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Presented here is a unified approach to evaluating the error-
rate performance of digital communication systems operating over
a generalized fading channel. What enables the unification is the
recognition of the desirable form for alternate representations of
the Gaussian and MarcumQ-functions that are characteristic of
error-probability expressions for coherent, differentially coherent,
and noncoherent forms of detection. It is shown that in the largest
majority of cases, these error-rate expressions can be put in
the form of a single integral with finite limits and an integrand
composed of elementary functions, thus readily enabling numerical
evaluation.
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I. INTRODUCTION

Using alternate representations of classic functions aris-
ing in the error-probability analysis of digital communica-
tion systems (e.g., the Gaussian-function and the Marcum

-function), more than four decades of contributions made
by hundreds of authors dealing with error-probability per-
formance over generalized fading channels are now able
to be unified under a common framework.1 The unified
approach allows previously obtained results to be simplified
both analytically and computationally and new results to be
obtained for special cases that heretofore resisted solution
in a simple form. The coverage is extremely broad in that
coherent, differentially coherent, and noncoherent commu-
nication systems are all treated, as well as a large variety of
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1A small sample of these contributions, which in a broad sense are

pertinent to what we present here, can be found in [1]–[54]. For a more
detailed list of references that are specifically pertinent to each of the
issues addressed in this paper, see [14], [21], [25], [34], and [35].

fading channel models typical of communication links of
practical interest. For each combination of communication
(modulation/detection) type and channel fading model, the
average bit error rate (BER) or symbol error rate (SER) of
the system is described and represented by an expression
that is in a form that can be readily evaluated. In many
cases, the result is obtainable as a closed-form expression,
while in other cases, it takes on the form of a single
integral with finite limits and an integrand composed of
elementary (exponential and trigonometric) functions.2 All
cases considered correspond to real practical channels,
and the expressions obtained can be readily evaluated
numerically. Due to space constraints and the wide variety
of communication types and fading channels to which the
unified approach applies, we have chosen to omit such
numerical results from this paper. These will, however, be
presented in a forthcoming textbook [37] and journal papers
[21], [34], [35] by the authors. Applications of the generic
results include satellite, terrestrial, and maritime commu-
nications, single and multicarrier code division multiple
access (CDMA), two-dimensional (space–path) diversity,
and error-correction coded communications.

II. TYPES OF COMMUNICATION

The unified approach to be described allows for the per-
formance evaluation of systems characterized by a large va-
riety of modulation/detection combinations. Letting

denote the generic complex baseband
transmitted signal in the th transmission interval

, then a summary of these various digital
communication types is given in Table 1.

III. T YPES OF FADING CHANNELS

Aside from applying to a wide variety of digital commu-
nication system types, the versatility of the unified approach
will allow evaluation of average BER for a host of multipath
fading channel types typical of practical communication

2In some instances, a second Gauss–Hermite quadrature integral [38,
(25.4.46)] may be needed.
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Table 1 Modulation/Detection Types

environments. A summary of these various fading channel
models and the environments to which they apply is given
in Table 2.

IV. TYPES OF RECEPTION

The most general model for the reception of digital
signals transmitted through a slowly varying fading medium
is a multilink channel in which the transmitted signal
is received over separate channels (Fig. 1). In this
figure, is the set of received replicas of the
complex transmitted signal, with the channel index and

the corresponding sets of random path
amplitudes, phases, and delays, respectively. Because of
the slow fading assumption, we assume that the elements
of the sets are all constant over the data symbol interval.
We assume that these sets are mutually independent. The
fading amplitude on each of these channels is assumed to
be a time-invariant random variable (RV) with a known
probability density function (pdf). While it is more typical
than not to assume independent, identically distributed
(i.i.d.) fading among the multichannels, the multichannel
model that we shall consider is sufficiently general to
include the case where the different channels are correlated
as well as nonidentically distributed. We call this type of
multilink channel ageneralized fading channel. In the case
of the latter, two situations are possible: either the channel
fading probability distributions all come from the same
family but have different average powers—i.e., thepower
delay profile (PDP) or alternately themultipath intensity
profile (MIP) across the channels is nonuniform—or more
generally, the channel fading probabilities come from dif-

ferent distribution families. Last, with regard to the delays,
the first channel is assumed to be the reference channel
whose delay . Without loss of generality, we order
the delays such that . With such
a general model as the above, we are able to handle a
large variety of individual channel descriptions and their
associated diversity types such as a) space, b) angle, c)
polarization, d) frequency, e) multipath, etc. A description
of these and others is presented in [3, pp. 238–239].

