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 
Abstract—Clustering is increasingly important for multiview 

data analytics and current algorithms are either based on the 

collaborative learning of local partitions or directly derived global 

clustering from multi-kernel learning. In this paper, we innovate a 

clustering model that unifies the local partitions and global 

clustering in a collaborative learning framework. We firstly 

construct a common multi-kernel space (CMKS) from a set of 

basis kernels to better reflect clustering information of each 

individual view. Then, considering that joint local partitions would 

conform to the global clustering, we fuse the local partitions and 

global clustering guidance as a single objective function in 

accordance with fuzzy clustering form. The collaborative learning 

strategy enables the mutual and interactive clustering from local 

partitions and global clustering. The validation was performed 

over two synthetic and four public databases and the clustering 

accuracy was measured by NMI and RI. The experimental results 

demonstrated that the proposed algorithm outperformed the 

related state-of-the-art algorithms in comparison which included 

multitask, multi-kernel and multiview clustering approaches. 

 
Index Terms— Multiview data, Fuzzy clustering, Collaborative 

learning, Multi-kernel space 

 

I. INTRODUCTION 

lustering is essential to unsupervised image segmentation 
and interpretation, content-based retrieval, computer vision 

and visual analytics by classifying the image contents into 
disjointed groups based on predefined similarity criteria. The 
conventional clustering algorithms, such as k-means [1], fuzzy 
c-means (FCM) [2-3], spectral clustering [4], maximum entropy 
clustering (MEC) [5] and possibilistic fuzzy c-means (PFCM) 
[6-7] receive tremendous popularity due to their simplicity and 
rapid computation. As the rapid advance of imaging and data 
acquisition techniques, nowadays, more complicated 
multimodality data are generated on a daily basis from areas 
such as healthcare, finance, social network and scientific 
research. Multiple representations and descriptors become 
indispensable to reflect the embedded information for these 
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complicated multiview data. The conventional clustering 
methods mainly for single attribute data or single view data are 
becoming less feasible for these multiview data. 

The multiview clustering was initially addressed by Bickel et 

al. [8]. The early collaborative clustering for multi-view 
included EM-based method [9] and spectral clustering 
algorithms [10-11]. Based on k-means clustering, Chen et al. 
[12] proposed a weighted clustering algorithm for multiview 
data to automatically compute weights for each individual view 
and for the variables as well. Liu et al. [13] modeled multiview 
data as a tensor and developed a new tensor-based framework 
for the integration of heterogeneous multiview data in the 
context of spectral clustering. More recently, new learning 
technologies [14-19] have been introduced for multi-view data 
analysis and processing. When seeking to achieve consistent 
and common conclusions, these learning models also take into 
account the differences among multiple views. The 
collaborative learning outcomes provide important guidance for 
multi-view clustering algorithm [20]. 

Soft or fuzzy clustering mechanism is particularly suitable for 
multi-view data to extract the latent common partition from a 
fusion of fuzzy clustering results of each individual view. 
According to the learning strategies for latent partition, the 
fuzzy multi-view clustering methods can be classified into two 
categories, collaborative learning with adaptive fusion of the 
partition from an individual view, and multi-kernel learning 
with fusion based on distance measurements.  

In the first category, a collaborative fuzzy clustering (CoFC) 
algorithm was firstly proposed [21] based on the standard FCM 
method. This method extracted the common structure from 
separate subsets of patterns that collaborated by exchanging 
information of local partition matrices. Pedrycz and the team 
continued to further improve the CoFC algorithm in [22-23], 
and their systematic research provided the foundation for 
collaborative multi-view learning. Cleuziou et al. proposed a 
centralized model for multi-view clustering, called Co-FKM 
[24], in which a penalty term was introduced to reduce the 
disagreement between the partitions on different views. Then, in 
order to identify the importance of each view and enhance the 
clustering performance, Jiang et al. [25] proposed a weighted 
view collaborative fuzzy c-means (WV-Co-FCM) algorithm 
based on Shannon entropy. In these algorithms, for each 
individual view, the partition was achieved on the basis of 
collaborative learning with adaptive-fusion. However, the final 
clustering result was obtained by simple integration or voting 
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mechanism. In addition, the global guidance was not considered 
in the clustering process of each view. At last, these algorithms 
generally adopted a uniform distance measure, such as the 
Euclidean distance. However, in the complicated multiview 
data, the distance measurements of different views may vary 
significantly and thereby a single distance measure is far from 
sufficient. 

The second category of multiview clustering methods are 
fundamentally based on the fact that kernel methods provide an 
intuitive way to merge and integrate different types of data, and 
the features of each view can be processed into a kernel matrix 
[26]. A multiple kernel interval-valued fuzzy C-means 
clustering (MKIFCM) algorithm [27] was based on the kernel 
learning method and the interval-valued fuzzy sets. Huang et al. 
[28] proposed a multiple kernel fuzzy c-means (MKFCM) 
algorithm that extended the FCM algorithm with a multiple 
kernel learning setting. Chen et al. [29] used the multiple kernel 
fuzzy c-means algorithm for image segmentation, in which, 
different pixel information represented by different kernels was 
combined in the kernel space to produce a new kernel. By 
incorporating multiple kernels and automatically adjusting the 
kernel weights, these two MKFC algorithms were more immune 
to ineffective kernels and irrelevant features. Baili et al. [30] 
extended the kernel fuzzy c-means clustering algorithm to an 
adaptive clustering model and proposed a fuzzy c-means 
algorithm with Multiple Kernels (FCM-MK). Tzortzis et al. 
[31] introduced the multi-kernel mechanism into multiview 
clustering. Combining the features of each view as a vector by 
multi-kernel mapping, these methods overlooked uniqueness of 
an individual view and omitted the collaborative learning 
between each view in the clustering process. Since 
multiple-kernel clustering is highly related to identification of 
fuzzy model, the fuzzy clustering algorithm was extended to an 
adaptive clustering model by the recursive processing strategy 
[32-34] for stream data clustering. The model was demonstrated 
on different applications including monitoring of the waste 
water treatment process. 

As discussed above, clustering methods based on 
collaborative learning do not utilize global clustering estimation 
as guidance for searching optimal clustering results. 
Comparatively, the algorithms based on multi-kernel directly 
derive the global solution from the vector of combined features 
of different views, yet without collaborative learning. In this 
paper, we propose a collaborative multi-kernel fuzzy clustering 
(CoMK-FC) model that unifies global clustering guidance with 
the local partitions in a single objective function. We introduce 
multi-kernel learning for each view and construct a common 
multi-kernel space. Then, the global clustering can be directly 
derived from the composite kernel space, and the local partition 
is generated from the collaborative learning of these composite 
kernels. Hence, this strategy is able to waive issue of the 
uniform distance measurement in the collaborative learning 
process. Further, based on the hypothesis that when the 
clustering achieves an optimal solution, the joint local partitions 
would conform to the global clustering, we fuse the local 

partitions and global clustering guidance as a unified objective 
function. 

The rest of this paper is organized as follows. In Section II, 
we briefly review some multiview fuzzy clustering algorithms in 
the latest advance, such as the Co-FKM algorithm, the 
WV-Co-FCM algorithm and the MKFC algorithm. In Section 
III, our method, CoMK-FC, is proposed. In Section IV, the 
experimental results of our method are compared with the 
state-of-the-art algorithms to prove the effectiveness of 
CoMK-FC. Finally, this paper concludes in Section V. 

II. RELATED WORK  

In this section, we briefly review some related work on 
collaborative learning and multi-kernel learning for fuzzy 
clustering. 

A. Collaborative Fuzzy Clustering  

For a given sample set 
1{ , , }

N
X x x  with N  sample 

elements, we assume that X  is described in K  different views. 

Correspondingly, for 
j

x , a vector 
  
x

j

(k )  is defined to represent 

its kth view features. To cluster the sample set X  into C  

classes, the fuzzy partition matrix of N  samples belonging to 

C  classes is represented as ( )
,[ ]k

ij k C N
U u   in the k th view, 

where , [0,1]
ij k

u   (1 ,1 )i C j N     denotes the fuzzy 

membership degree of the sample 
j

x  belonging to the cluster i  

of  k th view. ,ij k
u  should satisfy the following two constraints:  

 ,
1

1
C

ij k

i

u


   (1) 

 ,0 1,1 ,1 ,1
ij k

u i C j N k K          (2) 

Pedrycz et al. [21] defines the objective function of the 
collaborative fuzzy clustering (CoFC) algorithm as: 
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where 
2 ( ) ( ) 2
, || || k k

ij k j i
d x v  denotes the distance between 

j
x  

and 
  
v

i

(k )  in k th view, 
  
v

i

(k )

 
denotes the prototype of cluster i  of 

k th view and ,k k
  is the collaborative coefficient between the 

k th view and '
k th view, and m =2 is the fuzzification degree.  

