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Abstract

We provide concrete evidence that floating-point computations in
C programs can be verified in a homogeneous verification setting
based on Coq only, by evaluating the practicality of the combina-
tion of the formal semantics of CompCert Clight and the Flocq for-
mal specification of IEEE 754 floating-point arithmetic for the veri-
fication of properties of floating-point computations in C programs.
To this end, we develop a framework to automatically compute real-
number expressions of C floating-point computations with round-
ing error terms along with their correctness proofs. We apply our
framework to the complete analysis of an energy-efficient C im-
plementation of a radar image processing algorithm, for which
we provide a certified bound on the total noise introduced by
floating-point rounding errors and energy-efficient approximations
of square root and sine.

Categories and Subject Descriptors G.1.0 [Mathematics of Com-
puting, Numerical Analysis, General]: Computer arithmetic, Error
analysis, Interval arithmetic; D.3.1 [Software, Programming Lan-
guages, Formal Definitions and Theory]: Semantics; D.2.4 [Soft-
ware, Software Engineering, Software/Program Verification]: Cor-
rectness proofs, Formal methods

Keywords Formal Verification, Coq, Floating-point Computa-
tions, C.

1. Introduction

Numerical rounding errors can often have catastrophic effects, and
throwing more bits at a problem is no guarantee that these numeri-
cal precision problems will be avoided. Conversely, significant per-
formance savings can be achieved by reducing some precision and
introducing some approximations, without necessarily introducing
dramatic errors in the final results. To what extent can such error
bounds be guaranteed on C programs with floating-point compu-
tations? How trustworthy can such guarantees be? The goal of our
effort described in this paper is to create a context for provable er-
ror estimates at lower numerical precision, thereby saving power
by possibly avoiding unnecessary computations, and to do so with
certifiably lower risk to the mission due to precision failures.

Properties (accuracy, stability, complexity, time, space and en-
ergy consumption, etc.) of floating-point computations have been
an ongoing concern for industrial companies developing control
software heavily relying on machine arithmetic. Since the inception
of floating-point computations in computers, their study has led to
the entire field of numerical analysis, at the intersection of com-
puter science and mathematics. However, the desire to strengthen
the trust in computer implementations of numerical programs has
grown to the point that pen-and-paper proofs are no longer suffi-
cient and computerized verification strategies become necessary.

In this paper, we combine both Coq specifications of floating-
point arithmetic and C semantics in a unified Coq setting for the
purpose of source-level verification of C programs performing
floating-point computations, to provide stronger numerical guaran-
tees based on the real-number semantics of floating-point numbers.
The main goal of our approach is to show that it is possible to prove
numerical properties of practical C programs in a verification set-
ting whose trusted computing base only contains the faithfulness
of formal mathematical Coq specifications of C and floating-point
numbers, the soundness of Coq’s underlying logic (the Calculus of
Inductive Constructions [7]), and the implementation of the Coq
proof checker.

Our approach relies on specifications of floating-point arith-
metic and C semantics written in a mathematical language and thus
meant to be more widely readable and understandable than the ac-
tual code of specific implementations of verification tools, espe-
cially if such tools are automated and highly optimized, such as
Fluctuat [21, 38] which is written in C++. In particular, it is not
easy to trust the fact that the results computed by those tools will
reflect on the actual behavior of the C program with floating-point
computations being verified. In this paper, we provide a verification
approach that bridges such gap.

Contributions The contributions of our work, which we describe
in this paper, are as follows:

• In Section 3, we clarify the interpretation of the semantics
of C floating-point computations by defining a core floating-
point calculus and proving its consistency with C implicit type
conversions (casts and type promotions) in Coq against the
formal semantics of a subset of CompCert C.

• Based on our core floating-point calculus, we develop VCFloat,
a verification framework based on an automatic Coq tactic to
reason about the real-number values of C floating-point com-
putations, which we describe in Section 4.

• In Section 5, we demonstrate the practicality of VCFloat by
applying it to the first complete analysis of a practical C pro-
gram with floating-point computations: we introduce an energy-
efficient C implementation of a radar image processing algo-
rithm with energy-efficient approximations. We have computed
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and proved a bound on the total image noise introduced by our
C implementation, and we have mechanized the whole proof
using Coq, with a Coq theorem statement about the actual be-
haviour of our C program.

We have carried out our proofs using the Coq proof assistant
[16]. Our proofs are available on the Internet at http://github.
com/reservoirlabs

2. Related Work

There already exist practical tools to carry on some form of ver-
ification of C programs computing floating-point values. Fluctuat
[21, 38] is a closed-source commercial automatic static analyzer for
the verification of floating-point properties of C programs, based
on abstract interpretation [17]. Fluctuat is heavily used in industry
[18], and it is implemented in C++. However, trusting the correct-
ness of Fluctuat implies to trust the implementations of the static
analysis algorithms and their optimizations, which can be very
complex. This is why we rather advocate for the use of general-
purpose verification tools in which floating-point arithmetic is for-
mally specified in a readable mathematical specification language.

Mechanized Proofs of Floating-Point Properties with Coq To
provide the highest possible level of trust in IEEE 754 floating-
point computations independently of the particular implementation
of the verification method or tool, it becomes necessary to specify
IEEE 754 using a mathematical specification language in a proof
assistant. Flocq [9] is such a comprehensive specification of IEEE
754 in the Coq proof assistant [7, 16], on which our work builds.