One special case of the above generic fading channel
model on which we shall primarily focus our attention
corresponds to multipath radio propagation wherein the
fading is classified according to its selectivity. In the case
of frequency nonselectivefading, wherein the symbol time
of the digital modulation is large compared to the maximum
delay spread of the channel, there exists only a single
resolvable path resulting in single channel reception

. The receiver for such a communication system can
perform coherent, differentially coherent, or noncoherent
detection.

When the fading environment is such that the maximum
delay spread of the channel is large compared to the
symbol time, i.e.,frequency selectivefading, then there exist
multiple resolvable paths (the maximum number
of which is determined by the ratio of the maximum delay
spread to the symbol time) resulting in multiple channel
reception.

For the generic case of multichannel reception, diversity
combining can be employed at the receiver to improve
signal-to-noise ratio (SNR) and thus average BER perfor-
mance. The particular types of diversity combining that are
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Table 2 Fading Channel Types and Their Environment

practical depend on the characteristics of the modulation
and their associated detection. For coherent detection, the
optimum form of diversity combining ismaximal ratio
combining(MRC), which is implemented in the form of a
RAKE receiver [1], [2] (see Fig. 2). Such an implementa-

tion requires knowledge of the channel fading parameters,
which is typically obtained from measurements made on
the channel. Aside from its superiority of performance, the
RAKE receiver is well suited to equal as well as unequal
energy signals such as -AM, -QAM, or, for that
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Table 2 (Continued.)Fading Channel Types and Their Environment

Fig. 1. Multilink channel model.

matter, any other amplitude/phase modulation. A simpler
but suboptimum diversity combining technique is called
equal gain combining(EGC) whose implementation has
the advantage of not requiring knowledge of the channel
fading amplitudes. Since unequal energy signals such as-
AM and -QAM would require amplitude knowledge for
automatic gain control (AGC) purposes, the EGC diversity
technique should only be used with equal energy, i.e.,
constant envelope signals such as-PSK [3, Sect. 5.5.4].

For differentially coherent and noncoherent detection,
MRC is not practical since channel phase estimates are
needed for its implementation. If in fact it were possible to
estimate the channel phases on each path, then the reasons
for employing differentially coherent and noncoherent de-
tection would become mute, and instead one should resort
to coherent detection since it results in superior perfor-
mance. In view of this observation, the most appropriate
form of diversity combining for these types of receivers is
postdetection EGC [3, Sect. 5.5.6] (see Figs. 3 and 4).

With the foregoing material as background, we are now
prepared to delve into the mechanisms that will allow the
evaluation of the performance of such systems to be unified
under a common framework.

V. ALTERNATE REPRESENTATIONS OF THE

GAUSSIAN AND MARCUM -FUNCTIONS

A. The Gaussian Q-Function

The classical definition of the Gaussian-function (prob-
ability integral) is given by

(1)

In problems dealing with performance evaluation for co-
herent detection over fading channels, the conditional BER
is expressed in terms of (1) where the argumentof the
function is typically proportional to the square root of the
instantaneous SNR, which itself depends on the random
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Fig. 2. Coherent multichannel receiver structure. The weightswl are such that
wl = (�le

j� )=Nl (l = 1; 2; � � � ; Lr), and the bias is set equal to L
l=1

�2l =NlEm for
maximal-ratio combining; andwl = ej� (l = 1; 2; � � � ; Lr), and the bias is set equal to
zero for equal-gain combining.

fading amplitudes of the various paths. To evaluate the
average BER, one must then average over the statistics
of the fading amplitude random variables. Since in the
definition of (1) the argument appears in the lower limit
of the integral, it is analytically difficult to perform such
averages. Rather, what would be desirable would be an
integral form in which the limits were independent of
the argument (preferably finite from a computational
standpoint) and an integrand that is exponential (preferably
Gaussian) in the argument.

A number of years ago, Craig [4] cleverly showed
that the evaluation of average probability of error for the
two-dimensional additive white Gaussian noise (AWGN)
channel could be considerably simplified by choosing the
origin of coordinates for each decision region as that defined
by thesignal vector as opposed to using a fixed coordinate
system origin for all decision regions derived from the
receivedvector. A by-product of this work was an alternate
definite integral form for the Gaussian-function, which
had the desirable properties mentioned above.3 In particular

(2)

We herein refer to this form of the Gaussian-function
as the preferred form since, as we shall see shortly, it

3This form of the GaussianQ-function was earlier implied in the work
of Pawulaet al. [5] and Weinstein [54].

simplifies the analysis and evaluation of average BER by
allowing the averaging of the random parameters (fading
amplitudes) to be performed inside the integral (in closed
form for many cases) with a final integration on the variable

performed at the end.
An interesting property of the form in (2) can be immedi-

ately obtained by inspection of the integrand. In particular,
the maximum of the integrand occurs at the upper limit, i.e.,
for . Thus, replacing the integrand by its maximum
value, namely, , immediately gives the upper
bound

(3)

which is the well-known Chernoff bound.
An interesting extension of the alternate representation

in (2) can be obtained for the two-dimensional Gaussian
-function, which has the classical form

(4)

As was the case for (1), this form is undesirable in ap-
plications where additional statistical averaging must be
performed over the arguments of the function. In [6],
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Fig. 3. Differentially coherent multichannel receiver structure.

