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Abstract 

Nonlinear analyses using an updated Lagrangian formulation considering the Euler-Bernoulli beam theory 

have been developed with consistency in the literature, with different geometric matrices depending on the 

nonlinear displacement parts considered in the strain tensor. When performing this type of analysis using 

the Timoshenko beam theory, in general, the stiffness and the geometric matrices present additional 

degrees of freedom. This work presents a unified approach for the development of a geometric matrix 

employing the Timoshenko beam theory and considering higher-order terms in the strain tensor. This matrix 

is obtained using shape functions calculated directly from the solution of the differential equation of the 

problem. The matrix is implemented in the Ftool software, and its results are compared against several 

matrices found in the literature, with or without higher-order terms in the strain tensor, as well as the Euler-

Bernoulli or Timoshenko beam theories. Examples show that the use of the Timoshenko beam theory has a 

strong influence, especially when the structure has small slenderness (short members). For high axial load 

values, the consideration of higher-order terms in the strain tensor results in larger displacements as 

expected. 
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1 INTRODUCTION 

A structural geometric nonlinear analysis using the finite element method (FEM) depends on the consideration of 

four aspects: the bending theory, the kinematic description, the strain-displacement relations and the interpolating 

(shape) functions. 

The most commonly used bending solution for frame elements is the Euler-Bernoulli beam theory (EBBT), which is 

the one implemented in most structural analysis software, with a large number of applications. 

However, in some cases, this theory cannot predict the correct behaviour of the structure. To study a laminated 

beam or a beam-column with a moderate slenderness ratio, the Timoshenko beam theory (TBT) provides better 

results. Several high-order bending theories can be found in the literature, such as in Levinson (1981), Bickford (1982), 

Heyliger and Reddy (1988), Petrolito (1995), Reddy et al. (1997), Reddy (1997), Tessler and Gherlone (2007) and 

Meghare and Jadhao (2015). This work considers the Timoshenko beam theory due to its influence on beams with 

small slenderness, especially when subjected to axial loads (beam-columns). 
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Regarding the kinematic description, a geometric nonlinear analysis can be performed through the full Lagrangian, 

updated Lagrangian or a co-rotational approach. Basically, these descriptions differ with respect to the reference 

configuration considered (Felippa 2017). When consistently developed, the total Lagrangian and the updated 

formulation produce the same results (McGuire et al. 2000). These formulations are well developed in the literature, 

such as in Bathe (1996) and Bathe and Bolourchi (1979), in which the nonlinear analysis of three-dimensional structures 

is studied using both Lagrangian formulations. Nanakorn and Vu (2006) employ a total Lagrangian formulation to 

analyse a plane element subject to large displacements. 

Other studies, such as Santana and Silveira (2014) and Silva et al. (2016), have built a tangent matrix for Timoshenko 

beam elements using the co-rotational formulation. However, in Santana and Silveira (2014), cubic (Hermitian) shape 

functions are used, while Silva et al. (2016) use an element proposed by Tang et al. (2015) with a consistent axial 

displacement field interpolation. Considering a consistent field approach and a co-rotational formulation, Kien (2012) 

developed a Timoshenko beam plane element for large displacements employing the co-rotational method. Silva and Silva 

(2010) use an element that includes the theories of Euler-Bernoulli, Timoshenko and third order linear frame analysis. 

Oliveira and Silva (2017) employ a unified Bernoulli-Timoshenko element. 

The strain-displacement relations have an important role in a geometric nonlinear analysis. Usually, the geometric 

matrix is obtained considering small displacement gradients, neglecting some higher-order terms in the Green strain 

tensor, as done in McGuire et al. (2000). 

In this work, a geometric stiffness matrix is developed considering higher-order terms in the strain tensor based 

on an updated Lagrangian formulation for the equilibrium equations, in which the complete Green strain tensor is 

employed. The steps to build this matrix considering the Euler-Bernoulli beam theory are well known (Bathe and 

Bolourchi 1979, Conci 1988, Yang and Leu 1994, Yang and Kuo 1994 and Bathe 1996); however, this work employs 

these steps using a Timoshenko beam element, i.e., it also considers shear deformations. 

One way to formulate the elastic and geometric stiffness matrices of the Timoshenko beam-column elements is 

achieved by using the usual beam nodal displacements and leaving the shear distortions as independent variables. This 

formulation results in additional stiffness terms leading to an element stiffness matrix of order 14, and static 

condensation is used to reduce the matrix order to 12 (Bathe and Bolourchi 1979, Aguiar et al. 2014). 

In some cases, only the Timoshenko elastic matrix is developed; otherwise, the geometric stiffness matrix does 

not consider higher-order terms in the strain tensor (Davis et al. 1972, Friedman and Kosmatka 1992, Yunhua 1998). 

In the FEM, the continuous (analytical) behaviour of a solid is approximated by a discrete behaviour. Usually, the 

discrete solution is obtained by nodal displacements, while the continuous solution can be found by means of 

interpolating functions, which are polynomials in general. To converge to the analytical behaviour, a refined 

discretization or the use of a high-order finite element with an increase in the order of the polynomial of the basis 

functions is necessary. Therefore, some authors develop high-order expansion basis functions for structured elements 

aiming for the accuracy and efficiency of the method (Zheng and Dong 2011, Rodrigues et al. 2016). 

However, when shape functions are obtained from the solution of the differential equations of an infinitesimal 

element, without the consideration of any other approximation except for those already covered in the analytical 

idealization of the element behaviour, discretization is not necessary for a linear analysis. When an undeformed 

configuration is considered for this infinitesimal element, the axial force influence on transversal behaviour is not 

considered, leading to cubic functions. When shear deformations are not considered, the Euler-Bernoulli beam theory 

leads to Hermitian functions. 

In the formulation presented in this work, no additional terms are necessary to develop the geometric stiffness 

matrix since shape functions are obtained directly from the solution of the differential equations of the problem, 

considering the Timoshenko beam theory. 

Schramm et al. (1994) and Pilkey et al. (1995) also developed a stiffness matrix from the differential equations 

considering shear effects; however, shape functions were not developed. 

Thus, the main contribution of this research is to provide a unified approach to building the geometric stiffness 

matrices of two-dimensional Timoshenko beam-column elements, considering higher-order terms in the Green strain 

tensor. The shape functions are obtained directly from the solution of the differential equation of an infinitesimal 

Timoshenko beam element (Burgos and Martha 2013, Martha and Burgos 2014, 2015). Then, using an updated 

Lagrangian kinematic description and considering a higher-order Green strain tensor, the elastic and geometric 

stiffness matrices are obtained. 

The results clearly show the influence of the beam theory used and the importance of considering higher-order 

terms in strain tensors to predict the critical loads of framed structures, especially for small slenderness beam-columns 

and high axial loads. 
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Research on the extension of this formulation is being developed to fully exploit its potential and reduce the 

influence of bar discretization. Future work will consider shape functions obtained from the equilibrium of a deformed 

infinitesimal element, that includes the influence of axial force and 3D elements. 

2 BEAM BEHAVIOR IDEALIZATION 

This section presents and solves the differential equations that define the analytical behaviour of an undeformed 

infinitesimal beam element considering the Timoshenko beam theory, obtained from the equilibrium conditions, 

compatibility relations and constitutive material laws. 

