symmetric matrix. Given a vector field
multiindex K with |K | ≥ 1, there are constants cK1

K ,i j and cK2
K , j (for all vector field

multiindices K1 and K2 with the property that |K1|, |K2| = |K |) such that

âi j eK ei e j = ∑
|K1|=|K |âi j c

K1
K ,i j eK1 +

∑
|K2|=|K |âi j c

K2
K , j ei eK2 + âi j ei e j eK . (72)
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Remark 61. The constants cK1
K ,i j and c

K2
K , j only depend on i , j , K1, K2, K and the structure

constants γ k
i j .

Proof. Note that, due to (71), (72) holds for |K | = 1. Assume, inductively, that there
is an l ≥ 1 such that (72) holds for |K | ≤ l. Given a vector field multiindex K such
that |K | = l + 1, there are K1 and i1 such that eK = ei1eK1 . Appealing to the inductive
assumption,

âi j eK ei e j = ∑
|Ka |=|K1|â

i j cKa
K1,i j

ei1eKa +
∑

|Kb|=|K1|â
i j cKb

K1, j
ei1ei eKb + âi j ei1ei e j eK1 .

(73)
The first term on the right hand side is already of a form consistent with the inductive
hypothesis. Since

âi j cKb
K1, j

ei1ei eKb = âi j cKb
K1, j

γ l
i1i eleKb + âi j cKb

K1, j
ei ei1eKb

and both of the terms appearing on the right hand side of this equality are of a form
consistent with the inductive hypothesis, the second term appearing in (73) can be han-
dled. In order to demonstrate that the last term on the right hand side of (73) can be
rewritten in the desired form, it is sufficient to appeal to (71). To conclude, the inductive
hypothesis holds for all l ≥ 1. ��
Computing [eK , X0]. Finally, before applying eK to the equation, we need to compute
the commutator of eK and X0. Note, to this end, that

ek X0 = 1

2
âilγ j

l jγ
m
ki em + X0ek, (74)

where we appealed to (65). We wish to prove that, given a vector field multiindex K ,
there are constants dK1

K ,i j (for all vector field multiindices K1 with |K1| = |K | and all
i, j = 1, 2, 3) such that

eK X0 = ∑
|K1|=|K |âi j d

K1
K ,i j eK1 + X0eK . (75)

Due to (74), we know that (75) holds for |K | = 1.Assuming (75) to hold for |K | = l ≥ 1,
it can be demonstrated that it holds for |K | = l+1; the argument is similar to, but simpler
than, the proof of Lemma 60. Thus (75) holds for all |K | ≥ 1.

13.2. Higher order energy estimates. Fixing a vector field multiindex K and applying
eK to (64) yields (assuming ϕ0 to only depend on t)

−(eK u)ττ + âi j ei e j (eK u) + (q − 2)(eK u)τ − 2X0(eK u) + ϕ̂0eK u = ϕ̂1,K , (76)

where
ϕ̂1,K :=

[
âi j ei e j , eK

]
u + 2[eK , X0]u + eK (ϕ̂1). (77)

Lemma 62. Let (M, g) be a Bianchi spacetime with a monotone volume singularity t−.
Let ϕi ∈ C∞(M), i = 0, 1, be given and assume ϕ1|G×J to have compact support for
every compact interval J ⊂ I . Assume, moreover, ϕ̂0 to only depend on τ . Let h be
given by (18) and fix an f with the properties stated in connection with (17). Given a
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smooth solution u to (64) corresponding to initial data that are compactly supported on
G, define El [u] by (20). Then

∂τEl [u] =
∫
G

∑
|K |≤l(q − 2)

[
(eK u)2τ + âi j ei eK (u)e j eK (u)

]
μh

+
∫
G

∑
|K |≤l

[
(2δim − 3�i

m)âm j ei eK (u)e j eK (u) + ϕ̂0eK (u)(eK u)τ
]
μh

+
∫
G

∑
|K |≤l

∑
|K1|=|K |âi j c

K1
K ,i j eK1(u)(eK u)τμh

+
∫
G

∑
|K |≤l

∑
|K2|=|K |âi j c

K2
K , j ei eK2(u)(eK u)τμh

+
∫
G

∑
|K |≤l

[−eK (ϕ̂1)(eK u)τ + f′f[eK (u)]2 + f2eK (u)(eK u)τ
]
μh,

(78)

where cK1
K ,i j and c

K2
K , j are constants only depending on i , j , K1, K2, K and the structure

constants γ k
i j .

Remark 63. In the statement, we use the terminology introduced in Lemma 47 and
Definitions 1 and 2.

Proof. We wish to apply Lemma 54 to (76). In order to be allowed to do so, we need
to verify that the function corresponding to ϕ1 in Lemma 54 satisfies the stated require-
ments. However, this follows from the assumptions of the present lemma and Corol-
lary 45. Appealing to Lemma 54, it can be calculated that

∂τEl [u] =
∫
G

∑
|K |≤l(q − 2)

[
(eK u)2τ + âi j ei eK (u)e j eK (u)

]
μh

+
∫
G

∑
|K |≤l

[
(2δim − 3�i

m)âm j ei eK (u)e j eK (u) + ϕ̂0eK (u)(eK u)τ
]
μh

+
∫
G

∑
|K |≤l

[−ϕ̂1,K (eK u)τ + f′f[eK (u)]2 + f2eK (u)(eK u)τ
]
μh .

We need to consider the term −ϕ̂1,K (eK u)τ appearing in the integrand more carefully.
Due to (72), (75) and (77),

−ϕ̂1,K (eK u)τ = ∑
|K1|=|K |âi j c

K1
K ,i j eK1(u)(eK u)τ

+
∑

|K2|=|K |âi j c
K2
K , j ei eK2(u)(eK u)τ − eK (ϕ̂1)(eK u)τ .

Combining the last two observations yields the desired result. ��
Due to (78), we obtain a result analogous to Corollary 57.

Corollary 64. Let (M, g) be a Bianchi spacetime with a monotone volume singularity
t−. Assume that g solves (8); that ρ ≥ p̄; that ρ ≥ 0; and that � ≥ 0. Let ϕ0 ∈ C∞(M)

be such that it only depends on t and let ϕ1 := 0. Let h be given by (18) and fix an f with
the properties stated in connection with (17). Assume that γS̄ , given by (21), satisfies
γS̄ ∈ L1(−∞, 0]; and that there is a function fϕ̂ ∈ L1(−∞, 0] such that |ϕ̂0| ≤ fϕ̂f for
all τ ≤ 0. Finally, assume that there is a function fa ∈ L1(−∞, 0] such that ‖â−1‖ ≤ faf,
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where â−1 is the matrix with components âi j . Then there is a constant Cl such that for
every smooth solution u to (64) corresponding to compactly supported initial data,

El [u](τ ) ≤ ClEl [u](0) exp
[
2

∫ 0

τ

[2 − q(τ ′)]dτ ′
]

(79)

for all τ ≤ 0.

Remark 65. The constant Cl only depends on l, the structure constants associated with
{ei }, ‖f‖L1(−∞,0], ‖fϕ̂‖L1(−∞,0], ‖fa‖L1(−∞,0] and ‖γS̄‖L1(−∞,0].

Remark 66. Under the assumptions of the lemma,

∫
G

∑
|K |≤l(eK u)2σ μh ≤ 2C−2

σ ClEl [u](0) (80)

for all σ ≤ 0; cf. (67).

Proof. Consider (78). Under the conditions of the present corollary, we wish to demon-
strate that the right hand side can be estimated from below by

2(q − 2)El − γ̄totEl , (81)

where γ̄tot is an element of L1(−∞, 0]. All the terms on the right hand side of (78), except
the third and fourth lines, can be estimated as in the proof of Corollary 57. Consider
the third line on the right hand side of (78). Since the cK1

K ,i j are constants, we need to
estimate

|âi j eK1(u)(eK u)τ | ≤ ‖â−1‖ · |eK1(u)(eK u)τ | ≤ fa
1

2
[f2|eK1(u)|2 + |(eK u)τ |2].

This is an estimate of the desired type. Next, consider the fourth line on the right hand
side of (78). We need to estimate

âi j ei eK2(u)(eK u)τ = ∑
l b̂

il b̂l j ei eK2(u)(eK u)τ ,

where b̂i j are the components of the square root of â−1. Note that

|b̂l j | ≤ ‖â−1‖1/2 ≤ f
1/2
a f1/2 ≤ 1

2
(f + fa)

and that

|b̂il ei eK2(u)| ≤
[∑

l b̂
il ei eK2(u)b̂ jl e j eK2(u)

]1/2 ≤
[
âi j ei eK2(u)e j eK2(u)

]1/2
.

Thus the fourth line on the right hand side of (78) can be estimated as desired. ��
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13.3. Limits in a model case. Finally, we are in a position to prove Proposition 19.

Proposition 19. The idea of the proof is to appeal to Corollary 64, Sobolev embedding
and theEq. (64).Note, however, thatCorollary 64only applies to solutions corresponding
to initial data with compact support, a restriction we do not impose here. The first step
of the argument is therefore to demonstrate that we can “localise” the solution u.

Localising the solution u. Let U be an open subset of G with compact closure K .
Assume, moreover, U to be diffeomorphic to the ball of radius 1 and center 0 in R

3

and denote the diffeomorphism by ψ . Let U0 = ψ−1[B1/2(0)]. Then U0 has compact
closure contained in U . Due to the fact that ‖â−1‖ decays exponentially, it is clear that

∫ ta

t−
‖a−1/2‖dt =

∫ 0

−∞
3

θ
‖a−1/2‖dτ =

∫ 0

−∞
‖â−1(τ )‖1/2dτ < ∞,

where τ(ta) = 0. We are thus allowed to appeal to Lemma 46. In particular, there is a
compact subset K1 such that

K × (t−, t0] ⊆ D−(K1 × {t0}); (82)

cf. (61). Let χ ∈ C∞
0 (G) be such that χ(x) = 1 for all x ∈ K1. Let ua be the solution to

(63) corresponding to the initial data given by χu(·, t0) and χut (·, t0). Then, due to (82);
[RinCau, Corollary 12.14, p. 141]; and [RinCau, Remark 12.15, p. 141]; the functions
u and ua coincide in K × (t−, t0]. If we want to analyse the asymptotic behaviour of u
in K as t → t−, we might thus as well consider ua .

