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ABSTRACT

We present a unified computational framework that can be used to describe impulsive flares on the Sun and on dMe
stars. The models assume that the flare impulsive phase is caused by a beam of charged particles that is accelerated
in the corona and propagates downward depositing energy and momentum along the way. This rapidly heats the
lower stellar atmosphere causing it to explosively expand and dramatically brighten. Our models consist of flux
tubes that extend from the sub-photosphere into the corona. We simulate how flare-accelerated charged particles
propagate down one-dimensional flux tubes and heat the stellar atmosphere using the Fokker–Planck kinetic
theory. Detailed radiative transfer is included so that model predictions can be directly compared with
observations. The flux of flare-accelerated particles drives return currents which additionally heat the stellar
atmosphere. These effects are also included in our models. We examine the impact of the flare-accelerated particle
beams on model solar and dMe stellar atmospheres and perform parameter studies varying the injected particle
energy spectra. We find the atmospheric response is strongly dependent on the accelerated particle cutoff energy
and spectral index.
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1. INTRODUCTION

Stellar flares are the result of large explosions in the
atmospheres of stars. They are produced when magnetic fields,
which have been stressed by convective motion in the stellar
photosphere, reconnect rapidly, releasing their stored energy. In
addition to directly heating the reconnection site in the corona,
much of this energy goes into accelerating charged particles to
high velocity. These travel down magnetic field lines, colliding
with the increasingly dense plasma, depositing their energy and
momentum, and quickly heating the plasma in the reconnecting
flux tubes to temperatures 20> MK. The high temperature
causes emission to dramatically brighten in virtually all regions
of the electromagnetic spectrum. Flares are ubiquitous and have
been observed on stars of nearly all spectral types.

Because of the Sunʼs close proximity, understanding solar
flares is especially important. Together with coronal mass
ejections, these directly affect the Earth’s environment. They
have significant impact on spaced-based communications, the
power grid, and the manned space program. Also because of
the Sunʼs proximity, it is possible to spatially resolve many of
the features that drive solar flares. Such observations are not
possible on other stars. However, despite the lack of spatial
resolution, there is still much to be learned by studying stellar
flares. (In this paper, we will refer to solar flares as those
exclusively on the Sun. Stellar flares will refer to flares on all
stars except the Sun.) Active dMe stars are known to have flares
much larger than those on the Sun. These stars spin faster and
generate much larger magnetic fields (Hawley et al. 2014, and
references therein) resulting in flares some 103 times more
energetic than typical solar flares (e.g., Hawley & Pettersen
1991; Hawley et al. 2003; Kowalski et al. 2010). In addition,
the background intensity of dMe stars is much smaller than that
of the Sun. Thus, when these stars flare, the signal can be much
higher. For example, Kowalski et al. (2010) observed the
optical luminosity of the dMe star, YZ CMi, to brighten by
∼200 times. In comparison, in the largest solar flare an increase

in irradiance of just ∼100 ppm was observed (Woods
et al. 2006; Moore et al. 2014).
Accelerated electrons are known to play an important role in

transporting energy during flares. Their presence can be
detected from the bremsstrahlung radiation they produce as
they collide with the ambient plasma. Since these electrons are
a major source of flare heating, it is crucial that we accurately
model them. Fortunately, RHESSI (Lin et al. 2002) observes
this bremsstrahlung radiation from which it is possible to
deduce the injected electron spectrum (e.g., Holman
et al. 2003). Thus, to simulate how the lower atmosphere
responds to this heating, we model the precipitation of these
electrons from the acceleration site in the corona to the
footpoints in the chromosphere and below.
In addition to electrons, ions are also likely accelerated by

reconnecting magnetic fields. Emslie et al. (2012) estimated the
energy in accelerated ions to be comparable to that of
accelerated electrons in many flares. However, since the
bremsstrahlung cross-section is inversely proportional to the
square of the mass of the colliding particle (Haug 1997), their
presence is much harder to directly detect. Even with this
limitation, RHESSI has detected the presence of accelerated
ions in several large flares (e.g., Hurford et al. 2006; Emslie
et al. 2012). Even though direct evidence of their presence is
scarce, models of particle acceleration predict that lower energy
ions ( 1 MeV< ) will be accelerated—albeit on longer time-
scales than electrons (Petrosian & Liu 2004). Therefore, to
accurately model the flaring atmosphere the effects of flare-
accelerated ions must also be included.
A beam of charged particles propagating down a magnetic

tube induces an electric field which drives a return current (van
den Oord 1990; Zharkova & Gordovskyy 2006, and references
therein). The magnitude of the current depends upon the
particle beam spectrum. In fact, the return current alters the
particle spectrum causing a flattening at low energies (Hol-
man 2012). This current additionally heats the ambient plasma
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through Joule heating. In the flaring corona, this can be a major
source of energy and could explain superhot coronal
temperatures ( 30> MK) observed in several large flares (e.g.,
Caspi & Lin 2010; Caspi et al. 2014).

It is the purpose of this paper to present a unified
computational model that can describe the atmosphere of both
solar and stellar flares including the processes most important
to flare dynamics. To do this we simulate the transport of a
beam of non-thermal particles injected at the top of a magnetic
flux tube and follow the subsequent heating of the stellar
atmosphere. Our model flux tube extends from the sub-
photosphere into the corona. Pressure, temperature, and density
vary by many orders of magnitude across these regions, and
our models must be able to accurately represent these very
different conditions. For example, in the corona, radiative
transfer is dominated by numerous high-temperature, non-LTE,
optically thin atomic transitions. In the photosphere, however,
radiative transfer is optically thick and in LTE. In the
chromosphere, neither of those approximations hold and the
full radiative transfer equation must be solved in detail for
several important atomic transitions. Flares produce high-speed
shocks (i.e., 600> km s−1

). We have found that to resolve these
requires a computational grid with spacing 100< m. Currently,
models that include detailed radiative transfer at such high
resolution are only tractable in one-dimension.

Decades of observations have revealed that flares certainly
have a three-dimensional geometry. However, the strong
magnetic forces present in flaring active regions confine
charged particles to flow along field lines. Thus, to a good
approximation flare dynamics can be modeled using a one-
dimensional geometry with that dimension being the axis of a
model flux tube. To partially account for the three-dimensional
nature of particular flares, the emission from individual flux
tube models can be combined using timing and spatial
information provided by observations (e.g., images from the
Atmospheric Imaging Assembly on the Solar Dynamics

Observatory (SDO/AIA) and RHESSI). In this way, important
processes are resolved in ways that are currently not tractable in
fully 3D simulations. However, this method does not account
for the interaction between plasma on differing flux tubes. This
could affect heating rates since those depend on the plasma
density which can be sensitive to mixing of plasma on differing
tubes. We speculate that the effect of mixing on plasma density
will be small compared to that produced by chromospheric
evaporation, which is captured by our 1D simulations. This is
because neighboring flux tubes are likely to have been heated
by similar fluxes of non-thermal particles, so will have
similarly elevated densities. In this paper, we present results
from parameter studies varying 1D model flux tubes and
injected non-thermal spectra. In subsequent papers, we will
combine these 1D models to form a more complete
representation of particular flares.

