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Abstract A unified coarse-grained model of three major
classes of biological molecules—proteins, nucleic acids, and
polysaccharides—has been developed. It is based on the ob-
servations that the repeated units of biopolymers (peptide
groups, nucleic acid bases, sugar rings) are highly polar and
their charge distributions can be represented crudely as point
multipoles. The model is an extension of the united residue
(UNRES) coarse-grained model of proteins developed previ-
ously in our laboratory. The respective force fields are defined
as the potentials of mean force of biomacromolecules im-
mersed in water, where all degrees of freedom not considered
in the model have been averaged out. Reducing the represen-
tation to one center per polar interaction site leads to the
representation of average site–site interactions as mean-field
dipole–dipole interactions. Further expansion of the potentials

of mean force of biopolymer chains into Kubo’s cluster-
cumulant series leads to the appearance of mean-field di-
pole–dipole interactions, averaged in the context of local
interactions within a biopolymer unit. These mean-field inter-
actions account for the formation of regular structures encoun-
tered in biomacromolecules, e.g., α-helices and β-sheets in
proteins, double helices in nucleic acids, and helicoidally
packed structures in polysaccharides, which enables us to
use a greatly reduced number of interacting sites without
sacrificing the ability to reproduce the correct architecture.
This reduction results in an extension of the simulation time-
scale by more than four orders of magnitude compared to the
all-atom representation. Examples of the performance of the
model are presented.
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Introduction

Coarse-graining is the method of choice when simulating
large systems [1–3]. Particular research effort has been direct-
ed toward the development of coarse-grained models of bio-
logical macromolecules such as proteins [3–17], nucleic acids
[3, 18–33], carbohydrates [34–36], and biological assemblies,
such as lipid bilayers [37, 38]. In this approach, a number of
atoms are merged into single interaction sites, and the solvent
surrounding the system is usually treated at the mean-field
level in the form of a continuous medium. The main purpose
of such an approach is to enable us to run simulations at time
and size scales that are orders of magnitude greater than
possible using the all-atom approach [39]. This is a great
advantage despite the exponential growth of computing power
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in recent years (especially that due to the introduction of
graphical processor units [40], which capitalized on parallel
computations at a scale unknown before, and the very recent
construction of the ANTON supercomputer by Shaw and
coworkers [41], which made ab initio simulations of the
folding of small proteins at the detailed atomistic scale possi-
ble [42]). On the other hand, recent work suggests that coarse
graining can also be used as a means to understand the rules
behind the formation of macromolecular structure and macro-
molecular dynamics [43–45].

Constructing coarse-grained force fields is a much greater
challenge than constructing all-atom force fields; the physical
foundations of coarse-grained force fields were discovered
only relatively recently [1, 46]. These force fields are divided
into two main categories: knowledge-based and physics-
based. Knowledge-based force fields are derived based on
statistics determined from structural databases [4], while
physics-based force fields relate all-atom energy surfaces to
effective coarse-grained energy surfaces [13]. Physics-based
force fields can, in turn, be divided into neoclassical force
fields, in which the functional form is copied from that of all-
atom force fields (e.g., the very widely applied MARTINI
force field [38]), and those that are based on the understanding
of a coarse-grained force field as a potential of mean force in
which the degrees of freedom that are not omitted from the
model have been integrated out [1, 46].

Based on our understanding of coarse-grained force fields
as potentials of mean force, over the last 20 years we have
been developing our physics-based united residue (UNRES)
model of polypeptide chains [46–54]. To derive the force field
in a systematic and consistent way, we developed a method of
factorizing the PMF in contributions arising from smaller
fragments of the system (thereby making it computable and
transferable). These factors can also be expanded into the
Kubo cluster-cumulant series [55], thereby enabling us to
obtain analytical expressions for the respective terms, espe-
cially multibody terms, which are derived in other force fields
in a heuristic manner [4]. Another very important feature of
the UNRES model is that it emphasizes the role of electro-
static interactions involving polar peptide groups, which are
represented as the mean-field interactions between peptide-
group dipoles. These mean-field interactions are the main
factors responsible for the formation of regular α-helical and
β-sheet structure in proteins [44, 46].

The success of the UNRES model prompted us to extend
the philosophy of constructing coarse-grained models to other
biological macromolecules, namely nucleic acids and poly-
saccharides, and to produce the unified coarse-grained model
(UCGM) for all these three classes of macromolecules that
occur in all living organisms as buildingmaterials and perform
a variety of functions. Very recently, using the very same
concept, we extended the UNRES model to the nucleic acid
united residue two-point model (NARES-2P), in which one

interaction site per nucleotide is the phosphate group and the
second is the nucleic acid base merged with its sugar ring.
These sites serve as the polar units which interact via mean-
field dipole–dipole interactions. Despite its simplicity, the
NARES-2P model reproduces the double-helical structures
of small DNA and RNA molecules and the melting thermo-
dynamics of small DNAmolecules surprisingly well [56]. We
have also extended the treatment to polysaccharides, to pro-
duce the sugar united residue one-point model (SUGRES-1P).