Appealing to the energy estimates. In order to justify that we are allowed to appeal
to Corollary 64, note that if we define f(τ ) := eη0τ/2, then f has the properties stated
in connection with (17). Choosing fϕ̂(τ ) = fa(τ ) = C0eη0τ/2, we are then allowed to
apply Corollary 64 to ua . Since q − 2 is integrable, there are thus constants Cl such that

El [ua](τ ) ≤ ClEl [ua](0)
for all τ ≤ 0. Introducing

Fl [ua] := 1

2

∫
G

∑
|K |≤l [eK (ua)]2μh,

it can be calculated that

∂τFl =
∫
G

∑
|K |≤l eK (ua)eK (∂τua)]μh ≥ −2F1/2

l [ua]E1/2
l [ua]

≥ − 2C1/2
l E1/2

l [ua](0)F1/2
l [ua].

Using this estimate, it can be demonstrated that

F1/2
l [ua](τ ) ≤ F1/2

l [ua](0) + C1/2
l E1/2

l [ua](0)|τ |
for all τ ≤ 0. In particular, there are constants Da,l such that

F1/2
l [ua](τ ) ≤ Dl,a〈τ 〉

for all τ ≤ 0.
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Appealing to the equation.With the above information at hand, it is of interest to return
to (76). In particular,

‖âi j ei e j (eK ua)‖L2(G) + ‖X0(eK ua)‖L2(G)

+ ‖[âi j ei e j , eK ]ua‖L2(G) + ‖[eK , X0]ua‖L2(G) ≤ Ea,l〈τ 〉eη0τ

for all τ ≤ 0 and |K | ≤ l. Here

‖φ‖L2(G) :=
(∫

G
|φ|2μh

)1/2

for every φ ∈ C0(G). Moreover, due to the boundedness of El [ua] for τ ≤ 0 and (32),

‖(q − 2)(eK ua)τ‖L2(G) ≤ Ea,l e
η0τ

for all τ ≤ 0 and |K | ≤ l. Combining these observations with (32) and (76) yields the
conclusion that

‖(eK ua)ττ‖L2(G) ≤ Ea,l〈τ 〉eη0τ

for all τ ≤ 0 and |K | ≤ l. Combining this observation with Sobolev embedding yields
the conclusion that

‖∂2τ ua(·, τ )‖Cl (U0)
≤ Ea,l〈τ 〉eη0τ

for all τ ≤ 0. Thus (33) holds.
In order to prove (34), note, to begin with, that

exp

(
−

∫ 0

τ

(q − 2)dτ ′
)

= C−1
σ Ca[1 + O(eη0τ )]

for some Ca > 0, where Cσ is the constant appearing in (67); cf. (69). Thus there is a
constant Cb such that

−σ(τ) = −Caτ − Cb + O(eη0τ ),

where we used the fact that σ(0) = 0; cf. the requirement following (5). In particular,

σ(τ) = Caτ + Cb + O(eη0τ ). (83)

Combining these observations with (67) and (33) yields (34). The proposition
follows. ��
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13.4. Limits when q does not converge to 2. Next, we prove Proposition 31.

Proposition 31. We begin by changing to the time coordinate σ introduced in (5). Due
to the assumptions, there is a constant cq such that
∫ 0

τ

[q(τ ′) − 2]dτ ′=
∫ 0

τ

(q∞ − 2)dτ ′ +
∫ 0

τ

[q(τ ′) − q∞]dτ ′ = (2 − q∞)τ − cq + o(1).

Inserting this information into (67) yields

dσ

dτ
= Cσ exp[−(2 − q∞)τ + cq ][1 + o(1)];

note that (69) is satisfied. Integrating this relation yields

σ(τ) = − Cσ

2 − q∞
e−(2−q∞)τ+cq [1 + o(1)]

for all τ ≤ 0. For future reference, it is of interest to note that the above computations
yield the existence of a constant ca > 0 such that

〈σ(τ)〉 = cae
−(2−q∞)τ [1 + o(1)]

for all τ ≤ 0. Due to this relation, it can be deduced that there is a constant cb such that

τ = − 1

2 − q∞
ln〈σ 〉 + cb + o(1).

In particular,

exp

(
2

∫ 0

τ

(q − 2)dτ ′
)

= O(〈σ 〉−2).

Returning to (68) and appealing to (36), it is clear that

‖ǎ−1‖ + |ϕ̌0| ≤ C〈σ 〉−2−ηc

for all σ ≤ 0 and some constant C > 0; here ηc is given by (37). The same holds for the
coefficients of X̌ .

Due to (36), it is possible to choose exponentially decaying functions f, fϕ̂ and fa in
such away that the conditions ofCorollary 64 are satisfied. Thus (80) holds (for a suitably
localised solution; cf. the proof of Proposition 19). Combining this observationwith (68);
the estimate for the coefficients of this equation (described above); and arguments similar
to those presented in the proof of Proposition 19 yields the conclusion that a suitably
localised solution (such as ua in Proposition 19) satisfies

‖eL∂2σua‖L2(G) ≤ CK ,l〈σ 〉−1−ηc

for all σ ≤ 0 and all vector field multiindices L satisfying |L| ≤ l. Appealing to
Sobolev embedding (for, potentially, infinitely many different localisations ua) yields
the conclusion that there is a u1 ∈ C∞(G) such that for every compact set K ⊂ G and
every 0 ≤ l ∈ Z, there is a constant CK ,l such that

‖uσ (·, σ ) − u1‖ ≤ CK ,l〈σ 〉−ηc

for all σ ≤ 0. Thus the first conclusion of the proposition holds. If ηc > 1, this estimate
can be integrated in order to yield the second conclusion. ��



A Unified Approach to the Klein–Gordon Equation on Bianchi Backgrounds 637

14. Proofs I

The purpose of the present section is to prove the statements made in Sect. 4. We begin
with Proposition 12 and the statements made in Example 15.

14.1. Conditional results yielding convergence of the σ -derivative. In the present sub-
section, we prove Proposition 12 and the statements made in Example 15.

Proposition 12. By assumption, the conditions of Theorem 7 are satisfied. In particular,
we are thus allowed to use the conclusions of that theorem, such as (25). Combining
(25); localisations as in the proof of Proposition 19; and Sobolev embedding, it is clear
that, given a solution u, a compact set K ⊆ G and an 0 ≤ l ∈ Z, there is a constant CK ,l
such that

‖u(·, σ )‖Cl (K ) ≤ CK ,l〈σ 〉
for all σ ≤ 0. Inserting this information into (68), it is clear that

‖uσσ [·, σ (τ )]‖Cl (K ) ≤ CK ,l exp

(
2

∫ 0

τ

(q − 2)dτ ′
)
f2(τ )〈σ(τ)〉, (84)

where we appealed to (22) and the fact that if X0 = Xi
0ei , then there is a constant C

such that |Xi
0| ≤ C‖â−1‖, cf. (65). Integrating (84) from σ0 to σ1 ≤ 0 yields

‖uσ (·, σ1) − uσ (·, σ0)‖Cl (K ) ≤ CK ,l

∫ τ1

τ0

exp

(∫ 0

τ

(q − 2)dτ ′
)
f2(τ )〈σ(τ)〉dτ, (85)

where we used (67) and τ0, τ1 correspond to σ0, σ1 respectively. In order to proceed,
note that (67) yields

−σ(τ) =
∫ 0

τ

Cσ exp

(
−

∫ 0

τ ′
(q − 2)dτ ′′

)
dτ ′; (86)

recall that σ(0) = 0 due to the requirements made in connection with (5). Inserting this
information into (85), it is clear that we need to estimate two integrals. First, we need to
verify that

∫ τ1

τ0

exp

(∫ 0

τ

(q − 2)dτ ′
)
f2(τ )dτ

is bounded as τ0 → −∞. However, this is obvious due to the fact that (q − 2)+ ∈
L1(−∞, 0] and the fact that (26) holds; recall that under the present circumstances,
Remark 41 applies. Next, we need to estimate

∫ τ1

τ0

exp

(∫ 0

τ

(q − 2)dτ ′
)
f2(τ )

∫ 0

τ

exp

(
−

∫ 0

τ ′
(q − 2)dτ ′′

)
dτ ′dτ. (87)

Note, to this end, that

exp

(∫ 0

τ

(q − 2)dτ ′
) ∫ 0

τ

exp

(
−

∫ 0

τ ′
(q − 2)dτ ′′

)
dτ ′

=
∫ 0

τ

exp

(∫ τ ′

τ

(q − 2)dτ ′′
)
dτ ′ ≤ C |τ |
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for all τ ≤ 0, wherewe used the fact that (q−2)+ ∈ L1(−∞, 0]. Due to this observation,
the expression (87) can be estimated by∫ τ1

τ0

C〈τ 〉f2(τ )dτ

which is finite as τ0 → −∞; cf. (26). To conclude, the expression on the right hand side
of (85) converges to a finite number as τ0 → −∞. Combining this observation with
(85) yields the conclusion of the proposition. ��

Next, we justify the statements made in Example 15. Before turning to the details,
note the following. If λ0, κ0 > 0 and 0 < κ1 ≤ 1, then there is a constantCκ (depending
only on λ0, κ0 and κ1) such that∫ τb

τa

〈τ 〉κ0e−λ0〈τ 〉κ1dτ ≤ Cκ 〈τb〉κ0+1−κ1e−λ0〈τb〉κ1 (88)

for all τa ≤ τb ≤ −1. We leave the verification of this statement to the reader. In
what follows, we also appeal to the general observations concerning Bianchi class A
developments made in Sect. 17.1 below.