There are two terms in the objective function as defined in 
(3): the first term can be regarded as an individual clustering 
mechanism for each view by standard FCM algorithm, and the 
second term is a collaborative learning process among different 
views which was implemented by exchanging information from 
local partition matrices. The CoFC algorithm is an iterative 
process to minimize the objective function ( )

CoFC
J k . Fixing 

fuzzification degree at 2 as in (3) makes the optimization 
process possible; however, the clustering results may not be 
satisfactory.  
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B. Co-FKM Algorithm  

On the basis of CoFC algorithm, Cleuziou et al. [24] 
proposed a collaborative approach, namely Co-FKM, by using 
conventional FCM framework. In this method, a specific 
partition was obtained in each view, and then a penalty term was 
introduced to reduce the disagreement between partitions from 
the different views. The objective function of the Co-FKM 
algorithm was defined as: 

'

' '

2 2
, , , ,,

1 1 1 1 11,

1
( , )= ( )

1

K C N K C N
m m m

Co FKM ij k ij k ij k ij kij k
k i j i jk k k

J U V u d u u d
K


     

 
  

                     2
, , ,

1 1 1

K C N

ij k ij k

k i j

u d
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                                             (4) 

where 
'

' '
, , , ,

1,

(1 )
1




 
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K
m m

ij k ij k ij k
k k k

u u u
K

 presents the 

weighted mean of the usual fuzzy memberships ,
m

ij k
u  obtained 

from each view,   is a parameter used to control the penalty 

correlated to the disagreement. The second term of the first 
equation of this objective function is a penalty term for the 
co-learning for any pair of two different views ( ,k k  ). Since the 

lower the value of ' ,,
( )m m

ij kij k
u u  is, the lower the disagreement, 

it can be considered as a divergence between partitions from the 

different views. In order to merge each view partition ,ij k
u  and 

obtain the global clustering result ˆ
ij

u , Co-FKM defined the 

geometric mean of ,ij k
u  for each view as ˆ

ij
u  where 

 ,
1

ˆ
K

K
ij ij k

k

u u


    (5) 

and assigned 
j

x
 
to the i th cluster when ˆ

ij
u  is maximized. 

Co-FKM improved the performance of the multiview 
clustering, and as indicated by (4), Co-FKM considered that 
each view contributed equally for clustering, which might not be 
always appropriate in particular when the views have different 
importance. 

C. WV-Co-FCM Algorithm 

Jiang et al. [25] firstly introduced the Shannon entropy to 
identify the importance of each view and proposed a weighted 
multiview collaborative fuzzy c-means (WV-Co-FCM) 
algorithm. The objective function of WV-Co-FCM was defined 
as 

2
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where 
k

w  is the weight for the kth view, 2
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2
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  . The two parameters 

  and   where 0 1  , 0   were used to adjust the 

penalty corresponding to the partition disagreement and the 
weight of each view respectively. 

In order to obtain the final global clustering result, the 
summation of each weighted fuzzy partition matrix for each 
view was adopted as  

 
1

K

k k

k

U w U

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where 
k

U  is the fuzzy membership matrix for the k th view. 

D. Clustering based on multiple kernel fuzzy C-means 

The multiple kernel fuzzy C-means (MKFCM) [28-30] is a 
multiple kernel learning algorithm which extends the 
conventional fuzzy C-means algorithm. A non-negative linear 
expansion of the bases in kernel space was defined as 

 
1
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k k
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where 
k

 is mapping function, 
k

  is the weight of 
k

  and M  

is the number of mapping functions. 
The objective function of MKFCM algorithm was defined as 

below: 
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where 
i

v  denotes the prototype of the i th cluster in the implicit 

feature space, 1 2( , , , )T

M
     is a weight vector, 

N C
U

  denotes the fuzzy partition matrix whose elements 

are the membership 
ij

u , and V  is a prototype matrix where 

each row corresponds to a cluster prototype. 
Tzortzis et al. [31] proposed a kernel-based weighted 

multiview clustering (MVKKM) algorithm. This algorithm 
firstly assigned a kernel mapping for each view, and then 
defined the kernel combination as the following (10) to take 
advantage of all views: 

 ( )

1 1

, 0, 1, 1
K K

b k

com k k k

k k

w w w b 
 

       (10) 

where 
k

w  is the weight of the kth view, ( )k  denotes the kernel 

function of the kth view and b  is an exponent. 

As reviewed above, there has been systematic research on 
collaborative learning and multiple kernel learning for fuzzy 
clustering. Based on conventional FCM, CoFC initialized 
collaborating local partition matrices to extract common 
structure. While contributing to ease optimization process, fixed 
fuzzification degree was considered a major reason leading to 
less satisfactory clustering. To improve the performance of 
multiview clustering, Co-FKM introduced a penalty term to 
reduce disagreement between each view. However, treating 
different views with equal importance, this method may not 
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always achieve clustering convergence, in particular when some 
views are noisy and not reliable. WV-Co-FCM was then 
proposed with the entropy regularization term to adjust the 
weights of different views. WV-Co-FCM mainly used these 
weights to produce final clustering consensus and ignored their 
influence in the clustering procedure. These collaborative 
learning algorithms often adopt uniform distance measure for 
each view, which may raise difficulty when dealing with 
complicated data with large differences in data structures of 
different views. More importantly, these collaborative learning 
based algorithms might be trapped into local optimization. 

Based on the multiple kernel learning strategies, the 
algorithms such as MKFCM and MVKKM derived global 
clustering by the multi-kernel mapping during the clustering 
process. The MKFCM algorithm was more immune to 
ineffective kernels and irrelevant features by incorporating 
multiple kernels and automatically adjusting the kernel weights. 
However, MKFCM neither considered the uniqueness of each 
view, nor the collaborative learning between each view in the 
clustering process. 

Our hypothesis is that a clustering model, which unifies the 
global guidance with local partitions into a collaborative 
framework, will achieve optimal clustering. 

III. OUR METHOD 

In this paper, we propose a collaborative multi-kernel fuzzy 
clustering (CoMK-FC) algorithm for multiview data, which 
takes into account both local partition and global clustering for 
an optimal ultimate solution. As illustrated in Fig. 1, based on a 
common multi-kernel space, our algorithm incorporates the 
advantages of collaborative learning and multiple kernels 
learning. In the proposed model, we not only consider the 
collaborative learning between each view, but also consider the 
global clustering guiding each view partition in the clustering 
process.  

 
Fig. 1. Schematic framework of our proposed model 

A. Common Multi-Kernel Space 

How to effectively evaluate the distance between data items 
of each view and fuse the clustering results from each view are 
two important while challenging factors in multiview clustering. 

Kernel-based clustering provides an effective mechanism for 
non-linear analysis and modeling. Different kernel functions 
have their specific characteristics. For instance, Gaussian kernel 
has merits on extracting local information while in the contrary, 
polynomial kernel exhibits strong capabilities of presenting 
global features. In order to effectively measure complex data 
structures of each view, we construct a common multi-kernel 

space on the basis of MKFCM algorithm [28] which is more 
immune to ineffective kernels and irrelevant features via 
automatically adjusting the kernel weights. The common 
multi-kernel space is constructed as shown in Fig. 2. 

 
Fig. 2. Schematic diagram of the common multi-kernel space construction 
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To combine these kernels and ensure that the resulting kernel 
still satisfies the Mercer condition, we propose a convex 

combination of these feature maps ( )k
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  as below:  
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b  is an exponent. 
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dimensionality, we construct a new set of independent mappings 
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Each of these mappings projects ( )k

j
x  into a L-dimension 

vector 
1

kM

h

h

L L


 . These new mappings form a new set of 

orthogonal bases since 
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By such, the feature spaces of these new mappings have the 
same dimension and their linear combination can be well 

defined. A non-negative linear expansion of the bases in ( )k  is 
defined as 

 ( ) ( ) ( )

1

( ) ( ) ( )
k

k

M
bk k k

com h h

h

x x  

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Therefore, the corresponding composite kernel ( )k

com
  in the 

k th view is defined as: 
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where  ( ) 0k

h
 represents the weight of ( )k

h
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coefficient analogous to the fuzzy coefficient m  in (4). The 
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kM

k

h

h



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B. Objective Clustering Function 

On the basis of the constructed common multi-kernel space, 
we take into account both the local partition from collaborative 
learning and global clustering from multi-kernel learning and 
define our objective function as below:  

 ( , , ) ( , , ) ( , , )
local global

J U V W J U V W J U V W     (16) 

where   is a trade-off parameter, ( , , )
local

J U V W  denotes the 

local partition from each view partition and ( , , )
global

J U V W  is 

the global clustering obtained from multi-kernel learning 
serving as a guidance. As we consider that the local partition 
and the global clustering are equally important for the ultimate 
clustering, we set 1   in the model. 