In Section 2, we describe our method for solving the
equations of radiation hydrodynamics and the modeling
framework that we use to simulate solar and stellar flares.
We discuss how thermal conduction and radiative transfer are
included in the models. The chromospheric radiative transfer is
of particular importance, and we describe our method to model
emission from numerous optically thick, non-LTE atomic
transitions which dominate that region. We also describe how
radiative backwarming from coronally produced X-rays and
extreme ultraviolet (XEUV) radiation is included. In Section 3,

we present how our models simulate the precipitation of flare-
accelerated particle beams. We present our method for
modeling the direct collisional excitation and ionization of
the ambient plasma by these particles in Section 4. In the region
of beam impact, these dominate over the thermal rates,
significantly altering the radiative transfer. Section 5 describes
our method for simulating how return currents additionally heat
flaring flux tubes. In Section 6, we present results of a
parameter study which we have conducted to understand the
range in dynamics predicted from various injected particle
beams. In Section 7, we summarize our results and present
conclusions.

2. RADIATION HYDRODYNAMICS

Flares produce high-speed shocks and increase density and
radiation throughout the stellar atmosphere. To model them, the
radiative transport equation must be coupled with the standard
equations of hydrodynamics. During flares, chromospheric
plasma evaporates into the corona and waves can propagate
into the photosphere. Modeling the atmospheric response to
flare heating requires a model that can extend from the sub-
photosphere through the chromosphere, transition region, and
into the corona. The transition region is extremely narrow, and
we have found that accurately resolving it requires spatial
scales as small as ∼100 m. A model that includes all of these
elements represents a major computational undertaking. We
use the RADYN code developed by Carlsson & Stein
(1992, 1995, 1997) to solve the equations of charge and
population conservation coupled to the equations of radiation
hydrodynamics in 1D. We briefly summarize the method of
solution here. The equations of radiation hydrodynamics are,
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where z, ρ, e, v, and p are the height, density, internal energy

density, velocity, and pressure, respectively. g is the gravita-

tional acceleration, and qv is a viscous stress term added to aid

in achieving numerical stability. Fc and Fr are the conductive

and radiative fluxes, respectively. The conductive flux has the

classical Spitzer form but is limited so that it does not exceed

the saturation limit of Smith & Auer (1980). In the atomic level

population equation, ni is the number density in a given atomic

state, and N′ is the total number of atomic states considered in

these simulations. We have derived a parameter, m0, which

represents the average mass of the plasma per hydrogen atom.

This parameter assumes constant abundance ratios using the

abundances derived by Asplund et al. (2009). It has a value of
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2.26 10 24´ - g. Thus, m n0 Hr = , where nH is the hydrogen

number density. Pij is the transition rate from state i to state j

and is given by P C Rij ij ij= + , where Cij and Rij are the

collisional and radiative rates, respectively. These are discussed

in much more detail in Mihalas (1978, Chapter 5). In the

radiative transfer equation, Inm is the frequency (ν) and angle

(μ) dependent specific intensity, and hnm and cnm are the

emission and absorption coefficients, respectively. The radia-

tive flux divergence, F zr¶ ¶ , is obtained by integrating

Equation (5) over frequency and angle. Qcor is a coronal

heating term which is necessary to maintain a hot corona. Qbeam

and Abeam are terms describing flare-accelerated particle beam

heating and momentum deposition, respectively. They are

described in more detail in Section 3. Qrc is a heating term due

to return currents and is described in Section 5.
These coupled nonlinear equations are solved implicitly

using a Newton–Raphson iteration scheme. Advected quan-
tities are treated using the second-order upwind technique of
van Leer (1977). RADYN employs an adaptive grid (Dorfi &
Drury 1987) which is designed to resolve shocks and steep
gradients that can form in flaring stellar atmospheres. The grid
cell concentration is chosen to be proportional to the desired
resolution. Dorfi & Drury (1987) define a resolution operator
which is strongly dependent on the absolute value of the
gradients of the radiative hydrodynamic variables. Because
gradients of these variables can be large at different heights,
weighting parameters have been chosen to give preference to
those variables that require the most grid sensitivity. In these
flare simulations, the largest weights were required on
temperature, velocity, and atomic level populations to properly
resolve the transition region, strong shocks that form in the
loops, and non-LTE population densities that affect the
convergence of the radiative transfer equation. Due to the
complexity of the physical problem, we parameterize certain
terms in our model using previous work. Thus, some
uncertainties in our results may be due only to the uncertainties
in these external models.

2.1. Optically Thick Radiative Transfer

The RADYN code solves the radiative transfer equation for
the non-LTE conditions that dominate in the chromosphere.

RADYN solves the atomic level population equations
(Equation (4)) for a six-level with continuum hydrogen atom,
a nine-level with continuum helium atom, a six-level with
continuum Ca II ion, and a four-level with continuum Mg II ion.
This allows the calculation of numerous transitions that are
important to the chromospheric energy balance. Table 1 lists
the line transitions and Table 2 lists the continuum transitions
that we model in detail. For these transitions, the radiative
transfer equation is solved for up to 100 frequency points and 5
angular points providing us with detailed line profiles.

2.2. Optically Thin Radiative Transfer

The densities in the transition region and corona are typically
low enough that the “coronal approximation” applies. In this
case, the radiative transfer is dominated by numerous optically
thin lines. These lines are formed when ions are collisionally
excited and radiatively de-excited. Since the atmosphere is
optically thin in these regions, this radiation is assumed to
escape, thus having a net cooling effect on the corona. We
model the radiative transfer in these regions using a radiative
loss function which is obtained by summing all transitions in
the CHIANTI database (Dere et al. 1997; Landi et al. 2013)
except those already accounted for in Tables 1 and 2. To
generate this function the CHIANTI calculations were

Table 1

Bound–Bound Transitions

Atom ijl (Å)
a Transition Atom ijl (Å) Transition

H I 1215.67 Lyα Ca II 8662.14 d D3 2
3 2 « p P4 o2

1 2

1025.73 Lyβ L 8498.02 d D3 2
3 2 « p P4 o2

3 2

972.52 Lyγ L 8542.09 d D3 2
5 2 « p P4 o2

3 2

949.74 Lyδ He I 625.56 s1 2 S1 0 « s1 s2 S3 1

6562.79 Hα L 601.42 s1 2 S1 0 « s1 s2 S1 0

4861.35 Hβ L 10830.29 s1 s2 S3 1« s1 p2 P3 4
0

4340.47 Hγ L 584.33 s1 2 S1 0 « s1 p2 P1 1
0

18751.3 Paα L 20581.29 s1 s2 S1 0 « s1 p2 P1 1
0

12818.1 Paβ He II 303.79 s1 S2 1 2 « s1 p2 S2 1 2

40522.8 Brα L 303.78 s1 S2 1 2 « p2 P2 2
0

Ca II 3968.47 H Mg II 2802.70 h

3933.66 K L 2795.53 k

Note.
a
These are vacuum (air) wavelengths for ijl below (above) 2000 Å.