Example 15. We wish to apply Proposition 12. To this end, we first need to verify that
the conditions of Theorem 7 are satisfied. Due to (28), the monotone volume singularity
t− is silent. Moreover, by assumption, g solves (8); ρ ≥ p̄; ρ ≥ 0; � ≥ 0; and
ϕ0 ∈ C∞(M) only depends on t . Next, we have to verify that γS̄ ∈ L1(−∞, 0]. In
the case of all Bianchi class A types but IX, γS̄ = 0, and there is nothing to prove.
However, the Bianchi type IX case requires an argument. That γS̄ ∈ L1(−∞, 0] can be
verified directly without appealing to (28). However, since the corresponding argument
is somewhat more involved, we here rely on (28). In order to prove the integrability of
γS̄ , note that combining the arguments presented in Sect. 17.1 below with [RinAtt, (9),
p. 414] yields

∂τ â
11 = 2(q + 2�+)â

11, ∂τ (N2N3) = 2(q + 2�+)N2N3, (89)

∂τ â
22 = 2(q − �+ − √

3�−)â22, ∂τ (N1N3) = 2(q − �+ − √
3�−)N1N3, (90)

∂τ â
33 = 2(q − �+ +

√
3�−)â33, ∂τ (N1N2) = 2(q − �+ +

√
3�−)N1N2. (91)

Moreover, âi j = 0 if i �= j . In particular, since the Ni all have the same sign in the case
of Bianchi type IX, there are constants Ca,i > 0, i = 1, 2, 3, such that

â11 = Ca,1N2N3, â22 = Ca,1N1N3, â33 = Ca,1N1N2.

In particular, all the Ni N j , i �= j , are integrable due to (28). On the other hand, (109)
below implies that

γS̄ ≤ N1N2 + N2N3 + N3N1.

Combining these observations yields the conclusion that γS̄ ∈ L1(−∞, 0].
In order to verify (22), note that since q ≥ 0 in the present setting, it is clear that eτ θ is

bounded from below by a positive constant for τ ≤ 0. Combining this observation with
the fact that ϕ0 is bounded, it is clear that e−2τ |ϕ̂0| is bounded for τ ≤ 0. In particular,
there is thus a constant Ctot > 0 such that if we let

f(τ ) := Ctot exp(−λ0〈τ 〉α0), (92)



A Unified Approach to the Klein–Gordon Equation on Bianchi Backgrounds 639

then (22) holds for all τ ≤ 0. Note also that f has the properties stated at the beginning
of Sect. 2.4. To conclude, the conditions of Theorem 7 are satisfied.

Finally, in order to apply Proposition 12, we need to verify that (26) holds. However,
this is an immediate consequence of (92). In order to justify (29), note that the proof of
Proposition 12 yields the conclusion that

‖uσ (·, σ1) − uσ (·, σ0)‖Cl (K ) ≤ CK ,l

∫ τ1

τ0

C〈τ 〉f2(τ )dτ

where τ0, τ1 correspond to σ0, σ1 respectively. Combining this estimate with (88) and
(92) yields (29).

Finally, in order to prove the statements in Example 15 concerning Bianchi type
I, II, VI0 and VII0 vacuum solutions, it is sufficient to combine (89)–(91) with the
conclusions of [RinCau]. In order to justify this statement in greater detail, note that
if (�+, �−) converges to one of the points in (108), then the corresponding monotone
volume singularity is not silent; this is justified in Sect. 17.1 below. In particular, this
situation is excluded by the assumptions. Due to [RinCau, Propositions 22.15, 22.16 and
22.18] and [RinCau, Lemma 22.17, p. 240], the only possibility that remains is that the
solution converges to a point on the Kasner circle different from the points in (108). Due
to the observations made in connection with (107), this implies that ‖â−1‖ converges to
zero exponentially. In particular, (28) holds with α0 = 1. ��

14.2. Conditional results yielding full asymptotics. The purpose of the present subsec-
tion is to prove Proposition 16 as well as the statements made in Example 18. In what
follows, we appeal to the general observations concerning Bianchi class A developments
made in Sect. 17.1 below.

Proposition 16. In analogy with the argument justifying (84), it can be demonstrated
that

‖uσσ [·, σ (τ )]‖Cl (K ) ≤ CK ,l exp

(
2

∫ 0

τ

(q − 2)dτ ′
)

[‖â−1(τ )‖+|ϕ̂0(τ )|]〈σ(τ)〉. (93)

Integrating this estimate from σ0 to σ1, where σ0 ≤ σ1 ≤ 0 yields

‖uσ (·, σ1) − uσ (·, σ0)‖Cl (K )

≤ CK ,l

∫ τ1

τ0

exp

(∫ 0

τ

(q − 2)dτ ′
)

[‖â−1(τ )‖ + |ϕ̂0(τ )|]〈σ(τ)〉dτ ;

here τi corresponds to σi , i = 0, 1. Due to the proof of Proposition 12, we obtain
convergence as τ0 → −∞. Moreover,

‖uσ (·, σ1) − u1‖Cl (K )

≤ CK ,l

∫ τ1

−∞
exp

(∫ 0

τ

(q − 2)dτ ′
)

[‖â−1(τ )‖ + |ϕ̂0(τ )|]〈σ(τ)〉dτ.
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Integrating this estimate from σa to σb, where σa ≤ σb ≤ 0 yields

‖u(·, σb) − u(·, σa) − u1(σb − σa)‖Cl (K )

≤ CK ,l

∫ τb

τa

∫ τ1

−∞
exp

(∫ 0

τ

(q − 2)dτ ′
)

[‖â−1(τ )‖ + |ϕ̂0(τ )|]〈σ(τ)〉dτ

· exp
(

−
∫ 0

τ1

(q − 2)dτ ′
)
dτ1

≤ CK ,l

∫ τb

τa

∫ τ1

−∞
exp

(∫ τ1

τ

(q − 2)dτ ′
)

[‖â−1(τ )‖ + |ϕ̂0(τ )|]〈σ(τ)〉dτdτ1,

where τa and τb correspond to σa and σb respectively. Combining this estimate with the
fact that (q − 2)+ ∈ L1(−∞, 0] (note that the integrability of (q − 2)+ follows from
Remark 41 and the fact that the conditions of Theorem 7 are fulfilled) yields

‖U (·, σb) −U (·, σa)‖Cl (K ) ≤ CK ,l

∫ τb

τa

∫ τ1

−∞
[‖â−1(τ )‖ + |ϕ̂0(τ )|]〈σ(τ)〉dτdτ1, (94)

where

U (·, σ ) := u(·, σ ) − u1 · σ.

In order to estimate 〈σ(τ)〉, note that (86) yields

|σ(τ)| ≤ Cσ

∫ 0

τ

exp

(
−

∫ 0

τ ′
(q − 2)dτ ′′

)
dτ ′ ≤ C |τ | exp

(
−

∫ 0

τ

(q − 2)dτ ′
)

,

where we used the fact that (q − 2)+ ∈ L1(−∞, 0] and the fact that σ(0) = 0; cf. the
requirement following (5). To conclude,

〈σ(τ)〉 ≤ C〈τ 〉 exp
(

−
∫ 0

τ

(q − 2)dτ ′
)

for all τ ≤ 0. Inserting this information into (94), it is clear that we need to estimate

∫ τb

τa

∫ τ1

−∞
[‖â−1(τ )‖ + |ϕ̂0(τ )|]〈τ 〉 exp

(
−

∫ 0

τ

(q − 2)dτ ′
)
dτdτ1. (95)

By assumption, this expression converges as τa → −∞. In particular,U (·, σ ) converges
in Cl(K ) for every compact K ⊂ G and every 0 ≤ l ∈ Z. Thus there is a function u0
with the properties stated in the proposition. ��

Next, we prove the statements made in Example 18.

Example 18. Due to the assumptions in Example 18, we know that ϕ0 is bounded. We
begin by using this information in order to estimate the contribution of ϕ0 to the integral
(95). Note, to this end, that

|ϕ̂0| exp
(

−
∫ 0

τ

(q − 2)dτ ′
)

= 9θ−2|ϕ0| exp
(

−
∫ 0

τ

(q − 2)dτ ′
)

.
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Since θ satisfies (45), this equality implies

|ϕ̂0| exp
(

−
∫ 0

τ

(q − 2)dτ ′
)

= 9θ−2(0)|ϕ0| exp
(

−
∫ 0

τ

3qdτ ′
)

. (96)

On the other hand, due to (89)–(91), it is clear that

∂τ det â
−1 = 6q det â−1.