The Metalibm project [26] aims to build a certified mathemat-
ical library implemented in C with floating-point computations.
Metalibm builds on Sollya [15], an open-source tool and envi-
ronment for the development of “safe floating-point code.” Sollya
is targeted to help develop implementations of mathematical ele-
mentary transcendental functions such as trigonometry, exponen-
tial, etc. and automatically computes approximation and rounding
error bounds. Some results produced by Sollya can be verified us-
ing the Gappa tool [29], which supports floating-point and fixed-
point interval arithmetic and produces a proof certificate that can
be checked [10] with Coq against Flocq. Gappa is also used in the
CRlibm project [33], a certified mathematical library which comes
with a mostly on-paper correctness proof with some parts checked
using Gappa, and on which Metalibm is building. The certification
effort of Metalibm and CRlibm only focuses on the correctness of
the floating-point computations, rather than the verification of their
embedding in C code, which we also address in our work.

Mechanized Proofs of Floating-Point Computations in C Pro-
grams Even though floating-point computations can be verified,
such verification results must transport to the actual C program in
which those computations will be implemented.

There have been very few successful attempts to verify C pro-
grams with floating-point computations with respect to a real-
number specification. The first fully verified implementation of
a numerical (floating-point) C program has been verified by Boldo
et al. [11]: a C implementation of a numerical solver for a wave
equation. They prove that the function computed by their program
is a solution of the wave equation provided by the user within some
error bounds. Their verification is based on Frama-C [5], an au-
tomatic static analyzer for C programs that generates verification
conditions deemed enough to prove the functional correctness of
the C code. Such verification conditions are checked using exter-
nal verification tools such as Coq with Flocq, but also automatic
SMT solvers such as Alt-Ergo, CVC3 and Z3. Allowing the user
to choose their own combination of tools can make verification
very practical (which explains why Frama-C is already used in

industry), but it is a major drawback when it comes to assessing
the mathematical soundness of such heterogeneous combination of
verification tools. Moreover, users must trust the implementation
of Frama-C, more precisely the fact that the verification conditions
generated by Frama-C are enough to ensure functional correct-
ness. By contrast, our approach advocates the use of a homoge-
neous combination of verification tools and proof libraries based
on Coq only, and trusts as little implementation code as possible,
replacing trusted, sometimes heavily optimized implementations
of domain-specific verification tools with more trustworthy formal
specifications in readable mathematical languages.

Mechanized Proofs on C Programs against a Formal Semantics
To avoid trusting a particular implementation of a C program veri-
fier, it is necessary to formalize the semantics of a suitable subset of
C and to build verification tools that are certified against this formal
semantics.

CompCert [27, 28] is one of the first realistic efforts to specify a
subset of C in Coq for the purpose of formal verification. CompCert
specifies several subsets of C, the largest being CompCert C, to
build a verified realistic compiler down to x86, PowerPC and ARM
assembly. Our work relies on the formal semantics of Clight [8], a
subset of C specified by CompCert.

The formal semantics of various subsets of C in CompCert have
allowed Appel et al. to develop Verifiable C [3], a subset of C
equipped with a powerful program logic in Coq. Certified imple-
mentations in Verifiable C include the SHA-256 encryption algo-
rithm [2] and OpenSSL HMAC [6]. However, Verifiable C’s pro-
gram logic provides no specific support for reasoning with floating-
point numbers, so that examples of proofs of C programs with
floating-point computations distributed with Verifiable C state no
properties about their real-number semantics. The goal of our work
is precisely to provide such specific floating-point support to the
formal verification of C programs against a formal specification of
Clight.

Another formal semantics of C not based on Coq is Ellison
and Rosu’s, who formalized a more comprehensive subset of C us-
ing the K verification framework [20], from which they derived a
program verification tool based on model-checking. However, they
have not used it to verify any program with floating-point com-
putations, since their formal semantics does not fully specify IEEE
754 floating-point computations (they are using the implementation
provided by K itself instead), which “is fine for interpretation and
explicit state model checking, but not for deductive reasoning.”

Combining Flocq with a Formal Semantics of C Coq actually
allows solving the problems of trusting verifiers for floating-point
computations in C programs, using a combination of Flocq with a
formal semantics of a subset of C such as CompCert.

However, in practice, combining Flocq with CompCert was not
first meant with source-level program verification in mind. Indeed,
such a unified setting was first meant for compiler verification,
namely formal verification of semantics-preserving optimizations
of floating-point computations [12]. In their work, Boldo et al. fo-
cus on the semantics preservation of floating-point computations
down to the bitwise representation of floating-point numbers, thus
permitting some of those operations to be implemented using inte-
ger operators instead. Their representation preservation covers in-
finities and also NaN (“not a number”) cases. In other words, their
view of floating-point numbers is merely in terms of low-level raw
bits rather than their high-level real-number meaning. So, whereas
Boldo et al.’s work shows the practicality of the Flocq-CompCert
combination on the compiler verification side, we show it on the
source program verification side.

Jourdan et al. developed Verasco [24], a verified static analyzer
for C programs. Verasco allows the user to annotate their program
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with assumptions and assertions in such a way that it can be, subse-
quently, automatically proven not to go wrong (no divide by zero,
no mishandling of infinities or NaNs). This is the premise neces-
sary for verified compilers such as CompCert to ensure that compi-
lation preserves the semantics of the C program. Verasco is wholly
proved in Coq and fully supports CompCert C#minor (a subset of
C with side effect-free expressions and a weaker type system), in-
cluding floating-point computations. However, although Verasco’s
floating-point analysis is also based on combining Flocq with a for-
mal semantics of a subset of C, it does not support error analysis
with respect to the corresponding real-number computations. In-
deed, since such property is based on true real numbers, it cannot be
even stated in Verasco’s assertion language. In fact, any such prop-
erty is not useful for Verasco’s particular purpose of showing that a
C#minor program cannot go wrong, so Verasco handles floating-
point computations with a purely floating-point interval analyzer
without the need for a real-number interpretation.

By contrast with these works, our approach allows the formal
verification of implementations of C programs against a formal
semantics of C to prove functional correctness properties about the
real-number values of the floating-point computations performed
by such C programs, such as approximation or rounding error
analysis.