Table 2

Bound–Free Transitions

Atom icl (Å) Initial State Atom icl (Å) Initial State

H I 911 n = 1 He I 504 s1 2 S1 0

3646 n = 2 L 2600 s1 s2 S3 1

8204 n = 3 L 3121 s1 s2 S1 0

14584 n = 4 L 3421 s1 p2 P3 4
0

22787 n = 5 L 3679 s1 p2 P1 1
0

Ca II 1044 s S4 2
1 2 He II 228 s1 S2 1 2

1218 d D3 2
3 2 L 911 s2 S2 1 2

1219 d D3 2
5 2 L 911 p2 P2 1 2

0

1417 p P4 o2
1 2 Mg II 824 p2 6 s3 S2 1 2

1422 p P4 o2
3 2 L 1168 p2 6 p4 P2 1 2

0

L L L 1169 p2 6 p4 P2 3 2
0

3
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performed with the assumption of a constant electron density of
1010 cm−3. Figure 1 shows this radiative loss function.

2.3. XEUV Backwarming

Half of the optically thin radiative losses described above are
directed outward and leave the stellar atmosphere. The other
half are directed downward and will get absorbed in deeper and
denser regions. This additional source of heating and ionization
in the lower atmosphere becomes especially important during
flares when the coronal X-ray and extreme ultraviolet (XEUV)

emission can become elevated by orders of magnitude.
Previously, Allred et al. (2005, hereafter, A05) developed a
method to model how heat is deposited from XEUV back-
warming, but that method did not account for the increased
photoionizations from this flux. Here we present a new
technique that self-consistently includes heating and photo-
ionizations. We have used the CHIANTI database to tabulate
emissivities for numerous transitions as a function of
temperature and wavelength. RADYN calculates the XEUV
spectrum produced from a model loop by integrating the
product of these emissivities with the emission measures from
the transition region and coronal portions of the loop. Finally,
the radiative transfer equation is solved for several optically
thick chromospheric lines, as described above, assuming that
this emission is incident on the chromosphere from above. In
solving the radiative transfer equation, photoionization cross-
sections for XEUV emission are calculated and added to the
rates as described by Wahlstrom & Carlsson (1994).

To understand how XEUV backwarming affects our loop
models, we have generated loops which include and exclude
this heating term. Figure 2 compares the structure of the QS.
SL.HT loop model (see Section 2.7) which has been generated
with and without XEUV backwarming and using the technique
of A05. We find that the XEUV backwarming term results in a
chromosphere that is 1000–2000 K hotter than would otherwise
be expected. The technique presented here and that of A05
produce similar temperature structures. However, the radiative
transfer predicted by these methods is significantly different.
This is illustrated in Figure 3 which compares the emission
from the Ca II H and He I 10830Å lines for loops generated
with and without XEUV backwarming and using the technique
of A05. Our technique produces a He I 10830Å line with a
much deeper absorption profile. This line is formed when
continuum photons from the photosphere are absorbed by
neutral helium atoms in the s2 S3 1 excited state. The XEUV flux

increases the photoionization rate of helium. These ions
quickly recombine into the s2 S3 1 state (Golding et al. 2014),
resulting in more absorption than would be expected without
the XEUV flux. The Ca II H line can be understood similarly.
Without the inclusion of the XEUV flux, the region of the
chromosphere where the Ca II H line center forms is cooler,
resulting in an overabundance of ground-state ions and an
overall absorption profile. For both XEUV backwarming
techniques, the Ca II H line has a central reversal peaking in
the near wings. The technique of A05 predicts more flux in the
central reversal than our technique. Since their technique does
not include direct photoionizations by the XEUV flux, it
predicts an overabundance of Ca II ions relative to Ca III ions,
and hence an increased flux in the Ca II H central reversal.

2.4. Opacity

Of course, there are many continuum transitions not included
in Table 2. The contribution to the opacity due to these
transitions is treated using the opacity package of Gustafsson
(1973). This package constructs opacity as a function of
temperature, density, and frequency assuming that these
transitions are in LTE. These are included as a background
opacity source in the detailed calculations of the transitions
listed in Table 2.

2.5. Line Broadening

Observations of flares on dMe stars (Hawley & Pettersen
1991; Hawley et al. 2003; Kowalski et al. 2010) and the Sun
(Johns-Krull et al. 1997) have shown that the hydrogen Balmer
lines can become extremely broadened. These authors spec-
ulate the cause to be Stark broadening, and that conclusion is
supported by the models of Allred et al. (2006) and Paulson
et al. (2006). In order to test this against other possible sources
of broadening, such as thermal or turbulent broadening, we
have implemented a technique in RADYN to model Stark line
broadening. The amount of Stark broadening depends upon the
local electron density. Therefore, determining it can further
constrain models of flaring stellar atmospheres.
That the orbital angular momentum states of hydrogen

labeled by the quantum number, l, are not degenerate in the
presence of an electric field perturbation is described by the
well-known Stark effect (e.g., Kepple & Griem 1968; Vidal
et al. 1971; Seaton 1990). In stellar atmospheres, this
perturbation is due to a net electric microfield from fluctuations

Figure 1. Optically thin radiative loss function used in these simulations.

Figure 2. Temperature as a function of column mass for loop models generated
using the XEUV backwarming method described here (black), using the XEUV
technique of A05 (green), and without XEUV backwarming (red).
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in the ambient electron, proton, and ion density. The first-order
(linear) energy level shifts are proportional to the electric
microfield strength (which has a probability distribution
typically modeled as a Holtsmark or Hooper distribution;
Nayfonov et al. 1999), the principal quantum number, n, and a
quantum number, q, which describes the relationship between
the parabolic quantum numbers q1 and q2 where q q q1 2= -
and q q n m 11 2 ∣ ∣+ = - - (Condon & Shortley 1935). There-
fore, the higher order hydrogen lines within a series experience
a larger amount of Stark broadening.