Combining this equality with (96) and the assumption that ϕ0 is bounded yields

|ϕ̂0| exp
(

−
∫ 0

τ

(q − 2)dτ ′
)

≤ C(det â−1)1/2 ≤ C‖â−1‖3/2. (97)

Due to the assumptions, the proof of Proposition 16, (97) and the above observations, it
follows that

‖U (·, σb)−U (·, σa)‖Cl (K ) ≤ CK ,l

∫ τb

τa

∫ τ1

−∞
〈τ 〉‖â−1(τ )‖ exp

(
−

∫ 0

τ

(q − 2)dτ ′
)
dτdτ1

(98)
for all σa ≤ σb ≤ 0. Due to (30) and two applications of (88), it follows that

‖U (·, σb) −U (·, σa)‖Cl (K ) ≤ CK ,l〈τb〉3−2α0e−2λ0〈τb〉α0

for all σa ≤ σb ≤ 0. Thus (31) holds.
Finally, we need to justify the statements in Example 18 concerning Bianchi type

I, II, VI0 and VII0 vacuum solutions. However, the only additional complication in the
present setting compared with the statements of Example 15 is that we need to estimate
the second factor on the left hand side of (30). Note, to this end, that due to the proof
of Example 15, we know that the Wainwright-Hsu variables converge to a point on
the Kasner circle different from the points in (108). Considering the equations for the
Ni , note that N ′

i = fi (q, �+, �−)Ni for some function fi ; cf. [RinAtt, (9), p. 414].
Since the solution converges to the Kasner circle, fi (q, �+, �−) converges to a number.
Moreover, the form of the fi immediately implies that, on the Kasner circle, the only
way for fi to equal zero is if the relevant point on the Kasner circle is one of the points
appearing in (108). In other words, in the limit point, fi is either strictly positive or
strictly negative. If fi is strictly negative in the limit and Ni �= 0, then |Ni | tends to
infinity exponentially. This is not consistent with the fact that the solution converges to
a point on the Kasner circle. If Ni �= 0, the limit of fi must thus be positive. In other
words, all the Ni converge to zero exponentially. Combining this observation with the
Wainwright-Hsu equations, cf. [RinAtt, pp. 414–415], it follows that q − 2 converges
to zero exponentially. The second factor on the left hand side of (30) is thus bounded.
The statements of the example follow. ��

15. Proofs II

Thepurpose of the present section is to justify the statementsmade inExamples 22, 24, 29
and 30. To do so, we need to prove that Proposition 19 applies in the situations considered
in these examples. The proofs are based on results concerning the asymptotics of Bianchi
class A and non-special Bianchi class B developments obtained in [RinAtt,RadNon,
RadSti]. We make some general observations concerning the relevant developments in
Sects. 17.1 and 17.2 below. These observations follow from [RadNon,RinAtt] and form
the basis of the analysis of the present section. We begin by considering the stiff fluid
case, which is defined by the condition that γ = 2.
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15.1. The stiff fluid case. In the case of orthogonal stiff fluids, there are results concern-
ing the asymptotics of Bianchi class A solutions (cf., e.g., [RinAtt]) and the asymptotics
of non-special Bianchi class B solutions (cf., e.g., [RadSti]). The present analysis is
based on these references. However, since the details are somewhat different in the two
cases, we treat them separately.

Bianchi class A. We need to demonstrate that Proposition 19 applies. To this end, we
combine [RinAtt] with the general observations collected in Sect. 17.1. The asymptotic
behaviour is described in terms of the Wainwright-Hsu variables �±, Ni , i = 1, 2, 3,
and �; cf. Sect. 17.1. Due to [RinAtt, Theorem 19.1, p. 478], these variables converge
to a type I point. Say that the corresponding value of (�+, �−) is (s+, s−). Then, due to
[RinAtt, Theorem 19.1, p. 478], s2+ + s2− < 1. Moreover, due to [RinAtt, Theorem 19.1,
p. 478], there are additional restrictions for Bianchi types II, VI0, VII0, VIII and IX. In
order to explain the restrictions, note that the Ni satisfy N ′

i = fi (q, �+, �−)Ni for some
function fi ; cf. [RinAtt, (9), p. 414]. The restrictions on (s+, s−) appearing in [RinAtt,
Theorem 19.1, p. 478] correspond to the following requirement: if the development is
such that Ni is non-zero, then fi (q, �+, �−) converges to a strictly positive number.
In particular, the Ni thus decay to zero exponentially. Combining this observation with
the Hamiltonian constraint (cf. [RinAtt, (11), p. 415]) yields the conclusion that q − 2
converges to zero exponentially. Since S̄/θ2 is a quadratic polynomial in the Ni , cf. (109)
below, it is also clear that γS̄ decays exponentially. Turning to the restrictions on ϕ0, note
first that since q − 2 converges to zero exponentially, e3τ θ(τ ) converges to a positive
number as τ → −∞; recall that θ ′ = −(1+q)θ . In particular there is a positive constant,
say Cθ , such that e3τ θ(τ ) ≥ C−1

θ for all τ ≤ 0. On the other hand, det a(τ ) = e6τ by
the definition of τ . Combining these observations with the assumption (35) yields

|ϕ̂0(τ )| = 9[θ(τ )]−2|ϕ0(τ )| ≤ 9C2
θCϕe

6τ (e6τ )−1+ηϕ ≤ 9C2
θCϕe

6ηϕτ (99)

for all τ ≤ 0. Thus ϕ̂0 converges to zero exponentially. Next, since s2+ + s2− < 1, the
comments made in connection with (107) below imply that ‖â−1‖ converges to zero
exponentially. Thus Proposition 19 applies and we have verified the statements made in
Example 22 for Bianchi class A developments.

Bianchi class B. Turning to the non-exceptional Bianchi class B developments, we
again need to demonstrate that we can apply Proposition 19. To this end, we combine
[RadSti] with the general observations collected in Sect. 17.2. The asymptotic behaviour
is described in terms of the variables introduced by Hewitt and Wainwright and denoted
by �+, �̃, �, N+, Ã and �; cf. Sect. 17.2.

Due to [RadSti, Proposition 4.3, p. 9], there are s ∈ (−1, 1) and s̃ ∈ [0, 1) such that
lim

τ→−∞(�+, �̃,�, N+, Ã)(τ ) = (s, s̃, 0, 0, 0).

Moreover, s2 + s̃ < 1. Using the terminology of [RadSti], solutions thus converge to an
element of the so-called Jacobs set J ; cf. [RadSti, Definition 1.2, p. 4]. Next, [RadSti,
(4), p. 3] yields

q = 2(1 − Ã − Ñ ),

where Ñ is given by (111) below. In particular, it is thus clear that q converges to 2.
Combining this observation with the fact that s > −1, it follows that Ã converges to zero
exponentially; cf., e.g., [RadSti, (3), p. 3]. Turning to � and N+, note that there are three
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possibilities as far as the limit as τ → −∞ is concerned; a given solution converges to
a point in one of the following sets:

J− :=J ∩ {(1 + �+)
2 < 3�̃},

J0 :=J ∩ {(1 + �+)
2 = 3�̃},

J+ :=J ∩ {(1 + �+)
2 > 3�̃}.

If the limit point is inJ−∪J0, then Ã,�+, �̃, Ñ , q,� and N+ all converge exponentially
towards their limiting values; cf. [RadSti, Proposition 5.1, pp. 10–11]. Assume now that
the limiting point is in J+. Returning to [RadSti, (3), p. 3], it is clear that

(
�

N+

)′
= B

(
�

N+

)
, (100)

where

lim
τ→−∞ B(τ ) =

(
2(s + 1) 2s̃

6 2(s + 1)

)
=: B∞. (101)

In particular, the real parts of the eigenvalues of B∞ are strictly positive if the limit point
is in J+. Combining the above observations with, e.g., the results of [IOaP] yields the
conclusion that � and N+ converge to zero exponentially. To conclude, Ã, Ñ , N+, �

and q − 2 converge to zero exponentially. This implies that �+ and �̃ converge to their
limits exponentially. Due to the observations made at the end of Sect. 17.2, it is thus
clear that ‖â−1‖ converges to zero exponentially. In the case of Bianchi class B, the
scalar curvature of the spatial hypersurfaces of homogeneity is negative, so that γS̄ = 0;
cf., e.g., [RinSta, Appendix E]. Finally, in order to estimate ϕ̂0, we can proceed as in the
Bianchi class A case. Thus Proposition 19 applies and we have verified the statements
made in Example 22 for non-exceptional Bianchi class B developments.

15.2. The non-stiff fluid case. Next, we consider Bianchi orthogonal perfect fluid de-
velopments with a linear equation of state p = (γ − 1)ρ, where γ < 2. In the case of
Bianchi class A, we focus on vacuum and equations of state with 2/3 < γ < 2. In the
case of Bianchi class B, we focus on vacuum and equations of state with 0 ≤ γ < 2/3.
In both cases, the restrictions arise from the results available in the literature. As before,
we need to verify that Proposition 19 applies. We begin by considering vacuum Bianchi
class A.

Non-oscillatory Bianchi class A vacuum developments. Recall the analysis concern-
ing vacuum Bianchi type I, II, VI0 and VII0 developments presented in the proofs of
Examples 15 and 18; cf. Sects. 14.1 and 14.2. Due to this analysis, q − 2 and ‖â−1‖
converge to zero exponentially. Moreover, γS̄ = 0 for the Bianchi types of interest here.
Finally, the assumptions of Example 24 combined with an analysis similar to that pre-
sented in the stiff fluid setting, cf. (99), imply that ϕ̂0 converges to zero exponentially.
Thus Proposition 19 applies and the statements made in Example 24 follow.