Simon found a new representation for in the
preferred form, namely

(5)

A special case of (5) is of particular interest, namely, when
and . For this case, (5) simplifies to

(6)

Comparing (6) with (2), we see that the square of the Gauss-
ian -function has the same integrand as the Gaussian

-function itself but integrated only overhalf the interval.
As we shall see, the result in (6) is particularly useful in
evaluation of average SER for -QAM transmitted over
fading channels.

B. The Marcum -Function

The first-order Marcum -function [7] is classically
defined as

(7)

In problems dealing with performance evaluation for dif-
ferentially coherent and noncoherent detection over fading
channels, the conditional BER is expressed in terms of (7),
where, as in the previous discussion, the argumentsof
the function are typically both proportional to the square
root of the instantaneous SNR, which itself depends on the
random fading amplitudes of the various paths. To evaluate
the average BER, one must again average over the statistics
of the fading amplitude random variables, and thus (7) has
the same undesirability as (1). The natural question to ask
is: Is it possible to arrive at a representation of the Marcum

-function in the so-called preferred form, i.e., one where
the limits of the integral are independent of the arguments of
the function (and hopefully also finite) and the integrand is
a Gaussian function of these arguments? Before answering
this question, we make one more important observation.
While it is true, as mentioned above, that the arguments

of the Marcum -function typically both depend on
the random fading amplitudes of the various paths, their
ratio is independent of the instantaneous SNR and depends
only on the modulation/detection type. With this in mind,
we define which is a nonrandom parameter that
requires no statistical averaging and is in many cases simply
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Fig. 4. Noncoherent multichannel receiver structure.

a number (more about this later, when we consider specific
modulation/detection examples). Thus, substitutingfor

in (7), we reduce the definition to a single statistical
argument , i.e.,

(8)
Having done this, we are now in a position to offer a
positive answer to the above question. Using the infinite
series representation [8, p. 153] of the Marcum-function
and the integral representation of theth order modi-
fied Bessel function of the first kind, namely,

, it was shown in [52] that
for , or equivalently in [9] for

(9)

Observe that the integration limits in (9) are finite and
independent of the random argument, and the integrand
is Gaussian in this same argument. Similarly, for ,
defining now the parameter , then substituting
for in (7) to reduce the classical definition to a single
statistical argument (now), it was shown in [9] and [52]

that4

(10)

Simple checks on the validity of the results in (9) and (10)
immediately produce

(11)

Also, in the same manner as was done for the Gaussian
-function, one can immediately obtain upper and lower

“Chernoff-type” bounds on the Marcum -function. In
particular, observing that the maximum and minimum of
the integrand in (10) occurs for and ,
respectively, then replacing the integrand by its maximum

4Although it appears from (10) that the MarcumQ-function can exceed
unity, we note that the integral portion of this equation is always less than
or equal to zero. Furthermore, the special case of� = �(� = 1), which
has limited interest in communication performance applications, has the
closed-form resultQ1(�;�) = [1 + exp(��2)I0(�2)]=2 [39, (A-3-
2)]. It should also be noted that the results in (9) and (10) can also be
obtained from the work of Pawula dealing with the relation between the
RiceIe-function and the MarcumQ-function [53]. In particular, equating
[53, (2a) and (2c)] and using the integral representation of the zero-order
Bessel function as above in the latter of the two equations, one can, with
an appropriate change of variables, arrive at (9) and (10) of this paper.
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and minimum values gives

(12a)

which in view of (11) are asymptotically tight as .
Similarly, for , the lower bound becomes5

(12b)

Last, we point out that the integrals in (9) and (10)
can be put in a more reduced form, wherein the limits
of integration are rather than . The necessary
changes to the integrand are: replace by , replace

by , and multiply the entire integrand by two. From the
standpoint of performance evaluation, there is no particular
advantage gained by reducing the range of integration, and
hence we continue to use the forms already presented in
all that follows.