3. Floating-Point Computations in C

Our setting is based on the CompCert Clight language, which
allows us to design a faithful view of C floating-point expressions
and their semantics, which we describe in this section.

3.1 The Source Language: CompCert Clight

We assume that our program is written in the CompCert Clight
[8] subset of C where expressions have no side effects and each
function call is isolated as a standalone statement. In this case,
CompCert Clight expressions are pure and deterministic.

However, it may not be totally obvious to assess the trustworthi-
ness of the formal semantics of CompCert Clight expressions with
respect to the actual semantics specified by ANSI C. In fact, Boldo
et al. [12, §3] describe a more comprehensive floating-point seman-
tics for CompCert C, a nondeterministic subset of ANSI C that is
much larger than Clight and that is actually the top-most source
language of CompCert. Then, the trustworthiness of the CompCert
C semantics of floating-point expressions is transported to Clight
thanks to the fact that CompCert C is compiled to Clight in a
provably semantics-preserving way as part of CompCert’s frontend
[27].

The basic principle of floating-point computations in C, as cor-
rectly specified by CompCert C and Clight, is that every binary op-
eration is performed in the higher of the two precisions of its argu-
ments, regardless of the precision actually expected when reusing
the result in another expression. Consider for instance the following
C code:

float x = ... ; float y = ... ; double z = x + y;

Then, the sum x+y is first performed in single-precision (due to x
and y being single-precision floating-point arguments) before being
cast to double when stored to z. To enforce its computation in
double-precision, the user would have to explicitly cast either of
the two arguments to double, and then the other argument would
be implicitly cast to double.

The formal semantics of Clight defines expression evaluation
rules as a big-step semantics. CompCert Clight’s expression evalu-
ation rules are described in extenso in Blazy et al.’s paper [8, §2.2,
§3.2] as well as in the Coq development of CompCert [27].

f ∈ F Floating-point literal
τ ∈ N× N Floating-point type
v ∈ V Variable
t ::= Floating-point computation

(f, τ) Typed constant
| (v, τ) Typed variable
| t⊕ t | t⊖ t | t⊗ t | t⊘ t Rounded binary operation
| √©t Rounded unary operation
| −t | |t| Exact unary operation
| [t]τ Type cast

Figure 1: VCFloat floating-point core calculus: syntax of terms

3.2 A Core Floating-Point Calculus for C

In this section, we describe our view of floating-point computa-
tions, and we prove that it is consistent with the semantics of Com-
pCert Clight floating-point expressions.

Following the IEEE 754 Standard [1] as specified in Flocq [9],
a finite floating-point number of precision prec ∈ N and exponent
range (emin, emax ) ∈ Z

2 is a number that can be represented in
one of the two following ways:

• either (−1)s × 2−(prec−1) × (2prec−1 +m)× 2e with the sign

bit s ∈ {0, 1}, the significand m ∈ N ∩
[

0, 2prec−1
)

, and the

exponent e ∈ Z∩ [emin, emax ). In this case, the floating-point
number is said to be normal (or normalized.)

• or (−1)s×2−(prec−1)×m×2emin , with the sign bit s ∈ {0, 1},

the significand m ∈ N ∩ [0, 2prec−1], and the exponent equal
to emin . In this case, the floating-point number is said to be
denormal (or denormalized.)

These two cases can be merged into a unique case (−1)s×m′×2e

with the sign bit s ∈ {0, 1}, the mantissa m′ ∈ N ∩ [0, 2prec),
and the exponent e ∈ Z ∩ [emin − prec, emax − prec], with
the boundary between normal and denormal numbers being at
m′ = 2prec−1 and e = emin .

Our VCFloat framework supports typed floating-point compu-
tations. We describe the type of floating-point numbers of preci-
sion prec and exponent range (emin, emax ) as the pair of in-
tegers (prec, emax ) with emin = 3 − emax . We assume that
2 ≤ prec < emax . For IEEE 754 floating-point numbers, the
double-precision type is represented by (53, 1024) whereas the
single-precision type is represented by (24, 128). Our implemen-
tation is actually generic in the type for future support of IEEE
extended double precision (C long double) floating-point num-

bers, which can be easily supported by Flocq1, but currently not by
CompCert.

VCFloat automatically transforms every Clight floating-point
expression into a term t of the grammar defined in Figure 1 (where
we assume V is an infinite set of variables, and F represents the
type of IEEE 754 floating-point literals as specified in Flocq).

√©t
represents the rounded square root. A floating-point term t is valid
if, and only if, for all typed constants (f, τ) appearing in t, f is a
floating-point number of type τ . From now on, we only consider
valid floating-point terms.

Every floating-point term t has a type 〈t〉 defined in Figure 2.
The type of a typed constant or variable is explicitly given. The type
of a (rounded or exact) unary operation is the type of its operand,
except for a cast to some type τ , which has type τ . For (rounded or
exact) binary operations between two operands of respective types
τ1, τ2, the type of the binary expression is the least upper-bound

1 Flocq is even more generic, since it is also generic in the radix itself, to
accomodate radix-10 floating-point numbers specified in IEEE 754:2008
and used in some financial contexts.
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〈(f, τ)〉 = τ 〈(v, τ)〉 = τ
〈t1 ⊚ t2〉 = 〈t1〉 ⊔ 〈t2〉 (⊚ ∈ {⊕,⊖,⊗,⊘})

〈√©t〉 = 〈t〉 〈[t]τ 〉 = τ
〈−t〉 = 〈t〉 〈|t|〉 = 〈t〉

Figure 2: Type of floating-point terms

J(f, τ)Kρ = f J(v, τ)Kρ = ρ(v)
Jt1 ∗©t2Kρ = ◦〈t1〉⊔〈t2〉(◦〈t1〉⊔〈t2〉Jt1Kρ ∗ ◦〈t1〉⊔〈t2〉 Jt2Kρ)

(∗ ∈ {+,−,×, /})
J
√©tKρ = ◦〈t〉

√

JtKρ J[t]τ Kρ = ◦τ JtKρ
J−tKρ = −JtKρ J|t|Kρ = |JtKρ|

Figure 3: Real-number semantics of VCFloat floating-point terms

τ1 ⊔ τ2 defined as:

(prec1, emax1) ⊔ (prec2, emax2)
= (max(prec1, prec2),max(emax1, emax2))

Given an environment ρ : V → F, the semantics JtKρ of a floating-
point term t is a floating-point number of type 〈t〉 (if we assume
that, for any typed variable (v, τ) appearing in t, ρ(v) is a floating-
point number of type τ ), as defined in Figure 3.