1) Local partition function 

Local partition for each individual view is achieved by 
collaborative learning and defined on the common multi-kernel 
space as 

 

'

' '

( ) ( ) 2
, ,

1 1 1

, , , ,
1,

( , , ) || ( ) ||

            (1 )
1

K C N
k k

local ij k com j i

k i j

K
m m

ij k ij k ij k
k k k

J U V W u x v

u u u
K









  

 

 

  





  (17) 

Similar to the algorithm proposed in [25], we introduce the 
Shannon entropy to identify the importance of each view. The 
local partition function in (17) is then defined as:  

( ) ( ) 2
, ,

1 1 1

1

( , , ) || ( ) ||

                           ln

K C N
k k

local k ij k com j i

k i j

K

k k

k

J U V W w u x v

w w

 



  



 



 


  (18) 

where 
k

w  is the weight of the k th view, ( )k

i
v  denotes the 

prototype of cluster i  for the k th view. 

2) Global clustering function 

On the basis of common multi-kernel space, we can directly 
derive the global clustering which serves as global guidance for 
local partitions. We define the global clustering function in the 
common kernel space as: 

 2

1 1

( , , ) || ( ) ||
C N

m

global ij com j i

i j

J U V W u x v
 

     (19) 

where 
ij

u  denotes the fuzzy membership degree of the sample 

j
x  belonging to cluster i , and 

ij
u  is assumed to satisfy the 

constraint 
1

1,1
C

ij

i

u j N


   . 
  
v

i
 is the prototype of cluster i  

and 
com

  is the mapping function of the global kernel that is a 

combination kernel on top of the common multi-kernel space: 

 


  ( )

1

( ) ( )
K

b k

com k com

k

x w x   (20) 

where 
k

w  is the weight of the k th view; b  is an exponent and 

set to be 1 in this paper. Equation (20) is then written as  

 
1
2 ( )

1

( ) ( )
K

k

com k com

k

x w x


    (21) 

Note that in (20) and (21), for simplicity, we continue to use 
( ) ( )k

com
x  to represent its orthogonal expansion, same as defined 

in (12). Accordingly, the global kernel can be represented as 
below: 

 
(1) (2) ( )

1 2

( ), ( )

      

com com com

k

com com K com

x x

w w w



  

  

   
  (22) 

where ( )k

com
  is the common kernel for the  k th view as (15). The 

update equations of prototypes 
  
v

i
 can be derived by Lagrangian 

optimization as below: 

 
1

1

( )

,    1,2, ,

N
m

ij com j

j

i N
m

ij

j

u x

v i C

u






 



  (23) 

and then the global clustering function is rewritten as: 

1 1

1

1 2

1 2

1 1

1

1 1

1 1

( ) ( )
( , , )

               2 ( )

ˆ( , ) 2 ( , )

ˆ ˆ       ( , )
1 2

T
C N

com j com jm

global ij T T
i j com j i i i

N

com j j ij com j j
C N

jm

ij N N
i j

ij ij com j j

j j

x x
J U V W u

x v v v

x x u x x

u

u u x x

 



 



 

 

  
 
    

 
 

   
  

 








  (24) 

where 
1

ˆ
N

m m

ij ij ij

j

u u u


  is the normalized membership. By 

substituting (22) into (24), the objective function of the global 
clustering can be further rewritten as 

1 1

1

1 2

1 2

( ) ( )

1

1 1 1 ( )

1 1

( ) ( ) 2

1 1 1

ˆ( , ) 2 ( , )

( , , )

ˆ ˆ       ( , )

|| ( ) ||

1 2

N
k k

com j j ij com j j
K C N

jm

global k ij N N
k i j k

ij ij com j j

j j

K C N
m k k

k ij com j i

k i j

x x u x x

J U V W w u

u u x x

w u x v

 







  

 

  

 
 

   
  

 

 


 



 

  (25) 

where ( ) ( )

1 1

( )
 

 
N n

k m k m

i ij com j ij

j j

v u x u  is the prototype of cluster i 

in the  k th view.  

The global clustering 
ij

u  can be directly derived from the 

multi-kernel fuzzy clustering. This derived global clustering 
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provides important guidance for local partition to avoid being 
trapped into local optimization. However, we cannot ensure it is 
the optimal partition. According to the common fusion strategy 
in collaborative fuzzy clustering, the global clustering is 
considered as the weighted summation of the local partitions 
from each individual view [25] as (26)  

 ,
1

K
m m

ij k ij k

k

u w u


   (26) 

We can estimate the global clustering by using (26) which is 
obtained by collaborative learning of local partitions. 
3) Fusion of local partition and global clustering 

With the definitions of local partition (18) and global 
clustering (25), our objective clustering function as defined in 
(16) can be then expressed as below: 

 ( ) ( ) 2
, ,

1 1 1

( ) ( ) 2

1 1 1 1

( , , ) ( , , ) ( , , )

|| ( ) ||

   || ( ) || ln

local global

K C N
k k

k ij k com j i

k i j

K C N K
m k k

k ij com j i k k

k i j k

J U V W J U V W J U V W

w u x v

w u x v w w







 

  

   

  

 
  

 

  

 

  

  (27) 

where 
'

' '
, , , ,

1,

(1 )
1




 

  
 

K
m m

ij k ij k ij k
k k k

u u u
K

 and ( ) ( )k

com
x is 

defined as (14). It should be noted that 
  
v

i

(k )  represents the 

prototype of cluster i  in the  k th view based on the hypothesis 

that the global clustering and each view partition are able to 
achieve consistency for an optimal clustering. 

 
Fig. 3. Schematic derivation of the unified objective function. 

In our formulation, we estimate the global clustering by 
substituting (26) into (27) and with further mathematical 
simplification, our method CoMK-FC aims at minimizing the 
objective function which is defined as 

( ) ( ) 2
, , ,

1 1 1 1

1

( ) ( ) 2
,

1 1 1 1

,
1

( , , ) ( ) || ( ) ||

                       ln

|| ( ) || ln

. . [0,1], [0,1], 1

K C N K
m k k

k ij k k ij k com j i

k i j k

K

k k

k

K C N K
k k

k ij k com j i k k

k i j k

ij k k k

k

J U V W w u w u x v

w w

w u x v w w

s t u w w

 



 

   



   



  



  

  

  



  

,
1

, 1,1 ,1
K C

ij k

i

u j N k K


     

 (28) 

where , , , ,
1

K
m

ij k ij k k ij k

k

u u w u


  . 

In our model as illustrated in Fig. 3, based on a common 
kernel space, collaborative learning is performed to extract 
local partition from each individual view, while a higher level of 
multi-kernel learning is conducted to directly derive global 
clustering. We unify the local partitions and global clustering as 
a uniform model under our hypothesis that the clustering 
achieves optimal solution when the joint local partitions 
conform to the global clustering. 

C. Clustering Optimization  

By minimizing the objective function in (28), our algorithm 
can simultaneously search the optimal weight 

vector
   
W = [w

1
, ,w

K
] , partition matrix 

   
U = [U (1) , ,U ( K )] , 

and cluster prototypes 
   
V = [V (1) , ,V ( K )] for each view.  

1) Partition Matrix Optimization 

We define the distance function between data 
 
x

j
 and cluster 

prototype 
  
v

i

(k )  in the kth view 

as
2 ( ) ( ) ( ) ( )
, ( ( ) ) ( ( ) )k k T k k

ij k com j i com j i
d x v x v    . When ( )k

V  and 

k
w  are fixed, the distances are constants. With 

constraint ,
1

1
C

ij k

i

u


  and by Lagrangian optimization, the 

minimization of ( , , )J U V W  in (28) is equivalent to the 

optimization of ,ij k
u  as below: 

 '

, ,

2
, ,,

1 1 1 1,

, ,
1 1 1 1

( , )

((1 ) ( ) )
1

      ( 1) ln

ij k j k

K C N K
m m

k k ij k k ij kij k
k i j k k k

K N C K

j k ij k k k

k j i k

J u

w w u w u d
K

u w w





 


     

   



   


  

  

  

  (29) 

From (29), we can obtain the optimal value of ,ij k
u  by setting 

, , ,( , ) / 0
ij k j k ij k

J u u    and , , ,( , ) / 0
ij k j k j k

J u     . Thus, 

we have the following equations  

 

, , 1 2
, ,

,

1 2
, , ,

1,

, ,

,
1,

( , )
(1 )

       ( ) 0
1

( , )
1 0

ij k j k m

k k ij k ij k

ij k

K
m

k k ij k ij k j k

k k k

C
ij k j k

ij k

ij k

J u
mw w u d

u

mw w u d
K

J u
u




 







 

  




  



   



   







  (30) 

From (30), the solution for ,ij k
u  is: 

 

1

1

,

,
2 2
, ,

1,

(1 ) ( )
1

m

j k

ij k K

k k ij k k k ij k

k k k

u

mw w d mw w d
K






 
  

 
 
 
      


 (31) 

and with the constraint ,
1

1
C

ij k

i

u


 , we can eliminate ,j k
  and 

further obtain the closed-form solution of the alternative primal 
memberships for kth view as: 
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, 1

1
2 2
, ,

1,

2 21
, ,

1,

1

(1 ) ( )
1

(1 ) ( )
1

ij k

K m

k k ij k k k ij kC
k k k

K

h
k k hj k k k hj k

k k k

u

w w d w w d
K

w w d w w d
K







 
  


 

  


 

     
      






  (32) 

2) Weight Optimization 

For the kth view, suppose that the memberships 
( )

,[ ]k

ij k C N
U u   are fixed, we seek to derive the optimal 

prototypes and weights. By setting ( )( , , ) / 0k

i
J U V W v   , we 

have 

 ( ) ( )
,( )

1

( , , )
2 ( ( ) ) 0

N
k k

ij k j ik
ji

J U V W
u x v

v





   

    (33) 

Thus, when ( )k
U  are fixed, (33) reaches the local minimum if 

and only if ( )k

i
v  meets the following condition: 

 ( ) ( )
, ,

1 1

( ) ,    1,2,...,
N N

k k

i ij k j ij k

j j

v u x u i C
 

     (34) 

where ', , ,
1,

(1 ) ( )
1

K
m m

ij k k ij k k ij k
k k k

u w u w u
K

 
  

    
 . 