Generic Bianchi type I, II and VII0 developments. Next, we prove the statements
made in Example 29. In the case of all the relevant Bianchi types, γS̄ = 0. In what
follows, we therefore do not comment on the corresponding condition in Proposition 19.
We consider the different Bianchi types separately and we start with generic Bianchi
type I perfect fluid developments with 2/3 < γ < 2.
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Bianchi type I. According to [RinAtt, Proposition 8.1, p. 428], (�+, �−,�) converges
to (s+, s−, 0), with s2+ +s

2− = 1 (note that the fixed point F has been removed by assump-
tion). If (s+, s−) equals one of the points appearing in (108), then the monotone volume
singularity is not silent; cf. Sect. 17.1. Since this is incompatible with the assumptions,
we can assume the limit (s+, s−) to be different from the points appearing in (108).
By the arguments presented in connection with (108), it follows that ‖â−1‖ converges
to zero exponentially. Turning to �, it converges to zero exponentially due to [RinAtt,
(9), p. 414] and the fact that q ≥ 2 in the limit. Combining this observation with the
constraint, [RinAtt, (11), p. 415], implies that q − 2 converges to zero exponentially.
Finally, that ϕ̂0 converges to zero exponentially follows from (99). Thus Proposition 19
applies and the statements made in Example 29 follow in the case of Bianchi type I.
Bianchi type II. In the case of Bianchi type II, we can, without loss of generality, assume
that N1 > 0, N2 = 0 and N3 = 0. In this case, �− is either always zero or never zero
(since the conditions �− = 0 and N2 = N3 define an invariant set). Let us first consider
the case that�− = 0. According to [RinAtt, Proposition 9.1, p. 428], there are then three
possibilities: the solution converges to F ; the solution equals P+

1 (I I ); or (�,�+, N1)

converges to (0,−1, 0). The first two possibilities are incompatible with the assumption
of genericity. The third possibility is incompatible with the requirement of silence; cf.
Sect. 17.1.Assume that�− �= 0. Then, according to [RinAtt, Proposition 9.1, p. 428], the
solution converges to a point inK2∪K3.Here, theKi are given by [RinAtt, Definition 6.1,
p. 421]. In particular, (�,�+, �−, N1) converges to (0, s+, s−, 0), where s2+ + s2− = 1
and (s+, s−) is different from the points appearing in (108). By the arguments presented
in connection with (108), it then follows that ‖â−1‖ converges to zero exponentially.
Since q converges to 2, it is clear that � converges to zero exponentially; cf. [RinAtt,
(9), p. 414]. Since the solution converges to a point in K2 ∪ K3, s+ < 1/2, so that
N1 converges to zero exponentially. Combining these observations with the constraint,
[RinAtt, (11), p. 415], yields the conclusion that q − 2 converges to zero exponentially.
Finally, that ϕ̂0 converges to zero exponentially follows from (99). Thus Proposition 19
applies and the statements made in Example 29 follow in the case of Bianchi type II.
Bianchi type VI0. Since we lack an appropriate reference on the asymptotic behaviour of
Bianchi type VI0 non-vacuum orthogonal perfect fluid developments with γ < 2, we are
not in a position to analyse the asymptotic behaviour of solutions to the Klein–Gordon
equation on such backgrounds.
Bianchi type VII0, the locally rotationally symmetric case. In the case of Bianchi type
VII0, we can, without loss of generality, assume that N1 = 0, N2 > 0 and N3 > 0. It
is of interest to first consider the locally rotationally symmetric subcase; i.e., to assume
that N2 = N3 and �− = 0. Note that in this case, the constraint, [RinAtt, (11), p. 415],
reads

� + �2
+ = 1. (102)

Due to [RinAtt, Proposition 10.1, p. 430], there are three possibilities. Either the solution
converges to �+ = 1 on the Kasner circle; the solution converges to F ; or �+ converges
to −1. Convergence to F has been excluded by the condition of genericity. If �+ con-
verges to−1, then the monotone volume singularity is not silent; cf. the comments made
at the end of Sect. 17.1. Again, this case is thus excluded by the assumptions. Let us
therefore assume that �+ converges to 1. Then q converges to 2, so that � converges to
zero exponentially due to [RinAtt, (9), p. 414]. Combining this observation with (102)
yields the conclusion that �+ converges to 1 exponentially. In particular, q converges to
2 exponentially. Since q converges to 2 and (�+, �−) converges to (1, 0), the observa-
tions made in connection with (108) imply that ‖â−1‖ converges to zero exponentially.
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Finally, that ϕ̂0 converges to zero exponentially follows from (99). Thus Proposition 19
applies and the statements made in Example 29 follow in the case of locally rotationally
symmetric Bianchi type VII0 developments.

Bianchi typeVII0, the general case.Due to [RinAtt, Proposition 10.2, p. 431], generic and
non-locally rotationally symmetric Bianchi type VII0 solutions (with N1 = 0, N2 > 0
and N3 > 0) converge to a point in K1. Recalling that K1 is the subset of the Kasner
circle with �+ > 1/2, it is clear that N2, N3 and � converge to zero exponentially,
so that we can argue as in the locally rotationally symmetric setting; cf. [RinAtt, (9),
p. 414]. This completes the proof of the statements made in Example 29.

Bianchi class B. In the case of Bianchi class B, we are mainly interested in solutions
converging to the Kasner parabola; cf. [RadNon, Definition 1.15, p. 8]. The Kasner
parabola is defined to be the set of points with

(�,�, Ã, N+) = (0, 0, 0, 0),

so that�2
+ +�̃ = 1; cf. (110) and (111) below.Moreover, its elements are fixed points. In

addition to the Kasner parabola, there are some solutions that converge to a plane wave
equilibrium point; cf. [RadNon, Definition 1.17, p. 8]. There are also some solutions
that converge to the fixed point, say FB , characterised by

(�+, �̃,�, Ã, N+) = (0, 0, 0, 0, 0).

Next, the points Taub 1 and Taub 2 (denoted T1 and T2) are of special importance. Here
T1 and T2 are defined by the conditions

(�+, �̃,�, Ã, N+) = (−1, 0, 0, 0, 0), (�+, �̃,�, Ã, N+) = (1/2, 3/4, 0, 0, 0)

respectively.
Due to the fact that the results of [RadNon] are restricted to either vacuum or

0 ≤ γ < 2/3, we also restrict our attention to these two cases. Combining [RadNon,
Proposition 4.2, pp. 19–20], [RadNon, Proposition 4.4, p. 21], [RadNon, Proposition 5.1,
p. 23] and [RadNon, Proposition 6.1, p. 26], there are the following possibilities as far
as the asymptotics are concerned:

• The solution coincides with the fixed point T1.
• The solution coincides with the fixed point FB .
• The solution converges to a plane wave equilibrium point.
• The solution converges to a point on the Kasner parabola different from T1.

If the solution coincides with the fixed point T1, it is clear that 2+2�+ = 0 for the entire
solution. In particular, the function f̂ 11 introduced in Sect. 17.2 is constant; cf. (114) and
[RadNon, (6), p. 7]. Thus the corresponding monotone volume singularity is not silent.
By arguments presented in connection with (114), a solution that converges to a plane
wave equilibrium point is such that the corresponding monotone volume singularity
is not silent. Next, let us assume that the solution is the fixed point FB . This can only
happen in the non-vaccum setting, and then q < 0,�+ = 0 and �̃ = 0; cf. [RadNon, (6),
p. 7]. In particular, f̂ 11 and the matrix with components f̂ AB are unbounded as τ → −∞.
Thus, the corresponding monotone volume singularity is not silent. What remains is to
consider a solution converging to a point on the Kasner parabola different from T1.

Convergence to a point strictly between T1 and T2.Assuming the solution to converge to
T2 or to a point on the Kasner parabola to the left of T2, [RadNon, Proposition 6.2, p. 26]
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applies and yields the conclusion that (�+, �̃) converges exponentially to its limiting
value, say (s, s̃). Moreover, �, Ã, N+, �, Ñ and q − 2 converge to zero exponentially.
Assume now that −1 < s < 1/2. Then, by observations made in Sect. 17.2 (cf., in
particular, the conclusions following (119)), it follows that ‖â−1‖ converges to zero
exponentially. Next, note that γS̄ = 0 for all Bianchi class B developments. Finally, that
ϕ̂0 converges to zero exponentially follows from (99). Thus Proposition 19 applies and
the statements made in Example 30 follow in the case of convergence to a point on the
Kasner parabola strictly between T1 and T2.

Convergence to T2. Assume the solution to converge to T2. Then �, Ã, N+, �, Ñ and
q − 2 converge to zero exponentially, as before. Thus, due to the observations made at
the end of Sect. 17.2 below, the solution is a locally rotationally symmetric Bianchi type
VI−1 solution, a case which is excluded by the assumptions.

Convergence to a point to the right of T2. Assume that the Wainwright-Hsu variables
of the solution converge to a point to the right of T2. Then (�+, �̃) converges to, say,
(s, s̃), where s > 1/2.Moreover, as in the stiff fluid case,� and N+ satisfy the Eq. (100),
where B satisfies (101). Since, s > 1/2, the eigenvalues of the right hand side of (101)
both have positive real part. Thus, due to, e.g., the results of [IOaP], the functions � and
N+ converge to zero exponentially. Next, since q converges to 2 and �+ converges to s,
it follows from [RadNon, (5), p. 6] that Ã converges to zero exponentially. In addition,
[RadNon, (11), p. 7]; the fact that q converges to 2; and the fact that γ < 2 imply that �
converges to zero exponentially. Finally, since Ã and N+ converge to zero exponentially,
it follows that Ñ converges to zero exponentially; cf. [RadNon, (7), p. 7]. Combining
these observations with [RadNon, (15), p. 16] yields the conclusion that q−2 converges
to zero exponentially. Next, by observations made in Sect. 17.2 (cf., in particular, the
conclusions following (119)), it follows that ‖â−1‖ converges to zero exponentially.
Moreover, γS̄ = 0. Finally, that ϕ̂0 converges to zero exponentially follows from (99).
Thus Proposition 19 applies and the statements made in Example 30 follow in the case
of convergence to a point on the Kasner parabola strictly to the right of T2.

16. Proofs III

The purpose of the present section is to prove the statements made in Example 35. We
need to consider two cases; either that the Wainwright-Hsu variables of the solution
converge to P+

i (I I ) for some i = 1, 2, 3; or that they converge to the fixed point F .