2.1 Displacement field 

As shown in Figure 1, the displacement field of a beam is defined according to relation (1): 𝑢𝑢(𝑥𝑥,𝑦𝑦) = 𝑢𝑢0(𝑥𝑥) − 𝜃𝜃(𝑥𝑥) 𝑦𝑦               𝑣𝑣(𝑥𝑥,𝑦𝑦) = 𝑣𝑣0(𝑥𝑥) (1) 

 

Figure 1: Beam displacement field 

2.2 Differential equilibrium relationships in beam-columns 

Equilibrium conditions must be satisfied for the entire structure, and the analysis includes the equilibrium 

conditions of an infinitesimal beam element. Figure 2 shows an infinitesimal beam element subjected to a distributed 

transversal load q and a distributed longitudinal load p. 

 

Figure 2: Equilibrium of an undeformed beam element 

From the equilibrium of an infinitesimal beam element, equation (2) can be obtained. From the approximate 

relation between bending moment and curvature, expression (3) can be written. 

∑𝐹𝐹𝑦𝑦 = 0 → 𝑑𝑑𝑑𝑑(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑞𝑞(𝑥𝑥) ∑𝑀𝑀0 = 0 → 𝑑𝑑𝑑𝑑(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑄𝑄(𝑥𝑥) (2) 

𝑀𝑀(𝑥𝑥) = 𝐸𝐸𝐸𝐸 𝑑𝑑𝑑𝑑𝑑𝑑𝑥𝑥  → 𝐸𝐸𝐸𝐸 𝑑𝑑2𝑑𝑑𝑑𝑑𝑥𝑥2 − 𝑄𝑄(𝑥𝑥) = 0  (3) 
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where 𝑣𝑣(𝑥𝑥) is the infinitesimal element transversal displacement, 𝑞𝑞(𝑥𝑥) is the transverse distributed load, 𝑄𝑄(𝑥𝑥) is the 

transverse shear force and 𝑀𝑀(𝑥𝑥) is the bending moment in the cross-section. 

2.3 Euler-Bernoulli beam theory (EBBT) 

The Euler-Bernoulli beam theory considers the rotation as the derivative of the transverse displacement (𝜃𝜃 = 𝑑𝑑𝑣𝑣 𝑑𝑑𝑥𝑥⁄ ). 

Thus, using equations (2) and (3), the differential equation that governs the element behaviour can be written according to 

relation (4). 

𝐸𝐸𝐸𝐸 𝑑𝑑4𝑣𝑣(𝑥𝑥)𝑑𝑑𝑥𝑥4 − 𝑑𝑑𝑑𝑑(𝑥𝑥)𝑑𝑑𝑥𝑥 = 0 → 𝐸𝐸𝐸𝐸 𝑑𝑑4𝑣𝑣(𝑥𝑥)𝑑𝑑𝑥𝑥4 = 𝑞𝑞(𝑥𝑥) (4) 

2.4 Timoshenko beam theory (TBT) 

In the Timoshenko beam theory, shear distortion is considered as an additional rotation of the cross section, 

according to Figure 3. Therefore, the cross-sectional rotation and the transverse displacement are considered to be 

independent variables. 

 

Figure 3: Shear deformation in the Timoshenko beam theory 

According to the TBT, the total cross-section rotational (𝑑𝑑𝑣𝑣 𝑑𝑑𝑥𝑥⁄ ) is composed of bending rotation (𝜃𝜃) increased by 

the shear distortion (𝛾𝛾), according to the expression (5): 

𝑑𝑑𝑣𝑣𝑑𝑑𝑥𝑥 = 𝜃𝜃 + 𝛾𝛾 (5) 

The shear force acting on the section is given by the following equation: 𝑄𝑄(𝑥𝑥) = −𝜒𝜒𝜒𝜒𝜒𝜒𝛾𝛾(𝑥𝑥) (6) 

where 𝜒𝜒 is the material shear modulus, 𝜒𝜒 is the cross-sectional area, and 𝜒𝜒 is the factor that defines the effective area 

for cross-sectional shear. Substituting equations (5) and (6) in the differential equation (3) of the infinitesimal beam 

element equilibrium, the following expression can be found: 

𝐸𝐸𝐸𝐸 𝑑𝑑2𝑑𝑑𝑑𝑑𝑥𝑥2 + 𝜒𝜒𝜒𝜒𝜒𝜒 �𝑑𝑑𝑣𝑣(𝑥𝑥)𝑑𝑑𝑥𝑥 − 𝜃𝜃(𝑥𝑥)� (7) 

2.5 Differential equation solution 

There are different forms of the solution for the differential equation (7) of a Timoshenko infinitesimal beam 

element, such as the auxiliary function, presented in Shirima and Giger (1992), or the one developed in Onu (2008), 

which will be used in this work. The transverse displacement of the structure will have a bending and a shear 

contribution, 𝑣𝑣𝑏𝑏(𝑥𝑥) and 𝑣𝑣𝑠𝑠(𝑥𝑥), respectively, according to: 

𝑣𝑣(𝑥𝑥) = 𝑣𝑣𝑏𝑏(𝑥𝑥) + 𝑣𝑣𝑠𝑠(𝑥𝑥) ⇒ 𝑑𝑑𝑣𝑣(𝑥𝑥)𝑑𝑑𝑥𝑥 =
𝑑𝑑𝑣𝑣𝑏𝑏(𝑥𝑥)𝑑𝑑𝑥𝑥 +

𝑑𝑑𝑣𝑣𝑠𝑠(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝜃𝜃(𝑥𝑥) + 𝛾𝛾(𝑥𝑥) (8) 
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Using equation (4) and finding the homogeneous solution for Euler-Bernoulli beams, expression (9) for the 

displacement 𝑣𝑣𝑏𝑏(𝑥𝑥), i.e., the bending contribution, can be found. The homogeneous solution corresponds to an 

unloaded element situation depending only on the boundary conditions and obtained as: 

𝐸𝐸𝐸𝐸 𝑑𝑑4𝑣𝑣𝑏𝑏(𝑥𝑥)𝑑𝑑𝑥𝑥4 = 0 → 𝑣𝑣𝑏𝑏(𝑥𝑥) = 𝑐𝑐0 + 𝑐𝑐1𝑥𝑥 + 𝑐𝑐2 𝑥𝑥22 + 𝑐𝑐3 𝑥𝑥36  (9) 

Using the result obtained for 𝑣𝑣𝑏𝑏(𝑥𝑥) from equation (9), in the differential relation (7), the expression for the shear 

distortion becomes: 

𝐸𝐸𝐸𝐸 𝑑𝑑2𝑑𝑑𝑑𝑑𝑥𝑥2 + 𝜒𝜒𝜒𝜒𝜒𝜒 �𝑑𝑑𝑣𝑣(𝑥𝑥)𝑑𝑑𝑥𝑥 − 𝜃𝜃(𝑥𝑥)� = 0 ⇒ 𝐸𝐸𝐸𝐸 𝑑𝑑3𝑣𝑣𝑏𝑏(𝑥𝑥)𝑑𝑑𝑥𝑥3 + 𝜒𝜒𝜒𝜒𝜒𝜒𝛾𝛾 = 0 ⇒ 𝛾𝛾 = − 𝐸𝐸𝐸𝐸𝑐𝑐3𝜒𝜒𝜒𝜒𝜒𝜒 = 𝑣𝑣𝑠𝑠(𝑥𝑥) (10) 

Finally, based on equations (9) and (10), the equation of the total transverse displacement of the beam, equation 

(8), is described by the following equation (11), and it is usual to adopt a dimensionless factor Ω, introduced by Reddy 

(1997), in this equation. 