In this paper, the theory behind the unified coarse-grained
model is presented, and its components—the UNRES,
NARES-2P, and the as-yet unpublished SUGRES-1P
models—are described. Results of simulations performed
using the three force fields are presented, and perspectives
on their unification into one system—which will be able to
treat not only the structures and dynamics of the isolated
components but also interactions and composites of them,
such as glycans—are outlined.

Methods

The unified coarse-grained model of biological
macromolecules

As mentioned in the “Introduction,” the unified coarse-
grained model of biological macromolecules is a generaliza-
tion of the approach taken when designing the UNRES model
for proteins [46–54]. It assumes that (i) a biopolymer unit has
an easily distinguishable polar site with a charge distribution
represented by a point multipole and that (ii) the mean-field
interactions between the polar sites, averaged in the context of
local interactions, determine the symmetry of regular struc-
tures. The components of the model—the UNRES, NARES-
2P, and SUGRES-1P models for proteins, nucleic acids, and
polysaccharides, respectively—are visualized in Fig. 1.

In the following subsections, we will outline the method
used to derive the coarse-grained force field through cluster-
cumulant-function expansion of the potential of mean force of
the system developed in our earlier work [46, 49, 51]. We will
then provide short descriptions of the components of the model.

Potential of mean force of a coarse-grained system and its
expansion into Kubo cluster-cumulant functions

In our approach for polypeptide chains [46], we assume that
the effective energy function of a system is the potential of
mean force (PMF), also termed the restricted free energy
function (RFE), with all degrees of freedom that are lost when
passing from the all-atom to the coarse-grained model aver-
aged out. These neglected degrees of freedom include solvent
degrees of freedom, side-chain rotation angles, and the dihe-
dral angles λ for rotation of the peptide groups about the
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Cα⋯Cα virtual bonds. The solvent degrees of freedom are
usually averaged out explicitly using Monte Carlo (MC) or
molecular dynamics (MD) simulations, or implicitly using
data from the PDB [57]. Thus, the variables describing the
geometry of the macromolecule–water system are divided into
two sets: the primary variables (X), which describe the coarse-
grained degrees of freedom, and the less important or
secondary variables (Y) that are averaged out. In general,
the RFE [F(X)] is expressed as

F Xð Þ ¼ −RT ln
1

VY

Z

ΩY

exp −E X;Yð Þ
.

RT
h i

dVY

� �

; ð1Þ

where VY ¼ ∫ΩY
dVY , E(X;Y) is the original (all-atom) ener-

gy function, R is the universal gas constant, T is the absolute
temperature, ΩY is the region of the Y subspace of variables
over which the integration is carried out, andV Y is the volume
of this region.

To identify the effective energy terms, the all-atom energy
E(X;Y) is expressed as a sum of component energies, each of
which is either the sum of energies within a given unit (the
local interaction energies) or between given units (the long-
range interaction energies), as given by Eq. 2 below. The RFE
(Eq. 1) is decomposed into factors, each of which is a Kubo
cluster-cumulant function [55], as expressed by Eq. 3 below

and illustrated in Fig. 2.

E X;Yð Þ ¼
X

i¼1

n

εi X; zið Þ; ð2Þ

where εi(X;zi) is the ith component energy, zi contains the
secondary degrees of freedom on which εi depends, and n is
the number of energy components.