Convergence to P+
i (I I ). Consider the fixed points P+

i (I I ), i = 1, 2, 3. Since the dif-
ferent points are related by a symmetry (cf. [RinAtt, p. 415]), it is sufficient to focus on
P+
1 (I I ); cf. Definition 26. Consider a solution converging to P+

1 (I I ). Then q converges
to q∞ = (3γ − 2)/2, �+ converges to s+ = (3γ − 2)/8, �− converges to zero and
� converges to �0 := 1 − (3γ − 2)/16. Since N2 and N3 converge to zero and N1
converges to a strictly positive number, it is clear from (109) that S̄ eventually becomes
negative. This means that there is a T such that γS̄(τ ) = 0 for τ ≤ T . Next, note that
q → q∞ < 2 (since γ < 2). Moreover, since �′ = 2(q − q∞)�, cf. [RinAtt, (9),
p. 414], and � converges to a strictly positive number, it is clear that

∫ 0

τ

[q(τ ′) − q∞]dτ
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converges as τ → −∞. In particular,

∫ 0

τ

q(τ ′)dτ =
∫ 0

τ

[q(τ ′) − q∞]dτ − q∞τ = − q∞τ + O(1). (103)

Next, note that [RinAtt, (9), p. 414], combined with the fact that N1 converges to a
strictly positive number implies that

∫ 0

τ

[q(τ ′) − 4�+(τ
′)]dτ ′

converges as τ → −∞. Thus

∫ 0

τ

�+(τ
′)dτ ′ =

∫ 0

τ

[
�+(τ

′) − 1

4
q(τ ′)

]
dτ ′ + 1

4

∫ 0

τ

[q(τ ′) − q∞]dτ ′ − 1

4
q∞τ.

Thus ∫ 0

τ

�+(τ
′)dτ ′ = −1

4
q∞τ + O(1). (104)

Next, note that N2 and N3 converge to zero exponentially; this follows from [RinAtt,
(9), p. 414] and the assumed convergence to P1(I I ). Thus S− introduced on [RinAtt,
p. 415] converges to zero exponentially. Combining this information with [RinAtt, (9),
p. 414]; the fact that q converges to q∞ < 2; and the fact that �− converges to zero
implies that �− converges to zero exponentially. Due to (103); (104); the exponential
convergence of �− to zero; and (89)–(91), it is clear that

|â11(τ )| ≤ Ce3q∞τ , |â22(τ )| ≤ Ce3q∞τ/2, |â33(τ )| ≤ Ce3q∞τ/2

for all τ ≤ 0. In particular, ‖â−1(τ )‖ ≤ Ce3q∞τ/2 for all τ ≤ 0. Next, note that

θ−2(τ ) = θ−2(0) exp

(
−

∫ 0

τ

2[1 + q(τ ′)]dτ ′
)

≤ Ce2(1+q∞)τ

for all τ ≤ 0. Since ϕ0 is bounded, we conclude that |ϕ̂0(τ )| ≤ Ce2(1+q∞)τ for all τ ≤ 0.
Summarising, it is clear that Proposition 31 applies with η0 = 3q∞/2. The statements
in Example 35 concerning solutions converging to one of the Pi (I I ), i = 1, 2, 3, follow.

Convergence to F. Recall the critical point F introduced in Definition 26. Consider a
development such that the correspondingWainwright-Hsu variables converge to F . Then
q converges to q∞ := (3γ −2)/2; cf. the formula at the bottom of [RinAtt, p. 414]. Note
that q∞ > 0 since γ > 2/3. Since �+ and �− converge to zero, [RinAtt, (9), p. 414]
implies that the Ni converge to zero exponentially. In particular, the S± introduced
on [RinAtt, p. 415] converge to zero exponentially. The only way for the above to be
consistent with [RinAtt, (9), p. 414] is that the �± converge to zero exponentially; note
that q∞ < 2 since γ < 2. Combining this observation with the constraint, [RinAtt,
(11), p. 415], yields the conclusion that � converges exponentially to 1 and q converges
exponentially to q∞. Returning to [RinAtt, (9), p. 414] with this information in mind
yields the conclusion that there is a constant C such that

|Ni (τ )|2 + |�+(τ )| + |�−(τ )| + |�(τ) − 1| + |q(τ ) − q∞| ≤ Ce2q∞τ (105)
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for all τ ≤ 0. Next, since S̄/θ2 is given by (109), it is clear that γS̄ ≤ Ce2q∞τ for all
τ ≤ 0. Moreover, (89)–(91) imply that ‖â−1‖ ≤ Ce2q∞τ for all τ ≤ 0. Finally,

|ϕ̂0(τ )| ≤ 9θ−2(τ )|ϕ0(τ )| ≤ Ce2(q∞+1)τ

for all τ ≤ 0. Due to the above, it is clear that Proposition 31 applies with η0 = 2q∞.
The statements in Example 35 concerning solutions converging to F follow.
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17. Appendix

17.1. General observations, Bianchi class A developments. In this subsection, we col-
lect some general observations concerning Bianchi class A orthogonal perfect fluid
developments. The main source of the statements made here is [RinAtt].
In the case of Bianchi class A orthogonal perfect fluid developments, the matrix a
appearing in (3) is diagonal; cf. [RinAtt, Lemma21.2, p. 488].Moreover, theWainwright-
Hsu variables �±, Ni , i = 1, 2, 3, and � introduced in [WaH] can be used to analyse
the asymptotics of solutions. These variables are also introduced in [RinAtt, p. 487];
see also [RinCau, p. 233] for a presentation in the vacuum setting. Note that the θ

appearing in [RinAtt] is the mean curvature of the spatial hypersurfaces of homogeneity,
so that it coincides with the θ appearing in the present paper. Since the time coordinate τ

appearing in [RinAtt] satisfies [RinAtt, (137), p. 487] and the τ appearing in the present
paper satisfies the same relation (cf. the proof of Lemma 47), the two τ ’s can be assumed
to coincide. Finally, since θ ′ = −(1 + q)θ both in the present paper and in [RinAtt], it
is clear that the q appearing in [RinAtt] coincides with the q appearing in the present
paper.
Next, consider âi j . Due to (66), it can be calculated that

∂τ â
i j = 2

(
qδil − 3�i

l

)
âl j . (106)

In the cases of interest here, �i
l = 0 if i �= l and âi j = 0 if i �= j ; cf. [RinAtt,

Lemma 21.2, p. 488]. However, when comparing the present paper with [RinAtt] some
care is required when referring to indices. The reason for this is that we use a fixed frame
(which is not orthonormal) in the present paper,whereas the indices appearing in [RinAtt]
refer to an orthonormal frame. On the other hand, the orthonormal frame appearing in
[RinAtt] is of the form ē0 = ∂t and ēi = ai ei (no summation on i), where {eα} is the
frame appearing in the present paper; cf. [RinAtt, Lemma 21.2, p. 488]. Moreover, the
ai are strictly positive functions of time only. In particular, the�22 appearing in [RinAtt]
is different from the �22 appearing in the present paper. On the other hand, �2

2 and �3
3

http://creativecommons.org/licenses/by/4.0/
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of the present paper coincide with �22 and �33 of [RinAtt]. Using the terminology of
the present paper, the �± variables introduced in [RinAtt, (138), p. 487] thus satisfy

�+ = 3

2
(�2

2 + �3
3), �− =

√
3

2
(�2

2 − �3
3).

Assume now that q converges to a limit, say q∞, and that �±(τ ) → s± as τ → −∞.
Then

(q−3�1
1, q−3�2

2, q−3�3
3) → (q∞+2s+, q∞−s+−√

3s−, q∞−s++
√
3s−). (107)

If all the components of the vector on the right hand side are strictly positive, it then
follows from (106) that ‖â−1‖ converges to zero exponentially. We are mainly interested
in the case that q∞ = 2 and s2+ + s2− ≤ 1. In that setting, the only way that one of the
components of the vector on the right hand side of (107) can be ≤ 0 is that one of the
following conditions are satisfied:

(s+, s−) = (−1, 0), (s+, s−) = (1/2,−√
3/2), (s+, s−) = (1/2,

√
3/2). (108)

Next, it is of interest to note that

S̄

θ2
= −1

2
(N 2

1 + N 2
2 + N 2

3 ) + N1N2 + N2N3 + N3N1; (109)

cf., e.g., [RinCau, Lemma 19.11, p. 209]. This expression can only be strictly positive
in the case of Bianchi type IX. Finally, note that if q∞ > −1 and ϕ0 is bounded, then
ϕ̂0 converges to zero exponentially; this is due to the fact that θ ′ = −(1 + q)θ .

The non-stiff and non-silent Bianchi class A setting. Considering (108) and the adjacent
text, it is clear that the points in (108) play a special role. Assume that (�+, �−) con-
verges to one of these points. By applying the symmetries of the equations (cf. [RinAtt,
p. 415] and [WaH]), we can assume (�+, �−) to converge to (−1, 0). Due to [RinAtt,
Proposition 3.1, p. 416], it then follows that the corresponding solution is contained in
the invariant set characterised by�− = 0 and N2 = N3 (assuming 2/3 < γ < 2). Since
q is bounded from below by 2�2

+, it is clear that q, in the limit, is bounded from below
by 2. Combining this information with [RinAtt, (9), p. 414] implies that � converges to
zero exponentially (in the non-stiff fluid setting). Thus q converges to 2. Combining this
information with [RinAtt, (9), p. 414] again yields the conclusion that N1, N1N2 and
N1N3 converge to zero exponentially. On the other hand, the constraint [RinAtt, (11),
p. 415] implies that

� + �2
+ +

3

4
(N 2

1 − 4N1N2) = 1.

Combining this equality with previous observations implies that �+ + 1 converges to
zero exponentially and that q −2 converges to zero exponentially. In particular, q +2�+
is integrable. On the other hand,

∂τ â
11 = 2(q − 3�1

1)â
11 = 2(q + 2�+)â

11.