𝑣𝑣(𝑥𝑥) = 𝑐𝑐0 + 𝑐𝑐1𝑥𝑥 + 𝑐𝑐2 𝑥𝑥22 + 𝑐𝑐3 �𝑥𝑥36 − 𝛺𝛺𝐿𝐿2𝑥𝑥�  𝛺𝛺 =
𝐸𝐸𝐸𝐸𝜒𝜒𝜒𝜒𝜒𝜒 1𝐿𝐿2  (11) 

3 TIMOSHENKO SHAPE FUNCTIONS 

In a finite element analysis, the analytical behaviour of a solid can be approximated by a discrete behaviour. The 

discrete solution is usually obtained by nodal displacements, while the continuous problem solution can be found by 

interpolating the nodal displacements using shape functions (McGuire et al. 2000). 

When the shape functions are obtained from the differential equation solution of the problem, the bar 

discretization is unnecessary because continuous behaviour of the element can be represented by nodal parameters 

without the consideration of any other approximation, except for those already contained in the analytical idealization 

of the element behaviour. In this section, these shape functions for a Timoshenko beam element are calculated as in 

Martha (2018), Burgos and Martha (2013) and Onu (2008). 

However, in this work, the differential equation used to obtain the shape functions is the one for an undeformed 

element, Figure 2, without the influence of the axial load in transversal behaviour (Martha 2018); therefore, for a 

nonlinear analysis, bar discretization is necessary. Previous work such as Burgos and Martha (2013) and Onu (2008) 

consider this influence, but only for small displacement gradients. 

3.1 Timoshenko shape functions development 

Shape functions shown in equation (12) interpolate nodal displacements (Figure 4). 

 

Figure 4: Isolated bar deformed configuration 𝑣𝑣0(𝑥𝑥) = 𝑁𝑁2
𝑣𝑣(𝑥𝑥)𝑑𝑑2

′
+𝑁𝑁3

𝑣𝑣(𝑥𝑥)𝑑𝑑3
′

+𝑁𝑁5
𝑣𝑣(𝑥𝑥)𝑑𝑑5

′
+𝑁𝑁6

𝑣𝑣(𝑥𝑥)𝑑𝑑6
′𝜃𝜃(𝑥𝑥) = 𝑁𝑁2

𝜃𝜃(𝑥𝑥)𝑑𝑑2
′

+𝑁𝑁3
𝜃𝜃(𝑥𝑥)𝑑𝑑3

′
+𝑁𝑁5

𝜃𝜃(𝑥𝑥)𝑑𝑑5
′

+𝑁𝑁6
𝜃𝜃(𝑥𝑥)𝑑𝑑6

′ ⟶ �𝑣𝑣0(𝑥𝑥)𝜃𝜃(𝑥𝑥)
� = [𝑁𝑁]{𝑑𝑑′} (12) 

As previously observed, for an infinitesimal beam element, the homogeneous solution of the problem gives the 

transversal displacement (𝜈𝜈0ℎ) from equation (11), and the rotation of the cross section (𝜃𝜃0ℎ) can be obtained by 
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substituting this transversal displacement in equation (8). Thus, both displacement solutions can be written in matrix 

form, according to the following equation: 

𝜈𝜈0ℎ(𝑥𝑥) = 𝑐𝑐0 + 𝑐𝑐1𝑥𝑥 + 𝑐𝑐2 𝑥𝑥22 + 𝑐𝑐3 �𝑥𝑥36 − 𝛺𝛺𝐿𝐿2𝑥𝑥�𝜃𝜃0ℎ(𝑥𝑥) = 𝑐𝑐1 + 𝑐𝑐2𝑥𝑥 + 𝑐𝑐3 𝑥𝑥22 → �𝑣𝑣0(𝑥𝑥)𝜃𝜃(𝑥𝑥)
� = �1 𝑥𝑥 𝑥𝑥22

0 1 𝑥𝑥 𝑥𝑥36 − 𝛺𝛺𝐿𝐿2𝑥𝑥𝑥𝑥22 �  �𝑐𝑐0𝑐𝑐1𝑐𝑐2𝑐𝑐3� = [𝑋𝑋]{𝐶𝐶} (13) 

The boundary conditions are obtained by evaluating the homogeneous solution of these displacements (𝜈𝜈0ℎ and 𝜃𝜃0ℎ) at the extreme nodes of the bar, according to equation (14): 

 
                   = = → = =−       

       
           

 

θ
Ω

θ

1 00

2
2 13

3 0 2

2
4 3

1 0 0 0

d' cv (0 ) 0 1 0 0

d' c(0 ) L 1
{d'} {d'} [H ]{C }1 L L

d' v ( L) c2 6

d' ( L) cL
0 1 L

2

 (14) 

Shape functions can be obtained using equations (12), (13) and (14), resulting in: 

�𝑣𝑣0(𝑥𝑥)𝜃𝜃(𝑥𝑥)
� = [𝑋𝑋][𝐻𝐻]−1 {𝑑𝑑′} ⇒ [𝑁𝑁] = [𝑋𝑋][𝐻𝐻]−1 (15) 

Finally, Timoshenko beam element shape functions are given by: 

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 𝑁𝑁2𝑣𝑣(𝑥𝑥) = 1 +

2�𝑥𝑥𝐿𝐿�3−3�𝑥𝑥𝐿𝐿�2−12𝛺𝛺𝑥𝑥𝐿𝐿
(1+12𝛺𝛺)

         𝑁𝑁2𝑑𝑑(𝑥𝑥) =
6𝐿𝐿 �𝑥𝑥𝐿𝐿�2−𝑥𝑥𝐿𝐿

(1+12𝛺𝛺)𝑁𝑁3𝑣𝑣(𝑥𝑥) =
𝑥𝑥��𝑥𝑥𝐿𝐿�2−2(1+3𝛺𝛺)

𝑥𝑥𝐿𝐿+1+6𝛺𝛺�
(1+12𝛺𝛺)

        𝑁𝑁3𝑑𝑑(𝑥𝑥) = 1 +
3�𝑥𝑥𝐿𝐿�2−4(1+3𝛺𝛺)

𝑥𝑥𝐿𝐿
(1+12𝛺𝛺)𝑁𝑁5𝑣𝑣(𝑥𝑥) =

3�𝑥𝑥𝐿𝐿�2−2�𝑥𝑥𝐿𝐿�3+12𝛺𝛺𝑥𝑥𝐿𝐿
(1+12𝛺𝛺)

        𝑁𝑁5𝑑𝑑(𝑥𝑥) =
6𝐿𝐿 𝑥𝑥𝐿𝐿−�𝑥𝑥𝐿𝐿�2

(1+12𝛺𝛺)𝑁𝑁6𝑣𝑣(𝑥𝑥) =
𝑥𝑥��𝑥𝑥𝐿𝐿�2−(1+6𝛺𝛺)

𝑥𝑥𝐿𝐿−6𝛺𝛺�
(1+12𝛺𝛺)

        𝑁𝑁6𝑑𝑑(𝑥𝑥) =
3�𝑥𝑥𝐿𝐿�2−2(1−6𝛺𝛺)

𝑥𝑥𝐿𝐿
(1+12𝛺𝛺)

 (16) 

The axial displacement of the element is given according to equation (17), and in general, the interpolation 

functions are linear without the interaction between the axial and transversal formulations: 𝑢𝑢0(𝑥𝑥) = 𝑁𝑁1(𝑥𝑥)𝑑𝑑1
′

+𝑁𝑁4(𝑥𝑥)𝑑𝑑4
′

  ,  𝑁𝑁1(𝑥𝑥) = 1− 𝑥𝑥𝐿𝐿       𝑁𝑁4(𝑥𝑥) =
𝑥𝑥𝐿𝐿 (17) 

4 UPDATED LAGRANGIAN FORMULATION 

To predict the geometric nonlinear behaviour of structures using the finite element method, three different 

descriptions can be used: total Lagrangian, updated Lagrangian and, more recently, the co-rotational approach. These 

formulations differ essentially with respect to the reference configuration. Both Lagrangian formulations, when used 

consistently, lead to the same results; in this work, the stiffness matrices are calculated considering the updated 

Lagrangian formulation, and the steps shown have been presented in McGuire et al. (2000). The final equations are 

used to find the Timoshenko stiffness matrix considering higher-order terms in the strain tensor. 

In this formulation, the equilibrium equations of the unknown configuration 𝑡𝑡 + Δ𝑡𝑡 must be written using the 

known variables of a reference configuration 𝑡𝑡. For a configuration 𝑡𝑡 + Δ𝑡𝑡, the virtual work of the internal forces must 

be equal to the virtual work of the external forces, as shown in equation (18): 

∫ 𝑆𝑆𝑖𝑖𝑖𝑖(𝑡𝑡+∆𝑡𝑡)𝛿𝛿𝜀𝜀𝑖𝑖𝑖𝑖(𝑡𝑡+∆𝑡𝑡)𝑉𝑉 𝑑𝑑𝑑𝑑 = 𝑅𝑅(𝑡𝑡+∆𝑡𝑡) (18) 
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where 𝑆𝑆𝑖𝑖𝑖𝑖(𝑡𝑡+∆𝑡𝑡)
 corresponds to the second Piola-Kirchoff stress tensor, 𝜀𝜀𝑖𝑖𝑖𝑖(𝑡𝑡+∆𝑡𝑡)

 the Green-Lagrange strain tensor, and 𝑅𝑅(𝑡𝑡+∆𝑡𝑡) the virtual work due to external loading, which could include body, surface, inertia and damping forces (Aguiar 

et al. 2014). 

The linearized incremental equation requires small displacement increments; thus, the second Piola-Kirchoff 

stress tensor and the Green-Lagrange strain tensor can be written according to: 𝑆𝑆𝑖𝑖𝑖𝑖(𝑡𝑡+∆𝑡𝑡)
= 𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡 + ∆𝜏𝜏𝑖𝑖𝑖𝑖 𝜀𝜀𝑖𝑖𝑖𝑖(𝑡𝑡+∆𝑡𝑡)

= 𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡 + ∆𝜀𝜀𝑖𝑖𝑖𝑖 (19) 

where 𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡  corresponds to the Cauchy stress tensor, ∆𝜏𝜏𝑖𝑖𝑖𝑖 is the stress increment and ∆𝜀𝜀𝑖𝑖𝑖𝑖 is the deformation increment, 

which can be calculated from the Green-Lagrange strain tensor. 

Knowing that in the reference configuration, the element is subjected only to rigid body motion, 𝛿𝛿𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡  = 0, the left 

side of expression (18) can be written as equation (20). 

∫ 𝑆𝑆𝑖𝑖𝑖𝑖(𝑡𝑡+∆𝑡𝑡)𝛿𝛿𝜀𝜀𝑖𝑖𝑖𝑖(𝑡𝑡+∆𝑡𝑡)𝑉𝑉 𝑑𝑑𝑑𝑑 = ∫ �𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡 + ∆𝜏𝜏𝑖𝑖𝑖𝑖�𝛿𝛿�∆𝜀𝜀𝑖𝑖𝑖𝑖�𝑉𝑉 𝑑𝑑𝑑𝑑 = ∫ ∆𝜏𝜏𝑖𝑖𝑖𝑖𝛿𝛿∆𝜀𝜀𝑖𝑖𝑖𝑖𝑉𝑉 𝑑𝑑𝑑𝑑 + ∫ 𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡 𝛿𝛿∆𝜀𝜀𝑖𝑖𝑖𝑖𝑉𝑉 𝑑𝑑𝑑𝑑 (20) 

The Green-Lagrange strain tensor in the xy plane is represented by: 

𝜀𝜀𝑥𝑥𝑥𝑥 =
𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥 +

12 ��𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥�2 + �𝜕𝜕𝑣𝑣𝜕𝜕𝑥𝑥�2�           𝛾𝛾𝑥𝑥𝑦𝑦 =
𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦 +

𝜕𝜕𝑣𝑣𝜕𝜕𝑥𝑥 +
𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥 𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦 +

𝜕𝜕𝑣𝑣𝜕𝜕𝑥𝑥 𝜕𝜕𝑣𝑣𝜕𝜕𝑦𝑦 (21) 

The strain tensor shown in relation (21) has a linear (∆𝑒𝑒𝑖𝑖𝑖𝑖) and a nonlinear part (∆𝜂𝜂𝑖𝑖𝑖𝑖); thus, the decomposition ∆𝜀𝜀𝑖𝑖𝑖𝑖 = ∆𝑒𝑒𝑖𝑖𝑖𝑖 + ∆𝜂𝜂𝑖𝑖𝑖𝑖 can be adopted, as in equation (22): 

∆𝑒𝑒𝑥𝑥𝑥𝑥 =
∂u∂x  ∆𝜂𝜂𝑥𝑥𝑥𝑥 =

12 ��∂u∂x�2 + �∂v∂x�2�           ∆𝑒𝑒𝑥𝑥𝑦𝑦 =
∂u∂y +

𝜕𝜕𝑣𝑣𝜕𝜕x           ∆η𝑥𝑥𝑦𝑦 =
∂u∂x 𝜕𝜕𝜕𝜕𝜕𝜕y +

∂v∂x ∂v∂y (22) 

The stress increment is obtained from the material constitutive relation. Considering also a linear approximation 

for stress and strain increment leads to the expression: ∆𝜏𝜏𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∆𝜀𝜀𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∆𝑒𝑒𝑖𝑖𝑖𝑖           ∆𝜀𝜀𝑖𝑖𝑖𝑖 = ∆𝑒𝑒𝑖𝑖𝑖𝑖 (23) 

Finally, based on equations (20) and (23), the virtual work equation becomes: 

� 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∆𝑒𝑒𝑖𝑖𝑖𝑖𝛿𝛿∆𝑒𝑒𝑖𝑖𝑖𝑖𝑑𝑑 𝑑𝑑𝑑𝑑+� 𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡 𝛿𝛿 �∆𝑒𝑒𝑖𝑖𝑖𝑖 + ∆𝜂𝜂𝑖𝑖𝑖𝑖�𝑑𝑑 𝑑𝑑𝑑𝑑 = 𝑅𝑅(𝑡𝑡+∆𝑡𝑡) 
∫ 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∆𝑒𝑒𝑖𝑖𝑖𝑖𝛿𝛿∆𝑒𝑒𝑖𝑖𝑖𝑖𝑑𝑑 𝑑𝑑𝑑𝑑+ ∫ 𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡 𝛿𝛿∆𝑒𝑒𝑖𝑖𝑖𝑖𝑑𝑑 𝑑𝑑𝑑𝑑+ ∫ 𝜏𝜏𝑖𝑖𝑖𝑖𝑑𝑑 ∆𝜂𝜂𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑 = 𝑅𝑅(𝑡𝑡+∆𝑡𝑡)

 (24) 

In the xy plane, the stress vector, the constitutive matrix, and the linear and non-linear strain vectors are given by: 

𝜏𝜏 = �𝜏𝜏𝑥𝑥𝑥𝑥𝜏𝜏𝑥𝑥𝑦𝑦�           𝐶𝐶 = �𝐸𝐸 0

0 𝜒𝜒�            𝑒𝑒 = �𝜀𝜀𝑥𝑥𝑥𝑥𝛾𝛾𝑥𝑥𝑦𝑦�           𝜂𝜂 = �𝜂𝜂𝑥𝑥𝑥𝑥𝜂𝜂𝑥𝑥𝑦𝑦�  (25) 

Thus, the virtual work equation, expression (24), can be expanded according to equation (26), using the relations 

presented next. 
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� 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∆𝑒𝑒𝑖𝑖𝑖𝑖𝛿𝛿∆𝑒𝑒𝑖𝑖𝑖𝑖𝑑𝑑 𝑑𝑑𝑑𝑑 = � 𝜀𝜀𝑥𝑥𝑥𝑥.𝐸𝐸𝛿𝛿𝜀𝜀𝑥𝑥𝑥𝑥𝑑𝑑 𝑑𝑑𝑑𝑑+� 𝛾𝛾𝑥𝑥𝑦𝑦.𝜒𝜒𝛿𝛿𝛾𝛾𝑥𝑥𝑦𝑦𝑑𝑑 𝑑𝑑𝑑𝑑
� 𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡 𝛿𝛿∆𝑒𝑒𝑖𝑖𝑖𝑖𝑑𝑑 𝑑𝑑𝑑𝑑 = � 𝜏𝜏𝑥𝑥𝑥𝑥𝛿𝛿𝜀𝜀𝑥𝑥𝑥𝑥𝑑𝑑 𝑑𝑑𝑑𝑑+� 𝜏𝜏𝑥𝑥𝑦𝑦𝛿𝛿𝛾𝛾𝑥𝑥𝑦𝑦𝑑𝑑 𝑑𝑑𝑑𝑑
� 𝜏𝜏𝑖𝑖𝑖𝑖𝑑𝑑 ∆𝜂𝜂𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑 = � 𝜏𝜏𝑥𝑥𝑥𝑥𝛿𝛿𝜂𝜂𝑥𝑥𝑥𝑥𝑑𝑑 𝑑𝑑𝑑𝑑+� 𝜏𝜏𝑥𝑥𝑦𝑦𝛿𝛿𝜂𝜂𝑥𝑥𝑦𝑦𝑑𝑑 𝑑𝑑𝑑𝑑  

� 𝜀𝜀𝑥𝑥𝑥𝑥.𝐸𝐸𝛿𝛿𝜀𝜀𝑥𝑥𝑥𝑥𝑉𝑉 𝑑𝑑𝑑𝑑 +� 𝛾𝛾𝑥𝑥𝑦𝑦 .𝜒𝜒𝛿𝛿𝛾𝛾𝑥𝑥𝑦𝑦𝑉𝑉 𝑑𝑑𝑑𝑑 + � 𝜏𝜏𝑥𝑥𝑥𝑥𝛿𝛿𝜀𝜀𝑥𝑥𝑥𝑥𝑉𝑉 𝑑𝑑𝑑𝑑 + � 𝜏𝜏𝑥𝑥𝑦𝑦𝛿𝛿𝛾𝛾𝑥𝑥𝑦𝑦𝑉𝑉 𝑑𝑑𝑑𝑑 + 

+∫ 𝜏𝜏𝑥𝑥𝑥𝑥𝛿𝛿𝜂𝜂𝑥𝑥𝑥𝑥𝑉𝑉 𝑑𝑑𝑑𝑑 + ∫ 𝜏𝜏𝑥𝑥𝑦𝑦𝛿𝛿𝜂𝜂𝑥𝑥𝑦𝑦𝑉𝑉 𝑑𝑑𝑑𝑑 = 𝑅𝑅(𝑡𝑡+∆𝑡𝑡) (26) 

5 STIFFNESS MATRICES 

The stiffness matrix development is performed by analysing a two-dimensional structure in the xy plane. Using an 

updated Lagrangian formulation, the higher-order terms in the Green strain tensor and the shape functions are 

developed, and the elastic and geometric stiffness matrices are calculated. 

5.1 Timoshenko plane element 

According to the beam displacement field equation (1), the linear and nonlinear parts of the Green-Lagrange 

strain tensor components in equation (21), can be rewritten as expressions (27) and (28), respectively: 

0 0Z

xx xy Z

u vu v u
y

x x x x y x

θ
ε γ θ

∂ ∂∂∂ ∂ ∂
= = − = + = −

∂ ∂ ∂ ∂ ∂ ∂
 (27) 

2 2 2 2 2

21 1

2 2

z z z
xx xy z z

u v u v u u u v v u
y y y

x x x x x x x x y x y x x

θ θ θη η θ θ
   ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + = + + − = + = −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 (28) 

5.2 Elastic stiffness matrix 

The linear part of equation (26) provides the elastic stiffness matrix. For a better understanding, this part is 

divided into two: 
1

δW , the first integral, and 
2

δW , the second integral of equation (26). Employing relations (27), 
1
Wδ  

and 
2

Wδ  can be written as equations (29) and (30), respectively. 

1

0

.

L

z z
xx xx

AV

u u
W E dV y E y dx dA

x x x x

θ θδ ε δε δ δ
 ∂ ∂ ∂ ∂   = = − −    ∂ ∂ ∂ ∂    

∫ ∫∫  

2

1

0 0 0 0

θ θ θ θδ δ δ δ δ
       ∂ ∂ ∂ ∂∂ ∂ ∂ ∂

= + − −       
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫
L L L L

z z z z

A A A A

u u u u
W dx E dA dx E y dA dx E ydA dx E ydA

x x x x x x x x
 (29) 

2

0

.

L

xy xy Z Z

V A

v v
W G dV G dx dA

x x
δ γ δγ θ δ δθ

 ∂ ∂   = = − −    ∂ ∂    
∫ ∫ ∫  

2

0 0 0 0

δ δ θ δθ θ δ δθ
       ∂ ∂ ∂ ∂

= + − −       
∂ ∂ ∂ ∂       

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫
L L L L

Z Z Z Z

A A A A

v v v v
W dx G dA dx G dA dx G dA dx G dA

x x x x
 (30) 

In the beam centroidal axis, 2
, 0,= =∫ ∫z

A A

y dA I ydA  and the expressions (29) and (30) are reduced to equations 

(31) and (32): 
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1

0 0

θ θδ δ δ
   ∂ ∂∂ ∂

= +   
∂ ∂ ∂ ∂   

∫ ∫
L L

Z Z
z

u u
W dx EA dx EI

x x x x
 (31) 

2

0 0 0 0

δ δ θ δθ θ δ δθ
       ∂ ∂ ∂ ∂

= + − −       
∂ ∂ ∂ ∂       

∫ ∫ ∫ ∫
L L L L

Z Z Z Z

v v v v
W dx GA dx GA dx GA dx GA

x x x x
 (32) 

According to expressions (12), (17) and Figure 4, the rotation, transverse and axial displacement in any section of 

an element can be calculated by interpolating the nodal displacements of the element, {𝑢𝑢} = {𝑑𝑑1′ 𝑑𝑑4′ } and 

 {𝑣𝑣} = {𝑑𝑑2′ 𝑑𝑑3′ 𝑑𝑑5′ 𝑑𝑑6′ }, with the shape functions developed in equations (16) and (17), i.e., 

 𝑁𝑁𝑣𝑣 = {𝑁𝑁2𝑣𝑣(𝑥𝑥) 𝑁𝑁3𝑣𝑣(𝑥𝑥) 𝑁𝑁5𝑣𝑣(𝑥𝑥) 𝑁𝑁6𝑣𝑣(𝑥𝑥)}, 𝑁𝑁𝜃𝜃 = �𝑁𝑁2
𝜃𝜃(𝑥𝑥) 𝑁𝑁3

𝜃𝜃(𝑥𝑥) 𝑁𝑁5
𝜃𝜃(𝑥𝑥) 𝑁𝑁6

𝜃𝜃(𝑥𝑥)� and 𝑁𝑁𝜕𝜕 = {𝑁𝑁1(𝑥𝑥) 𝑁𝑁4(𝑥𝑥)}. In this manner, 

the element displacements can be represented by the following relations: 𝑢𝑢0(𝑥𝑥) = {𝑁𝑁𝑢𝑢(𝑥𝑥)}{𝑢𝑢}     𝑣𝑣0(𝑥𝑥) = {𝑁𝑁𝑣𝑣(𝑥𝑥)}{𝑣𝑣}    𝜃𝜃𝑧𝑧(𝑥𝑥) = {𝑁𝑁𝜃𝜃𝑧𝑧(𝑥𝑥)}{𝑣𝑣}  (33) 

Finally, substituting relation (33) in the displacements of equations (31) and (32), expressions (34) and (35) can be 

found considering the notation ( ) 'x∂ ∂ = . 

{ } { }{ } { } { } { }{ } { }1

0 0

' ' ' 'θ θδ δ δ= +∫ ∫
L L

T T T T

u u z z zW u EA N N dx u v EI N N dx v  (34) 

{ } { }{ } { } { } { }{ } { }

{ } { }{ } { } { } { }{ } { }

2

0 0

0 0

' '

' '

θ θ

θ θ

δ δ δ

δ δ

= +

− −

∫ ∫

∫ ∫

L L
T T T T

v v z z

L L
T T T T

z v v z

W v GA N N dx v v GA N N dx v

v GA N N dx v v GA N N dx v

 (35) 

Solving for the integrals in equations (34) and (35), the elastic stiffness matrix can be calculated, resulting in the 

matrix (36): 

( ) ( ) ( ) ( )

( )
( )

( ) ( )
( )

( )

( ) ( ) ( ) ( )

3 2 3 2

2 2

,

3 2 3 2

0 0 0 0

12 6 12 6
0 0

12 1 12 1 12 1 12 1

4 3 1 2 1 66 6
0 0

12 1 12 112 1 12 1

0 0 0 0

12 6 12 6
0 0

12 1 12 1 12 1 12 1

6
0

Z Z Z Z

Y Y Y

Z Y Z YZ Z

Y YY Y

e xy

Z Z Z Z

Y Y Y Y

Z

EA EA

L L

EI EI EI EI

L L L L

EI EIEI EI

L LL L
K

EA EA

L L

EI EI EI EI

L L L L

EI

L

−

−
Ω + Ω + Ω + Ω +

Ω + − Ω
−

Ω + Ω +Ω + Ω +
=

−

− − −
Ω + Ω + Ω + Ω +

( )
( )

( ) ( )
( )

( )2 2

2 1 6 4 3 16
0

12 1 12 112 1 12 1

Z Y Z YZ

Y YY Y

EI EIEI

L LL

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − Ω Ω + −
 Ω + Ω +Ω + Ω + 

 (36) 

5.3 Geometric stiffness matrix 

From the beam displacement field, equation (1), and the Green-Lagrange strain tensor, equation (21), the 

nonlinear part of this tensor can be written according to: 

2 2 2

21

2

z z z
xx xy z z

u v u u
y y y

x x x x x x x

θ θ θη η θ θ
 ∂ ∂ ∂∂ ∂ ∂ ∂

= + + − = − ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 (37) 
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It is important to observe that in expression (37), it is usual to neglect the flexural part of the strain in xxη . Usually, 

xyη  is also neglected, and equation (38) is obtained as in McGuire et al. (2000): 

2 2
1

0
2

xx xy

u v

x x
η η

 ∂ ∂
= + =  ∂ ∂ 

 (38) 

In this work, however, the complete strain tensor is used (equation (37)), as in Yang and Kuo (1994), considering 

the Timoshenko and not the Euler-Bernoulli beam theory. Therefore, the geometric stiffness matrix is calculated with 

the nonlinear part of the virtual work principle, equation (26), and can be written as expression (39). 

NL xx xx xy xy

V V

W dV dVδ τ δη τ δη= +∫ ∫  

22 2

2

0 0

1

2

L L

z z z

NL xx xy z z

A A

u v u u
W t y y dx dA t y dx dA

x x x x x x x

θ θ θ
δ δ δ θ θ

     ∂ ∂ ∂∂ ∂ ∂ ∂  = + + − + −        ∂ ∂ ∂ ∂ ∂ ∂ ∂     
∫ ∫ ∫ ∫  

2 2 2

2

0 0 0 0

0 0

1 1 1

2 2 2

L L L L

z z
NL xx xx xx xx

A A A A

L L

z
z xy z xy

A A

u v u
W dx t dA dx t dA dx y t dA dx t ydA

x x x x x

u
dx t ydA dx t dA

x x

θ θδ δ δ δ δ

θδ θ δθ

       ∂ ∂ ∂ ∂ ∂
= + + −            ∂ ∂ ∂ ∂ ∂      

   ∂ ∂
+ −   

∂ ∂   

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
 (39) 

Applying relations, ; ; ,= = − =∫ ∫ ∫xx xx z xy y

A A A

t dA P t ydA M t dA Q expression (39) becomes equation (40). With equation (33), 

the displacements can be written using shape functions, resulting in equations (41) and (42). 

22 2

0 0

1

2

L L

z z z

NL z y z

Iu v u u
W P P dx M Q dx

x x A x x x x

θ θ
δ δ δ δ δ θ

    ∂  ∂ ∂ ∂ ∂ ∂   = + + + −          ∂ ∂ ∂ ∂ ∂ ∂        
∫ ∫  (40) 

( ) ( )2 2 2

0

' ' '

L

z

z

I
P u v P dx

A
δ δ θ • + + =  ∫  

{ } { }{ } { } { } { }{ } { } { } { }{ } { }
0 0 0

' ' ' ' ' 'θ θδ δ δ= + +∫ ∫ ∫
L L L

T T T T T Tz
u u v v z z

I
u P N N dx u v P N N dx v v P N N dx v

A
 (41) 

( ) ( )
0

' ' '

L

z z y zM u Q u dxδ θ δ θ • − = ∫  

{ } { }{ } { } { } { }{ } { } { } { }{ } { }

{ } { }{ } { }

0 0 0

0

' ' ' ' '

'

θ θ θ

θ

δ δ δ

δ

= + − −

−

∫ ∫ ∫

∫

L L L
T T T T T T

z u z u y u

L
T T

y u

v M N N dx u u M N N dx v v Q N N dx u

u Q N N dx v

 (42) 

According to Figure 5, which shows a planar framework, and considering a constant shear force, the bending 

moment and the shear force equations of a planar frame element can be calculated as presented in (43). 
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Figure 5: Frame element – (adapted from Pereira 2002) 

( ) ( )1 2 1 2

1

+ +
= − + = −Z Z Z Z

Z Z y

M M x M M
M M Q

L L
 (43) 

Substituting the shape functions, presented in equations (16) and (17), solving the integrals of the problem leads 

to the geometric stiffness matrix, considering the Timoshenko beam theory and higher-order terms in strain tensor, 

shown by matrix (44) below: 

( )
( ) ( ) ( ) ( )

( ) ( )
( )

( )
( )

( )

( )
( )

1
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2 2 2 23 2

2 2
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Y Y Z Z

Y Y Y Y

Y Y Z Y Yz Z

Y Y Y Yg
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Ω + Ω + Ω + Ω +
− + +

Ω + Ω + Ω + Ω +
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−

Ω + Ω +
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Ω + ( ) ( ) ( )

( ) ( )
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( )
( )

( )

( )
( ) ( ) ( )
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2
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2

2
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6
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0
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0
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Z
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Z
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













 − − Ω + Ω + Ω +
 Ω + Ω + Ω + Ω −− + − −
 Ω + Ω + Ω + Ω +

− −

Ω + Ω +
− − +

Ω + Ω + Ω + ( )

( ) ( )
( )

( )
( )

( )

( )
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( ) ( )

22

2 2
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2 2 2 22

2

2

2 2 2 23 2
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90 15 1 4 36 6 1

15 12 1 12 1

Y Y Z Y Y

Y Y

PI

AL


















Ω + Ω + Ω + Ω + +
Ω + Ω + 

 (44) 

In this work, this matrix is called TBT_large. Without the consideration of shear strain, i.e.,𝜒𝜒𝜒𝜒𝜒𝜒 → ∞, the problem 

is solved by Euler-Bernoulli beam theory. Considering higher-order terms in the strain tensor in this work this matrix is 

called EBBT_large and is the same as developed in Yang and Leu (1994). 

In this paper, matrices considering small displacement gradients were also used for comparison. These matrices 

use the Euler-Bernoulli beam theory and are developed in many references, such as McGuire et al. (2000). The 

elements using these matrices were named in this work as EBBT_small. The stiffness matrix considering Timoshenko 

beam theory and small displacement gradients can be obtained by neglecting higher-order terms in the Green strain 

tensor. In this work, the examples that were modelled with these matrices were named TBT_small. This matrix is also 

presented in Burgos and Martha (2013) using a Taylor series expansion. 
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6 NUMERICAL ANALYSIS 

This section aims to evaluate the different solutions for the nonlinear analysis of structures exposed in this work, 

using simple numerical examples, by considering the Euler-Bernoulli and Timoshenko beam theories. All stiffness 

matrices were implemented in the Ftool computer software (Martha 1999), and their results were compared with 

results developed in the literature and with the Mastan2 v3.5 software developed by McGuire et al. (2000), by 

considering both beam theories, i.e., EBBT_Mastan (Euler-Bernoulli beam theory) and TBT_Mastan (Timoshenko beam 

theory). 

6.1 Critical loads of columns 

The first example presented studies of the buckling load of columns with different boundary conditions. To verify 

the influence of the Timoshenko beam theory in the non-linear analysis and the influence of considering higher-order 

terms in the strain tensor, different slenderness ratios were studied. The columns presented in Figure 6 have length 

L=1 m, Young’s modulus E=107 kN/m2, a section form factor 𝜒𝜒=1 and a null Poisson’s ratio 𝑣𝑣. 

 

Figure 6: Analysed Columns – (adapted from Silva et al. 2016) 

The columns were modelled with 5 elements, and the critical load is normalised by the flexural rigidity of the cross 

section (EI). The equilibrium paths of the structure were studied, as shown in Figure 7 (clamped column), considering 

different slenderness ratios, using different geometric matrices and comparing the results with the software Mastan2 

and the analytical Euler’s critical load. Neglecting shear deformation, the critical load is given by 𝑃𝑃𝑐𝑐𝑐𝑐 = 𝜋𝜋2𝐸𝐸𝐸𝐸 (2𝐿𝐿)2⁄ . 
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Figure 7: Equilibrium paths for a clamped column 

Analysing the equilibrium paths, it can be observed that for high values of slenderness, the beam behaviour is 

similar for both the Euler-Bernoulli and Timoshenko theories. No relevant differences are observed with or without the 

consideration of higher-order terms in the strain tensor. 

However, as the slenderness decreases, 𝝀𝝀 < 4.0, the influence of the beam theory considered becomes evident. 

Moreover, a clear difference is noticed when considering higher-order terms in the strain tensor. Thus, for high loads 

and small slenderness, it is important to consider Timoshenko beam theory and higher-order terms in strain tensors. 

In this case, the element developed in this work (TBT_Large) reduces the critical buckling load, which means that 

not considering higher-order terms and beam theory influence can be against safety in some specific cases (for small 

slenderness). 

For a simply supported column, the buckling load is given by 𝑃𝑃𝑐𝑐𝑐𝑐 = 𝜋𝜋2𝐸𝐸𝐸𝐸 (𝐿𝐿)2⁄ , and the equilibrium path using 

different geometric matrices is shown in Figure 8. 
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Figure 8: Equilibrium paths for a simply supported column 

The same conclusions can be observed from these equilibrium paths: for high values of slenderness ratios, the 

behaviour considering Euler-Bernoulli and Timoshenko theories is similar. Additionally, relevant differences are 

observed regarding the consideration of higher-order terms in the strain tensor. However, as the slenderness 

decreases, 𝝀𝝀 < 4.0, the influence of the beam theory and the consideration of higher-order terms in strain tensor 

(TBT_Large) considerably reduces the critical buckling load of the column. 

For a fixed and simply supported column, the buckling load is given by 𝑃𝑃𝑐𝑐𝑐𝑐 = 𝜋𝜋2𝐸𝐸𝐸𝐸 (0.7𝐿𝐿)2⁄ , and the equilibrium 

path using different geometric matrices is shown in Figure 9. 
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Figure 9: Equilibrium paths for a fixed and simply supported column 

Even for high values of slenderness ratios, considering Timoshenko beam theory results in a substantial reduction 

of the critical buckling load. The use of a geometric matrix that considers higher-order terms in the strain tensor 

(TBT_Large) can also significantly change the results, providing a reduction of the critical buckling load, and again it can 

be concluded that not considering higher-order terms and beam theory influence can be against safety in the 

prediction of the stability of columns, even for high values of slenderness ratios. 

6.2 Continuous beam column critical load 

The second example examines the influence of beam theory and the consideration of higher-order terms in the 

strain tensor in a continuous beam column subjected to axial load at its vertex. This problem is presented in 

Timoshenko and Gere (1963) and is shown in Figure 10. 

 

Figure 10: Continuous beam column – (adapted from Timoshenko and Gere 1963) 
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The geometry of the structure, material and section proprieties are the same as in the first example. To verify the 

influence of the Timoshenko beam theory in the non-linear analysis and the influence of the consideration of higher-

order terms in strain tensor, different slenderness ratios were considered, modifying the section height (h). 

Each span was discretized using 5 elements, and the critical load was normalised by the flexural rigidity of the 

cross section (EI). According to Timoshenko and Gere (1963), when the span lengths are equal, the critical buckling load 

is given by 𝑃𝑃𝑐𝑐𝑐𝑐 = 𝜋𝜋2𝐸𝐸𝐸𝐸 (𝐿𝐿)2⁄ . The equilibrium paths of the structure were studied and are shown in Figure 11 and 

Figure 12. 

 

Figure 11: Equilibrium paths for continuous beam column, for λ = 10 and λ = 6.6 

 

Figure 12: Equilibrium paths for continuous beam column, for λ = 4.0 and λ = 2.0 

As in example 1, for high values of slenderness ratios, the beam behaviour considering the Euler-Bernoulli and 

Timoshenko theories is similar, and the equilibrium paths overlap. No relevant differences are observed with or 

without the consideration of higher-order terms in the strain tensor. 

As the slenderness ratio is reduced (𝝀𝝀 < 4.0), the beam theory influence becomes more evident, and a clear 

difference is noticed when considering the higher-order terms in the strain tensor (TBT_Large). Not considering these 

influences can be against safety in the prediction of the stability of these structures since a considerable reduction in 

the critical buckling load can be seen in Figure 12. 
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6.3 Roorda’s frame analysis 

The third example examines the influence of beam theory and the consideration of higher-order terms in the 

strain tensor in Roorda’s frame, subjected to a vertical load at its vertex. The studied frame is shown in Figure 13. The 

structure has a section form factor 𝜒𝜒=5/6, Poisson’s ratio 𝑣𝑣=0.3, Young’s modulus E=107 kN/m2 and length L=1 m. 

Neglecting shear deformation, the critical load has an analytical value given by: 

𝑃𝑃𝑐𝑐𝑐𝑐 = −1.40694
𝜋𝜋2𝐸𝐸𝐸𝐸𝐿𝐿2  (45) 

However, analytically, the critical load considering shear deformation can be obtained by solving the following 

equation (Burgos and Martha 2013): 

[𝜇𝜇2𝐿𝐿2(1 + 6𝛺𝛺) + 3] 𝑠𝑠𝑖𝑖𝑠𝑠(𝜇𝜇𝐿𝐿)− 3𝜇𝜇𝐿𝐿 𝑐𝑐𝑐𝑐𝑠𝑠(𝜇𝜇𝐿𝐿) = 0,        𝜇𝜇2 = −𝑃𝑃𝑐𝑐𝑐𝑐 𝐸𝐸𝐸𝐸(1 + 𝑃𝑃𝑐𝑐𝑐𝑐 𝜒𝜒𝜒𝜒𝜒𝜒⁄ )⁄   (46) 

Burgos and Martha (2013) studied the influence of Ω on the critical load; however, this expression gives better 

results for smaller values of Ω since nonlinearity leads to changes in the compressive force applied in the column. This 

effect is greater in beam-columns with small slenderness ratios. 

The results obtained with the different formulations for stiffness and geometric matrices are shown in Figure 14. 

The bars are discretized with 5 finite elements each. 

 

Figure 13: Roorda’s frame 

 

Figure 14: Roorda’s Frame equilibrium path for different values of 𝛺𝛺 
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For Ω = 0, the equilibrium paths for all formulations are similar, the equilibrium paths overlap, and the result for 

critical load is close to the analytical one. Meanwhile, for other values of Ω, the TBT_Large element presents results 

closer to the analytical solution proposed in Burgos and Martha (2013). Moreover, the influence of the beam theory in 

the problem solution becomes evident with the reduction in the critical buckling load that can be seen in Figure 14. 

This figure also shows that employing the Euler-Bernoulli beam theory in structures with high Ω values leads to an 

incorrect prediction of their behaviour. 

From these analyses, as presented in Figure 14, it can also be concluded that considering higher-order terms in the 

strain tensor provides a small reduction in the critical load buckling compared with neglecting these effects, for the 

same bar discretization. Therefore, combining accurate beam theory and a more complete stiffness matrix leads to 

lower critical loads in frames. 

6.4 Unbraced portal frame analysis 

The last example examines the beam theory influence and the consideration of higher-order terms in the strain 

tensor in an unbraced portal frame, Figure 15. The structure has the same properties as example 6.3, section form 

factor 𝜒𝜒=5/6, Poisson’s ratio 𝑣𝑣=0.3, Young’s modulus E=107 kN/m2 and length L=1 m. 

The frame is loaded by vertical loads 𝜇𝜇𝑃𝑃 and by a small lateral disturbing load 𝐻𝐻. Bazant and Cedolin (2010) 

present a solution for this problem, considering the Euler-Bernoulli beam theory, based on Euler’s critical load 

according to: 

𝜇𝜇𝑐𝑐𝑐𝑐𝑃𝑃 = 0.744
𝜋𝜋2𝐸𝐸𝐸𝐸𝐿𝐿2  (47) 

The results obtained for horizontal displacement of the upper left node using the different formulations for the 

stiffness matrix are exposed in Figure 16. The bars were discretized with 5 finite elements each. 

 

Figure 15: Fixed Frame – (adapted from Bazant and Cedolin 2010) 
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Figure 16: Frame equilibrium path 

As expected, for large slenderness ratios, the results using different beam theories are identical, and the 

consideration of higher-order terms in the strain tensor is also irrelevant. 

However, based on Figure 16, the beam theory considered in the analysis has a considerable influence on the 

results for small slenderness ratios with a reduction in the critical buckling load. Moreover, when considering higher-

order terms in the strain tensor, this reduction in the frame buckling load for both beam theories is amplified. 

7 CONCLUSIONS 

This research presented a unified approach to developing the tangent stiffness matrix for a Timoshenko beam 

element in the geometric nonlinear analysis of structures, using an updated Lagrangian description and considering 

higher-order terms in the strain tensor. These matrices are obtained using shape functions calculated from the solution 

of the equilibrium differential equation of the problem, with no additional approximations necessary. The matrices 

developed can consider either the Timoshenko or the Euler-Bernoulli beam theory, by making a small parameter 

change. 

Estimates for the buckling loads of columns and frames using the proposed nonlinear geometric matrix were 

found using the Timoshenko or Euler-Bernoulli beam theory. The reported results clearly illustrate the relevance of 

considering the Timoshenko beam theory. The influence is more evident in elements with small slenderness ratios. It is 

also shown that this difference becomes more evident close to the buckling load, that is, when high axial loads are 

applied. 

The results also show that considering higher-order terms in the strain tensor leads to smaller buckling loads than 

using a nonlinear geometric matrix that does not take these effects into account. Therefore, for cases with high axial 

loads and small slenderness ratios, these considerations lead to larger displacements in columns and in framed 

structures. Thus, structural design neglecting these effects can be against safety, due to underestimated results. 
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The developed geometric stiffness matrix can accurately describe the behaviour for both beam theories. The 

matrices consider higher-order terms in the strain tensor, leading to accurate results with no additional bar 

discretization than what is usually used in FE analysis. Considering this development, only this matrix needs to be 

implemented since for slender beams, it will naturally converge into the usual Euler-Bernoulli geometric stiffness 

matrix. 

It is also worth mentioning that, in this paper, shape functions do not consider axial load influence; however, 

research on the extension of the basis function is being developed to fully exploit the potential of the proposed 

formulation. Future work will combine element nonlinearity, using higher-order terms in the Green strain tensor, with 

the infinitesimal element nonlinearity considering axial load influence. To consider this behaviour, shape functions 

obtained directly from the equilibrium of a deformed infinitesimal element will be used. Additionally, 3D geometric 

matrices are being developed to verify the contribution of torsion and axial force to the analyses. 
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