From (34), it can be seen that these cluster prototypes are in 
the implicit kernel-induced feature space, and the prototypes 
cannot be directly computed. In order to solve this problem, we 

substitute ( )k

i
v  in our distance function with its solution as (34), 

then we can derive the explicit expression as below: 

1 1 2 1 2

1 1 2

2 ( ) ( ) 2
,

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
, ,

1 1 1

|| ( ) ||

( ) ( ) 2 ( )

ˆ ˆ ˆ( , ) 2 ( , ) ( , )
1

k k

ij k com j i

k T k k T k k T k

com j com j com j i i i

N N N
k k k

com j j ij ,k com j j ij k ij k com j j

j j j

d x v

x x x v v v

x x u x x u u x x



  

  
  

 

  

   

 (35) 

where ( ) ( ) ( ) ( ) ( )
1 1 2 2( ) ( )k kb bk k k k k

com
      ( ) ( )( ) k

k k

bk k

M M
   , 

, , ,
1

ˆ
N

ij k ij k ij k

j

u u u


  . Thus, when the memberships are fixed, the 

distance can be obtained without implicitly computing cluster 
prototypes. 

For the kth view, suppose that ( )k
U  and 2

,ij k
d  are fixed and 

by the Lagrangian optimization, the minimum of ( , , )J U V W  in 

(28) can be solved by finding the following optimization 

problem about 
k

w : 

 

2 2
, , , ,

1 1 1 1 1 1

1 1

( , )

                  ln ( 1)

K C N K C N
m

k k ij k ij k k ij ij k

k i j k i j

K K

k k k

k i

J w w u d w u d

w w w



 

     

 

 

  

   

 
  (36) 

where ', , , ,
1,

(1 )
1

K
m m

ij k ij k ij k
k k k

u u u
K




  

  
  , ,

1

K
m m

ij k ij k

k

u w u


 . 

From (36), we can obtain the optimal value of 
k

w  by setting 

( , ) / 0
k k

J w w    and ( , ) / 0
k

J w     . Thus, we have the 

following equations: 

2
, , ,

1 1

( , )
( ) (ln 1) 0

C N
mk

ij k ij ij k k

i jk

J w
u u d w

w



 

 


     

    (37) 

 
1

( , )
1 0

K
k

k

k

J w
w


 


  

    (38) 

From (37), 
k

w  is obtained as below: 

 

2
, , ,

1 1

( )

exp( ) exp( )

C N
m

ij k ij ij k

i j

k

u u d

w

 

 

 

 
  


  (39) 

With the constraint (38), we have 

 

2
, , ,

1 1

1

( )

exp( ) 1 exp( )

C N
m

ij h ij ij hK
i j

h

u u d 



 



 
 


   (40) 

 Thus, we can eliminate   and further obtain the 

closed-form solution of the alternative optimal weight for the 
kth view as 

 

2
, , ,

1 1

2
, , ,

1 1 1

exp( ( ) )

exp( ( ) )

C N
m

ij k ij ij k

i j

k K C N
m

ij h ij ij h

h i j

u u d

w

u u d









 

  

 


 



 
  (41) 

D. Algorithm and Complexity and Convergence Analysis 

1) Algorithm 

The proposed model is summarized as Algorithm 1.  

2) Analysis of the computational complexity and convergence 

There are two main parts which may affect the computational 

complexity of CoMK-FC, given the input N  samples, C  

clusters, K  views, M  kernel matrices for each view and 
1T  

training iterations of MKFC, 
2T  training iterations of 

CoMK-FC. The first part is the initialization which is to 
construct the combined-kernel expression for each view by 
MKFC. Since the computational complexity of MKFC is 

2( )N CM  per iteration, the time complexity of this part is 
2

1( )N CMKT . Note that this doesn’t include the construction 

of the kernel matrices. The second part is for the alternating 
optimization. The computational complexity of this part is 

2 2 2( )KT NCKT CKT   . Thus, the overall cost for our method 

is 2
1 2 2 2( )N CMKT KT NCKT CKT    . It is noted that the 

view number K  and clustering number C  are far smaller than 

samples number N , the computational complexity of 

CoMK-FC can be rewritten as 2( ) KN  where 
1

K CMKT  is a 

constant. And it shows that the computational cost focuses on 
the first part. In practical applications, we will try to use a 
simple combination of kernel functions to express each view 
according to the actual conditions. 

The CoMK-FC algorithm is initialized with the partition 
matrix and weight for each view, followed by iteratively 
updating the distance matrices with fixed partition matrices and 
view weights until the change of objective function per iteration 
falls below a given threshold. In this way, the objective function 
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(28) is minimized interactively.  

For the k th view, it is supposed that partial minimization is 

achieved in the  th iteration and according to (32), we have 

 ( , 1) ( , ) ( , ) ( , ) ( , ) ( , )( , , ) ( , , )k k k k k k
J U V W J U V W

        (42) 

Similarly, according to (34) and (41), we can obtain 

 ( , 1) ( , 1) ( , ) ( , 1) ( , ) ( , )( , , ) ( , , )k k k k k k
J U V W J U V W

         (43) 

 ( , 1) ( , 1) ( , 1) ( , 1) ( , 1) ( , )( , , ) ( , , )k k k k k k
J U V W J U V W

           (44) 

and the following relationship is obtained as  

 ( , 1) ( , 1) ( , 1) ( , ) ( , ) ( , )( , , ) ( , , )k k k k k k
J U V W J U V W

           (45) 

It is shown that
  
J(U ,V ,W ) is a decreasing function in each 

iterative computing. Therefore, our algorithm can subsequently 
converge to a local optimal solution corresponding to different 
initializations. 

Algorithm 1 Collaborative multi-kernel fuzzy clustering (CoMK-FC) 

Input: Given a set of N  data points 1{ }N

i iX x  in K  views, a basis set of 

kernel functions 1{ }M

k k  , the number of kernels 
k

M and the exponent 
k

b  for 

each view, the number of clusters C , the fuzzy index m , the parameter   and 

 , the termination criterion  and T , and initialization of each view partition 

matrix ( ) ,
, , 1{ }k C N

ij k i j
U u   and weights 1{ }K

k kw  . 

Output：The overall partition matrix ,
, 1{ }C N

ij i j
U u   and the weights 1{ }K

k kw  for 

each view. 

1. Perform MKFC on each view to get the partition matrix ( )k
U and 

combined-kernel ( )k

com . 

2. Procedure CoMK-FC (Data X, Number C, combined-kernel ( )
1{ }k K

com k  ) 

3.      The partition matrix ( ) ,
, , 1{ }k C N

ij k i j
U u   from MKFC as initial membership 

matrix 
4.      Repeat 

5.              Calculate 

                      

', , , , , , ,,
1, 1

, , ,
1

(1 ) ,  ,  ,
1

ˆ 

K K
m m m m m

ij k ij k ij k ij k ij k ij k ijij k
k k k k

N

ij k ij k ij k

j

u u u u w u u u u
K

u u u

 


   



     




 


 

6.              Calculate distances ( ) 2 , ,
, , , 1{ }k C N K

ij k i j k
D d   by (35) 

7.              Update weights 1{ }K

k kw  by (41) 

8.              Update partition matrix ( ) ,
, , 1{ }k C N

ij k i j
U u  ( 1, ,k K ) by (32) 

9.         Until ( ) ( 1)| |t t
J J   or the number of iterations t T  

10.       Return 
( ) ,

, , 1{ }k C N

ij k i j
U u  ( 1, ,k K ) and 1{ }K

k kw   

11. Calculate the overall partition matrix 
,

, 1{ }C N

ij i j
U u   by ,

1

K
m m

ij k ij k

k

u w u


 . 