If x is a real-number and τ is a floating-point type, then we
use CompCert’s choice of the rounding operator ◦τ (x), namely the
floating-point number of type τ nearest to x, with ties broken to
choosing the floating-point number with the even significand.

As the general principle of the real-number semantics of IEEE
floating-point computations, as specified by Flocq, rounded opera-
tions are first computed in real numbers then rounded to the desti-
nation type. For binary operators, both operands are first cast to the
least upper-bound type prior to computing the operation, following
the general principle of C floating-point computations. Such casts
are actually innocuous for finite floating-point numbers (their real-
number values are not changed) but we include them to preserve the
C semantics of floating-point computations for all floats (including
infinities and NaN) as specified by Flocq [9].

In fact, we define the semantics of our floating-point terms di-
rectly using the floating-point operators defined in Flocq; their real-
number semantics explained in Figure 3 is actually based on theo-
rems (already proven in Flocq) valid only if no overflow occurs.

Then, we have proved the following theorem:

Theorem 1. Every CompCert Clight floating-point expression
has the same semantics as its transformed floating-point term of
VCFloat.

This theorem is important in particular to show that the type
casts introduced in the semantics of the floating-point terms of
VCFloat are consistent with the implicit casts and type promotions
in the semantics of Clight expressions.

In our Coq development, we have proved this theorem in terms
of floating-point semantics, which means that the result also holds
for infinities and NaNs.

4. VCFloat: From Floating-Point to

Real-Number Expressions

On top of our core calculus of floating-point terms, which we
proved consistent with the semantics of C expressions, we design
and implement practical automation mechanisms to sidestep all
floating-point-specific reasoning, which we describe in this section.

Given a floating-point term t, we first compute all constant
subexpressions of t using Flocq and replace the corresponding
subterms with their constant results.

r ::= Unkn |Norm |Deno Rounding annotation
n ∈ Z

u ::= (f, τ) Typed constant
| (x, τ) Typed variable
| u⊕r u |u⊖r u

Rounded binary operation| u⊗r u |u⊘r u
| √©r

u Rounded unary operation
| −u | |u| Exact unary operation
| [u]rτ Type cast

| u−Sterbenz u Sterbenz exact subtraction
| u× 2n | 2n × u Exact multiply with power of 2

Figure 4: Syntax of VCFloat annotated floating-point terms

L(f, τ)M = (f, τ) L(v, τ)M = (v, τ)
Lu1 ∗©ru2M = Lu1M ∗© Lu2M ( ∗© ∈ {⊕,⊖,⊗,⊘})

L
√©r

uM =
√©LuM L[u]rτ M = [LuM]τ

L−uM = −LuM L|u|M = |LuM|
Lu1 −Sterbenz u2M = Lu1M ⊖ Lu2M

Lu× 2nM = LuM ⊗ (2n, 〈LuM〉)
L2n × uM = (2n, 〈LuM〉)⊗ LuM

Figure 5: Erasure of annotated terms

Then, we have implemented an automatic tactic to make VCFloat
annotate a term t with rounding information, as explained in this
section. The goal of those rounding information annotations is to
remove unnecessary rounding error terms from the real-number
semantics of floating-point computations.

Annotated Terms Annotation yields an annotated term u of the
extended grammar defined in Figure 4. Each rounded operator is
annotated with either Norm (the result of the computation will be a
normal floating-point number), Deno (the result of the computation
will be a denormal floating-point number), or Unkn if unknown.
Moreover, some rounded operators are annotated to be exact, such
as multiplying and dividing by constants equal to a power of 2, or
subtractions using Sterbenz’s lemma (already proven in Flocq [9]):

Lemma 2 (Sterbenz [36]). If a and b are two floating-point num-
bers such that a/2 ≤ b ≤ a×2, then a−b is a floating-point num-
ber: no rounding needs to occur. (In other words, a⊖ b = a− b.)

Then, we define two semantics for annotated terms: the floating-
point semantics and the real-number semantics.

Annotated Terms: Floating-Point Semantics The floating-point
semantics of an annotated term is the same as the semantics of
the corresponding non-annotated term, with all rounding operations
preserved. To this end, we define in Figure 5 the erasure LuM of an
annotated term u as the corresponding term without annotations.
Then, we define the floating-point semantics JuKρ of an annotated
term u as JuKρ = JLuMKρ, with all rounding operations preserved.

Similarly, we define its type 〈u〉 as the type of its erasure:
〈u〉 = 〈LuM〉 .

Annotated Terms: Real-Number Semantics and Validity Condi-
tions By contrast, the real-number semantics R(u, ρ) of an an-
notated term u is a real-number expression with fresh existential
variables, and a validity condition. In Coq, we represent R(u, ρ)
as a triple (x,W,P ) where x is a real-number expression to rep-

resent the real-number value of u and P is a validity condition2

such that their free variables all appear either in u or in the finite

2 More precisely, in our Coq implementation, we represent x and P using
deep embedding: x is an expression following a simple grammar of real
number arithmetic, and P is represented as a list of elementary conditions,
each of which is of the form yRz where y is a deeply-embedded expression
following the same grammar as x, R ∈ {≤, <} and z is a real-number
constant.
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set W ⊆ V ×I(R) of pairs of variables and real-number intervals,
so that the following correctness theorem holds:

Theorem 3. Let u be an annotated term and ρ be an environment
such that, for every typed variable (v, τ) appearing in u, ρ(v) is a
finite floating-point value of type τ .