The desirable form of the representation for the first-
order Marcum -function given in (9) and (10) can also be
obtained for the generalized (th-order) Marcum -function
defined by

(13)

In particular, starting with the series representations for the
generalized Marcum -function and again making use of
the integral representation of the st order modified
Bessel function of the first kind, the following pair of
relations was derived in [9] and [52]:

(14a)

(14b)

With the above mathematical tools in hand, we are now in
a position to demonstrate how the performance of coherent,

5Since the maximum of the integrand in (10), which occurs at� = �=2,
would exceed unity, then replacing the integrand by this maximum value
gives a useless upper bound.

differentially coherent, and noncoherent communication
systems operating over generalized fading channels can
be evaluated both analytically and numerically in terms of
finite integrals with simple integrands, which in some cases
can be reduced to closed-form solutions.

VI. COHERENT MULTICHANNEL DETECTION

OF DIGITAL SIGNALS

A. Multichannel Mathematical Model

In keeping with the multichannel representation of Fig. 1,
after passing through the fading channel, each replica of the
signal is perturbed by AWGN with a single-sided power
spectral density (W/Hz). The AWGN
is assumed to be statistically independent from channel to
channel and independent of the fading amplitudes .
Relating Fig. 1 to the channels described by Table 2, the
fading amplitude of theth channel is an RV with mean
square value and whose pdf is any of those
described in the table. Mathematically speaking, for the
generic communication signal described in Section II, the
receiver is provided the set of complex baseband received
signals

(15)

where denotes the equivalent complex baseband
AWGN for the th channel with single-sided power spectral
density . The instantaneous SNR per symbol of theth
channel is defined as where denotes the
average symbol energy and for a given type of signaling
scheme can be related to the amplitude introduced in
Section II.

One common example of a multichannel that is typical
of a wide class of radio propagation environments is the
multipath channel, which can be modeled as a linear filter
characterized by the complex-valued low-pass equivalent
impulse response [10]–[12]

(16a)

where is the Dirac delta function. The difference
between adjacent delays, i.e., , is most often
modeled as being constant and equal to the symbol time, in
which case the linear filter takes on the form of a uniformly
spaced tapped delay line with taps. For the special
case of the multipath channel defined by (16a), the single
received signal would take the form

(16b)
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where now represents the equivalent baseband com-
plex noise associated with the single receiver and has power
spectral density W/Hz. As previously mentioned, in
what follows we shall primarily focus on the multipath
channel model of (16a) and associated received signal form
of (16b), although the approach applies equally well to
the other forms of the generic multichannel model and
their associated diversity types.6 This is tantamount to
assuming a generic multichannel model with

.

B. Average BER for Binary Signals

For binary signals and a receiver that implements diver-
sity combining with ideal time and phase synchronization
on each branch (i.e., perfect time delay and phase
estimates), the conditional (on the fading amplitudes) BER
is given by [13, p. 188]

(17)

where for coherent binary phase shift keying (BPSK),
for coherent orthogonal binary frequency shift

keying (BFSK), and for coherent BFSK with
minimum correlation. The parameteris a function of the
set of fading amplitudes and has a form that depends
on the type of diversity combining employed. That is, for
MRC and perfect estimation of the fading amplitudes ,
we would have [3]

(18)

whereas for EGC with no estimation of the fading ampli-
tudes, we would have [3]

(19)

In (18) and (19), is theactualnumber of combined
paths in the RAKE receiver.7 We also note that the results
in (17) together with (18) or (19) also apply to diversity
combining of receivers of the same information-bearing
signal transmitted over frequency nonselective, slow
fading channels.

To compute the average BER, we must statistically
average (17) over the joint PDF of the fading amplitudes,

6We note that for the frequency-selective multipath channel case, the
proper operation of the RAKE receiver requires that the transmitted signals
be given an orthogonal basis.

7For MRC, the higherLr is, the better the performance, and hence
from this standpoint alone, the optimal value forLr is Lp. However,
Lr is typically chosen strictly less thanLp due to receiver complexity
constraints. For EGC,Lr is also typically chosen strictly less thanLp;
however, the reason for this choice here is not due solely to complexity
constraints. In addition, under certain circumstances, increasingLr may
induce a “combining loss,” and thus from a performance standpoint, the
optimum value ofLr may not beLp. Indeed, equal-weight combining
of paths with very low average SNR degrades performance, since these
paths will contribute mostly to noise [24]. Thus, it is better not to include
these paths in the combining process.

i.e.,

(20)

If the fading amplitudes are statistically indepen-
dent (but not necessarily identically distributed), then (20)
reduces to

(21)

1) Classical Solution:The classical solution to (21) is
first to replace the -fold average by a single average
over , i.e.,

(22)