12. End procedure 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

The performance of our proposed model was evaluated by 
comparing with 6 algorithms including: 1) Co-FKM [24]; two 
multitask clustering algorithms: 2) CombKM [35] and 3) 
Co-clustering [36]; and three weighting multiview clustering 
methods: 4) the multiple kernel fuzzy clustering algorithm (refer 
to as MKFCM) [28-29], 5) two-level variable weighting 
multiview clustering algorithm (TW-k-means) [12] and 6) 
weighted view collaborative fuzzy c-means algorithm 
(WV-Co-FCM) [25]. The methods were evaluated over six data 

resources including two synthetic datasets, Brodatz texture 
images [37], two public datasets from UCI machine learning 
repository [38] and Corel3400 image databases [39]. 

A. Evaluation Measurements 

Clustering results were evaluated by two performance indices 
which are the normalized mutual information (NMI) [40] and 
the rand index (RI) [41]. NMI is defined as 

, ,
1 1

1 1

log( / )

( log )( log )

C C

i j i j i j

i j

C C
ji

i j

i j

n N n n n

NMI
nn

n n
N N

 

 

 



 
  (46) 

where N  denotes the total number of samples in dataset, 
i

n  is 

the number of data points belonging to class i , 
j

n  is the 

number of data points belonging to cluster j  and ,i j
n is the 

number of samples belonging to class i  and cluster j .  

Assuming that R  and Q  are two partitions of a dataset by 

two different clustering algorithms, RI is defined as 

 
a d

RI
a b c d




  
  (47) 

where a  denotes the number of any two samples belonging to 

the same class in R  and to the same cluster in Q , b  denotes 

the number of any two samples belonging to the same class in 

R  and to different clusters in Q , c  denotes the number of any 

two samples belonging to different classes in R  and to the same 

cluster in Q , d  denotes the number of any two samples 

belonging to different classes in R  and to different clusters in 

Q .  

The range of NMI and RI values are from 0 to 1. And a value 
of 1 denotes that the clustering results match the given category 
labels perfectly. To evaluate the performances of fuzzy 
clustering algorithms with NMI and RI, we converted the fuzzy 
membership degrees to hard assignments by assigning each data 
to the cluster with the highest membership degree. 

B. Parameter settings 

To evaluate the clustering performance of the methods for 
comparison, we constructed basis kernel mappings with 
different kernel functions. As shown in Table I, we selected a set 
of commonly used kernels in our experiments. 

As shown in Table II, for all the experiments, the grid search 
strategy combined with NMI and RI was used to obtain the 
optimal parameters for each algorithm. And the results of each 
algorithm in this paper were obtained based on these optimal 
parameters as described in Table II. Since the performance of 
these clustering methods depends on the initial values, the 
experimental results are shown in terms of the mean and 
standard deviations of NMI and RI for 20 runs of each algorithm 
with different initializations and corresponding optimal 
parameters. 

C. Experimental results on Synthetic Datasets  
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1) Synthetic Dataset 1  

In this experiment, a three-dimensional synthetic dataset was 
used for validation and comparison of our algorithm and other 
four clustering methods for multiview data. This synthetic 
dataset has two encircling ring-shapes including 1024 sample 
points in the black ring, and 2025 samples in the blue ring (as 
shown in Fig. 4(a)). In our experiment, we constructed 
multiview data by projecting the 3-D synthetic dataset onto x-y 
and y-z subspaces. Fig. 4(b)-(c) shows the two-view data, i.e., 
view-1 and view-2, respectively. Based on these two-view data, 
we aim to cluster these samples into two groups, the blue group 
and the black group. 

TABLE I.  
BASIS KERNEL FUNCTIONS 

Kernel Type 
Kernel Functions 

1 2( , )x x  
Parameters Settings 

Kernels 
Number 

Linear 1 2
T

x x ; 1 21 T
x x  -  2 

Polynomial 1 2( )T b
x x a   b =2,3,4, a : [0.5:0.5:2.5]  15 

Tangent 
Hyperbolic 

tanh( 1 2 ( ))T

i jc c x x   
1c : [0.1:0.1:0.5], 2c =1.0; 

1c =0.5, 2c : [0.2:0.2:1]. 
 10 

Histogram 
Intersection 

min{ , }i jx x  -  1 

Gaussian 

2

2

|| ||
exp

2

i jx x


 
  
 

 

2

,

|| ||
min( )

log( )

i j

i j

x x



 

  

 =0.005 

Unlimited 

Hermite 
Orthogonal 
Polynomial[42] 

, ,
01

( ) ( )
d n

k i h k j h

kh

He x He x

  

0 1( ) 1, ( )He x He x x   

1

1

( ) ( )

             ( )

k k

k

He x xHe x

nHe x








 

Unlimited 

d is the dimension of feature vector, n is a member of natural number set. 

 

 
Fig. 4. Analysis on the synthetic dataset 1. (d),(e),(f),(g) are kernel types. 

The visualizations of data patterns in kernel spaces by 
method in [43] are given in Fig. 4(d)-(h). Fig. 4(d)-(g) present 
the visualizations of view-1 and view-2 features in Gaussian and 
polynomial kernel spaces respectively. From Fig. 4(d)-(g), we 
can see that the separation of view-1 in Gaussian kernel spaces 
is better than that in polynomial kernel spaces, while the 
separation of view-2 in polynomial kernel spaces is better than 
that in Gaussian kernel spaces. Fig. 4(h) is the visualization of 
view-1 and view-2 features in common multi-kernel space with 

1 1 2 2   
com

w w  where 
1  is a Gaussian kernel, 

2
 is a 

polynomial kernel and 1 20.7, 0.3w w   for view-1, 

1 20.3, 0.7w w   for view-2. As demonstrated in Fig. 4(h), the 

separation of view-1 and view-2 in common kernel space is 
better than that in a single kernel space. 

As displayed in Fig. 4(i)-(j), the clustering results of the 
comparison methods, Co-FKM, MV-Co-FCM and 
TW-k-means, did not converge to the expected clustering 
groups. The major reason is that these methods used the 
Euclidean distance as the distance measure function which is 
not suitable to cluster the synthetic non-spherical data. MKFCM 
was introduced aiming to improve the clustering of 
non-spherical data. However, this method tended to divide the 
dataset equally as same as the conventional FCM algorithm and 
resulted in the clustering result as shown in Fig. 4(j). On the 
contrary, based on the common multi-kernel space, our method 
clustered the dataset into the expected groups as shown in Fig. 
4(k). 
2) Synthetic Dataset 2 

The two-rainbow shaped synthetic dataset is a typical dataset 
in the studies of non-convex clustering analysis. As shown in 
Fig. 5(a), this synthetic dataset has two intertwining rainbows 
including 763 sample points in the black rainbow, 585 samples 
in the blue rainbow and 80 noise samples denoted by red spots. 
And we aim to cluster these samples into two groups. In our 
experiments, based on three scale parameters   in the range of 

[0.05, 0.45] with the interval of 0.15, we calculated spectral 
features with Gaussian similarity measurement of the multiview 
data (shown in Fig. 5(d)-(f)). Two-dimensional spectral features 
were selected for each view where the eigenvectors correspond 
to the first two minimal eigenvalues.  

 
Fig. 5. Analysis on synthetic dataset 2. (a) Original data, (b)-(c) The clustering 
results of WV-Co-KFCM and CoMK-FC, respectively, (d)-(f) Spectral features 
of three views corresponding to scale parameters 0.05, 0.30 and 0.45, 
respectively, (g)-(i) The clustering results of Co-FCM, MKFCM and 
WV-Co-FCM, respectively. The results of cluster 1 and 2 are plotted in black 
and blue colors; noise is in red.  

In our experiments, one kernel mapping was used for each 
view due to the simplicity of the two-dimensional features in our 
multiview data. In order to validate the contribution of the 
global clustering guidance in our method, we omit the term 
corresponding to the global clustering guidance in our objective 
function, i.e. set 0   in (16), and namely WV-Co-KFCM.  

As shown in Fig. 5(b), WV-Co-KFCM failed to obtain a 
satisfactory result without the global clustering guidance. And 
the clustering results of Co-FCM, MKFCM, and WV-Co-FCM 
failed to cluster the dataset into the expected groups as shown in 
Fig. 5(g)-(i). Our method outperformed the other methods in 
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comparison as demonstrated by the result of CoMK-FC as 
shown in Fig. 5(c). The main reason is that the three methods in 
comparison tended to cluster the samples equally. However, 
when the numbers of samples in different classes are 

unbalanced, these methods might wrongly classify some 
samples from the larger classes into the smaller classes in order 
to obtain an equally divided classification. 