Assume R(u, ρ) = (x,W,P ). Then, if the validity condition P
holds, then the real-number x is equal to the real-number value of
the floating-point semantics JuKρ. In other words, we have:

(∀W , P ) ⇒ (∃W , JuKρ = x)

where, if W = {(x1, I1), (x2, I2), . . . }, then we write ∃W , P for
∃x1 ∈ I1, ∃x2 ∈ I2, . . . , P , and similarly for ∀.

The generated conditions and rounding expressions are summa-
rized in the table in Figures 6 and 7. The validity conditions enforce
the following principles:

• operations must not overflow in the target type.3

• for rounded operators where the real-number result before
rounding is r, the rounded term is of one of the following three
forms, as formalized in Flocq [9]:

r× (1+ δ) if annotated by Norm (i.e. the result is expected
to be a normal number)

r + ǫ if annotated by Deno (i.e. the result is expected to be
a denormal number)

(r× (1+ δ))+ ǫ if annotated by Unkn (i.e. we don’t know)

• Sterbenz’s condition must hold for Sterbenz’s exact subtraction

• multiplying or dividing with a power of two must not gradually
underflow (i.e. flush to a denormal number)

• cast to a greater type introduces no rounding error

The validity condition P is a sufficient condition for the soundness
of the rounding error terms, in particular in the case where those
can be optimized away. The validity condition for an expression
accumulates the validity conditions of all of its subexpressions.

We write W1 ⊎W2 to denote disjoint union.4

Our Tactic We have implemented a Ltac tactic which, from a
non-annotated floating-point term t to be evaluated in a given
environment ρ, automatically generates an annotated term u, its
real-number semantics x and a Coq proof term π such that LuM = t
and R(u, ρ) = (x,W,P ) and π is a proof of ∀W , P . Our tactic
produces the proof term π by automatically checking the validity
conditions defined in Figures 6 and 7 on the fly.

For each annotation of one operation, its subexpressions are first
recursively annotated and their corresponding real-number expres-
sions computed. Then, the validity condition for one possible anno-
tation for the considered operation can be checked using the real-
number expressions computed from the already annotated subex-
pressions.

For one operation, once its subexpressions have already been
annotated:

• For a subtraction, Sterbenz’s condition is checked first

• For a product or a quotient, constants are first checked to be
equal to a power of 2

3 Indeed, if any operation overflows, it is flushed to a floating-point infin-
ity, which is not representable in Coq real numbers and cannot be reasoned
upon. Our VCFloat framework only focuses on finite floating-point num-
bers, which can be associated to a meaningful real-number value.
4 In our Coq formalism, we implemented R with an additional argument and
an additional result to record the domain of variables that are already used,
to ensure that such unions are always disjoint

R(u1 ∗©Unknu2, ρ) = (r,
W1 ⊎ W2⊎

(Rounding errors)
{(δ, [−2D, 2D])}⊎

{(ǫ, [−2E , 2E ])},
P1 ∧ P2∧

(No overflow) |r| < 2emax )
where R(u1, ρ) = (r1,W1, P1)

and R(u2, ρ) = (r2,W2, P2)
and r = (r1∗r2) × (1 + δ) + ǫ
and 〈u1〉 ⊔ 〈u2〉 = (prec, emax)
and D = −prec

and E = 2 − emax − prec

R(u1 ∗©Normu2, ρ) = (r,
W1 ⊎ W2⊎

(Rounding error) {(δ, [−2−prec , 2−prec ])},
P1 ∧ P2∧

(No overflow) |r| < 2emax∧

(Result will be normal) |r1∗r2| ≥ 23−emax )
where R(u1, ρ) = (r1,W1, P1)

and R(u2, ρ) = (r2,W2, P2)
and r = (r1∗r2) × (1 + δ)
and 〈u1〉 ⊔ 〈u2〉 = (prec, emax)

R(u1 ∗©Denou2, ρ) = (r,

(Rounding error) W1 ⊎ W2 ⊎ {{(ǫ, [−2E , 2E ])},
P1 ∧ P2∧

(No overflow) |r| < 2emax )

(Result will be denormal) |r1∗r2| < 23−emax )∧
where R(u1, ρ) = (r1,W1, P1)

and R(u2, ρ) = (r2,W2, P2)
and r = (r1∗r2) + ǫ
and 〈u1〉 ⊔ 〈u2〉 = (prec, emax)
and E = 2 − emax − prec

and similarly for rounded unary operators and cast to a non-greater type

Figure 6: Real-number semantics and validity conditions for
floating-point annotated terms: rounded cases

R((f, τ), ρ) = (f,∅,True)
R((v, τ), ρ) = (ρ(v),∅,True)

R(−u, ρ) = (−x,W, P )
R(|u|, ρ) = (|x|,W, P )

where R(u, ρ) = (x,W, P )

R([u](prec′,emax′), ρ) = (x,W, P )
where R(u, ρ) = (x,W, P )

and 〈u〉 = (prec, emax)
and prec ≤ prec′

and emax ≤ emax ′

R(2n × u, ρ) = (2n × x,W, P∧
(No overflow) |2n × x| < 2emax )

where R(u, ρ) = (x,W, P )
and 〈u〉 = (prec, emax)
and 0 ≤ n

R(2n × u, ρ) = (2n × x,W, P∧

(No gradual underflow) 22−emax+n ≤ |x|)
where R(u, ρ) = (x,W, P )

and 〈u〉 = (prec, emax)
and n < 0

R(u1 −Sterbenz u2, ρ) = (r1 − r2,W1 ⊎ W2, P∧
(Sterbenz’s condition) r2/2 ≤ r1 ≤ r2 × 2)

where R(u1, ρ) = (r1,W1, P1)
and R(u2, ρ) = (r2,W2, P2)

Figure 7: Real-number semantics and validity conditions for
floating-point annotated terms: exact cases
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• Otherwise, Norm, Deno, Unkn are tried in this order, stopping
at the first success. If all fail, then it means that overflow cannot
be ruled out, and so the overall tactic fails: no other annotations
are tried for subexpressions.