In particular, â11 thus converges to a strictly positive number as τ → −∞. Consequently,
the singularity is not silent; cf. (24).
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17.2. General observations, Bianchi class B solutions. In the case of non-exceptional
Bianchi class B solutions, there are variables introduced by Hewitt and Wainwright, cf.
[HaW], that can be used to describe the asymptotics; cf. also [RadNon]. The relevant
variables are denoted �+, �̃, �, N+, Ã and �. For future reference, it is of interest to
note that the Hamiltonian constraint is equivalent to

� + �2
+ + �̃ + Ã + Ñ = 1, (110)

where

Ñ := 1

3
(N 2

+ − κ Ã) (111)

and κ is a parameter associated with the Lie group. In order see why this is the case, note
that on [RadNon, p. 65], it is pointed out that the Hamiltonian constraint is equivalent to
[RadNon, (56), p. 60]. By a simple change of variables, the latter equality is equivalent to
[RadNon, (65), p. 61]. Normalising according to [RadNon, (67)–(68), p. 62] reproduces
(110). Turning to the time coordinates, note that the θ appearing in [RadNon] is themean
curvature of Gt . Thus the θ appearing in [RadNon] coincides with the θ appearing in the
present paper. Since the time coordinate τ appearing in [RadNon] is related to proper
time according to [RadNon, (69), p. 62], it is clear that the τ appearing in [RadNon] can
be chosen to coincide with the time coordinate τ appearing in the present paper. Finally,
due to [RadNon, (70), p. 62], it is clear that the deceleration parameter q appearing in
[RadNon] coincides with the q appearing in the present paper; θ ′ = −(1 + q)θ both in
[RadNon] and in the present paper, so that, since τ and θ conicide, the two q’s coincide.
To conclude: the τ , θ and q appearing in [RadNon] are the same as the objects τ , θ and
q appearing in the present paper. Note also that, in the case of Bianchi class B, the scalar
curvature of the spatial hypersurfaces of homogeneity is negative, so that γS̄ = 0.

The causal structure. In the applications, we need to estimate ‖â−1‖. Note, to this end,
that the frame used to describe the metric in [RadNon, Subsection 11.6, pp. 67–72] is
orthonormal and denoted by {eα}, where e0 = ∂t . However, it is constructed using a basis
e0, ẽi , i = 1, 2, 3, where ẽi , i = 1, 2, 3, is a basis of g. Due to [RadNon, pp. 69–70],

eA = f BA ẽB, e1 = f 11 ẽ1

for A, B ∈ {2, 3} (in what follows, capital Latin indices range from 2 to 3), where the
f BA and f 11 satisfy the following initial value problems:

∂t f
1
1 =

(
σ̄ A
A − 1

3
θ

)
f 11 , f 11 (0) = 1,

∂t f
C
A =

(
−σ̄ B

A − 1

3
θδBA + �1ε

B
A

)
f CB , f CA (0) = δCA .

Moreover, σ̄ B
A denotes the shear; cf. σ̄i j introduced in (10). Here�1 is a gauge quantity

which can be chosen freely; in what follows, we choose it to equal 0. Let h11 and hB
A be

such that

h11 f
1
1 = 1, hB

A f CB = δCA .

Next, let {ξ̃ i } be the dual basis of {ẽi } and define

ξ1 := h11ξ̃
1, ξ A := hA

B ξ̃ B,
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A = 2, 3. Then {ξ i } is the dual basis of {ei }. In particular, the spacetime metric can be
written

g = −dt ⊗ dt +
∑

iξ
i ⊗ ξ i = −dt ⊗ dt + (h11)

2ξ̃1 ⊗ ξ̃1 +
∑

A h
A
Bh

A
C ξ̃ B ⊗ ξ̃C .

In particular, writing g in the form (3) (with ξ i replaced by ξ̃ i ), the matrix with compo-
nents ai j is block diagonal (with a1A = aA1 = 0), and

a11 = ( f 11 )2, aAB = ∑
C f AC f BC .

In particular,

â11 = 9θ−2( f 11 )2, â AB = 9θ−2∑
C f AC f BC .

It is therefore of interest to introduce

f̂ 11 := 3θ−1 f 11 , f̂ AB := 3θ−1 f AB

and to calculate

∂τ f̂ 11 = (1 + q) f̂ 11 + (3� A
A − 1) f̂ 11 = (q + 3� A

A ) f̂ 11 , (112)

where

� B
A := θ−1σ̄ B

A .

At this stage it is important to note thatwe here use the index conventions of [RadNon] (as
opposed to those of the present paper). In particular, the indices refer to an orthonormal
frame, so that they are raised and lowered with the Kronecker delta. Similarly,

∂τ f̂ AB = (qδCB − 3� C
B ) f̂ AC . (113)

Before proceeding, it is of interest to note that � A
A = 2�+/3; this is a consequence of

[RadNon, (52), p. 59] and [RadNon, (67), p. 62]. Thus

∂τ f̂ 11 = (q + 2�+) f̂
1
1 . (114)

Note that Ã1/2 satisfies the same equation, cf. [RadNon, (5), p. 6], and that Ã > 0
in Bianchi class B. Thus f̂ 11 is a strictly positive multiple of Ã1/2. In particular, f̂ 11
converges to zero exponentially if and only if Ã converges to zero exponentially.

The plane wave solutions. In the case of Bianchi class B, the so-called plane wave
equilibrium points are equilbrium points characterised by [RadNon, Definition 1.17,
p. 8]. In particular, a solution that converges to a plane wave equilibrium point is such
that the limit of Ã is strictly positive. Combining this fact with the observations made
following (114), it is clear that the corresponding monotone volume singularity is not
silent.

Convergence of the normalised shear. Before proceeding, it is of interest to verify that
� C

B converges. Note that, due to the constructions described in [RadNon, Subsec-
tion 11.6, pp. 67–72], the equation [RadNon, (54), p. 59] is satisfied. Moreover, the σ̄AB
and nAB can be retrived from solutions to these equations using [RadNon, (52), p. 59].
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If σ̃AB is defined by [RadNon, (52), p. 59], let �̃AB := σ̃AB/θ . Then [RadNon, (54),
p. 59] implies that

∂τ �̃AB = 3

θ2
∂t σ̃AB + (1 + q)�̃AB = (q − 2)�̃AB − 2N+ ÑAB ± 2 Ã1/2∗ ÑAB,

where ÑAB = ñ AB/θ , ∗ ÑAB = ∗ñ AB/θ , N+ = n+/θ andwe use the notation introduced
in [RadNon, (52)–(53), p. 59]. Note that if N+ and Ã converge to zero exponentially, then
Ñ = 3Ñ AB ÑAB/2 converges to zero exponentially; cf. (111), [RadNon, (58), p. 60] and
[RadNon, (67), p. 62]. Since ∗ ÑAB = Ñ C

A εCB , cf. [RadNon, (53), p. 59], it follows that
∗ ÑAB converges to zero exponentially. Assuming additionally that q − 2 converges to
zero exponentially, it is clear that �̃AB converges exponentially. On the other hand, due
to [RadNon, (52), p. 59] and [RadNon, (67), p. 62],�AB = �̃AB +�+δAB/3. Assuming,
in addition to the above, that �+ converges exponentially, it follows that �AB converges
exponentially.

Convergent asymptotics, q → 2.Before discussing convergence, note that the state space
associated with the Hewitt-Wainwright variables is compact; cf. [RadNon, (7)–(9), p. 7].
Assume now that N+, Ã and q − 2 converge to zero exponentially. Then Ñ converges
to zero exponentially due to [RadNon, (7), p. 7]. Combining these observations with
[RadNon, (5), p. 6] yields the conclusion that (�+, �̃) converges exponentially to, say,
(s, s̃). Due to the exponential convergence of the variables and the above discussion of
the convergence of �AB , it is clear that �AB converges exponentially to a limit, say
SAB . Next, due to [RadNon, (11), p. 7], it is also clear that � converges exponentially to
0 if γ < 2 and that if γ = 2 and � is initially positive, then � converges exponentially
to a strictly positive number. In either case, � converges exponentially to a limit, say
�0. Finally, due to [RadNon, (8), p. 7], � converges to zero exponentially. Considering
(114), it is clear that if s > −1, then f̂ 11 converges to zero exponentially. Turning to
(113), it is of interest to calculate the eigenvalues of 3S C

B /2 in terms of s and s̃. Say
that the eigenvalues of the matrix with components 3S C

B /2 are λ±. Then

s = lim
τ→−∞ �+(τ ) = 3

2
lim

τ→−∞ � A
A (τ ) = λ+ + λ−. (115)

It can also be computed that

�AB�AB = �̃AB�̃AB +
2

9
�2

+ = 2

3
�̃ +

2

9
�2

+,

where we use the notation introduced in [RadNon, Subsection 11.2, pp. 57–62]. In
particular,

λ2+ + λ2− = 9

4
lim

τ→−∞ �AB�AB = 3

2
s̃ +

1

2
s2. (116)

Combining (115) and (116) yields

λ± = s

2
±

√
3s̃1/2

2
. (117)

Moreover, taking the limit of the Hamiltonian constraint yields

�0 + s̃ + s2 = 1. (118)
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Note that λ+ ≥ λ−. Assuming λ+ ≥ 1 yields the conclusion that

(
s − 1

2

)2

+

(
s̃1/2 −

√
3

2

)2

= s2 + s̃ + 1 − 2λ+ ≤ −�0, (119)

where we appealed to (117) and (118). To conclude, the only way for an eigenvalue of
the matrix with components 3S C

B /2 to be ≥ 1 is if s = 1/2, s̃ = 3/4 and �0 = 0. To
summarise: if N+, Ã and q−2 converge to zero exponentially; s > −1; and (s, s̃,�0) �=
(1/2, 3/4, 0), then ‖â−1‖ converges to zero exponentially as τ → −∞.

Bianchi VI−1.Due to the above, what remains to be considered is the case that γ ∈ [0, 2),
s = 1/2 and s̃ = 3/4. However, due to [RadNon, Section 7, pp. 40–41], convergence
to the corresponding point on the Kasner parabola implies that the solution is a locally
rotationally symmetric Bianchi type VI−1 solution.