TABLE II. 
OPTIMAL PARAMETER VALUES FOR SIX ALGORITHMS ON DIFFERENT DATASETS 

Algorithms 
Parameter Ranges 

for Grid Search 

Optimal Parameters from Heuristic Analysis 

Synthetic Brodatz MF IS Corel 

MKFCM 
m : [1.03:0.01:3] 

b :{1:0.05:2, 3:1:7} 
2m   2b   1.1m   2b   1.3m   1.25b   1.03m   1.25b   1.08m   6b   

Co-clustering 
: ( / 2)m fix d ,  : [100:50:1000] 

 : [100:50:1000]
 

- 
500   

400   
650   500   850   700   300   100   

TW-k-means  : [10:5:120]  : [1:1:40] - 95   35   30   7   70   40   40   20   

Co-FKM 
m : [1.03:0.01:3]  

 : [0:0.01: ( 1)K K ] 
1.25m   0.42   

1.25m   

0.42   
1.2m   0.42   1.2m   0.42   1.08m  0.42   

WV-Co-FCM 
m : [1.03:0.01:3], [ 6 :1:8]x   

 : [0:0.01: ( 1)K K ],  : { x
e } 

2m   0.3   

10   

1.25m   0.6   

5000   

1.03m   0.3   

5000   

1.1m   0.6   

3000   

1.03m   0.3   

100   

CoMK-FC  
m : [1.03:0.01:3], [ 6;1:8]x   

 : [0:0.01: ( 1)K K ],  : { x
e } 

1.2m   0.3    

10   

1.1m   0.6   

400   

1.08m   0.3   

2500   

1.25m   0.35   

3500   

1.1m   0.3   

600   

* d is the dimension of feature vector, K is the number of views. 

D. Experimental results on Brodatz Texture Images 

To validate the robustness of the CoMK-FC algorithm 
against the noise, impulse salt-and-pepper noise (SPN) with 
various density levels [0%, 10%] was added to the Brodatz 
texture images [37]. Our CoMK-FC was compared with other 
six related multiview or multi-task clustering algorithms on 
these noise corrupted datasets.  

To extract the multiview features from the texture images, we 
adopted the Gabor filter [44] in the experiments. We firstly 
constructed the filter bank with various orientations and 
frequencies. Then, the corresponding features were extracted 
from each pixel of the texture image by the filter bank. The 
detailed information of each view is shown in Table III. Our 
method was executed with 25 Gaussian kernel functions for 
each view in the experiments and the values of parameters for 
each algorithm are listed in Table II. 

TABLE III 
THE COMPOSITION OF EACH VIEW OF THE BRODATZ TEXTURE 

IMAGE AND BRODATZ TEXTURE IMAGE WITH NOISE 

View 
View generation by Gabor 

filter 
Dimension Cluster Size 

1  
10 features generated with 
five orientations and two 
scales starting from 0.4 

10 

95 7 4096 

2  
15 features generated with 
five orientations and three 
scales starting from 0.5 

15 

3 

30 features generated with six 
orientations and five scales 
starting from 0.6 

30 

4 

40 features generated with 
eight orientations and five 
scales starting from 0.25 

40 

The experimental results over the Brodatz texture images 
deteriorated by SPN with different noise levels are plotted in 
Fig. 6 and Fig. 7 with regards to NMI and RI measurements 
respectively. These experimental results demonstrated that our 
proposed CoMK-FC algorithm was robust against noise and 

outperformed the other algorithms in comparison. Our method 
steadily ranked the first and Co-FKM ranked the second. It is 
interesting to see that although WV-Co-FCM is an improved 
version of Co-FKM, it resulted in less accurate clustering than 
Co-FKM. For NMI measures as shown in Fig. 6, the accuracy of 
CoMK-FC ranged from 0.7456 for clean dataset to 0.4013 when 
the image was corrupted by SPN with 10% density. In 
comparison, the clustering accuracy of Co-FKM was close to 
the accuracy of CoMK-FC when the noise levels were relatively 
low [0%, 2%]. However, the accuracy of Co-FKM dropped 
from 0.7243 to 0.1469 as the noise levels increased from 0% to 
10%, and its performance was getting close to its improved 
version WV-Co-FCM. The overall trends of the performance 
for top three methods were similar in terms of RI measurement 
as shown in Fig. 7. 

 
Fig. 6. NMI of each algorithm over noisy Brodatz texture images 

We further analyzed the performance of MKFCM, 
WV-Co-FCM and CoMK-FC by comparing their weights of 
each view for the datasets with 0% and 2% SPN. The clustering 
results of CoMK-FC are given in Fig. 8(d)-(e). As shown in Fig. 
8(f)-(g), view-1 was assigned the largest weight while the 
weights of view-3 and view-4 are close to zeros by 
WV-Co-FCM. For the multiview features used in our 
experiments, all views are supposed to make equal 
contributions. This is because that the characteristics of the 
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features by Gabor filter for each view are the same. However, as 
WV-Co-FCM calculated Euclidean distance for each view, the 
higher the feature dimensions, the larger the distance between 
samples and cluster prototypes, and hence the smaller the 
corresponding weights. 

In CoMK-FC, the weights of all the views contributed equally 
for clustering, which complied with the same characteristics of 
Gabor features along the four views. When all the views have 
equal importance, the partition information of each view can 
mutually complement effectively during the clustering process. 
And thereby, the satisfactory clustering results were achieved. 

 
Fig. 7. RI of each algorithm over noisy Brodatz texture images 

 

 
Fig. 8. Analysis on Brodatz texture images. (a) Original texture image, (b) 
Original texture image with 2% SPN, (c) Ideal segmentation results, (d)-(e) The 
results of CoMK-FC over (a) and (b) respectively, (f)-(g) The weights of each 
view for COMK-Fc, MKFCM, WV-Co-FCM over (a) and (b) respectively 

E. Experimental results on UCI Benchmarking Datasets 

The proposed method was also evaluated over two real 
multiview datasets obtained from the UCI repository [38] 
including the multiple features (MF) dataset and image 
segmentation (IS) dataset. The details of the available feature 
vectors are listed in Table IV. The other six algorithms were 
also performed over the two datasets for comparison. Note that 
our method was executed with only one basis kernel for each 
view the same as MKFCM in this experiment (linear kernel for 
view-1 and view-4, Gaussian kernel for view-2, view-3, view-4 
and view-6). The parameters settings of these methods are given 
in Table II. 

The clustering results of NMI and RI are shown in Table V. 
And it can be seen that the proposed CoMK-FC algorithm 

achieved the best results. Since the multi-task algorithms were 
not able to effectively combine the clustering results from 
different subsets, the performance of CombKM was inferior 
compared to other algorithms.  

MKFCM, WV-Co-FCM and CoMK-FC achieved more 
stable clustering performance than the others as shown in Table 

V. This was mainly because that these methods were able to 

adaptively identify the importance of each view, which in turn 
demonstrated that the view weighting mechanism contributed to 
enhancing the stability of these algorithms.  

TABLE IV 
DESCRIPTIONS OF MF AND IS DATASETS AND THE 

COMPOSITION OF EACH VIEW 

Data View Composition of Each View Dimension Cluster Size 

MF 

Mfeat-fou 
view 

76 Fourier coefficients of 
the character shapes 

76 

649 10 2000 

Mfeat-fac 
view 

216 profile correlations 216 

Mfeat-kar 
view 

64 Karhunen-Love 
correlations 

64 

Mfeat-pix 
view 

240 pixel averages in 2 x 3 
windows 

240 

Mfeat-zer 
view 

47 Zernike moments 47 

Mfeat-mor 
view 

6 morphological variables 6 

IS 

Shape view 
9 features for the shape 
information of 7 images 

9 

19 7 2310 

RGB view 
10 features for the RGB 
values of 7 images 

10 

In addition, although our method was executed with only one 
kernel function (the same as MKFCM) for each view, our 
results were better than that of MKFCM. This indicated that 
collaborative learning was able to effectively combine the 
clustering results from each view to enhance the performance of 
the clustering algorithm. 

F. Experimental results on Corel3400 Datasets 

To further evaluate the performance of the proposed 
CoMK-FC algorithm, our method was compared with the other 
six related algorithms over the Corel3400 image database which 
is a subset of COREL [39]. Corel3400 contains images from 34 
categories where each category contains 100 images. Although 
the foreground object is salient in the images, the distance and 
angle of the object, color, lighting, and background composition 
have great variations within each class, which makes it difficult 
to achieve good clustering results by unsupervised clustering 
algorithms.  

A number of five-class subsets were extracted and six 
representative ones were adopted in this paper including Lions, 
Leopards & Jaguars, Buses, Museum Duck Decoys, Roses as 
Corel-1; Elephants, British Motor Collection, Merchant Ships, 
Prehistoric World, Owls as Corel-2; Rhinos and Hippos, British 
Motor Collection, Buses, Dinosaur Illustrations, Planes of War 
as Corel-3; British Motor Collection, Cruise Ships, Buses, 
Prehistoric World, Hawks & Falcons as Corel-4; Cruise Ships, 
Buses, African Antelope, Roses, wildlife as Corel-5; Prehistoric 
World, Hawks & Falcons, Owls, African Antelope, Roses as 
Corel-6. Feature vectors which represent the images in terms of 
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seven views, three color-related views and four texture-related 
views are detailed in Table VI.  