Once an annotation is successfully found for one operation, it
is no longer changed, so the total number of checks is linear in the
number of operations (tree nodes) in the expression.

Our tactic automatically checks the corresponding validity con-
ditions using Coq-Interval [30, 31], a Coq proof and tactic library
for automatic interval arithmetic. The implementation of VCFloat
with the connection to CompCert Clight totals less than 8,000 lines
of Coq code (3,000 lines of specification and tactics and 5,000 lines
of proof).

Examples Our tactic allows to automatically sort out all floating-
point issues (namely the absence of overflow and the shape of
rounding error terms). Consider the following C expressions:

• 2.0f * (float) x - 3.0, where x is a double-precision
floating-point number known to have a value between 1 and
2. Then, VCFloat first automatically converts this expression to
the non-annotated core expression (2(24,128) ⊗ [x](24,128)) ⊖
3(53,1024). Then, [x](24,128) is automatically annotated with
Norm since x is large enough to be represented by a normal

floating-point number. Then, the product 2(24,128) ⊗ [x]Norm(24,128)

is automatically annotated to become 21×[x]Norm(24,128). Then, the

subtraction (21 × [x]Norm24,128) ⊖ 3(53,1024) is automatically an-

notated to become (21 × [x]Norm24,128)−Sterbenz 3(53,1024). Finally,
VCFloat automatically computes the real-number expression
for this fully annotated expression as 2 × (x × (1 + δ)) − 3
where δ is a free variable representing some unknown real num-
ber in [−2−24, 2−24].

• DBL_MAX * (x + .5), where x is a double-precision floating-
point number known to have a value greater than .5. Then,
VCFloat first automatically converts this expression to the non-
annotated core expression ((21024)(53,1024)⊗(x⊕ .5(53,1024)).
Then, x ⊕ .5(53,1024) is automatically annotated with Norm
since x + .5 is large enough to be represented by a normal
floating-point number. However, the product ((21024)(53,1024)⊗
(x⊕Norm .5(53,1024)) cannot be annotated since overflow cannot
be ruled out. So, the tactic immediately and unrecoverably fails,
without even trying Unkn for the subexpression x⊕ .5(53,1024).

Thanks to VCFloat, the user can directly reason on the real-
number value of a Clight floating-point computation, as we illus-
trate with our complete program analysis example, which we de-
scribe in the next section.

5. Application: Certified Energy-Efficient Radar

Image Processing

We apply our VCFloat framework to the complete verification
of an energy-efficient C implementation of a radar image pro-
cessing algorithm, namely Synthetic Aperture Radar [35] image
backprojection [19]. Our high-level goal is to estimate certified
error bounds introduced by floating-point computations, and to
evaluate their variations when introducing approximations and re-
ducing precision for some floating-point computations. Indeed,
since image processing on embedded radar systems involves heavy
numerical computations onboard energy-constrained platforms,
we hereby want to show that practical energy-efficient optimiza-
tions in floating-point computations can be achieved with provably
bounded noise, thus providing some strong formal guarantee on the
quality of the synthesized radar image.

Require: N PULSES ∈ N
>0: number of pulses

Require: N RANGE UPSAMPLED ∈ N
>0: range of samples

Require: BP NPIX X, BP NPIX Y ∈ N
>0: size of the image

Require: data[0..N PULSES − 1][0..N RANGE UPSAMPLED − 1] ∈ C:

sensor data

Require:
−−−−→
platpos[0..N PULSES − 1] ∈ R

3: position of the radar platform

Require: z[0..N PULSES− 1][0..BP NPIX Y− 1][0..BP NPIX X− 1] ∈ R:

measured heights

Require: dxdy ∈ R: real distance between two pixels (m)

Require: r0 ∈ R: radial mean distance between plane and target (m)

Require: dr ∈ R: range bin resolution (m)

Require: ku ∈ R: carrier wavenumber

for y := 0 to BP NPIX Y − 1 do

py := (y + 1−BP NPIX Y
2 ) × dxdy

for x := 0 to BP NPIX X − 1 do

px := (x + 1−BP NPIX X
2 ) × dxdy

image[y][x] := 0 ∈ C

for p := 0 to N PULSES − 1 do

r := ‖
−−−−→
platpos[p] − (px , py, z[p][y][x])‖

bin := (r − r0)/dr
sample := binSample(N RANGE UPSAMPLED, data[p], bin)

matchedFilter := exp(2i × ku × r)
image[y][x] := image[y][x] + sample × matchedFilter

end for

end for

end for

return image

Figure 8: SAR backprojection, general algorithm

Require: N RANGE UPSAMPLED ∈ N
>0: range of samples

Require: data[0..N RANGE UPSAMPLED − 1] ∈ C: sensor data

Require: bin ∈ R

if 0 ≤ bin < N RANGE UPSAMPLED − 1 then

k := ⌊bin⌋
w := bin − k
return (1 − w) × data[k] + w × data[k + 1]

else

return 0

end if

Figure 9: Bin sampling: linear interpolation

In classical radar imaging, the image resolution is limited by the
aperture of the physical antenna. To relax this constraint, Synthetic
Aperture Radar (SAR) allows simulating much larger apertures by
embedding classical radar sensors onto a platform onboard a plane
flying over the target zone to be imaged. Then, the radar periodi-
cally sends pulse signals down to the ground target and measures
the amplitude and phase of each returned pulse signal, all along the
flight path of the plane. The data collected from these multiple plat-
form locations about the same target zone is then reprocessed by
software to synthesize an image. Backprojection is such a software
image reconstruction algorithm for SAR; the general algorithm for
backprojection is described in Figure 8 (which also defines the no-
tations of constants in this section.)