17.3. Blow up criteria. The purpose of the present subsection is to justify the statements
made in Sect. 8. In order to do so, we apply the results of [Rin, Chapter 8] to (40). We
therefore need to verify that the conditions of [Rin, Proposition 8.1, pp. 91–92] and [Rin,
Proposition 8.9, p. 93] are satisfied.

Applicability of the results of [Rin]. To begin with, we need to verify that [Rin, Defini-
tion 7.8, p. 82] is satisfied. This verification partially overlaps with [Rin, Example 4.20,
pp. 42–43]. However, for the benefit of the reader, we provide a complete justification
here. The metric associated with (40) is given by

gcon = −dτ ⊗ dτ +
∑R

r=1e
−2β̄r τ ḡr (120)

on Mcon, where Mcon is defined in connection with (40). Here the β̄r are distinct and
defined so that the set of β̄r ’s equals the set of βi ’s. We also order the β̄r ’s so that
β̄1 < · · · < β̄R < 0. Let dr equal the number of βi ’s such that βi = β̄r . Then ḡr is
the standard metric on T

dr . We denote by ḡ and k̄ the metric and second fundamental
form induced on S̄τ := T

d × {τ } by gcon. Comparing (40) with [Rin, (1.2), p. 4], it
is clear that g00 = −1; d = 0; ar = e−β̄r τ ; α = 0; ζ(τ ) = m2e−2τ ; and f = 0.
Moreover,

k̄ = −∑R
r=1β̄r e

−2β̄r τ ḡr . (121)

LettingU := ∂τ , it is clear thatU is the future directed unit normal to the hypersurfaces
S̄τ (with respect to the metric gcon). Moreover,

LU k̄ = ∑R
r=12β̄

2
r e

−2β̄r τ ḡr . (122)

For future reference, it is of interest to note that

k̄ ≥ −β̄R ḡ.

The first step in verifying that [Rin, Definition 7.8, p. 82] is satisfied is to verify that
(Mcon, gcon) is a canonical separable cosmological manifold in the sense of [Rin, Def-
inition 1.18, p. 11]. However, this follows immediately from (120). Next, we need to
verify that (40) is C2-balanced. Note, to this end, that ∂τ is future uniformly timelike in
the sense of [Rin, Definition 3.1, p. 32]. Moreover, it is clear that α and ζ are C1-future
bounded in the sense of [Rin, Definition 3.8, p. 34]. Since d = 0, the conditions on X
and the shift vector field are void. Finally, in order to verify that the second fundamental
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form is C1-bounded, it is sufficient to recall that k̄ and LU k̄ satisfy (121) and (122); cf.
[Rin, Definition 3.4, p. 32]. Due to [Rin, Definition 3.8, p. 34], it is thus clear that (40)
is C2-balanced.
The condition that the shift vector field be negligible (cf. [Rin, Definition 7.3, p. 81]) is
void since d = 0. Next, note that k̄ is diagonally convergent with βRi,r = β̄r , where κd
can be choosen to be as large as desired; cf. [Rin, Definition 7.3, p. 81]. The condition
that ḡ beC2-asymptotically diagonal (cf. [Rin, Definition 7.3, p. 81]) is void since d = 0
in our case.
Considering [Rin, Definition 7.5, p. 82], it is clear that the main coefficients are con-
vergent with α∞ = 0; ζ∞ = 0; Cmn = |m|2; and κmn := 2 (note that since d = 0,
the conditions on X j are void). Finally, considering [Rin, Definition 7.6, p. 82], it is
clear that the equation is asymptotically non-degenerate with Q = R. To conclude, (40)
is geometrically non-degenerate, diagonally dominated, balanced and convergent; i.e.,
definition [Rin, Definition 7.8, p. 82] is satisfied. It is also clear that f = 0 and β̄Q < 0.
In particular, it follows that [Rin, Propositions 8.1 and 8.9, pp. 91–93] are applicable to
(40).

Continuity properties of the asymptoticmaps.As a preparation to stating the conclusions,
note that

A∞ :=
(
0 1
0 0

)
; (123)

cf. the statements of [Rin, Propositions 8.1 and 8.9, pp. 91–93]. As a consequence, the
κsil,+ appearing in the statements of the propositions vanishes; note that κsil,+ is defined
to be the largest real part of an eigenvalue of A∞; cf. the statements of the propositions
and [Rin, Definition 4.3, p. 38]. Moreover, in our case, βrem = −β̄R . Due to the form
of A∞, it is clear that if 0 < β ≤ βrem, then the first generalised eigenspace in the
β, A∞-decomposition of C2, say Ea , equals C

2, irrespective of the choice of β; cf.
[Rin, Definition 4.7, pp. 39–40]. Next, note that κq,± is given by [Rin, (7.24), p. 83],
so that κq,± = ±β̄q/2 in our case. In particular, sh,β,+ = 0 if 0 < β < −β̄q/2 for all
q ∈ {1, . . . , R}; cf. [Rin, (8.3), p. 91]. Fixing such a β, as well as an ε > 0, there is
a constant Cε,β , depending only on ε, β, the spectra of the ḡr and the coefficients of
the equation; and a numerical constant N such that for every smooth solution u to (40),
there are smooth functions v∞ and u∞ such that

∥∥∥∥
(

u(·, τ )

uτ (·, τ )

)
−

(
v∞τ + u∞

v∞

)∥∥∥∥
(s)

≤ Cε,β〈τ 〉Ne−βτ
[‖uτ (·, 0)‖(s+ε) + ‖u(·, 0)‖(s+1+ε)

] (124)

for all τ ≥ 0 and all s ∈ R.
Next, fixing 0 < ε < 1 and choosing β = −εβ̄R/2, it is clear that sh,β = −1/2 + ε/2;
cf. [Rin, (8.6), p. 92]. Applying [Rin, Proposition 8.1, pp. 91–92] with this β and with ε

replaced by ε/2 then yields a constant Cε such that for every smooth solution u to (40),
the corresponding v∞ and u∞ satisfy

‖u∞‖(s) + ‖v∞‖(s) ≤ Cε

[‖uτ (·, 0)‖(s−1/2+ε) + ‖u(·, 0)‖(s+1/2+ε)

]

for all s ∈ R. Letting �∞ be the map introduced in Sect. 8, it is thus clear that �∞
extends to a bounded linear map as in (42). Next, note that sh,− = 1/2; cf. [Rin, (8.8),
p. 93] and the above. Appealing to [Rin, Proposition 8.9, p. 93], in particular [Rin, (8.7),
p. 93] then yields the conclusion that �∞ extends to a bounded linear map as in (43).
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Criteria guaranteeing L2-blow up. Using the continuity of �∞,0,ε , it is clear that

Aε := �−1
∞,0,ε[(L2(Tn) − {0}) × L2(Tn)] ∩ C∞(Tn) × C∞(Tn)

is a subset of C∞(Tn) × C∞(Tn) which is open with respect to the H (1/2+ε)(Tn) ×
H (−1/2+ε)(Tn)-topology. Due to the homeomorphism between initial data and asymp-
totic data (in the C∞-topology) and the linearity of the map �∞, it is straightforward
to verify that Aε is dense with respect to the C∞-topology. To conclude, the subset of
smooth initial data such that ‖v∞‖2 > 0 is open with respect to the H (1/2+ε)(Tn) ×
H (−1/2+ε)(Tn)-topology and densewith respect to theC∞-topology. Returning to (124),
it is also clear that ifu is a solution corresponding to initial data inAε , then‖u(·, τ )‖L2 →
∞ as τ → ∞.

Criteria guaranteeing C1-blow up. Next, note that choosing s0 := n/2 + 1 + ε/2 yields
a continuous map

�∞,s0,ε/2 : H ((n+3)/2+ε)(Tn) × H ((n+1)/2+ε)(Tn) → H (s0)(Tn) × H (s0)(Tn).

On the other hand, due to Sobolev embedding, H (s0)(Tn) embeds continuously into
C1(Tn). Denote the corresponding map ϒ . Next, define C(s0) and C1 as follows. First,
ϕ ∈ C1 if and only if ϕ ∈ C1(Tn) and dϕ(x̄) �= 0 for every x̄ ∈ T

n such that ϕ(x̄) = 0.
Second, let C(s0) := C1∩H (s0)(Tn). Note thatϒ−1(C1) = C(s0). Moreover, C1 is an open
subset of C1(Tn); we leave the verification of this statement to the reader. Thus C(s0) is
an open subset of H (s0)(Tn). Define

Bε := �−1
∞,s0,ε/2

[C(s0) × H (s0)(Tn)] ∩ C∞(Tn) × C∞(Tn).

Then Bε is open with respect to the H ((n+3)/2+ε)(Tn) × H ((n+1)/2+ε)(Tn)-topology. In
order to verify thatBε is dense, note that there is a smooth pair of functionsψ = (ψ1, ψ0)

on T
n such that �∞,s0,ε/2(ψ) = (1, 0). Assume that φ ∈ C∞(Tn) × C∞(Tn). Letting

ϕ = (ϕ1, ϕ2) be the image of φ under �∞,s0,ε/2 and δ ∈ R, it is clear that

�∞,s0,ε/2(φ + δψ) = ϕ + δ · (1, 0).

Since the measure of the set of irregular values of a smooth function is zero, it is clear
that the set of δ such that ϕ1 + δ ∈ C(s0) has full measure; this is due to Sard’s theorem;
cf., e.g., [Lee, Theorem 6.10, p. 129]. In particular, it is thus clear that φ is in the closure
of Bε . To conclude, Bε is open with respect to the H ((n+3)/2+ε)(Tn)× H ((n+1)/2+ε)(Tn)-
topology anddensewith respect to theC∞-topology. The demonstration of the remaining
statements in Sect. 8 is left to the reader.
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