The general prescription for line cross-section is given by a
Voigt profile with a damping parameter, Γ, that includes
separate terms for radiative damping, radG , and for collisions
among neutrals (resonance and van der Waals), res vdWG . A
microturbulence of 2 km s−1 is included in the Doppler width.
The Voigt profile is then convolved with the Stark profile to
give the total line cross-section (Mihalas 1978). However, as an
approximation to the more complete treatment, the Voigt
profile damping parameter, Γ, can be modified to also include a
Stark damping term, sG , such that rad res vdW sG = G + G + G .
This has been found to work well for solar hydrogen lines in
the infrared (Carlsson & Rutten 1992), so we have chosen this
method for modeling Stark broadening in RADYN.

The Stark damping parameter for hydrogen is taken from the
approximate line shape formulae in Method #1 of Sutton
(1978). In using this method, we are consistent with other
NLTE radiative transfer codes such as RH (Uitenbroek 2001).
The Stark damping profile is given by

g j i n0.6 6q es
2 2 2 3( ) ( )G = -

where g 0.642q = for the α transition of each series and g 1q =
otherwise, and j and i are the upper and lower levels of the

transition, respectively. For transitions of helium, calcium, and

magnesium, q nes sG = , where gs is a constant resulting in Stark

broadening which is approximately three orders of magnitude

less than for hydrogen.

2.6. Boundary Conditions

Our model flux tubes are assumed to be symmetric about the
loop apex, so that we need only model one half of a full loop.
The top boundary is at the loop apex where we have
implemented a reflecting boundary condition to mimic
incoming waves from the other side of the loop. The bottom
boundary is below the photosphere where densities and
pressures are very high. There we have implemented a simple
transmitting boundary to allow any waves which reach that
level to pass through into the interior.

2.7. Initial Loops

A focus of this work is to study how particle beams, which
are known to be accelerated during flares, deposit their energy
in magnetic flux loops in stellar and solar atmospheres. To this
end, we have generated several initial loop states with diverse
lengths, temperatures, and densities which we will use in this
study. These extend from the sub-photosphere through the
corona. The corona is kept hot by adding a heating term, Qcor,
which is chosen to just balance the conductive and radiative
losses in the upper coronal portion of the loop. Heat is also
added to the sub-photosphere to balance radiative and
convective flux losses there. With these heat sources, the loops
are allowed to relax until a state of near equilibrium is reached.
We have generated solar-type initial loops using three free

parameters. These are the photospheric temperature, loop-
length, and coronal temperature. The coronal density is
dependent on loop-length and coronal temperature by an
RTV-type (Rosner et al. 1978) scaling law so cannot be
independently varied. We have chosen photospheric tempera-
tures (i.e., the temperature in our loops where 15000t = ) of
5000 and 5800 K which correspond with sunspot and “quiet
Sun” conditions. Loop lengths were chosen to be 10Mm for
short loops and 100Mm for long loops. So that we can model
flaring flux tubes in dMe stellar atmospheres, we have also
produced a model loop appropriate for M dwarf atmospheres.
This loop has a higher surface gravity (562 m s−2

), cooler

Figure 3. Profiles for the Ca II H and He I 10830 Å lines from the loop models generated using XEUV backwarming (black), the technique of A05 (green), and
without XEUV backwarming (red).

5

The Astrophysical Journal, 809:104 (14pp), 2015 August 10 Allred, Kowalski, & Carlsson



photosphere (3500 K), and hotter corona (6 MK) than the solar
loops. The parameters describing these loops are summarized
in Table 3 and the temperature and density of the loops are
plotted in Figure 4.

As described in Section 3, the energy deposition rate from
particle beams depends upon the magnetic field in the loops. To
account for this we assume a magnetic field strength in the
photosphere of 1 kG for solar loops and 5 kG for the M dwarf
loop. Spatially averaged observations of magnetic fields on
active M dwarf stars have found that the majority of the stellar
surface (60%–70%) has a magnetic field strength of 3 4- kG
(Saar & Linsky 1985; Saar 1994; Johns-Krull & Valenti 1996).
Since these are spatial averages and large flares are likely to
occur where the field is strongest, we have estimated a
photospheric field of 5 kG in the loop. At the loop tops, the
magnetic field strength is assumed to be 100 G for the shorter
(10Mm) solar loops, 10 G for the longer (100Mm) solar loops,
and 500 G for the M dwarf loop. These values were chosen to
be consistent with active region coronal magnetic field
extrapolations (e.g., Tadesse et al. 2012). The magnetic field
in all cases is assumed to exponentially decrease between these
boundary conditions.

3. PARTICLE BEAM HEATING

Accelerated particle beams are the main source of heating in
the lower atmosphere during flares, so it is crucial that we
accurately model their propagation and energy deposition as

they move through magnetic flux loops. The rate of energy lost
by a particle beam depends upon the details of the beamʼs
energy spectrum as well as the composition and ionization
states of the ambient plasma. We use the Fokker–Planck
method coupled with results from our radiative hydrodynamic
simulation described in Section 2 to determine the distribution
function, x pf t, ,( ), for flare-accelerated particles. Because the
magnetic field constrains the beam particles to move along field
lines, we can replace the vector position, x, with the coordinate,
z, which measures the distance along the field line. We replace
the vector momentum, p, with the kinetic energy, E, and
particle pitch angle, α. In the following discussion, we will
simply refer to cos( )m a= as the pitch angle. The transit time
for beam particles from injection source to footpoints is fast
relative to changes in the beam particle energy distribution and
hydrodynamic timescales, so a time-independent distribution
function is assumed. Thus, we will solve the kinetic equation
for the distribution, f E z, ,( )m , where f E z dEd dz, ,( )m m is the
number density of beam particles with energy between E and
dE, pitch angle between μ and dm, and position between z and
dz. In solving the kinetic equation, we include the effects of
particles moving at relativistic speeds, Coulomb collisions,
synchrotron emission, pitch angle scattering, and magnetic field
gradients. However, we neglect effects due to plasma
turbulence, electric fields, and self-absorption of synchrotron
emission. We follow McTiernan & Petrosian (1990) and write
the Fokker–Planck equation as
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where f bF = , E 1g = + is the relativistic total energy with

E measured in units of mc2, cb is the relativistic ion velocity, v,

B is the magnetic field strength in the loop, and Σ is a source

term for particles injected at the loop top. C and C′ are

coefficients which measure the beam energy loss rate and pitch

angle diffusion from collisions, respectively. Similarly, S

Table 3

Initial Loops

Label

Photospheric

Temperature

(K)

Loop-

length

(Mm)

Coronal

Electron

Density

(cm−3
)

Coronal Tem-

perature (MK)