Note that (22) does not require the independence assump-
tion on the fading amplitudes and thus also applies to
(20). Evaluation of (22) requires obtaining the pdf of the
combined fading RV . For the case where the fading
amplitudes can be assumed independent, finding this pdf
requires a convolution of the pdf’s of the and can often
be quite difficult to evaluate, particularly if the pdf’s of
the come from different distribution families. Even in
the case where the pdf’s of the come from the same
distribution family but have different average powers, i.e.,
other than a uniform power delay profile, evaluation of
the pdf of can still be quite difficult. To circumvent this
difficulty, we now propose an alternate method of solution
based on using the alternate representation of the Gaussian

-function in (2).
2) Solution Based on Alternate Representation of the Gauss-

ian -Function:
a) MRC with independent (but not necessarily identical)

fading amplitudes:Combining (17) and (18) and using the
alternate representation of the Gaussian-function of (2),
the average BER of (21) can be expressed as

(23)
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Table 3 Evaluation of the IntegralsIl(�l; g; �)

where

(24)

and

(25)

are, respectively, the instantaneous and average SNR per
bit corresponding to theth channel (or resolvable path).
The form of the average BER in (23) is quite desirable
in that the integrals can be obtained in closed
form with the help of known Laplace transforms or can

alternately be efficiently computed using Gauss–Hermite
quadrature integration. Thus, all that remains to compute is
a single integral (on ) over finite limits. The results of these
evaluations for the considered fading channel distributions
in Table 2 are obtained [14] with the aid of a number of
definite integrals in [15] and are tabulated in Table 3. Last,
for the special case where all channels are identically
distributed with the same average SNR per bit, for all
channels, then (22) simplifies further to

(26)

b) EGC with independent (but not necessarily identical)
fading amplitudes:Combining (17) and (19) and using the
alternate representation of the Gaussian-function of (2),
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the average BER of (21) can be expressed as

(27)

Unfortunately, for this type of diversity combining, we
cannot represent the exponential in (27) as a product of
exponentials each involving only a single because of the
presence of the cross-product terms. Hence, we cannot
partition the -fold integral. Instead, we must return to
the classical solution of Section VI-B1 but now use the
alternate representation of the Gaussian-function. Letting

for simplicity of notation, we have from (2),
(19), and (22)

(28)

Next, we represent in terms of its inverse Fourier
transform, i.e., the characteristic function, which, because
of the independence assumption on the fading channel
amplitudes, becomes

(29)

Substituting (29) into (28) gives

(30)

The integral can be obtained in closed form by
separately evaluating its real and imaginary parts, namely,

[15, (3.896.4) and (3.896.3)]

(31)

where is the confluent hypergeometric function.
Despite the fact that the product of characteristic functions

in (30) is, in general, complex,
the average BER is real; thus, it is sufficient to consider
only the real part of the integrand in this equation. Last,
using (31) in (30) and making the change of variables

, we obtain

(32)

where

(33)

and the doubly infinite integral on can be readily evalu-
ated by the Gauss–Hermite quadrature formula

(34)

where are zeros and weight factors of the
-order Hermite polynomial . These coefficients

are tabulated in [38, p. 924, Table 25.10] for various
polynomial orders. Typically, is sufficient for
excellent accuracy. Last, after substituting (32) into (30),
what remains is a single integral onover finite limits.

While the solution for the average BER of the EGC
receiver is indeed one step more complicated than that
for the MRC receiver, i.e., one must evaluate a Gauss
quadrature integral in addition to the finite limit integral
on , we wish to remind the reader of the generality of
our model, namely, each fading channel carries its own
individual fading amplitude statistic. When contrasted with
the true classical solution in the form of (22), which would
require an -fold convolution (itself an -fold integral) or
other means to obtain the pdf of the combined fading RV
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[17], the form of the solution as given by (30) together with
(33) and (34) is considerably simpler. The full details of this
approach for Nakagami- distributed channels (paths) are
given in [16]. Another approach, specifically for Rayleigh
fading, which sometimes leads to closed-form solutions is
discussed in [18].

c) MRC with correlated fading amplitudes:As discussed
in [19] and [20], there are a number of real-life scenarios
in which the assumption of independent paths is not valid.
Along these lines, two correlation models have been pro-
posed, namely, equal (constant) correlation and exponential
correlation, each with its own advantages and disadvantages
depending on the physics of the channel. Using these
models along with a Nakagami- distribution for the
fading, several authors have analyzed special cases of the
performance of such systems corresponding to specific
modulation, detection, and diversity combining schemes.
For example, Aalo [19] obtains the average BER for
multichannel reception of coherent and noncoherent BFSK
and coherent and differentially coherent BPSK using an
MRC. Patenaudeet al. [20] consider this same performance
for postdetection EGC of the multichannel reception of or-
thogonal BFSK and differentially coherent BPSK (DPSK).