SAR image backprojection actually depends on a binSample

function, which interpolates a sample from the discrete measured
sensor data. In our case here, we choose linear interpolation (see
Figure 9).

The goal of our verification project is to compute upper bounds
on the signal-noise ratio (SNR) of the synthetic image image com-

puted by SAR backprojection with respect to a gold-standard im-

age image0: SNR :=
‖image0‖2

‖image−image0‖2
, where ‖M‖ is the 2-norm

of matrix M , defined by ‖M‖2 =
∑

x

∑

y

|M [x][y]|2. A human-

readable value of SNR is expressed in dB (i.e., 10 log SNR).
To estimate the noise actually introduced by floating-point com-

putation roundings and approximations, we assume that the gold-
standard image is computed with the real number algorithm of SAR
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backprojection with linear interpolation5, and the actual image is
computed with our implementation in floating-point number with
approximations for square root and sine.

Since we have no information on the sensor data or platform
position, we have no information on the “signal” (i.e., the numera-
tor) part of the SNR, so we are interested in an upper bound on
the denominator. It is straightforward to see that, if for all pix-
els, |ℜ(image[y][x]− image0[y][x])| ≤ ε and |ℑ(image[y][x]−
image0[y][x])| ≤ ε, then:

‖image − image0‖2 ≤ 2× BP NPIX X× BP NPIX Y × ε2

since |z|2 = |ℜz|2+ |ℑz|2. So it is enough to compute an absolute
error bound ε on the computation of the real or the imaginary part
of all pulse contributions for one pixel image.

In this paper, we assume that the input data are exact, and we are
only interested in the implementation error. Indeed, propagation of
input data errors can be analyzed directly on the real algorithm,
independently of any implementation. In particular for absolute
error, when SAR backprojection is used in a larger context where
input data is computed by another algorithm introducing some
error, we simply add both the absolute propagation error and the
absolute implementation error for SAR backprojection.

Overview of our Implementation and Proofs We implement
SAR backprojection with linear interpolation in the CompCert
Clight subset of C. In Figure 8, bin is computed in double-precision
floating-point numbers through an approximate, adaptive compu-
tation for the norm, which we study in detail in Section 5.1. Then,
we perform linear interpolation (Section 5.2) in single-precision
floating-point numbers. We compute the complex exponential us-
ing approximate sine and cosine, which we study in detail in Sec-
tion 5.3. Then, the contribution of one pulse is obtained by their
product, which introduces several further rounding errors, which
our VCFloat framework handles automatically. Finally, we com-
pute the final sum of all pulse contributions for one pixel using
naive summation, which we study in detail in Section 5.4. We
summarize our overall bound on the noise introduced by our C
floating-point implementation in Section 5.5. We finally comment
on the energy savings of our code in Section 5.6.

Our implementation totals more than 120 lines of C code. We
apply VCFloat to compute and prove error bounds using Coq
8.5beta2 and the trunk version of Coq-Interval [31].

Beyond numerical bounds, we assume nothing more on the in-
put data — in particular, no statistical argument. The reason is that
we want to construct proofs of worst-case error bounds. Also, Coq
and most other proof assistants provide poor support for statistical
or probabilistic reasoning, if any at all. Moreover, it is known [32]
that floating-point rounding errors are not random (i.e., floating-
point computations over uniformly distributed floating-point val-
ues do not yield uniformly distributed floating-point errors), which
makes statistical reasoning about rounding errors and their propa-
gation even harder, even on paper.

5.1 Approximate Norm

To save energy while preserving the quality of the synthesized radar
image, we introduce a tradeoff between the amount of computa-
tions performed by the program and the resulting precision. To this
end, we compute the norm using a Taylor approximation for square
root. In this subsection, we are studying the total absolute error
bound introduced by our implementation of the square root for the
norm. This error contains three sources of error:

5 We assume that linear interpolation is our reference algorithm for interpo-
lation.

• Propagation of the computation errors introduced in the com-
putation of the squared norm

• Method error introduced by the Taylor approximation

• Rounding errors introduced by the actual floating-point compu-
tations

Error Propagation. Coq and its standard library allow us to eas-

ily provide a formal proof of
√
x′ −√

x = (x′ − x)/(
√
x′ +

√
x).

Using this rewriting, since we already know a bound on x′ − x
(which is the error to propagate) and individual bounds on x and x′,
we avoid correlation problems and thus we can directly use Coq-
Interval [31] on the rewritten expression to derive a bound on the
propagation of the argument error in the square root.

Method Error. Instead of always computing the square root us-
ing the standard square root function specified by IEEE 754 and
implemented by the standard mathematical C library, we approx-
imate the square root with a second-order Taylor x-polynomial S

around some x0 defined as S =
√
x0 + x−x0

2
√
x0

− (x−x0)
2

8(
√
x0)3

where√
x0 was previously computed and memorized.
Based on the univariate Taylor theorem with mean value for-

malized in CoqApprox [14], we know that
√
x− S = (x−x0)

3

16(
√
ξ)5

for

some ξ ∈ [x0, x] ∪ [x, x0], which allows us to prove the following
method error bound:

Lemma 4. On the half-line of positive numbers, consider the
disc of some radius TAU S2 > 0 centered on some point x0 >
TAU S2. For any x > 0 within this disc (i.e. |x−x0| ≤ TAU S2),

we have |√x− S| ≤ (TAU S2)3

16×(x0−TAU S2)5/2

Rounding Errors and C Implementation We now compute and
certify an absolute rounding error bound in the evaluation of our
C implementation of S for |x − x0| ≤ TAU S2, assuming that√
x0 is not computed exactly but accurately rounded in double-

precision floating-point numbers like other arithmetic operations in
the polynomial evaluation.