QS.LL.HT 5800 100 3 108´ 3.0

QS.LL.LT 5800 100 2 107´ 1.0

QS.SL.HT 5800 10 6 109´ 3.0

QS.SL.LT 5800 10 6 108´ 1.0

SS.LL.HT 5000 100 3 108´ 3.0

SS.LL.LT 5000 100 2 107´ 1.0

SS.SL.HT 5000 10 6 109´ 3.0

SS.SL.LT 5000 10 6 108´ 1.0

M dwarf 3500 10 2 1010´ 6.0

Figure 4. Temperature (a) and hydrogen number density (b) as a function of column mass for the loops described in Table 3.
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measures the loss rate and pitch angle diffusion due to

synchrotron emission. McTiernan & Petrosian (1990) devel-

oped a numerical method to solve this equation for flare-

accelerated electrons. We have generalized their method to

solve the Fokker–Planck equation for both flare-accelerated

electrons and ions. This has required altering C, C′, and S to

account for the physics which characterize ion beams. Here we

summarize this theory.
Petrosian (1985) calculated the energy loss and pitch angle

scattering rates due to synchrotron radiation. From those
results, we find the synchrotron coefficient, S, for both ion and
electron beams to be

S
Ze B

mc

2

3
8

4 2

2 3( )

( )
( )=

where e is the proton charge, and Z is the number of protons (or

electrons) in the beam particle.
C is related to the energy loss due to collisions by

C
dE

dt c
9

col
( )

b
= -

McTiernan & Petrosian (1990) assumed that the ambient

plasma was a “cold target” meaning that the beam particleʼs

velocity is much greater than the thermal velocity for all

constituents of the ambient plasma. Formally, this is expressed

as x 1i  where x v v m m E kTi i i i
2( ) ( ) ( )= = and mi, vi, and

Ti are the mass, velocity, and temperature for the plasma

constituent, i, and m is the mass of the beam particle. For flare-

accelerated electrons even at the low-energy limit of ∼10 keV,

the ambient electron temperature would have to be greater than

100 MK for the cold target approximation to fail. This far

exceeds observed temperatures for even the largest flares.

Therefore, beam electrons can always be treated using cold

target collision theory. With ion beams, however, this is not

necessarily true. Flare-accelerated protons of ∼1MeV (which

is about the low energy detection limit of current instruments)

have a velocity less than that of thermal electrons at

temperature 6 MK. Flares routinely produce plasma much

hotter than this. Therefore when modeling how ion beams

interact with the ambient plasma, we must employ a theory

which can account for both hot and cold targets. Trubnikov

(1965) developed this theory and found the energy loss rate of

particles with energy, E, from collisions with ambient charged

particles of species, i, to be

dE

dt
E 10

i
i ( )n= -

where

m

m
Erf x x e

m

m
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1 11i
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e Z Z n
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12i i i
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2 2i
( )n

p l
=

Zi is the target particle charge in units of e, and ni is the number

density for target particle, i. il is the Coulomb logarithm, and is

defined by r rlni max min( )l = . In this case rmax is the mean free

path length vh n= (Emslie 1978, hereafter, referred to

as E78) where ν is the plasma oscillation frequency. rmin is

given by r M v2 imin = where Mi is the reduced mass of the

beam and target particle (Huba 2011). Combining these gives

M v m

n Z e
ln . 13i

i i
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The collisional pitch angle diffusion coefficient, C′, is
obtained from the rate that beam particles are scattered out of
the direction of beam propagation. It is given by

C
c

dv

dt
. 14

2

2
( )

b
¢ =

For collisions with neutral targets (e.g., neutral hydrogen or
helium), the beam particles interact with atomically bound
electrons. As long as the beam velocity is much greater than the
Bohr orbital velocity, neutral atoms can be treated as cold
targets. Using the fine structure constant to approximate the
orbital velocity, we find that the cold target approximation for
collisions with neutral hydrogen is good for protons with
energy 25 keV and electrons 0.01 keV. The energy loss rate
for a charged beam on a neutral target is given by (E78; Mott &
Massey 1965)

dE

dt

e

E

m

m
Z Z n v

2
15

n

e
n n n

4
2 ( )

p
l=

-

where nn is the number density for the ambient neutral atom, n.

Zn is the number of electrons in the atom, and nl is an effective

Coulomb logarithm for collisions with the atom. For an atom

with mean ionization energy, In, nl is given by (Evans 1955)

m v

I
ln

2
. 16n

e

n

2 2

( )l
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=
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⎞

⎠
⎟

The total energy loss rate due to collisions is given by

dE

dt

dE

dt

dE

dt
17

i

i

n

ncol
( )å å= +

where the sums are over charged and neutral species,

respectively. In calculating the beam energy deposition rate

in RADYN, we consider a plasma consisting of electrons;

protons; neutral hydrogen; neutral, singly, and doubly ionized

helium; and singly ionized calcium and magnesium. These are

the species most important to the energetics of the chromo-

sphere where the majority of the beam impacts. However, since

the energy loss rates are inversely proportional to the target

particleʼs mass, collisions with electrons—both ambient and

those in neutral atoms—dominate the energy transfer. We use

Equation (10) for calculating the energy loss rate for collisions

with charged particles and ions, and Equation (15) for

collisions with neutral particles. We use Equations (9) and

(17) to obtain C, which is needed to solve Equation (7). The

number densities for each of these species is calculated in detail

in the simulations. Thus, the beam energy deposition drives the

simulations which alter the beam deposition in a self-

consistent way.
By solving Equation (7), we obtain the distribution function,

f, from which we can obtain the particle beam heating rate
(Qbeam) and momentum deposition rate (Abeam) using the
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following relations:

Q
d

dz
vEf dEd 18

E
beam ( )ò ò m m=

m

⎛

⎝
⎜

⎞

⎠
⎟

and

A
d

dz
vaf dEd 19

E
beam ( )ò ò m m=

m

⎛

⎝
⎜

⎞

⎠
⎟

where a mvg= is the relativistic momentum. Even though we

have developed and presented here a method to simulate both

flare-accelerated electrons and ions, in the remainder of this

paper we will focus on the effects of electron beams. A detailed

study of ion beams will be presented in a future paper.

4. PARTICLE BEAM COLLISION RATES

During flares, the transition rates, Pij, can be very enhanced
due to direct ionizations and excitations caused by collisions of
non-thermal beam particles with the ambient plasma. In this
section, we describe a method for incorporating these elevated
rates in the most important species (i.e., hydrogen and helium)

in RADYN.