In this section, we obtain general results for the average
BER of binary coherent modulations over equicorrelated
and exponentially correlated Nakagami-channels. Aside
from allowing for many modulation/detection/diversity
combining cases not previously treated, these general
results as before provide in many cases much simpler
forms for average BER expressions corresponding to the
special cases treated in [19].

From (18) and (25), the total SNR per bitat the output
of the MRC is given by

(35)

It is shown in [19, (18)] that for the equicorrelated fading
model, the pdf of is given by (36), shown at the bottom
of the page, where is the envelope correlation
coefficient assumed to be the same between all channel
pairs.8 As mentioned in [19, Sect. II-A], such a correlation
model may approximate closely placed diversity antennas.
Similarly for the exponential correlation fading model [19,

8It should be noted that in [19, (18)], the symbol� is used to
denote the correlation coefficient of the underlying Gaussian processes
that produce the fading on the channels. This correlation coefficient is
equal to the square root of the power correlation coefficient, which for all
practical purposes can be assumed to be equal to the envelope correlation
coefficient. In this paper, we denote the envelope correlation coefficient
by � so as to follow what seems to be the more conventional usage of
this symbol.

Sect. II-B], the pdf of is approximately given by

(37)

where

(38)

Rewriting the average BER of (22) as

(39)

then using either (36) or (37), the inner integral oncan
be computed in closed form, leaving a single finite integral
on . In particular, defining

(40)

then

(41)

The closed-form expression for has
been evaluated in [21] for both the equicorrelated and
exponentially correlated fading models with the results

(42a)

(42b)

It should be noted that (41) together with (42a) is equivalent
to [19, (32)], which is expressed in terms of the Appell
hypergeometric function , which typically is not
available in standard software libraries such as Mathemat-
ica, Matlab, or Maple and which is defined either in terms
of an infinite range integral of a special function [19, (A-
12)] or as a doubly infinite sum [19, (A-13)]. It should
also be noted that (41) together with (42b) is equivalent
to [19, (40)], which is expressed in terms of the Gauss
hypergeometric function .

(36)
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C. Average SER for -ary Signals

1) Multichannel MRC Reception of -PSK: The SER
for -PSK over an AWGN is given by the integral
expression [5, (71)], [4, (5)], [13, (3.119)]

(43)

where and is the received
symbol SNR. For MRC RAKE reception in the pres-
ence of the fading channel model of (15), the conditional
SER is obtained from (43) by replacing by

where represents the
instantaneous SNR per symbol after combining. Following
the same steps as in (23), it is straightforward to show that
the SER over generalized fading channels is given by [14]

(44)

where is defined in (24), with now denot-
ing the instantaneoussymbolSNR for the th path and
the averagesymbolSNR for the same path. The expressions
for for the various fading channel models
have already been given in Table 3 and can be used in (44)
to compute the average SER for-PSK over generalized
fading channels.

We conclude this section by noting that results for
multichannel reception with EGC and those for correlated
fading amplitudes can be obtained in a manner similar to the
approaches in Section VI-B2b (see [16]) and Section VI-
B2c (see [21]), respectively.

2) Multichannel MRC Reception of -QAM: For a square
-QAM signal constellation with points ( even),

the conditional (on the fading) SER is obtained from the
AWGN result [13, (10.32)] as

(45)

where . Using (2) and also the new
representation for the square of the Gaussian-function
given in (6), the average SER can be written as

(46)

where again is defined in (24) and tabulated
in Table 3. Again, the results for correlated fading ampli-
tudes can be found in a manner similar to the approach in
Section VI-B2c (see [21]).

A special case of interest is the average SER performance
of -QAM over frequency-flat channels, which can be

obtained from (45) by setting . Using [15, (2.562.1)],
the following new closed-form result can be obtained for
a Rayleigh channel [14]:

(47)

where is the average received SNR per
symbol. Note that the result in (47) agrees with that
obtained in [22, (44)] for the special case of .

Another, more general case of interest that leads to a
closed-form result is the average SER performance of-
QAM over dissimilar Rayleigh fading channels. Using
a partial fraction expansion of the integrand in (46), then
with the help of [15, (2.562.1)], it can be shown that [14]

(48)

where

(49)

Last, although not specifically treated here, the average
SER performance of the one-dimensional case,-AM,
which is referenced in Table 1, can be derived in a manner
similar to that presented in this section and is discussed in
[14].

VII. N ONCOHERENT AND DIFFERENTIALLY COHERENT

MULTICHANNEL DETECTION OF DIGITAL SIGNALS

A. Average BER for Binary Signals

Many problems dealing with the BER performance of
differentially coherent and noncoherent detection of PSK
and FSK signals have a decision variable that is a quadratic
form in independent complex-valued Gaussian random vari-
ables. Almost two decades ago, Proakis [23] developed a
general expression for evaluating the probability of error
for multichannel reception of such binary signals when
the decision variable is in that particular form. Indeed, the
development and results originally obtained in [23] later
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Table 4 Special Cases of Multichannel Reception of Differentially Coherent and
Noncoherent Detection of Digital Signals

appeared in [24, Appendix 4B] and have become a classic in
the annals of communication system performance literature.
The most general form of the bit error probability expres-
sion, i.e., [24, (4B.21)] obtained by Proakis, was given in
terms of the first-order Marcum -function and modified
Bessel functions of the first kind. Although implied but not
explicitly given in [23] and [24], this general form can be
rewritten in terms of the generalized Marcum-function
of (13) as

(50)

where is the total instantaneous SNR per bit

(51)

and , where the parameters are
defined in [24, (4B.6)] and [24, (4B.10)], respectively.

A number of special cases of (50) corresponding to
specific modulation/detection schemes are of particular
importance and are tabulated in Table 4. Note that in all
cases (as previously alluded to in Section V-B),and
(and hence their ratio) are independent of the fading channel
model and hence can be treated as constants when averaging
the conditional BER over . More about this shortly.

For (i.e., single channel reception), the latter
two summations in (50) do not contribute, and hence one
immediately obtains the result in [24, (4B.21)], i.e.,

(52)

which for and reduces to
the well-known expressions for orthogonal BFSK (DPSK)
as reported in [24, (4.3.19)] ([24, (4.2.117)]), namely

(53)

For and any , which corresponds to the
case of multichannel detection of equal energy correlated
binary signals, after some simplification (50) becomes [25]

(54)

Once again setting and , then
using the series form for theth-order Marcum -function
in [26, (9)] and the combinatorial identity

, (54) reduces to the well-known expressions for
orthogonal BFSK (DPSK) as reported in [24, (4.4.13)],
namely

(55)

where

(56)

and as before for BFSK and for DPSK.
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To evaluate average BER in the same manner as was done
for coherent reception, we will first need to substitute the
alternate representations of the Marcum-function found
in (9), (10), and (14) into the appropriate conditional BER
expression, i.e., (50), (52), or (54). In the most general case,
namely, (50), the result can be written as a single integral
with finite limits and an integrand composed of elementary
functions, i.e.,

(57)

where

(58)

with

(59a)

(59b)

Note that in (57), the total instantaneous SNR per bit (over
which we must average) appears only in the argument of the
exponential term in the integrand. This is the identical be-
havior as was found for the analogous result corresponding
to coherent reception. Also note that as , (57) assumes
an indefinite form, and thus an analytical expression for
the limit is more easily obtained from another form of
the expression for the error probability, namely, (55) with

replaced by . We further point out that the limit
of (57) as converges smoothly to the exact BER
expression of (55). For example, numerical evaluation of
(57) setting gives an accuracy
of five digits when compared with numerical evaluation of
(55) for the same system parameters. The representation
(57) is therefore useful even in this specific case. This is
particularly true for the performance of binary FSK and
binary DPSK, which cannot be obtained via the classical
representation of (55) in the most general fading case
but which can be solved using (57). The results for the
special cases of single channel reception and

can be easily obtained from (57) together
with (58) and (59) and can be found in [25].

Consider the evaluation of the average BER for the
case where the channel SNR’s are
statistically independent (but not necessarily identically
distributed). Analogous to (23) and (24), we obtain from
(57)

(60)

where

(61)

Comparing (61) with (24), we observe that the two integrals
have identical form insofar as their dependence onis
concerned. In fact, the specific results for
corresponding to each fading case in Table 3 can be
obtained by replacing with
in the expressions for . Last, if the fading is
identically distributed with the same average SNR per bit

for all channels, then (60) reduces to

(62)

It should also be mentioned that the average BER can
be obtained for the case of correlated Nakagami-fading
channels and is discussed in [21].

For single channel reception , the average BER
of (62) simplifies to

(63)

which for many fading channel models can be expressed in
closed form. For example, for Rayleigh fading, the result
is [25]

(64)
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which for the special case and agrees
with the expressions reported by Proakis [24, (7.3.12)] ([24,
(7.3.10)]) for orthogonal BFSK (DPSK). Also, for 4-DPSK
where , (64) agrees with a
closed-form result obtained by Tjhunget al. [27, (18)] in
a different form.