F Xð Þ ¼
X

i

f
1ð Þ
i Xð Þ þ

X

i< j

f
2ð Þ
ij Xð Þ þ

X

i< j< k

f
3ð Þ
ijk Xð Þ þ…

þ
X

i1< 2…< in

f
nð Þ
i1i2…in

Xð Þ

ð3Þ

The factors are expressed as

f
kð Þ
i1i2…ik

¼ εi1εi2…εikh ih i f ¼
X

l¼1

k
X

im1 < im2 < … < iml

mi∈ 1::k½ �

−1ð Þk−lF
lð Þ
im1 im2…iml

¼

¼
X

l¼1

k
X

im1 < im2 < … < iml

mi∈ 1::k½ �

−1ð Þk−l εim1 εim2…εiml

D ED E

ð4Þ

�Fig. 1 a–c The components of the unified coarse-grained model of
biological macromolecules (UCGM). a UNRES (proteins), b NARES-
2P (nucleic acids), c SUGRES-1P (polysaccharides). The polar
interaction sites bearing point dipoles (depicted as red arrows) are
colored blue and the virtual bonds are shown as thick black lines. It
should be noted that the dipoles are not fixed but rotate about the
virtual-bond axes to give average potentials. For nucleic acids (panel
b), the dipole moments of the purine bases are approximately parallel to
the S⋯B virtual-bond (rotation) axis; they are approximately
perpendicular for pyrimidine bases, which explains the geometry of
Watson–Crick pairing [56]. All-atom chains are superposed on coarse-
grained representations for better illustration. In the UNRES model of
polypeptide chains (a), the interaction sites are side chains, represented as
ellipsoids of revolution of different sizes (SC) attached to the
corresponding α-carbon atoms (represented by small open circles), and
peptide-bond centers (p). The equilibrium length of a peptide bond is
3.8 Å for the trans and 2.8 Å for the cis configuration. For the ith residue,
the geometry of the respective chain fragment can be described using
virtual-bond angles θi, virtual-bond dihedral angles γi, and the polar
angles αi and βi. In the NARES-2P model of the nucleotide chain, the
interaction sites are phosphate groups (P), represented by yellow circles,
and the nucleic acid bases fused with sugar rings, represented by
ellipsoids, with their geometric centers at the Bs (green circles). The Ps
are located halfway between two consecutive sugar atoms. The backbone
virtual-bond angles θ and the virtual-bond dihedral angles γ, as well as the
polar angles α and β that define the orientation of the sugar-base vector
with respect to the backbone, are also shown. Small red circles represent
the sugar-ring centers (S) which serve as geometric points. In the
SUGRES-1P model of the polysaccharide chains, the interaction sites
are the sugar rings (S), represented by blue transparent spheres, while
white circles represent the glycosidic oxygen atoms (O) that serve as
anchor points

Fig. 2 The splitting of the interaction energy into component energies, as
illustrated using a fragment of a polypeptide chain. SC denotes a side
chain and p denotes a peptide group. The atoms of two side chains and
three peptide groups of the portion of the polypeptide chain shown in the
picture are embedded in shaded ellipsoids. For the sake of clarity, only
some of the interactions are shown and the water molecules are not
included. The terms EAB denote the interaction energies between the
atoms of sites A and B (e.g., ESCp denotes the interactions between a
side chain and a peptide group), while Eloc,b and Eloc,SC denote the
energies that contribute to local-interaction energies within the backbone
and the side-chain part of a given residue, respectively. Reproduced with
permission from Figure 2 of [48]
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ð5Þ

is the RFE containing only a subset of component interactions
(here, V yI

is the volume of the subspace spanned by variables

yi1 ; yi2 ;…; yik ).

The factors of the first order, f(1), correspond to the PMFs of
isolated units (e.g., isolated amino-acid residues) or those
between isolated pairs of units (e.g., pairs of interacting side
chains), while factors of order 2 and higher correspond to the
multibody or correlation terms. All of the factors depend on
temperature, and this dependence increases with increasing
factor order because of the increasing order of the first term in
the generalized-cumulant expansion of this factor [46, 50]. In
our approach, as opposed to other coarse-grained force fields,
this temperature dependence is explicitly accounted for [50].

The contributions of the correlation terms to the PMF and
thus their importance depend on how many secondary vari-
ables are shared between the component energies, εi, included
in a particular factor. If no secondary variables are shared, the
corresponding factor is equal to zero. For polypeptide chains,
the variables that are strongly shared between the factors are
the angles λ for rotation of the peptide groups about the
Cα⋯Cα virtual bonds.

The factor expansion is truncated [46] to achieve a
good compromise between the complexity of the force
field and its ability to reproduce the structure and dy-
namics of the system. We found that the fourth-order
expansion is sufficient for the UNRES force field [58].
For the neoclassical force fields, e.g., MARTINI [35,
38, 59], all long-range interactions are approximated by
factors of order 1 (i.e., by the potentials of mean force
of isolated pairs of sites), while factors of order 2 occur
only in the torsional potentials (these factors account for
the coupling between the conformational states of the
consecutive polymer units [46]). Approximate analytical
formulae for factors can be obtained by taking the first
nonzero generalized cumulant of its expansion into a
generalized-cumulant series (which is very useful for
correlation terms) [46] or by adapting the expressions
from all-atom force fields (for the first-order factors and
torsional potentials). These analytical expressions must
be parameterized and the whole force field calibrated to
reproduce the structure and physical properties of the
system under study.

A general scheme of the construction of coarse-grained
force fields based on the cluster-cumulant-expansion ap-
proach of the PMF is shown in Scheme 1.

The UNRES model of polypeptide chains

In our UNRESmodel [46–54] (Fig. 1a), a polypeptide chain is
represented by a sequence of α-carbon (Cα) atoms linked by
virtual bonds with attached united side chains (SC) and united
peptide groups (p) located midway between the consecutive
α-carbon (Cα) atoms (Fig. 1a). Only the united peptide groups
and united side chains act as interaction sites. The Cα atoms
serve only to define the geometry of the backbone trace, and
are not interaction sites in the UNRES model.

The energy of the virtual-bond polypeptide chain is
expressed by

U ¼ wSCSC

X

j

X

i< j

USCiSC j
þ wSCp

X

j

X

i≠ j

USCip j

þ f 2 Tð Þwel

X

j

X

i< j−1

Upip j

þ f 2 Tð Þwtor

X

i

U tor γið Þ

þ f 3 Tð Þwtord

X

i

U tord γi; γiþ1

� �

þ wb

X

i

Ub θið Þ

þ wrot

X

i

U rot αSCi
;βSCi

� �

þ
X

m¼2

N corr

f m Tð Þw mð Þ
corrU

mð Þ
corr þ f 3 Tð Þw

3ð Þ
turnU

3ð Þ
turn

þ f 4 Tð Þw
4ð Þ
turnU

4ð Þ
turn þ wbond

X

i

Ubond dið Þ

þ wSS

X

disulfide bonds

USSi þ nSSESS; ð6Þ

with

f n Tð Þ ¼ ln exp 1ð Þ þ exp −1ð Þ½ �

=ln exp T=T∘ð Þn−1
h i

þ exp − T=T∘ð Þn−1
h in o

ð7Þ

The terms USCiSC j
correspond to the mean free energy of

solvent-mediated interactions between the side chains. The
terms USCip j

correspond to the excluded-volume potential

of the side chain–peptide group interactions. The terms Upip j

represent the energy of mean-field electrostatic interactions
between backbone peptide groups. The terms Utor and Utord

are the torsional and double-torsional potentials, respectively,
for rotation about a given virtual bond or two consecutive
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virtual bonds. The terms Ub and Urot are the virtual-bond-
angle-bending and side-chain-rotamer potentials, respectively,
and the term Ubond accounts for backbone and side-chain
virtual-bond stretching [51, 60]. We recently [61] extended
the backbone-virtual-bond stretching term to account for the
trans–cis transition of peptide groups. The terms Ucorr

(m)

and Uturn
(m) correspond to the correlations (of order m) between

peptide-group electrostatic and backbone-local interactions
[46, 49]. The terms Uturn

(m) (the “turn” terms) involve consecu-
tive segments of the chain. The correlation terms are absolute-
ly essential for reproducing regular secondary structures, such
as α-helices and β-sheets [46, 62]. We found [58] that corre-
lation terms of order 3 and 4 are sufficient for the force field to
reproduce regular protein structures. The terms USSi are the
energies of distortion of disulfide bonds from their equilibri-
um configuration, ESS is the energy of formation of an “un-
strained” disulfide bond in the chain (relative to the presence
of two free cysteine residues), and nSS is the number of
disulfide bonds. The wterms are the weights of the respective
energy terms. The multipliers fn(T) account for the tempera-
ture dependence of the dominant terms corresponding to the
generalized-cumulant expansion of the PMF factors (Eq. 4);
for a factor with a lowest nonzero cumulant of order m, the
multiplier varies as 1/Tm−1with temperature [50]. For detailed
expressions of the respective energy terms, the reader is re-
ferred to our earlier work [46–53].

All terms except USCiSC j
were determined by numerically

computing the PMF surfaces of systems representing the cor-
responding PMF factors from the energy surfaces calculated by

ab initio quantum mechanics (for Utor, Utord, Upp, Ucorr [51],
USS [63]) or semiempirical AM1 (forUb [60] andUrot, andUvib

[60]) energy surfaces and fitting the respective analytical ex-
pressions to them. We initially [64] determined the side chain–
side chain interaction potentials as knowledge-based potentials
from the Protein Data Bank (PDB); however, they were recent-
ly [53, 65–68] re-determined from the PMFs of models of pairs
of amino-acid side chains in water from all-atom MD simula-
tions in explicit water.

To determine the energy-term weights (the w terms in
Eq. 6), we developed [50, 58, 69] a hierarchical optimization
approach in which the objective is to fit the weights so as to
reproduce the order of structure formation and the thermody-
namics of thermal folding/unfolding of the proteins selected
for calibration.

The NARES-2P model of nucleic acids and the model
of protein–nucleic acid interactions

In the NARES-2P model, depicted in Fig. 1b, a polynucleo-
tide chain is represented by a sequence of virtual sugar (S)
atoms that are located at the geometric centers of the sugar
rings and linked by virtual bonds with attached united sugar
bases (B) and united phosphate groups (P). These united sugar
bases and the united phosphate groups serve as interaction
sites. The energy of the virtual-bond chain is expressed by

U ¼ wGB
BB

X

i

X

j< i

UGB
BiB j

þ wel
BB

X

i

X

j< i

U el
BiB j

þwPP

X

i

X

j< i

UPiP j
þ wPB

X

i

X

j≠i

UPiB j
þ wbond

X

i

U bond dið Þ þ wbi
X

i

U b θið Þ þ wtor f 2 Tð Þ
X

i

U tor γið Þ

þwrot

X

i

U rot αi;βið Þ;

ð8Þ

where UGB
BiB j

denotes the nonbonded interactions between the
coarse-grained sugar-base sites, which is described by the
Gay–Berne anisotropic potential [70], U el

BiB j
denotes the

mean-field interactions between nucleic-acid-base dipoles
(similar to that between peptide groups in UNRES [47]),
UPiP j

denotes the mean-field potential of phosphate group
interactions, which consists of a Debye–Hückel term to ac-
count for solvent- and counterion-mediated charge–charge
interactions [71], and the Lennard–Jones term UPiB j

denotes
the excluded-volume potential of the interactions of phosphate
groups with sugar-base centers, the role of which is to prevent
the collapse of these sites on each other, while Ubond, Ub, Utor,
and Urot account for virtual-bond stretching, virtual-bond-
angle bending, the energetics of rotation about the S⋯S
virtual bonds, and the energetics of the local geometric states

Scheme 1 General scheme of the construction and parameterization of
coarse-grained force fields based on Kubo cluster-cumulant expansion of
the PMF
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of sugar-base sites. No correlation terms, except for the tor-
sional potentials, are present in the current version.

The termsUGB
BiB j

andU elec
BiB j

were determined by numerical

integration of the respective all-atom energy surfaces calcu-
lated with the AMBER force field, as done in our early work
on the UNRES potential [47], and were fitted to the respective
analytical expression. The dominant term was found to ac-
count for the mean-field interactions of the dipole-moment
component parallel to the axis of one base with the dipole-
moment component of the second base, which is perpendicu-
lar to its axis. This term has a minimum when the two base
axes are perpendicular to each other, which is close to the
geometry of the Watson–Crick base pairs. The local terms
were determined as knowledge-based potentials from nucleic
acid structures. The multipliers fn(T) are defined by Eq. 7. In

the current version, wGB
BiB j

¼ 0:5 and the other weights were

set to 2 to achieve the physiological melting temperature.

Coarse-grained model of polysaccharides (SUGRES-1P)

The sugar model developed in this project (depicted schemat-
ically in Fig. 1c) is a single-center model in which the anchor
points are the glycosidic oxygen atoms (usually 1 and 4), with
the sugar interaction site positioned between them. The ig-
nored degrees of freedom are the rotation angles of the sugar
rings about the O⋯O virtual bonds, usually the O(1)⋯O(4)
virtual bonds, as seen in the structures of, e.g., cellulose and
starch. Thus, the resulting force field has a component arising
from mean-field backbone–dipole interactions that are aver-
aged in the context of local interactions, just as for the UNRES
model, and with the same functional forms [46]. Off-1,4
connections (the 1,2, 1,3, 1,6, etc. connections), including
chain branching, fix the plane of the sugar ring involved; this
rotational restriction is analogous to that imposed by the
pyrrolidine ring in proline.

The current version of the SUGRES-1P model was devel-
oped for polysaccharides with 1,4-glycosidic bonds and pa-
rameterized for α- and β-D-glucose.

U ¼ wGB
SS

X

i

X

j< i

UGB
SiS j

þ wel
SS f 2 Tð Þ

X

i

X

j< i

U el
SiS j

þ w 3ð Þ
corr f 3 Tð Þ

X

i

X

j< i

U
3ð Þ
corr;SiS j

þ w
3ð Þ
turn f 3 Tð Þ

X

i

X

i

U
3ð Þ
turn;SiSiþ2

þ w 4ð ÞU 4ð Þ
corr þ wbond

X

i

Ubond dið Þ

þwb

X

i

U b θið Þ þ wtor f 2 Tð Þ
X

i

U tor γið Þ;

ð9Þ

where the termsUGB
SiS j

represent the mean-field van der Waals
and solvent-mediated interactions between sugar rings, which

are represented by the anisotropic Gay–Berne potential [70],
U el

SiS j
represent the mean-field interactions of the sugar-ring

dipoles outside of the context of local interactions (the same
functional form as used for backbone peptide groups is ap-
plied [47]), U 3ð Þ

corr;SiS j
and U

3ð Þ
turn;SiSiþ2

denote the correlation
contributions that account for the restricted rotation of sugar-
ring dipoles (again, the same functional forms are used as
those employed for polypeptide chains [46, 49]), Ucorr

(4) is the
sum of fourth-order correlation terms adapted from UNRES
[48],Ubond,Ub, andUtor denote the virtual-bond-deformation,
virtual-bond-angle-deformation, and virtual-bond-torsional
energies, respectively, and the w terms are the weights of the
energy terms.

In the current preliminary version of SUGRES-1P, the

parameters of UGB
SiS j

and U el
SiS j

were determined by calculat-

ing the potential energy surfaces as functions of the distance
between sugar-ring centers and their orientation using the
AM1 method of molecular quantum mechanics. These poten-
tial energy surfaces were then used to compute the potentials
of mean force, by averaging out the rotation about the
O(4)⋯O(4) virtual-bond axes, as done in our earlier work
on the derivation of the Upip j

potentials for polypeptide

chains [47, 49]. Therefore, the present version of SUGRES-
1P can treat fibrillar polysaccharides which may contain only
solitary water molecules inside. To include water, long-range
interaction potentials were determined from molecular dy-
namics simulations using the same procedure as employed
to determine the side chain–side chain interaction potentials
[53]. The local-interaction parameters were determined from
the PMFs of trisugars composed of all possible combinations
of α- and β-D-glucose; these energy surfaces were subse-
quently used to compute the virtual-bond-torsional and
virtual-bond-valence potentials using the procedures devel-
oped for the parameterization of UNRES [49, 72]. Two-
dimensional Fourier series were also fitted to the energy
surfaces of trisugars to derive the initial approximations of

the parameters of the U
3ð Þ
corr;SiS j

and U
3ð Þ
turn;SiSiþ2

correlation

terms, as done in our earlier work on UNRES [46]. No further
refinement of these parameters has been carried out so far.

Implementation of the components of UCGM

The UNRES model was initially used with the confor-
mational space annealing (CSA) method of global optimiza-
tion [73] to predict protein structures as global minima of the
potential energy function. To extend its applications, we later
implemented Langevin dynamics with UNRES [39, 74]. The
equations of motion for the UNRES chain are Langevin
dynamics equations because the solvent is implicit in
UNRES. Consequently, it contributes to conservative forces
(through the RFE) and gives rise to nonconservative forces
which originate in the energy exchange of the polypeptide
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chain with the solvent (the stochastic and friction forces).
Because the geometry of an UNRES chain is not uniquely
defined by the Cartesian coordinates of the interacting sites,
we chose the virtual-bond vectors (Cα⋯Cα and Cα⋯SC) as
generalized coordinates q and implemented the Lagrange
approach to derive the equations of motion [39, 75, 76].

To enable larger MD steps (up to 20 fs, compared to the 1–
2 fs time-step size applied in typical MD programs such as
AMBER [77]), we have also designed the adaptive multiple
time-step integration algorithm (A-MTS) [74].

To sample the conformational space more efficiently than
achievable by canonical MD, we extended [78, 79] the
UNRES/MD approach to the multiplexed replica-exchange
molecular dynamics method (MREMD) [80].

The reader is referred to our earlier works on MD [39,
74–76] and REMD/MREMD [78, 79] implementations of
UNRES.

We recently [81] parallelized the energy and force evalua-
tions, which enabled us to run calculations of >500-residue
proteins in a few days with massively parallel systems. To
compute the averages from the results of simulations carried
out at different temperatures, we adapted [50] the histogram-
reweighting technique known as the weighted histogram
analysis method (WHAM) [82]. With these extensions,
we were able to calculate thermodynamic and ensemble-
averaged structural characteristics of protein folding [50]
and develop a physics-based protocol for protein-
structure prediction in which the candidate predictions
are conformations averaged over subensembles of struc-
tures with the highest probability below the folding-
transition temperature [50].

The NARES-2P and SUGRES-1P models were built into
the UNRES/MD platform and thus enabled us to carry out

canonical [39] and replica-exchange [79] simulations of
nucleic acids and polysaccharides, respectively.

The UNRES package, with full documentation, is available
to the academic community at http://www.unres.pl. It will be
extended to incorporate NARES-2P and SUGRES-1P as soon
as these components are fully developed and parameterized.
The current versions of NARES-2P and SUGRES-1P can be
obtained from the authors on request.

Results

In this section, we briefly summarize the results obtained with
UNRES and the results of initial test calculations obtained
with NARES-2P and SUGRES-1P.

As mentioned in the “Methods” section, the initial application
of UNRES was to make energy-based predictions of protein
structures, in which the native structure was sought as the global
minimum in the effective energy surface [73]. Using this ap-
proach, we scored the best prediction of target T0063 (HDEA)
[83] in the Third Community Wide Experiment on the Critical
Assessment of Techniques for Protein Structure Prediction
(CASP3) (see http://www.predictioncenter.org for more
information about the CASP exercises). After implementing MD
[39, 74, 76] and its extensions [79] in UNRES, we used a much
better justified ensemble-based approach to prediction in which
candidate predictions are sought as ensembles of geometrically
similar structures [50]. Using this approach, we predicted correct-
ly, as one of the only two groups, domain packing for theCASP10
target T0063 [84]; our prediction was featured by the CASP10
assessors. Based on sequence similarity, T0063 was a template-
based modeling target but template-based methods failed to

Fig. 3 a The experimental 4EXR structure of CASP10 target T0663. b
Our model 1. c Our model 4. The N-termini in panels a–c are labeled N.
The values of GDT_TS are 23.19, 31.98, and 42.80 for model 1 of the
whole protein and its domains D1 and D2, respectively, and 22.04, 31.98,
and 40.15 for model 4 of the whole protein and its domains D1 and D2,
respectively. The respective GDT_TS values of the models with the

highest GDT_TS values submitted to CASP are 42.93 (model 1 from
group 27), 68.61 (model 3 from group 27), and 98.20 (model 4 from
group 27). The drawings of the structures were produced with PYMOL
(http://www.pymol.org). Reproduced with permission from Figure 1A-C
of [84]
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predict correct domain packing. Our predicted structure of this
target is compared with the experimental structure in Fig. 3.

With the MD implementation of UNRES, we carried
out extensive studies of protein folding, including a
simulation of the kinetics of the folding of the B-
domain of staphylococcal protein A [85], a description
of the folding pathway of protein A obtained through
network analysis [86], and free-energy landscapes of
protein A and the FBP28 WW domain and its variants
[87–89]. We also applied the UNRES/MD approach to deter-
mine themechanisms of biophysical processes, including amyloid
formation and growth [90, 91] as well as signaling [92], and to
investigate the Hsp70 chaperone cycle [93]. In particular, with
UNRES, we simulated the transition between the substrate-
binding (closed) and ATP-bound (open) conformations of
DnaK, a bacterial Hsp70 chaperone [93]. The open structure

calculated by UNRES turned out to be very similar to the ATP-
bound structure ofDnaK solved one year later [94].Our calculated
structure is compared with the experimental structure in Fig. 4.

For small proteins, UNRES/MREMD calculations re-
quire only several hours to achieve the convergence of
ensemble averages; for example, for the 46-residue frag-
ment of the B-domain of staphylococcal protein A (a
three-α-helix-bundle structure; this is one of the bench-
mark systems for UNRES calculations), 20 million MD
steps per trajectory are run in about 7 h with Intel
Pentium processors, with one core handling one trajec-
tory. For larger systems (200–300 residue proteins), the
same number of steps require about 24 CPU hours, with
4–16 cores handling one trajectory. A detailed study of
the speed of UNRES and its parallel efficiency can be
found in our earlier work [81].

Fig. 4 a The experimental
structure [94] of the open
conformation of DnaK (a
bacterial chaperone, PDB: 1BQ9)
and b the structure simulated [93]
with UNRES/MD, starting from
the closed (substrate-binding)
conformation of the chaperone,
before the experimental structure
was determined

Fig. 5 a–f Calculated ensemble-averaged structures at T=300 K obtain-
ed in MREMD simulations (thin blue sticks) of the two small DNA
molecules 9BNA (a and b) and 2JYK (c) and of the two small RNA
molecules 2KPC (d and e) and 2KX8 (f), as compared to the respective
experimental structures (thick brown sticks). For the side views (presented
for all molecules), the calculated structures are superposed on the exper-
imental structures, while the experimental structures are shown below the
calculated structures for the top views (presented for 9BNA and 2JYK).

The root-mean-square deviations (RMSDs) over the S centers averaged
over all native-like clusters are 4.5 Å, 8.1 Å, and 5.7 Å for 9BNA, 2JYK,
and 2KPC, respectively, and 9.8 Å for 2KX8 with respect to each
experimental structure. The lowest RMSD values obtained in the respec-
tive MREMD runs are 2.9 Å, 5.6 Å, 1.6 Å, and 6.9 Å for 9BNA, 2JYK,
2KPC, and 2KX8, respectively. Reproduced with permission from Figure
2 of [56]

J Mol Model (2014) 20:2306 Page 9 of 15, 2306



Among the other physics-based force fields, the optimized
potential for protein structure prediction (OPEP) from the
Derreumaux group, which uses a detailed all-atom represen-
tation of the protein backbone and united side chains, was
applied in ab initio folding. The latest version of the force field
succeeded in folding the tryptophan zipper and the FBP28
WW domain (a three-stranded antiparallel β-sheet protein);
the root-mean-square deviation (RMSD) of the most populat-
ed cluster was 3.8 Å [15, 16, 95]. This resolution, when scaled
by protein size, is comparable to the resolution of the UNRES

force field, although UNRES has been tested with larger
sets of small proteins [50, 69, 96] and was also tested
with larger proteins in the CASP experiments [52, 56,
83, 97, 98]. Just like UNRES [90, 91], OPEP was
successfully used to simulate the aggregation of
amyloidogenic peptides [3, 10, 11, 15].

NARES-2P has not yet been applied to solve practical
problems; however, we carried out extensive tests of this
approach [56]. To assess the predictive power of NARES-
2P, unrestricted multiplexed replica exchange simulations,

Fig. 6 a–c Comparison of the
experimental (red bars) and
calculated (blue bars)
temperatures (a), enthalpies (b),
and entropies (c) of melting of
model small DNA molecules.
Data from [56]
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started from extended unpaired chains, were carried out with
two small DNA molecules (9BNA, 2×12 nucleotides; and
2JYK, 2×21 nucleotides) and two RNA molecules (2KPC,
17 nucleotides; 2KX8, 44 nucleotides) molecules. The con-
formational ensembles below the melting temperature
consisted almost exclusively of native right-handed double-
helical structures. Example results are shown in Fig. 5.

The coarse-grained DNAmodel from the Ouldridge group,
which uses Morse-like potentials to reproduce base pairing
and stacking with base-pair-type specific parameters [25, 30],
and the HiRe-RNAmodel from the Derreumaux group [3, 28,
32], which uses Gaussian-type multibody terms to account for
base pairing, can also fold nucleic acid molecules. However,
both of these contain more interaction sites per nucleotide
unit, and the functional forms of the potentials have been
constructed to reproduce base pairing and stacking, while
these features arise in NARES-2P from the mean-field elec-
trostatic nature of the dominant base–base interaction terms.
In addition, a number of statistical potentials [23, 24] repro-
duce the experimental RNA structures in ab initio folding
simulations.

It is very interesting that removing or reducing the U elec
BiB j

component destroyed the folding capability of the
NARES-2P force field, while removing local interac-
tions (even the virtual-bond-angle terms) did not impair
the ability of the force field to form double helices.
Only right- and left-handed double helices appeared in
comparable amounts due to the absence of the torsional
potential that defines chain chirality [56]. These results
suggest that the mean-field dipole–dipole interactions
help to form structure. Unlike for proteins, the related
correlation interactions do not appear to be required to
reproduce double-helical structure.

We have also tested the ability of NARES-2P to reproduce
the thermodynamic parameters associated with DNAmelting.

To accomplish this, we ran [56] MREMD simulations of a
number of small DNA molecules for which the thermody-
namics of melting were studied by calorimetry [99, 100]. As
shown in Fig. 6, the agreement between the calculated and
experimental melting temperatures, enthalpies, and entropies
of melting is reasonable.

Because the NARES-2P energy function is less computa-
tionally expensive than the UNRES energy function (it does
not have correlation terms), NARES-2P requires less time for
a given number ofMD steps. For example, for the 2KX8RNA
molecule (44 nucleotides), 20,000,000 MD steps take only 3
h. On the other hand, because the bases are usually mispaired
in the initial folding stages and have to rearrange, it takes
three- to fourfold more MD steps to obtain converged confor-
mational averages as compared to the UNRES simulations for
proteins.

The SUGRES-1P force field is at the initial development
stage. Nevertheless, the limited tests carried out so far are
encouraging. In Fig. 7, the average structure of the most
populated cluster of conformations of a helical section of
cyclic amylose, and that of a dimer of two 12-residue α-D-
glucose chains (a unit of amylose), obtained in unrestricted
MREMD simulations using the SUGRES-1P force field, are
compared with the respective experimental data. As shown,
the force field is able to reproduce the double-helical fold of
both systems.

Conclusions and outlook

The examples illustrated in the “Results” section have shown
that it is possible to construct a unified coarse-grained model
with a very small number of interaction sites per unit that
describes the structure and energetics of proteins, nucleic
acids, and polysaccharides surprisingly well. The success of

Fig. 7 a Superposition of the experimental (green) and calculated (using
the SUGRES-1P model; red) O4 traces of part of cyclic amylose. The
RMSD over the O4 atoms is 5.5 Å. b Superposition of the experimental
(green) and calculated (using the SUGRES-1P model; red) O4 traces of
amylose A (structure from the PolySac3DB database [101]; http://
polysac3db.cermav.cnrs.fr/polysacdb/amylose-a/AmyA_double.pdb).

Calculations were carried out on the dimer composed of two 12-residue
monomers. The RMSD over the O4 atoms is 7 Å. It can be seen that,
despite considerable distortion of the calculated structure at the ends, the
right-handed-twisted double-helical structure and parallel packing of the
chains is preserved
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the UCGM most probably results from two principles of its
design: (i) the origin of the effective energy function in the
potential of mean force, which is then split into factors,
enabling us to extract pure components pertaining to a given
part of the system under consideration without the danger of
counting the same contributions multiple times, and (ii) fo-
cusing on electrostatic and local interactions between polar
units, the interactions of which seem to determine biopolymer
architecture. Moreover, all three components of the model are
based on the same geometric design: placing backbone sites
between two anchor points and attaching branches (side
chains, nucleic acid bases) to the same anchor points.
Therefore, merging all of the components of UCGM into
one system is a relatively simple task. In particular, it is
feasible to interface the oligosaccharide part to a protein to
form the respective glycan. At present, we are also extending
the model to protein–nucleic acid interactions. We have al-
ready developed the potentials of interactions between protein
side chains and nucleic acid bases (Yin Y, Sieradzan AK, Liwo
A, He Y, Scheraga HA, manuscript in preparation). Using
these extensions, the model will become a tool with which it
will be possible to study the energetics and dynamics of
biochemical processes using a small fraction of the computa-
tional effort required by all-atom simulations, while still being
able to keep track of the physics of the respective phenomena.

The transferability and universality resulting from main-
taining close connections of the effective UNRES, NARES-
2P, and SUGRES-1P energy functions with the physics of
interactions in these types of macromolecules is the greatest
advantage of the unified coarse-grained model.

On the other hand, the resolution of the components of the
model, even the most advanced UNRESmodel for proteins, is
only moderate (about 5 Å for an approx. 50-residue protein).
Fortunately, this feature does not seem to be inherent in the
coarse-grained approach because some of our test calculation
resulted in average RMSDs of about 2 Å for a 67-residue
protein [96]. The force fields constitutingUCGM are probably
still missing details of local interactions. Work on improving
the representation of local interactions is in progress in our
laboratory. Very recently [54], we introduced torsional poten-
tials involving the virtual Cα⋯SC bonds. This modification
improved the resolution of the force field by about 0.5 Å on
average [54].
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