4.1. Hydrogen

The non-thermal collisional rate from a flux of charged
particles is given by the general formula (Mott & Massey 1965,
Chapter XVI),

C v f dEd2 20B ijbeam
nt ( )ò òp m s m=

where f is the beam particle distribution function, μ is the

particle pitch angle as described in Section 3, and ijs is the cross

section for ionization or excitation.
Since the flare-accelerated particles have much larger energy

than the ionization potential of hydrogen, secondary ionizations
from electrons liberated in the primary ionization need to be
included. Dalgarno & Griffing (1958) have performed calcula-
tions to include these secondary ionizations, giving an average
energy of 36 eV per electron–ion pair produced in the complete
absorption of beam particles with energy in the range of
200–1000 eV by a cold hydrogen gas. The amount of energy
produced per electron–ion pair is constant for E 200> eV, and
we assume that this extends to all electron energies above
1000 eV. Including the secondary ionizations, the non-thermal
collisional ionization rate can be written in terms of the amount

of energy lost by the beam to neutral hydrogen,
dE

dt

H obtained

from Equation (15), (Fang et al. 1993; see also Ricchiazzi &
Canfield 1983),

dE

dt
n C36 eV 21

H
1 beam,1c

nt ( )= ´

assuming that most of the neutral atoms are in the ground

state, n1.
A comprehensive study of non-thermal rates in solar flares

was presented by Ricchiazzi (1982) and Ricchiazzi & Canfield
(1983), who found that the H I rates of non-thermal collisional
ionization from the ground state (denoted, 1-c) and collisional
excitation from the ground to first excited state (denoted, 1–2)
were important compared to their respective thermal rates, but
that the non-thermal 2-c rate was negligible compared to the
thermal rate for the applied range of beam fluxes. Fang et al.
(1993) have presented revised H I 1-c, 1–2, 1–3, 1–4 non-
thermal ionization and excitation rates, which were adopted by
Kašparová et al. (2009) in their study of the hydrogen lines in
response to electron beams. Notably, the 1-c rate is a factor
∼4.6 higher compared to the Ricchiazzi & Canfield (1983) 1-c
rate. To facilitate comparison with the most recent studies, we
use the constants (RH,nt) from Fang et al. (1993) to derive the
non-thermal collisional rates with hydrogen, according to the
formula,

C R
n n

Q 22H n

e i n
beam
nt ,nt

H

beam ( )=
L

L + L

where nH is the neutral hydrogen density and

R 1.73 10H,nt 10= ´ , 2.94 1010´ , 5.35 109´ , 1.91 109´
for the 1-c, 1–2, 1–3, and 1–4 transitions, respectively.

Figure 5. Beam heating rate for several different parameters in the QS.SL.HT
loop. In the top panel, 0m is varied while holding E 20c = keV and 5d = . In
the middle panel, Ec is varied while holding 5d = and 0.10m = . In the bottom
panel, δ is varied while holding E 20c = keV and 0.10m = . In each panel, the
dotted line indicates the temperature structure in the QS.SL.HT loop.
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4.2. Helium

A05 found that the ionization fraction of He II controls how a

flaring flux tube transitions from gentle to explosive chromo-

spheric evaporation. To more accurately model these dynamics,

we include the non-thermal rates for the primary ionization of

neutral helium (He I 1s2 He II 1s) and singly ionized helium

(He II 1s  He III). Younger (1981) calculated parameterized

cross sections for these transitions as a function of impacting

electron energy. For clarity, we reproduce his result here,

uI
A

u
B

u

C u
D

u
u

1
1

1
1

1

ln ln 23

ij
2

2

( ) ( ) ( )

s = - + -

+ +

⎜ ⎟ ⎜ ⎟

⎡

⎣
⎢

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎤

⎦⎥

where I is the ionization energy and u E I= is the normalized

energy of the colliding electron. A, B, C, and D are constants

provided by Younger (1981) and Arnaud & Rothenflug (1985)

and have values of 17.8, 11.0- , 7.0, 23.2- and 14.4, 5.6- , 1.9,

13.3- in units of10 14- cm2 eV2 for He I and He II, respectively.

With these cross sections and the beam particle distribution

function, f, obtained from Equation (7), we calculate the non-

thermal helium ionization rates using Equation (20).

5. RETURN CURRENT

Images of the footpoint locations of positively charged ion
beams and negatively charged electron beams indicate that they
are not co-spatial (Hurford et al. 2006). For an electron beam
without a co-streaming positively charged beam of equal
current density, the charge imbalance between the acceleration
region and any given point along the magnetic loop leads to a
macroscopic return current electric field (Hoyng et al. 1976;
Knight & Sturrock 1977; van den Oord 1990) in a direction
along the beam. The return current electric field decelerates the
beam electrons while accelerating ambient electrons,4 which
drift in the direction opposite that of the return current electric
field toward the loop top with a Maxwellian distribution of
speeds, assuming that the return current field is not super-
Dreicer (Holman 1985). These drifting electrons form the
return current, which heats the atmosphere through Ohmic
(Joule) dissipation. Many aspects of the beam-return current-
atmospheric system have been studied, including pitch angle
modifications of the beam (Emslie 1980), return current
collisional rates (Karlický et al. 2004), return current-beam
instabilities and subsequent particle acceleration (Karlický &
Kontar 2012; Pechhacker & Tsiklauri 2014), and turbulent
effects on the beam-return current system (Xu et al. 2013;
Kontar et al. 2014). The return current modifications on the
classical thick target model (Brown 1971) have been used to
explain the difference between looptop and footpoint hard
X-ray spectral indices (Battaglia & Benz 2008; Xu et al. 2013).

Table 4

Parameter Study

Parameter Range

Ec 5–500 keV

δ 2.5–10

0m 0.1–1.0, isotropic, beamed

Loop Conditions Those listed in Table 3

Figure 6. Penetration depth as a function of cutoff energy and spectral index, δ, in the QS.SL.HT atmosphere (left) and M dwarf atmosphere (right).

Figure 7. Ratio of the beam penetration depth calculated using our Fokker–
Planck technique to that of E78 in the QS.SL.HT loop.