To minimize the number of computations and thus both energy
consumption and the number of potential sources of rounding er-
rors, we compute S as follows:

n0 = 1
4x0

n = n0 × (x− x0)

u =
√
x0 × (2× n) S =

√
x0 + u× (1− n)

Our VCFloat framework applied to the implementation of this
algorithm automatically highlights the following rounding errors:

• VCFloat determines that 4x0 is computed exactly (since 4 is
a power of 2). So the only rounding error introduced in the
computation of n0 is the one introduced for 1/(4x0).

• From the bounds on x and x0, VCFloat determines that the
hypotheses of Sterbenz’s theorem are satisfied, so (x − x0)
introduces no rounding error. Thus, the computation of n only
introduces one new rounding error, in addition to the one in n0.

• Since multiplying by 2 never introduces rounding error, the
computation of u introduces only one further rounding error.

• Finally, three further rounding errors are introduced by the
computation of S.

We implement approximate square root in an adaptive fashion:
the value of x0 is not determined upfront but may change during
the computation. The code of our Clight implementation is shown
in Figure 10. We choose to dynamically adapt the computation of
x0: we assume that at any point, the correctly rounded value s0
of

√
x0 is available, as well as the computed value of n0(x0),

and we use them with our Taylor approximation for all x until
|x−x0| ≥ TAU S2. In that case, we replace x0 with x and compute

21



#define TAU_S2 25000

double x0 = 1.0; /* dummy starting value */
double s0 = 1.0; /* sqrt(x0) correctly rounded */
double n0 = 1.0 / 4.0; /* computed value of n0(x0) */

void adaptive_sqrt (double* res, double x) {
const double d = x - x0;
if ((d < - TAU_S2) || (d > TAU_S2)) {

const double s = sqrt(x);
x0 = x;
s0 = s;
n0 = 1.0 / (4.0 * x);
*res = s;

} else {
const double s = s0;
const double n = n0 * d;
const double u = s * (2 * n);
*res = s + u * (1 - n);

}
}

Figure 10: Clight implementation of adaptive square root

its corresponding correctly rounded square root s0 and n0(x0) and
use those values for further norm computations. In other words, x0

serves as a pivot.
Our adaptive implementation allows reducing the number of ac-

curate square root computations (and thus save energy) while stay-
ing within the total implementation error bound determined by the
Taylor approximation of square root within a disc of constant ra-
dius, by contrast to Tang et al. [34], who use the Taylor approxima-
tion everywhere and thus dramatically reduce the overall precision
of their norm computation.

5.2 Linear Interpolation

The next step in the SAR backprojection algorithm is to obtain
the measured signal corresponding to the current pixel and pulse.
However, the signal is measured on a discrete, regularly-spaced set
of antennas, represented in software as an integer-indexed array. To
obtain the signal, we would need to index the array using the range
bin value corresponding to each pixel and pulse. Since this value
is not necessarily an integer, we need to interpolate the signal from
the next higher and lower integer values. In this work, we use a
linear interpolation method.

The computation of the range bin introduces some error. Such
error may introduce a non-continuous error in the computation of
the integer k used to index the data array (see Figure 9). So in this
case, the overall error on sampling will include not only rounding
errors, but also some errors due to the “wrong” choice of the data
array cell. In this section, we are interested in the latter error.

On the one hand, we need to know a bound on |data[p][i +
1]− data[p][i]|. More precisely, we formally proved the following
lemma:

Lemma 5. Let bin ′ be the computed value of the ideal range
bin . Assume that the guard test succeeds for both bin ′ and
bin (in particular, this is true if both values are between 0 and
N RANGE UPSAMPLED− 1).

Assume that the absolute error between bin and bin ′ is δ, and
that, for any i ∈ [0,N RANGE UPSAMPLED−1]∩N and for any
pulse p, we have the following “smoothness” condition on the data:
|ℜ(data[p][i + 1]) − ℜ(data[p][i])| ≤ ǫ

2δ
√

2
Then the absolute

error propagates to the real parts of the ideal values of the linear

interpolation as ǫ/
√
2.

Furthermore, if the angle is fixed, and if the absolute error on
bin does not change the branches taken by the guard test, then
absolute error ǫ is introduced in the real part of the ideal value of
the contribution of one pulse for one pixel.

The same also holds for the imaginary parts, mutatis mutandis.

Lemma 5 assumes that the angle is already fixed; however,
errors introduced in the computation of r also propagate to the
angle, and both propagated errors must be added together.

On the other hand, the test that guards against out-of-bound
array accesses may also suffer from the error introduced in the
computation of bin . So we need to account for the cases where the
branches followed are not the same for the ideal value of bin as for
its computed value. In other words, we need boundary conditions
to formally prove the following:

Lemma 6. Under the conditions of Lemma 5 (except that the test
may have different behaviors in the ideal computation than in the
floating-point computation), assume furthermore that we have the
following boundary conditions, for any η ∈ [0, δ]:

|(1− η)×ℜ(data[p][1]) + η ×ℜ(data[p][0])| ≤ ǫ/
√
2

|(1− η)×ℜ(data[p][N RANGE UPSAMPLED− 1])

+η ×ℜ(data[p][N RANGE UPSAMPLED− 2])| ≤ ