
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THEORY PROBAB. APPL. c© 2013 Society for Industrial and Applied Mathematics
Vol. 57, No. 2, pp. 357–366

A UNIFIED “BANG-BANG” PRINCIPLE WITH RESPECT TO
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Abstract. In recent years, there has been a number of works on finding the optimal selling time
of a stock so that the expected ratio of its selling price to a certain benchmark (e.g., its ultimate
highest price) over a finite time horizon is maximized. Although formulated in different settings, they
all result in a “bang-bang”-type optimal solution, as was originally discovered by Shiryaev, Xu, and
Zhou [Quant. Finance, 8 (2008), pp. 765–776], which can literally be interpreted as “buy-and-hold”
or “sell-at-once” depending on the quality of the stock. In this paper, we first provide three algebraic
conditions on a class of benchmarks and call any benchmark satisfying the three conditions an R-
invariant performance benchmark. We show that if F is an R-invariant performance benchmark,
then the corresponding optimal stopping problem has a “bang-bang”-type optimal solution. Our
work here provides a unified proof of all similar problems for Brownian motion considered in the
existing literature and also implies new results; in particular, we solve the remaining part (which
has not been covered in the literature) of a problem originally formulated by Shiryaev [Mathematical
Finance—Bachelier Congress (Paris, 2000), Springer, Berlin, 2002, pp. 487–521].

Key words. optimal stopping, buy-and-hold or sell-at-once rule, R-invariant performance
benchmarks
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1. Introduction. In recent years, a considerable amount of work has been devoted
to the determination of an optimal stopping time of a drifted Brownian motion beating
nonanticipative benchmarks. For instance, motivated by the financial problem of selling a
stock at a price “as close as possible” to its highest price over a finite time horizon, Shiryaev,
Xu, and Zhou [12] and Du Toit and Peskir [8], using different probabilistic approaches, solved
the optimal stopping problem

(1.1) sup
τ�T

E
[
exp(−(Mλ

T − ωλ
τ ))

]

for some T > 0, ωλ
· � λ · +ω·, with λ ∈ R, and ω· being a continuous path in C[0, T ],

Mλ
T � max0�t�T ω

λ
t , and the expectation is taken with respect to the Wiener measure P

under which (ωt)t�0 is a Brownian motion. In (1.1) the supremum is taken over the set of
all stopping times τ adapted to the process (ωt)t�0 for which P(τ � T ) = 1. To the best of
our knowledge, the above problem was first formulated in the present form by Shiryaev at
the first Bachelier Congress in 2000 (see [11]). In his recent work, Allaart [2] considered the
extended problem

(1.2) sup
τ�T

E [f(Mλ
T − ωλ

τ )]

in which f is a nonincreasing and convex function. In both problems (1.1) and (1.2), the
ultimate maximum Mλ

T can be regarded as a (nonanticipative) benchmark, and one wants
to beat this benchmark by stopping a Brownian motion “as close as possible” to it. From a
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358 S. C. P. YAM, S. P. YUNG, AND W. ZHOU

PDE point of view, Dai et al. [4] also solved problem (1.1) and considered a similar problem
that uses the ultimate minimum of the drifted Brownian motion as the benchmark:

(1.3) sup
τ�T

E
[
exp(−(mλ

T − ωλ
τ ))

]
,

where mλ
T = min0�t�T ω

λ
t . In [4], problem (1.3) is interpreted as an optimal stock selling

problem in which the investor attempts to sell his stock at a price “as far as possible” to
its lowest price over a finite time horizon. Using a similar approach, Dai and Zhong [5] also
studied the problem

(1.4) sup
τ�T

E
[
exp(−(Aλ

T − ωλ
τ ))

]
,

where Aλ
T = log(T−1

∫ T

0
exp(ωλ

t ) dt) or Aλ
T = T−1

∫ T

0
ωλ
t dt; i.e., in (1.4) the benchmark is

taken to be the ultimate average (both arithmetic and geometric) of the drifted Brownian
motion. While all benchmarks in problems (1.1)–(1.4) are different, a striking result is that
they share a common optimal stopping rule which is of “bang-bang” type: if λ � 0, then
τ∗ = T is an optimal stopping time; while if λ � 0, then τ∗ = 0 is an optimal stopping
time. Motivated by these results, in our present work, we establish a general form of the
benchmark (which we shall call an R-invariant performance benchmark) with respect to
which the optimal stopping rule is still of “bang-bang” type; indeed, our present work solves
all four problems mentioned above in a unified way and also implies new results which have
not yet appeared in the literature.

More precisely, define D[0, T ] to be the space of all piecewise continuous functions γ on
[0, T ], with at most finitely many jump points {ti} such that for each i

γti = lim
t↓ti

γt or lim
t↑ti

γt.

The reason that we introduce the notion of D[0, T ] in addition to C[0, T ] is that the permu-
tation specified in Definition 2.1 below may convert an element in C[0, T ] to one that can
only be defined in D[0, T ]; in other words, the functional F defined in section 2, in general,
maps continuous paths to discontinuous ones. Also let f : R → R be a monotone and con-
vex function, F : D[0, T ] → R an R-invariant performance benchmark (see Definition 2.3 in
what follows), and then the solution to the optimal stopping problem

(1.5) sup
τ�T

E
[
f(F (ωλ

· )− ωλ
τ )
]

is of “bang-bang” type. That is to say, (i) if f is nonincreasing and convex, then an optimal
stopping time is τ∗ = T for λ � 0 and τ∗ = 0 for λ � 0; while (ii) if f is nondecreasing and
convex, then an optimal stopping time is τ∗ = 0 for λ � 0 and τ∗ = T for λ � 0.

2. Optimal stopping with respect to R-invariant performance benchmarks.
In this section, we shall specify conditions on the Wiener functional F so that the solution
to problem (1.5) is still of “bang-bang” type. For t � T , y ∈ D[0, t], we shall write y−1 to
denote the time reversed path of y on [0, t], i.e., y−1(s) = y(t− s);1 we shall also write y1 to
denote itself. For each n ∈ N, define

Δn �
{
(l1, . . . , ln) ∈ Rn :

n∑
k=1

lk = T

}
,(2.1)

Hn � {(y1, . . . , yn) : yk ∈ D[0, lk] for some (l1, . . . , ln) ∈ Δn}.(2.2)

1Although the time reversed path y−1 of y depends on the domain on which the path is reversed,
for simplicity of notation, we shall not express this dependence explicitly. Instead, we will always
first define the natural domain of y, and then y−1 will refer to the time reversed path of y on its
natural domain.
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A UNIFIED “BANG-BANG” PRINCIPLE 359

And for each n ∈ N and (y1, . . . , yn) ∈ Hn, we define

(2.3) (y1y2 · · · yn)(s) �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y1(s) for s ∈ [0, l1),

yk

(
s−

k−1∑
i=1

li

)
for s ∈

[ k−1∑
i=1

li,

k∑
i=1

li

)
, k = 2, . . . , n− 1,

yn

(
s−

n−1∑
i=1

li

)
for s ∈

[ n−1∑
i=1

li,
n∑

i=1

li

]
.

Definition 2.1. Given a path y ∈ D[0, T ], if there exist n ∈ N, (y1, . . . , yn) ∈ Hn, a
permutation {i1, . . . , in} of {1, . . . , n} and {p1, . . . , pn} ∈ {−1, 1}n such that for all s ∈ [0, T ],
y(s) = (yp1i1 y

p2
i2

· · · ypnin )(s), then we say that (y1, . . . , yn) is a representative of y.
The above definition induces an equivalence relation R on D[0, T ]. More precisely, for

y, z ∈ D[0, T ], we say y is R-equivalent to z if y and z have a common representative.
Definition 2.2. A functional F : D[0, T ] → R is called R-invariant if F (y) = F (z)

whenever y is R-equivalent to z.
The following lemma provides a convenient criterion to check whether a Wiener func-

tional is R-invariant or not. For each t ∈ [0, T ], define Ft : D[0, t]×D[0, T − t] → R by

(2.4) Ft(y1, y2) = F (y1y2),

where y1 ∈ D[0, t], y2 ∈ D[0, T − t], and y1y2 is as defined in (2.3).
Lemma 2.1. A functional F : D[0, T ] → R is R-invariant if and only if Ft(y1, y2) =

Ft(y1, y
−1
2 ) for each t, y1 ∈ D[0, t], and y2 ∈ D[0, T − t].

Proof. First suppose F is R-invariant. Since the path y1y
−1
2 is R-equivalent to y1y2, we

have F (y1y
−1
2 ) = F (y1y2). Now suppose that for each t, y1 ∈ D[0, t], and y2 ∈ D[0, T − t],

we have Ft(y1, y2) = Ft(y1, y
−1
2 ), i.e., F (y1y2) = F (y1y

−1
2 ), then clearly F (y) = F (y−1) for

any y ∈ D[0, T ]. Upon noting that the time reversal process of y1y
−1
2 is y2y

−1
1 , we have

(2.5) F (y1y2) = F (y1y
−1
2 ) = F (y2y

−1
1 ) = F (y2y1),

and hence

(2.6) F (y1y2) = F (y2y
−1
1 ) = F (y−1

1 y2).

To prove F is R-invariant, it suffices to show that for any integer n and (y1, . . . , yn) ∈ Hn,
we have

(2.7) F (y1 · · · yk · · · yn) = F (y1 · · · y−1
k · · · yn) for each k

and

(2.8) F (y1 · · · yiyi+1 · · · yn) = F (y1 · · · yi+1yi · · · yn) for each i.

We have already proved (2.7) and (2.8) for the case n = 2. For general n, by applying our
result for the case n = 2, we obtain

F (y1 · · · yk−1yk · · · yn) = F (yk · · · yny1 · · · yk−1)

= F (y−1
k · · · yny1 · · · yn−1) = F (y1 · · · yn−1y

−1
k · · · yn),

so the equality (2.7) is proved. To prove (2.8), first note that if i = 1, then by ap-
plying (2.5), F (y1y2 · · · yn) = F (y3 · · · yny1y2). Then applying (2.6), F (y3 · · · yny1y2) =
F ((y3 · · · yn)−1y1y2) = F (y−1

n · · · y−1
3 y1y2). Further, using (2.7) twice, we see that

F (y−1
n · · · y−1

3 y1y2) = F (y−1
n · · · y−1

3 y−1
1 y−1

2 ). Finally

F (y−1
n · · · y−1

3 y−1
1 y−1

2 ) = F ((y−1
n · · · y−1

3 y−1
1 y−1

2 )−1) = F (y2y1y3 · · · yn).
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360 S. C. P. YAM, S. P. YUNG, AND W. ZHOU

So (2.8) is proved when i = 1. For general i

F (y1 · · · yiyi+1 · · · yn) = F (yiyi+1 · · · yny1 · · · yi−1)

= F (yi+1yi · · · yny1 · · · yi−1) = F (y1 · · · yi−1yi · · · yn),
so the equality (2.8) is also proved.

In his work on problem (1.2), Allaart [2] remarked that the following identity is the key
to establishing his result: for each t ∈ [0, T ],

(2.9) (Mλ
t − ωλ

t , ω
λ
t )

d
= (M−λ

t ,−ω−λ
t ),

where
d
= means that distributions of two sides coincide under the Wiener measure P. The

following lemma extends identity (2.9) from a maximal functional to any R-invariant func-
tional F .

Lemma 2.2. Let t ∈ [0, T ], y ∈ D[0, t], ω ∈ C[0, T − t]. If F : D[0, T ] → R is R-
invariant, then for any λ ∈ R

(2.10) (Ft(y, ω
λ
· − ωλ

T−t), ω
λ
T−t)

d
= (Ft(y, ω

−λ
· ),−ω−λ

T−t),

where ωλ = (λs+ ωs)0�s�T−t.

Proof. Write υs = ωλ
s − ωλ

T−t for s ∈ [0, T − t]; then

(υ−1
s )0�s�T−t = (ωλ

T−t−s − ωλ
T−t)0�s�T−t

d
= (ω−λ

s )0�s�T−t,

which in the case s = T − t gives ωλ
T−t

d
= −ω−λ

T−t. Therefore,

(2.11) (ωλ
T−t−s − ωλ

T−t, ω
λ
T−t)0�s�T−t

d
= (ω−λ

s ,−ω−λ
T−t)0�s�T−t.

Observe that

(Ft(y, ω
λ
· − ωλ

T−t), ω
λ
T−t) = (Ft(y, υ·), ω

λ
T−t) = (Ft(y, υ

−1
· ), ωλ

T−t)

= (Ft(y, ω
λ
T−t−· − ωλ

T−t), ω
λ
T−t),(2.12)

where in the second equality the R-invariance of F and Lemma 2.1 have been applied.
Combining (2.11) and (2.12), we obtain (2.10). Lemma 2.2 is proved.

Definition 2.3. A functional F : D[0, T ] → R is called a performance benchmark if it
satisfies the following two conditions:

(C1) F is translation invariant in the sense that for any c ∈ R and y ∈ D[0, T ], we have
F (y + c) = F (y) + c;

(C2) F is nondecreasing in the sense that for any two paths y1, y2 ∈ D[0, T ] with y1(t) �
y2(t) for all t ∈ [0, T ], we have F (y1) � F (y2).

It is called an R-invariant performance benchmark if in addition to (C1) and (C2), it
also satisfies that

(C3) F is R-invariant.
Throughout the rest of this paper, we shall assume that the functional F in problem (1.5)

is an R-invariant performance benchmark.
For each t ∈ [0, T ], define Dt : D[0, t] → R and Gt : D[0, t] → R by

Dt(y) = E
[
f(Ft(y, ω

−λ
· )− ω−λ

T−t)
]
,(2.13)

Gt(y) = E
[
f(Ft(y, ω

λ
· ))

]
,(2.14)

where ωλ = (λs + ωs)0�s�T−t. The following lemma is the key result for establishing the
main theorem.

Lemma 2.3. Under either one of the following conditions, Dt(y) � Gt(y) for any
t ∈ [0, T ] and y ∈ D[0, t]:
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1. λ � 0 and f is nonincreasing and convex;
2. λ � 0 and f is nondecreasing and convex.
Proof. See the appendix.
Corollary 2.1. Under either one of the conditions of Lemma 2.3,

E [f(Ft(y, ω
−λ
· )− ω−λ

T−t)] � E[f(Ft(y, ω
−λ
· ))]

for any t ∈ [0, T ] and y ∈ D[0, t].
Proof. Under both conditions, using condition (C2),

Gt(y) = E
[
f(Ft(y, ω

λ
· ))

]
� E

[
f(Ft(y, ω

−λ
· ))

]
,

and hence by Lemma 2.3, E [f(Ft(y, ω
−λ
· )− ω−λ

T−t)] = Dt(y) � Gt(y) � E [f(Ft(y, ω
−λ
· ))].

We now prove the main result of this paper.
Theorem 2.1. Let f : R → R be a monotone and convex function, and let F : D[0, T ] →

R be an R-invariant performance benchmark. Consider the optimal stopping problem (1.5).
1. If f is nonincreasing, then an optimal stopping time is τ∗ = T for the case λ � 0,

and is τ∗ = 0 for the case λ � 0.
2. If f is nondecreasing, then the optimal stopping time is τ∗ = 0 for the case λ � 0,

and is τ∗ = T for the case λ � 0.
Proof. The idea of the proof below is essentially due to Du Toit and Peskir [8].
Consider the case when f is nonincreasing and convex. First let λ � 0. It suffices to

establish the following inequality:

(2.15) E
[
f
(
F ((ωλ

s )0�s�T )− ωλ
T

)]
� E

[
f
(
F ((ωλ

s )0�s�T )− ωλ
τ

)]
for any stopping time τ adapted to (Ft)t�0 with P(τ � T ) = 1. For this, it suffices to prove

E
[
f
(
F ((ωλ

s )0�s�T )− ωλ
T

) ∣∣Fτ

]
� E

[
f
(
F ((ωλ

s )0�s�T )− ωλ
τ

) ∣∣Fτ

]
,

which, upon using condition (C1), is equivalent to

E
[
f
(
Fτ ((ω

λ
s )0�s�τ − ωλ

τ , (ω
λ
s − ωλ

τ )τ�s�T )− (ωλ
T − ωλ

τ )
) ∣∣Fτ

]
� E

[
f
(
Fτ ((ω

λ
s )0�s�τ − ωλ

τ , (ω
λ
s − ωλ

τ )τ�s�T )
) ∣∣Fτ

]
.(2.16)

Using the strong Markov property of Brownian motion, (2.16) becomes

E
[
f
(
Ft(y, (ω

λ
s )0�s�T−t)− ωλ

T−t

)]∣∣
t=τ,y=(ωλ

s )0�s�τ−ωλ
τ

� E
[
f
(
Ft(y, (ω

λ
s )0�s�T−t)

)]∣∣
t=τ,y=(ωλ

s )0�s�τ−ωλ
τ
,

which is equivalent to

(2.17) E
[
f
(
Ft(y, (ω

λ
s )0�s�T−t)− ωλ

T−t

)]
� E

[
f
(
Ft(y, (ω

λ
s )0�s�T−t)

)]

with t = τ (ω) and y = (ωλ
s )0�s�τ −ωλ

τ . Inequality (2.17) follows from case 1 of Corollary 2.1
with −λ being replaced by λ. Therefore, inequality (2.15) is established. Further, let λ � 0,
and we need to show that

(2.18) E
[
f
(
F ((ωλ

s )0�s�T )
)]

� E
[
f
(
F ((ωλ

s )0�s�T )− ωλ
τ

)]
for any stopping time τ adapted to (Ft)t�0 with P(τ � T ) = 1. Using Lemma 2.2, we see
that the above inequality is equivalent to

(2.19) E
[
f
(
F ((ω−λ

s )0�s�T − ω−λ
T )

)]
� E

[
f
(
F ((ωλ

s )0�s�T )− ωλ
τ

)]
.

To prove (2.19), it suffices to prove

E
[
f
(
F ((ω−λ

s )0�s�T )− ω−λ
T

) ∣∣Fτ

]
� E

[
f
(
F ((ωλ

s )0�s�T )− ωλ
τ

) ∣∣Fτ

]
,
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which, upon using condition (C1) and the strong Markov property of Brownian motion, is
equivalent to

E
[
f
(
Ft(y, (ω

−λ
s )0�s�T−t)− ω−λ

T−t

)]∣∣
t=τ,y=(ω−λ

s )0�s�τ−ω−λ
τ

� E
[
f
(
Ft(y, (ω

λ
s )0�s�T−t)

)]∣∣
t=τ,y=(ωλ

s )0�s�τ−ωλ
τ
,

that is,

(2.20) Dt((ω
−λ
s )0�s�t − ω−λ

t ) � Gt((ω
λ
s )0�s�t − ωλ

t )

with t = τ (ω). Using condition (C2) and the fact that f is nonincreasing, we see that if
yi ∈ D[0, t] with y1(s) � y2(s) for s ∈ [0, t], thenGt(y1) � Gt(y2). Define y1 = (ωλ

s )0�s�t−ωλ
t

and y2 = (ω−λ
s )0�s�t − ω−λ

t . Since λ � 0, we have y1(s) = ωλ
s − ωλ

t � ω−λ
s − ω−λ

t = y2(s)
for s ∈ [0, t], and therefore,

(2.21) Gt((ω
−λ
u )0�u�t − ω−λ

t ) � Gt((ω
λ
u)0�u�t − ωλ

t ).

Combining case 1 of Lemma 2.3 and (2.21), we prove inequality (2.20) and hence inequal-
ity (2.18).

Consider the case when f is nondecreasing and convex. First let λ � 0; we shall show
that

(2.22) E
[
f
(
F ((ωλ)0�s�T )− ωλ

T

)]
� E

[
f
(
F ((ωλ)0�s�T )− ωλ

τ

)]

for any stopping time τ adapted to (Ft)t�0 with P(τ � T ) = 1. Using arguments similar to
those as above, it is enough to prove

(2.23) E
[
f
(
Ft(y, (ω

λ
s )0�s�T−t)− ωλ

T−t

)]
� E

[
f
(
Ft(y, (ω

λ
s )0�s�T−t)

)]

with t = τ (ω) and y = (ωλ
s )0�s�τ − ωλ

τ . Since inequality (2.23) follows from case 2 in
Corollary 2.1 with −λ replaced by λ, inequality (2.22) is proved. Further, let λ � 0; we need
to prove that

(2.24) E
[
f
(
F ((ωλ

s )0�s�T )
)]

� E
[
f
(
F ((ωλ

s )0�s�T )− ωλ
τ

)]

for any stopping time τ adapted to (Ft)t�0 with P(τ � T ) = 1. Using arguments similar to
those in the first case, it suffices to prove

(2.25) Dt((ω
−λ
s )0�s�t − ω−λ

t ) � Gt((ω
λ
s )0�s�t − ωλ

t ).

Using condition (C2) and the fact that f is nondecreasing, we see that if yi ∈ D[0, t] with
y1(s) � y2(s) for s ∈ [0, t], then Gt(y1) � Gt(y2). Define y1 = (ω−λ

s )0�s�t − ω−λ
t and y2 =

(ωλ
s )0�s�t − ωλ

t . Since λ � 0, we have y1(s) = (ω−λ
s )0�s�t − ω−λ

t � (ωλ
s )0�s�t − ωλ

t = y2(s)
for s ∈ [0, t], and therefore,

(2.26) Gt((ω
−λ
u )0�u�t − ω−λ

t ) � Gt((ω
λ
u)0�u�t − ωλ

t ).

Combining case 2 of Lemma 2.3 and (2.26), we can prove inequality (2.25) and hence in-
equality (2.24).
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3. Applications of “bang-bang” principle with respect to R-invariant per-
formance benchmarks.

3.1. Existing results in the literature. We now demonstrate that our theorem
includes the four concrete problems stated in section 1.

1. If F (y) = max0�t�T yt for y ∈ D[0, T ], we can see that F satisfies both condi-
tions (C1) and (C2). Since for y ∈ D[0, t] and z ∈ D[0, T − t], Ft(y, z) = (max0�s�t ys) ∨
(max0�s�T−t zs) and max0�s�T−t zs = max0�s�T−t z

−1
s , by Lemma 2.1 F also satisfies con-

dition (C3). By taking f(x) = e−x, it yields problem (1.1), while by taking f to be any
nonincreasing convex function, it yields problem (1.2).

2. If F (y) = min0�t�T yt for y ∈ D[0, T ], then for y ∈ D[0, t] and z ∈ D[0, T − t],

Ft(y, z) =
(

min
0�s�t

ys
)
∧
(

min
0�s�T−t

zs
)
.

Upon the fact that min0�s�T−t zs = min0�s�T−t z
−1
s , we can also see that F satisfies condi-

tions (C1)–(C3). By taking f(x) = e−x, we also arrive at problem (1.3).

3. If F (y) = T−1
∫ T

0
yt dt for y ∈ D[0, T ], then for y ∈ D[0, t] and z ∈ D[0, T − t],

Ft(y, z) =
1

T

∫ t

0

ys ds+
1

T

∫ T−t

0

zs ds.

Since
∫ T−t

0
zs ds =

∫ T−t

0
z−1
s ds, we can again see that this F also satisfies conditions (C1)–

(C3). On the other hand, if F (y) = log(T−1
∫ T

0
exp(yt) dt) for y ∈ D[0, T ], then for y ∈ D[0, t]

and z ∈ D[0, T − t],

Ft(y, z) = log

(
1

T

(∫ t

0

exp(ys) ds+

∫ T−t

0

exp(zs) ds

))
.

Again
∫ T−t

0
ezs ds =

∫ T−t

0
ez

−1
s ds, and hence F satisfies conditions (C1)–(C3). Taking

f(x) = e−x, we recover problem (1.4).
Thus we see that problems (1.1)–(1.4) are included in case 1 of Theorem 2.1, i.e., when

f is nonincreasing and convex. Furthermore, Theorem 2.1 also shows that in the case when f
is nondecreasing and convex, the solutions to problems (1.1)–(1.4) are still of “bang-bang”
type yet in a reverse manner.

3.2. New results in the literature. In addition to these four problems as quoted in
section 1, our theorem also ensures some new results which are still absent in the literature.

1. Let F (y) = max0�t�T yt for y ∈ D[0, T ], and f(x) = −xp for 0 < p < 1; then
problem (1.5) becomes

(3.1) inf
τ�T

E[(Mλ
T − ωλ

τ )
p].

Since we have seen that the maximum functional satisfies conditions (C1)–(C3), and that x �→
−xp is nonincreasing and convex, Theorem 2.1 suggests that the solution to problem (3.1)
is given by τ∗ = T for the case λ � 0 and τ∗ = 0 for the case λ � 0. Problem (3.1) for all
p > 0 was first formulated by Shiryaev (see [11]). For the two cases (i) p � 1 and λ = 0
and (ii) p = 2 and λ ∈ R, problem (3.1) has already been solved in the literature (see [9],
[10], [7]), with optimal stopping times given by the first hitting times of the processMλ

· −ωλ
·

to some nontrivial time-dependent boundaries. Also note that (see [10, Remark 2.3]) for the
case when 0 < p < 1 and λ = 0, τ∗ = 0 is the optimal stopping rule for problem (3.1). Thus
our Theorem 2.1 supplements existing results by solving for the case when 0 < p < 1 and
λ ∈ R.

2. For 0 < α < 1, y ∈ D[0, T ], define

Fα(y) � inf

{
x > 0:

∫ T

0

1{ys�x} ds � αT

}
.
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Fα(y) is called the α-quantile of the path y. For discussions on the distribution of Fα

under P, its representation in terms of maximum and minimum, and its application on
α-quantile option, one can see [1] and [6] for details. Since for any c ∈ R,

∫ T

0

1{ys�x} ds =
∫ T

0

1{ys+c�x+c} ds,

Fα clearly satisfies condition (C1). If y1(s) � y2(s) for s ∈ [0, T ], then for each x � Fα(y1),

by definition, we have
∫ T

0
1{y1�x} ds � αT , and hence

∫ T

0

1{y2�x} ds �
∫ T

0

1{y1�x} ds � αT,

which implies x � Fα(y2). This shows that Fα satisfies condition (C2). Finally for y1 ∈
D[0, t] and y2 ∈ D[0, T − t],

∫ T

0

1{(y1y2)(s)�x} ds =
∫ t

0

1{y1(s)�x} ds+
∫ T−t

0

1{y2(s)�x} ds

=

∫ t

0

1{y1(s)�x} ds+
∫ T−t

0

1{y−1
2

(s)�x} ds =
∫ T

0

1{y1y−1
2

(s)�x} ds,

hence Fα
t (y1y2) = Fα

t (y1y
−1
2 ), and therefore Fα also satisfies condition (C3). If we take

f(x) = e−x, Theorem 2.1 suggests that the solution to the problem

(3.2) sup
τ�T

E
[
exp

(− (Fα(ωλ)− ωλ
τ )
)]

is given by τ∗ = T for the case λ � 0 and τ∗ = 0 for the case λ � 0; i.e., if an investor
attempts to sell his stock with reference to the α-quantile, then the optimal selling strategy
is still buy-and-hold for superior stock and sell-at-once for inferior stock.

We note that if we replace the Brownian motion in problem (1.5) by Bernoulli random
walks, then results similar to those in Theorem 2.1 can also be obtained by similar arguments.
See [13] and [2] on the “bang-bang” principle for the Bernoulli random walk. Allaart [3] also
extended the “bang-bang” principle to a general class of random walks and Lévy processes.

Appendix. Proof of Lemma 2.3. To prove the lemma, we extend Allaart’s argument
(see [2]) to the case of an R-invariant performance benchmark. Using condition (C1) and
Lemma 2.2, respectively, we obtain that

Dt(y) = E
[
f(Ft(y − ω−λ

T−t, ω
−λ
· − ω−λ

T−t))
]
, Gt(y) = E

[
f(Ft(y, ω

−λ
· − ω−λ

T−t))
]
,

where ω−λ = (ω−λ
s )0�s�T−t. Writing Ω = C[0, T − t], we have

Dt(y)−Gt(y) =

∫
Ω

(
f(Ft(y − ω−λ

T−t, ω
−λ
· − ω−λ

T−t))− f(Ft(y, ω
−λ
· − ω−λ

T−t))
)
dP(ω)

=

∫
Ω

(
f(Ft(y − ω−λ

T−t, ω
−λ
· − ω−λ

T−t))− f(Ft(y, ω
−λ
· − ω−λ

T−t))
) · 1{ω−λ

T−t
�0} dP(ω)

+

∫
Ω

(
f(Ft(y − ω−λ

T−t, ω
−λ
· − ω−λ

T−t))− f(Ft(y, ω
−λ
· − ω−λ

T−t))
) · 1{ω−λ

T−t
�0} dP(ω)

� I+ + I−.

Note that

I− =

∫
Ω

(
f(Ft(y + ωλ

T−t, ω
λ
· ))− f(Ft(y, ω

λ
· ))

) · 1{ωλ
T−t

�0} dP(ω)

=

∫
Ω

(
f(Ft(y + ωT−t, ω·))− f(Ft(y, ω·))

) · 1{ωT−t�0}

× exp

{
λωT−t − λ2

2
(T − t)

}
dP(ω),(A.1)

D
ow

nl
oa

de
d 

10
/0

2/
13

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A UNIFIED “BANG-BANG” PRINCIPLE 365

where the first equality is a consequence of Lemma 2.2 and the second equality is a conse-
quence of the Girsanov transform. On the other hand

I+ =

∫
Ω

(
f(Ft(y − ωT−t, ω· − ωT−t))− f(Ft(y, ω· − ωT−t))

) · 1{ωT−t�0}

× exp

{
− λωT−t − λ2

2
(T − t)

}
dP(ω).

Combining these results, we obtain that

I+ + I− =

∫
Ω

ψ(ω) · 1{ωT−t�0}e
−λ2(T−t)/2 dP(ω),

where

ψ(ω) =
(
f(Ft(y − ωT−t, ω − ωT−t))− f(Ft(y, ω − ωT−t))

)
e−λωT−t

+
(
f(Ft(y + ωT−t, ω))− f(Ft(y, ω))

)
eλωT−t .(A.2)

For the case when λ � 0 and f is nonincreasing and convex, on {ωT−t � 0},

f(Ft(y − ωT−t, ω − ωT−t))− f(Ft(y, ω − ωT−t)) � 0,

f(Ft(y + ωT−t, ω))− f(Ft(y, ω)) � 0,

then upon using condition (C1) and the fact that λ � 0, we have

ψ(ω) � f(Ft(y − ωT−t, ω − ωT−t))− f(Ft(y, ω − ωT−t))

+ f(Ft(y + ωT−t, ω))− f(Ft(y, ω))

= (f(Ft(y − ωT−t, ω − ωT−t))− f(Ft(y − ωT−t, ω − ωT−t) + ωT−t))

− (f(Ft(y, ω − ωT−t))− f(Ft(y, ω − ωT−t) + ωT−t)) � 0,

where the last inequality holds, since f is convex. Therefore, in this case we proved I++I− �
0 and hence Dt(y) � Gt(y). For the case when λ � 0 and f is nondecreasing and convex, on
{ωT−t � 0},

f(Ft(y − ωT−t, ω − ωT−t))− f(Ft(y, ω − ωT−t)) � 0,

f(Ft(y + ωT−t, ω))− f(Ft(y, ω)) � 0,

then upon using condition (C1) and the fact that λ � 0, we have

ψ(ω) � f(Ft(y − ωT−t, ω − ωT−t))− f(Ft(y, ω − ωT−t))

+ f(Ft(y + ωT−t, ω))− f(Ft(y, ω))

= (f(Ft(y, ω − ωT−t) + ωT−t)− f(Ft(y, ω − ωT−t)))

− (f(Ft(y − ωT−t, ω − ωT−t) + ωT−t)− f(Ft(y − ωT−t, ω − ωT−t))) � 0,

where the last inequality holds, since f is convex. Therefore in this case we also have
I+ + I− � 0 and hence Dt(y) � Gt(y). Lemma 2.3 is proved.
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