4
Ambient protons are also accelerated, but the drift velocity is much lower

due to their larger mass.
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Recently, Holman (2012) derived return current heating rates
in flaring coronal conditions. After the first short moments of
beam propagation, a relatively steady-state is quickly attained
(van den Oord 1990) in which the magnitude of the return
current density is equal to the beam current density. The return
current electric field can be determined from Ohmʼs law:
E Jrc beamh= , where η is the classical Spitzer resistivity and
Jbeam is the return current density. Holman (2012) determined
the return-current plasma heating rate for a given electron beam
flux self-consistently accounting for Joule heating and the
reduction of beam electrons due to (non-collisional) thermali-
zation caused by the return current electric field. However, this
treatment does not self-consistently account for the change in
flux of beam electrons due to Coulomb collisions with the
ambient plasma and is therefore an overestimate, especially in
the chromosphere where Coulomb collisions are large. In the
corona, however, there are relatively few collisions, and this
approximation works quite well. Additionally, return current
heating is likely largest in the corona since it is there that beam
current densities are highest. Therefore, to account for return
current heating in flares, we have chosen to incorporate the
formalism of Holman (2012) into RADYN. The result for the
volumetric return current heating rate from a power-law
electron beam spectrum with power-law index, δ, and cutoff
energy, Ec, is given by

Q x
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where x is distance from the loop top and Fe is the beam

particle flux given by vf dEdò òm m. Beam electrons are

assumed to be thermalized and removed from the beam when

their energy is E kT2.5therm = . xrc is the distance at which the

lowest energy electrons in the beam are thermalized, and V x( )

is the electric potential energy as described in Holman (2012).

A more complete treatment which includes return current losses

directly in the Fokker–Planck equation (Equation (7)), similar

to work done by Zharkova & Gordovskyy (2005) and

Dobranskis & Zharkova (2014), is outside the scope of this

paper but will be presented in a future paper.

6. PARAMETER STUDY

The energy distribution of flare-accelerated particles can
vary greatly between particular flares. Since the impact location
strongly depends on the particle distribution, that distribution is
very important in determining how stellar atmospheres respond
to flare heating. To explore the range of possibilities, we have
performed a parameter study varying the injected electron beam
spectrum, pitch-angle distribution, and the initial loop condi-
tions into which these particles impact.
Flare-accelerated particles are typically observed to have a

power-law energy distribution with a cutoff energy, Ec, below
which relatively few particles are accelerated. Cutoff energies
as high as 250 keV have been observed (R. Schwartz 2015,
private communication), but in many flares, the cutoff energy
cannot be directly determined since thermal X-ray emission in
the range below 10 20- keV from the flare-heated plasma
overwhelms the non-thermal bremsstrahlung emission. In these
flares, it is only possible to determine an upper limit for the
cutoff energy. To explore how the atmosphere responds to
beams of particles with energies below this upper limit, we
have chosen a lower limit of 5 keV. Therefore, to account for
the full range in parameter space, we have varied the cutoff
energy between 5 and 500 keV. The slope of the power law is
given by the spectral index, δ. Typical power-law indices range
from 3 to 9, but in this study we have varied it between 2.5 and
10 to ensure that we have spanned the full range of possible
values. We have also varied the pitch angle distribution with
which the flare-accelerated particles were injected. We modeled
this distribution as a Gaussian centered around the flux loop

axis. Thus, it has the form, e 1 0

2
(( ) )m m- , where 0m is a parameter

that controls the width of the Gaussian distribution. In addition
to the Gaussian distribution, we have included simulations in
which the particles are fully beamed, i.e., they all start with a 0°
pitch angle, and simulations with isotropic distributions. We
have modeled the effects of beam impact varying these
parameters on each of the loops in Table 3. The parameters
are summarized in Table 4. To perform this study, we ran more
than 11,000 simulations.

6.1. Penetration Depths in Flux Loops

First, we consider how varying Ec and δ affect the location of
beam impact. Figure 5 shows a few representative examples of

the heating rate due to collisions with beam particles as a

function of hydrogen column density in the QS.SL.HT loop.
Clearly the heating extends over a range of column densities.

We have determined an average value indicated by the dashed

lines. In the following discussion, the term penetration depth
(in units of column density) refers to this average. Figure 6

shows the beam penetration depth as a function of cutoff

energy and the power-law index in the QS.SL.HT and M dwarf

flux tubes. A striking result of this analysis is how strongly
dependent penetration depth is on δ. Low values of δ imply a

significant number of higher energy particles even for spectra

with low cutoff energies. For example, an electron distribution

with E 10c = keV and 3.0d = penetrates as deeply as one with
E 70c = keV and 5.0d = . Interestingly, for distributions that

Figure 8. Ratio of the penetration depth for a highly beamed to isotropic
injected distribution. Calculated using the QS.SL.HT initial atmosphere.
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have both very low values of Ec ( 8< keV) and high δ ( 6> ),

much of the energy is deposited directly in the corona.
Many previous studies (e.g., Abbett & Hawley 1999; Allred

et al. 2005, 2006; Cheng et al. 2010) implemented the analytic

expression for beam penetration depth derived by E78. That

expression includes non-uniform ionization (Hawley & Fisher

1994) but does not include relativistic effects. Since the E78

expression has been so widely used, it is informative to

compare it with the more complete treatment that we described

in Section 3. In Figure 7, we plot the ratio of beam penetration

depths obtained from E78 to that derived by solving the

Fokker–Planck equation. We find E78 works quite well in the

the range E 40c < keV and 4.5d > but becomes increasingly

inaccurate for higher Ec and lower δ. In this regime, E78

predicts a penetration depth as much as seven times greater. As

the cutoff energy increases, relativistic effects become

significant. Due to the Lorentz length contraction, relativistic

electrons experience a higher ambient density than would be

expected from classical theory resulting in less penetration.

Relativistic effects become less pronounced with increasing δ
since there are fewer high energy electrons in the distribution.

Figure 8 shows the ratio of the penetration depth for highly
beamed non-thermal electrons to an isotropic pitch angle
distribution. As expected, the beamed electrons penetrate more
deeply. As δ increases this effect becomes more pronounced.
This is because higher energy particles undergo more collisions
before stopping, so their initial pitch angle is less important in
determining their final stopping depth. A larger δ means fewer
high energy particles are in the distribution, so the initial pitch
angle has a more pronounced effect.
Figure 9 compares the beam penetration depths as a function

of cutoff energy and spectral index for several loops. The left
panel shows the ratio of the penetration depths for beams
propagating in QS.SL.HT to QS.SL.LT. For low values of the
cutoff energy, the beam penetrates to a column mass
approximately twice as great in the QS.SL.LT loop. In this
loop, the coronal temperature and density are lower than in QS.
SL.HT. It is the low energy electrons that are most affected by
this difference. The middle panel compares beam penetration
depths in QS.LL.LT with QS.SL.LT. In this case, beams with
low-cutoff energy penetrate less deeply in QS.SL.LT. Since
QS.SL.LT is a shorter loop than QS.LL.LT, the coronal density
is greater resulting in less penetration for the lowest energy
electrons. The right panel compares QS.SL.LT with SS.SL.LT.
These loops are nearly identical in their coronal and upper
chromospheric regions. They differ significantly in the photo-
sphere, but very few electrons are able to penetrate to that depth
so beam penetration depths are similar in these loops in the
range of cutoff energies and spectral indices studied here.
However, since they have very different photospheric tem-
peratures, these loops predict significantly different levels of
white light emission. This difference will be important in
studying the white light emission predicted from flaring loops.