TABLE V 
CLUSTERING PERFORMANCE (NMI AND RI (mean±sd) OF 

DIFFERENT ALGORITHMS ON THE MF AND IS DATASET 

          Datasets 
 

MF IS 

Algorithm NMI RI NMI RI 

MKFCM 
0.8671 
(±0.0148) 

0.9753 
(±0.0020) 

0.6198 
(±0.0106) 

0.8670 
(±0.0050) 

Co-clustering 
0.7578 
(±0.0230) 

0.9362 
(±0.0171) 

0.5525 
(±0.0211) 

0.8393 
(±0.0199) 

TW-k-means 
0.8321 
(±0.0381) 

0.9535 
(±0.0194) 

0.5903 
(±0.0415) 

0.8551 
(±0.0226) 

CombKM 
0.7211 
(±0.0399) 

0.9126 
(±0.0152) 

0.5567 
(±0.0288) 

0.8366 
(±0.0232) 

Co-FKM 
0.8423 
(±0.0275) 

0.9614 
(±0.0123) 

0.5927 
(±0.0360) 

0.8661 
(±0.0243) 

WV-Co-FCM 
0.8879 
(±0.0102) 

0.9763 
(±0.0071) 

0.6212 
(±0.0085) 

0.8693 
(±0.0011) 

CoMK-FC 
0.9205 
(±0.0085) 

0.9859 
(±0.0047) 

0.6417 
(±0.0098) 

0.8810 
(±0.0093) 

 
TABLE VI 

DESCRIPTIONS OF COREL3400 DATASETS AND THE 
COMPOSITION OF EACH VIEW 

Features View 
Composition 
of Each View 

Dimension Cluster Size 

Color 
Features 

Color 
Histogram  

Color Hsv 
Histogram64 

64 

338 34 3400 

Color 
Moment  

Color Luv 
Moment123 

9 

Color 
Coherence  

Color Hsv 
Coherence64 

128 

Texture 
Features 

Tamura 
Texture1  

Coarseness 
Vector 

10 

Tamura 
Texture2  

Directionality 8 

Wavelet 
Texture 

Wavelet 
Texture 

104 

MASAR 
Texture 

MRSAR 15 

For the implementation, our method was executed with two 
linear kernel functions, two polynomial kernel functions and 10 
Gaussian kernel functions for each view. The settings of 

parameters  , m, and   are shown in Table II. We ran 

CoMK-FC to produce 20 clustering results with different initial 
partitions. And the best results achieved by the algorithm with 
respect to NMI and RI were displayed. 

In order to compare the clustering performance with each 
other over the six subsets of Corel3400 intuitively, Fig. 9 and 
Fig. 10 show the stacked values of NMI and RI of each 
algorithm respectively. The experimental results demonstrated 
that CoMK-FC was superior to other algorithms. As each 
feature vector was normalized to the same length as 1/7, the 
Euclidian distance was suitable for evaluating image distances. 
Thus, the multiview learning clustering algorithms, i.e. 
WV-Co-FCM and Co-FKM, both obtained good clustering 
results. WV-Co-FCM achieved better results than Co-FKM due 
to the incorporation of collaborative learning mechanism and 
weighted view. Without collaborative learning mechanisms, 
CombKM ranked the last in terms of clustering accuracy and the 
results of MKFCM was slightly better than TW-k-means. 

 
Fig. 9. The stacked values of NMI of each algorithm 

 

 
Fig. 10. The stacked values of RI of each algorithm 

G. Analysis of Parameters Setting and initialization 

There are three parameters in CoMK-FC, the fuzzification 

degree m  and two parameters   and   to adjust the penalty 

corresponding to the partition disagreement and the weight of 
each view. In the experiments on the Corel-1 dataset, the 
clustering performance was evaluated using different 

parameters m ,   and  .  

We set the parameter   as {0.3, 0.6}, m  as {1.03, 1.05, 

1.08, 1.1, 1.25, 1.5, 1.8, 2.0, 2.5, 3}, and   as {50, 200, 400, 

600, 800, 1000, 1500, 2000, 3000, 5000} for the Corel-1 

dataset. When fixing   as 0.3 or 0.6, for each pair of m  and  , 

we ran our method 20 times with different initial partitions, and 
the best values of NMI and RI are shown in Fig. 11. Fig. 11 
shows that an appropriate value for m  should be less than 1.25 

and   should be more than 400. When m  was greater than 

1.25, the values of NMI and RI became unstable and decreased 

rapidly. From Fig. 11(c) and (f), we can see that as l  increases, 

the weight of each view becomes flatter.  
Further, when there was no noticeable difference between the 

weights of each view, as   changed, the results of CoMK-FC 

stayed stable. As shown in Fig. 11, although the results were 
hardly affected by  , overall, the results of 0.3   were 

slightly better than the results of 0.6  . It was noted that when 

m was set to 2, the clustering accuracy of our method dropped 
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abruptly. 

 
Fig. 11. Analysis of the affection on results on Corel-1 dataset. (a)–(c) The 

values of NMI, RI and the variance of weights against m  and   ( 0.3  ); 

(d)-(f) The values of NMI, RI and the variance of weights when 0.6  . 

Without loss of generality, we summarize the following 
mechanisms to control the performance of CoMK-FC by setting 

different values of m ,   and  : (1) Large   allows more 

views to contribute to the clustering, while small   makes only 

important views contribute to the clustering; (2) When the 
weight of each view tends to be equal, the results would be 
hardly affected by  ; (3) The values of m  generally should be 

less than 1.25. 

H. Statistical analysis 

In order to determine the significant difference among the 
competing methods, we used two nonparametric methods, 
Wilcoxon Signed Rank Test and Quade Test from the suggested 
paper [45], over all the datasets for all seven algorithms in 
comparison. The statistical analysis results are listed in Table 
VII. 
1) Wilcoxon Signed Rank Test 

In Wilcoxon signed rank test [45], we calculated the 
performance differences between CoMK-FC and each of the 

other six algorithms on the experimental datasets. Let 
i
d  be the 

performance difference between the two algorithms on the i th 

experiment out of N  experiments, and the differences 
i

d  were 

ranked according to their absolute values; the mean ranking was 
assigned in case of ties. 

(a) Calculate the sum of ranks: Let R
  ( -

R ) be the sum of ranks 
as the first algorithm is better (worse) than the second algorithm. 
The calculation formula is: 

             
0 0

1
( ) ( )

2
i i

i i

d d

R rank d rank d


 

                  (48) 

            -

0 0

1
( ) ( )

2
i i

i i

d d

R rank d rank d
 

                  (49) 

where the sum of 
R and -

R  is 0.5 ( 1)N N  . 

(b) Two-tailed test: In the condition of zero assumption, for 

two-tailed test, there is little diversity between 
R  and -

R  
meaning that the performance of two algorithms has no obvious 
diversity. If one of both is very small or more specifically 

min( , )T R R
   is very small, we doubt the assumption and 

consider that there is obvious diversity between optimization 

performances of the two algorithms. 
TABLE VII 

STATISTICAL ANALYSIS: CoMK-FC COMPARED WITH OTHER 
ALGORITHMS. 

       Datasets 
 
Algorithm 

Wilcoxon Signed Rank Test Quade Test 

R
  R

  T  Z i
C  

1i
C H

 2i
C H

 

MKFCM 2 208 2 -3.8453 491 296.8 297.0 

Co-clustering 0 210 0 -3.9199 1401 846.8 847.0 

TW-k-means 0 210 0 -3.9199 731 536.8 537.0 

CombKM 0 210 0 -3.9199 1206 1011.8 1012.0 

Co-FKM 2 208 2 -3.8453 427 232.8 233.0 

WV-Co-FCM 22 188 22 -3.0986 318 123.8 124.0 

 (c) Calculate Z  value as  

      
1 1

( ( 1)) ( 1)(2 1)
4 24

Z T N N N N N              (50) 

2) Quade test 

Quade test is a classical nonparametric procedure for 
performing multiple statistical comparisons for more than two 

algorithms. We set the null hypothesis 0H  
indicating that there 

was no significant difference between the proposed CoMK-FC 
algorithm and the other six algorithms. 

Assumed that there are k  algorithms being compared with 

each other on N  experiments, for i th experiment, the results 

from different algorithms will be sorted from 1 to k , 

represented by symbol , ( )
i j

r 1 j k  . Then we would get a 

rank matrix N K
R R

 . 
(a) Calculate range within a group: Range within a group is the 
difference between the optimal value and the worst value from 
optimization results of different optimization algorithms, that is: 

                         , , ,max min
i j i j i j

j j

Y r r                           (51) 

(b) Calculate the relative value 
ij

S  of each observed value 

within a group: Let 
j

S  be the sum of each 
ij

S  belonging to one 

group: 

        ,
1

1
,   [ ],    =1,2,...,

2

N

j ij ij i i j

i

k
S S S Q r j k




         (52) 

where 
i

Q  is the array of range’s ranks after sorting in ascending 
order and ( 1) 2k   is the average rank order within a group. 

(c) Compare CoMK-FC algorithm with other algorithms: 

According to the degrees of freedom ( 1)k   and ( 1)( 1) N k , 

and significant level  , we can obtain F  boundary values by 

querying the F  distribution table. If 
Q

F  is greater than F  

boundary value, we reject 0H : 

           

1

2

7

2 ( )

( 1)( 1)
i i

N A B
C S S t

N k

 

      
                   (53) 

where 
i

S  represents the results of the i th algorithm over all 

experiments where our proposed CoMK-FC is the 7th 

algorithm, 
i

C  is the absolute difference between CoMK-FC 

and ith algorithm ( [1,..., 1]i k  ), 2

1 1

N k

ij

i j

A S
 

  2

1

1 k

j

j

B S
N 

  . 

In both Wilcoxon Signed Rank Test and Quade test, N is 20, 
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  is 0.05. According to literature [46], we can know the value 

of T  should be equal to or less than 52, and Z  should be 
smaller than -1.96 in Wilcoxon Signed Rank Test. In Quade 

test, since t  is between 1.982 and 1.980 by checking “T 
Distribution Table”, the right of Equation (53) will be between 

1H  =194.1629 and 2H =193.9670. As the results shown in 

Table VII, all the values of T  are less than 52, all the values of 

Z  are less than -1.96, and all the values of 
i

C  are greater than 

1 2max{ , }H H . Thus, the hypothesis 0H is rejected and there is 

significant difference between the proposed CoMK-FC 
algorithm and the other six algorithms. 

TABLE VIII 
CLUSTERING PERFORMANCE (NMI AND RI) OF ICOMK-FC WITH DIFFERENT COMBINED KERNELS ON THE MF AND IS DATASET 

                  Datasets 
 
Combined 
Kernels 

Parameters 

MF IS 

NMI RI RunTime NMI RI RunTime 

1×Gaussian (Gau) log(0.005)    0.8799 
±0.0083 

0.9697 
±0.0095 

133.32 
0.6178 
±0.0073 

0.8596 
±0.0108 

78.10 

1×Hermite (Her) 4n   
0.8307 
±0.0075 

0.9485 
±0.0077 

105.33 
0.5874 
±0.0024 

0.8531 
±0.0086 

35.32 

1×Gau + 1×Her 
log(0.005), 2n    0.9185 

±0.0063 
0.9807 
±0.0086 

235.62 
0.6315 
±0.0033 

0.8798 
±0.0054 

103.12 

1×Gau + 2×Her 
log(0.005), 2,3n    0.9206 

±0.0078 
0.9861 
±0.0053 

331.24 
0.6420 
±0.0028 

0.8800 
±0.0062 

134.28 

1×Gau + 3×Her 
log(0.005), 2,3,4n     0.9202 

±0.0070 
0.9857 
±0.0047 

425.83 
0.6412 
±0.0052 

0.8791 
±0.0068 

160.79 

1×Gau + 4×Her 
log(0.005), 2,3,4,5n    0.9203 

±0.0037 
0.9854 
±0.0062 

520.92 
0.6421 
±0.0027 

0.8802 
±0.0038 

188.93 

2×Gau + 4×Her 
log(0.01,0.005), 2,3,4,5n    0.9210 

±0.0052 
0.9863 
±0.0034 

644.37 
0.6420 
±0.0058 

0.8813 
±0.0021 

261.24 

3×Gau+ 4×Her 
log(0.1,0.01,0.005), 2,3,4,5n    0.9201 

±0.0041 
0.9860 
±0.0020 

760.22 
0.6413 
±0.0079 

0.8802 
±0.0087 

338.65 

 

I. Scalability Analysis 

In this section, the scalability of CoMK-FC with respect to 
the number of kernels was investigated. In the experiments, 
CoMK-FC with different numbers of combined kernels was 
evaluated over the multiple features (MF) and image 
segmentation (IS) datasets. Because the Hermite orthogonal 
polynomial kernel has only one parameter chosen from natural 
numbers, the parameter optimization was facilitated greatly. 
Gaussian kernel and Hermite kernel were the basis kernels for 
constructing kernel bank, and CoMK-FC was tested on the basis 
of incrementing one more kernel at each run of our algorithm. 
The details on kernel combination, the clustering results of 
NMI, RI, and run-time are listed in Table VIII. 

The experimental results demonstrated that the addition of an 
effective kernel could improve the performance of the 
algorithm. For instance, the performance of combining one 
Hermite kernel with one Gaussian kernel was better than the 
performance of solely one Hermite kernel or one Gaussian 
kernel. This is mainly because that Hermite orthogonal 
polynomial kernel has advantage in representing global 
information while Gaussian kernel depicts local information. 

The running time (in seconds) of CoMK-FC increased 
linearly with the increment of the kernel number. However, the 
performance of CoMK-FC kept steady although the number of 
combined kernels increased. This is mainly because that adding 
an ineffective kernel affects little on clustering performance. 

J. Discussion 

In our proposed CoMK-FC algorithm, we introduce a 
common multi-kernel space to more effectively reflect the 
partition information of an individual view of multiview data; 
and we innovatively fuse the local partitions from collaborative 
learning with the global clustering guidance from the composite 
kernel space into a single objective function. The experimental 
results from synthetic and public datasets demonstrated that the 
proposed CoMK-FC algorithm outperformed the algorithms in 
comparison in terms of clustering accuracy.  

The first finding of CoMK-FC is that the common 
multi-kernel space contributes to improving robustness to 
kernel selection. This finding has been validated by the 
experiments on synthetic dataset 1. As expected, for the case 
with non-spherical data as the two encircling ring-shapes in Fig. 
4, it is not separable in Euclidean space. Our proposed 
CoMK-FC method maps the sample points from Euclidean 
space onto different kernel spaces. Since better separation could 
be obtained from some of the kernel spaces, e.g. Gaussian 
kernel for view 1 and polynomial kernel for view 2, our 
proposed CoMK-FC method constructs a common multi-kernel 
space for each view through a linear combination of multiple 
kernel spaces. To achieve a better partition through this 
common multi-kernel space, with automatic weights 
adjustment, our method assigns more effective kernels with 
higher weights. The common multi-kernel space also 
contributes to the scalability of our method. As shown in Table 
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VIII, this common space is a scalable platform in terms of the 
capacity for kernels. Adding an ineffective kernel affects little 
on clustering performance, which further justifies that 
CoMK-FC is immune to ineffective kernels. The immunity to 
ineffective kernels also enables our method to tackle the 
difficulties on kernel selections.  

Another finding of our method is that unifying global 
guidance with local partitions as one single objective function 
couples the merits of collaborative learning and multiple-kernel 
learning. Mathematical derivation has proved the convergence 
of our object function. The contribution of the unified clustering 
function has been justified by the experiments on synthetic 
dataset 2 and UCI benchmarking MF and IS datasets. Without 
the global guidance, all the other clustering methods in 
comparison failed to cluster the dataset into the expected groups 
due to their tendency to cluster the samples equally. The less 
satisfactory results from WV-Co-KFCM, which is our model 
without the global term, further justify the contribution of global 
clustering guidance. Without the global guidance, 
WV-Co-KFCM tends to wrongly classify some samples points 
from the larger classes into the smaller classes in order to obtain 
an equally divided classification. In the experiments of MF and 
IS datasets, with attribute to the capability of adaptively 
identifying the importance of each view, MKFCM, 
WV-Co-FCM and our proposed CoMK-FC achieved more 
stable clustering performance than the others. By comparison 
with MKFCM, our CoMK-FC method achieved better results 
due to the effective combination of clustering results from each 
view through collaborative learning.  

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed a collaborative multi-kernel fuzzy 
clustering algorithm which defined an objective function to 
unify the local partition and the global clustering as guidance. 
We firstly constructed a common multi-kernel space for 
multiview data to provide a more effective description of 
partition information from each individual view. This common 
multi-kernel space provided a mechanism for adaptive distance 
measurement in the clustering of complex multiview data. 
During the clustering process, our method not only considered 
the collaborative learning between each view, but also took into 
account the global clustering to guide the local partition. This 
global guidance in the collaborative learning contributed to the 
improvement of both the robustness and accuracy of our 
method. The experimental evaluation results on synthetic and 
public datasets demonstrated that our method outperformed the 
state-of-the-art multitask and multiview clustering algorithms in 
terms of clustering accuracy. In our future research, we will 
extend our method to multimodality biomedical image 
segmentation and will take the domain knowledge into 
consideration when choosing kernels.  
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