B. Average SER for -ary Signals—Single
Channel Detection of Classical -DPSK

The SER for -DPSK over an AWGN is given by the
integral expression [5, (44)], [13, (7.7)]

(65)

For single channel detection in the presence of the multipath
fading channel model, the conditional SER is obtained from
(65) by replacing by . When this is
done, (65) will already be in the preferred form, namely,
a single integral with finite limits and an integrand that is
exponential (Gaussian) in the fading RV. By analogy with
the results in Section VI-C1, it is straightforward to show
that the SER over generalized fading channels is given by

(66)

where

(67)

Once again, specific results for correspond-
ing to each fading case in Table 3 can be obtained by
replacing with in the ex-
pressions for .

Using the SER results for the AWGN presented in [28],
which are expressed in terms of the first-order Marcum-
function, the average SER performance of multiple-symbol

-DPSK on a generalized fading channel can be evaluated

in a manner similar to that discussed in Section VII-A. The
details are omitted here for the sake of brevity.

VIII. A PPLICATIONS

Coupled with what already appears to be an overwhelm-
ing number of theoretical results are many practical ap-
plications that demonstrate that the unified approach has
far more than academic value. We briefly mention some
of these here, keeping in mind that a complete detailed
treatment of each would require documentation in an equal
number of journal articles.

We have already mentioned in Table 2 the environments
that are characterized by the various fading channel models.
Thus, it goes without saying that the unified approach
allows simple evaluation of the BER performance of a
wide class of satellite, terrestrial, and maritime mobile
communication systems.

In association with the IS-95 standard for wireless com-
munication, a great deal of interest has focussed in recent
years on the use of direct sequence spread-spectrum mod-
ulation as a multiple access scheme (DS-CDMA) [29],
[30]. While the initial contributions considered single car-
rier DS-CDMA, more recently, attention has turned to
multicarrier DS-CDMA [31], which itself is a derivative
of orthogonal frequency division multiplexing [32], [33].
Since in these techniques the self-interference induced by
the autocorrelation of the users’ spreading codes and the
multiple access interference induced by the other users
are typically modeled as additional Gaussian noise sources
independent of the AWGN, then, treating the sum of these
noise sources as a single equivalent WGN, the theoretical
results presented in this paper can be applied to predict the
additional BER degradation of these systems caused by the
fading channel [34], [35].

As a means of obtaining additional diversity gain
against the fading environment, a combination of space
(multiple antennas) and path (MRC RAKE) diversity
can be employed [21]. The BER performance of such
two-dimensional diversity systems can be obtained as a
straightforward extension of the theoretical results given in
this paper for path diversity alone.

Last, there is a strong analogy between the conditional
error-rate performance for diversity reception of an i.i.d.

-path received signal and the pair-wise error probability
of two sequences (length ) of i.i.d. faded symbols,
which is characteristic of error correction coded (e.g.,
convolutional, trellis) communication over a fading chan-
nel. In particular, the conditional BER of (17) together
with the MRC sum of (18) also characterizes the above
conditional pair-wise error probability withknown chan-
nel state information. Similarly, (17) together with the
EGC sum of (19) also characterizes the above conditional
pair-wise error probability withunknown channel state
information. As an example of how the unified approach
benefits the evaluation of average BER in error correc-
tion coded systems, consider the transmission of trellis-
coded -PSK over a memoryless (independent fading
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from transmission to transmission) channel with known
channel state information. In [36], the BER was derived
for such a system in the form of a union-Chernoff bound,
where the Chernoff bound portion applied to the pair-
wise error probability and the union bound portion con-
verted the pair-wise error probability to average BER
using the transfer function bound method. Using now the
alternate form of the Gaussian-function of (2) in (17)
together with (18) and performing the average over the
i.i.d. fading sequence enables one exactly to evaluate the
pair-wise error probability, thus eliminating the need for
the Chernoff bound. Hence, the resulting form for the
average BER is strictly a union (as opposed to a union-
Chernoff) bound and as such is a tighter bound to the
true result. The full details of this approach are given
in [6].

IX. CONCLUSION

We have shown that by employing alternate forms of
the Gaussian and Marcum-functions, it is possible to
unify the error-probability performance of coherent, dif-
ferentially coherent, and noncoherent communications in
the presence of generalized fading under a single common
framework where the results are, with little exception,
expressible in a form that lends itself to simple evalua-
tion and furthermore provides additional insight into the
dependence of this performance on the system parameters.
While we have already exploited many of the potential
applications of the unified approach presented here and
plan to continue to do so in the future, we also hope that
this paper will serve as an inspiration to other researchers
to do the same. We fully hope that the words of one
of the reviewers, who stated that “the paper will have
a long and useful reference life,” will truly become a
reality.
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