6.2. Collision Rates

During flares, direct excitations and ionizations by beam
particles can be much larger than thermal rates in the region of
beam impact.5 To understand the relative importance of
collisional ionizations by flare-accelerated particles, it is
informative to compare them with the thermal rates. In

Figure 9. Ratio of the beam penetration depth in the QS.SL.HT (left), QS.LL.LT (middle), and SS.SL.LT (right) atmospheres to the penetration depth in the QS.SL.
LT simulation as a function of cutoff energy and spectral index.

Figure 10. Beam-induced collisional rates, n Ci B
nt, for H I 1-c (solid line), He I

1-c (dashed line), and He II 1-c (dotted line) in the QS.SL.HT (black), QS.SL.
LT (red), QS.LL.HT (green), and M dwarf (blue) loops. In each case the
injected electron beam is for E 20c = keV and 5d = . The He II 1-c rates have
been scaled by a factor of 1000 so that they will fit in the plot.

5
Even though these excitations are important, throughout the remainder of

this section, we will focus exclusively on the ionizations. This is because the
excitation rates can be obtained simply from scaling the ionization rates by the
RH,nt coefficients as seen in Equation (22).
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Figure 10, we plot the ionization rates, n Ci beam
nt , in several

loops. Here ni is the ground state number density. We find the
ionization rates increase dramatically around beam impact. For
example, in the solar loops the H I 1-c rates peak at 2 1013´
s−1. To put this into perspective, the thermal rates in this region

are 103~ s−1 so some 10 orders of magnitude smaller. These
results are relatively independent of the initial loop conditions,
with the exception of the M dwarf loop. n Ci beam

nt increases
deeper in the M dwarf loop compared to the solar loops
because in the former the chromosphere forms deeper.
It is useful to model how these collision rates vary with

injected electron beam spectra. Figure 11 shows the peak non-
thermal collisional ionziation rates for electron beams injected
into the QS.SL.HT loop as a function of Ec and δ. H I 1-c and
He I 1-c rates have similar dependence on these parameters,
peaking at lower Ec and higher δ. Qbeam is narrower and higher
peaked in this regime (see the middle and bottom panels of
Figure 5) resulting in a higher peak collision rate. However, the
collision rates drop quickly for very low Ec. There much of the
beam is stopped in the transition region and corona where ni is
low. The He II 1-c rates rapidly decrease for increasing Ec. A
beam with larger Ec penetrates to a deeper, cooler, and hence
lower He II density region of the atmosphere.

6.3. Return Current Heating in the Corona

To understand how return currents are likely to affect flare
dynamics, it is useful to compare their heating rates (Qrc) to the
heating rates produced directly by collisions (Qbeam). In the
following discussion, it should be kept in mind that we are
comparing only coronal heating rates—not those in the
chromosphere where Qbeam dominates. A comparison of these
rates in several loops is shown in Figure 12. In the QS.SL.HT
loop, Qrc and Qbeam are similar in size. However, in all other
cases, Qrc dominates by at least an order of magnitude, being
stronger in the cooler loops. This is because the resistivity is
strongly and inversely dependent on the coronal temperature.
Hot loops have much less resistance so are heated by Qrc less.
Therefore, we speculate that return currents are likely to be
most important in the early phases of flares before the corona
has been heated to very high temperatures. This figure also
compares Qrc for the case of highly beamed electrons (solid
lines) and isotropically injected electrons (dotted lines). These
rates are similar in all cases indicating that the pitch-angle
distribution of the injected electrons makes little difference
in Qrc.

Figure 11. Collisional ionziation rates for H I (top), He I (middle), and He II

(bottom) produced by non-thermal particles injected at the top of the QS.SL.
HT loop.

Figure 12. Volumetric heating rates for the return current (solid and dotted
lines) and electron beam (dashed lines) in the QS.SL.HT (black), QS.SL.LT
(red), QS.LL.HT (green), QS.LL.LT (orange), and M dwarf loops (blue). The
solid and dashed lines indicate return current heating for beamed and isotropic
distributions of electrons, respectively. These rates are all calculated assuming
E 20c = keV and 5d = .
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From the results of this parameter study, we can also
compare how Qrc varies with Ec and δ. Figure 13 shows the
volumeteric heating rate due to return current in the corona of
the QS.SL.HT loop as a function of these parameters. The same
energy flux (1010 erg cm−2 s−1

) was injected for every simula-
tion in this study, so simulations with higher Ec have fewer
total injected electrons. Return current heating scales with the
particle flux (Fe) so fewer particles results in less heating. The
energy per particle factors into Fe only through its velocity, so
the return current heating rate is only weakly dependent on δ.

7. CONCLUSIONS

We have developed a computational framework capable of
modeling the evolution of magnetic flux loops in response to
flare heating. This model can be applied to loops on the Sun
and on dMe flare stars, and it includes many of the physical
processes most important to flare dynamics. Our code solves
the optically thick, non-LTE radiative transfer equation for
many transitions important in the chromosphere where much of
the flare energy is deposited allowing us to model flare
emission which can be compared directly to observations. We
have implemented a method for solving the Fokker–Planck
equation describing how flare-accelerated particles interact
with the ambient plasma and have used that to model the
heating, momentum deposition, collisional excitations and
ionizations, and return currents produced by these particles.

With our model, we have performed a parameter study to
understand how these phenomena depend on the energy
spectrum of a beam of flare-accelerated particles. We have
assumed a power-law energy distribution for these particles and
found that their penetration depth is strongly dependent on the
beam cutoff energy and power-law index and more weakly
dependent on their initial pitch-angle distribution. For distribu-
tions with low power-law index or high cutoff energy,
relativistic effects become important causing a penetration to
depths as much as seven times less than predicted by classical
theory. Varying the conditions of the loops (i.e., the coronal
temperature and density and photospheric temperature) has a
small effect on the penetration depth for distributions with low
cutoff energy. The collisional ionizations produced by impacts
from these flare-accelerated particles also are strongly depen-
dent on cutoff energy and power-law index. They can be 10
orders of magnitude greater than thermal collision rates. The

beam particles also induce a return current which deposits heat
in the corona. We have found that, depending on coronal
conditions, return current heating in the corona can be more
than an order of magnitude greater than coronal beam heating.
In this parameter study, we have focused on understanding

the effects of flare-accelerated electrons. In future work, we
will extend this to flare-accelerated ions which are also known
to be important to flare energetics. This work has focused on
the initial response of flaring loops. However, a key feature of
our framework is its ability to model the dynamical evolution
of these loops. In future work, we will present a parameter
study exploring their evolution in response to flare-accelerated
particles.
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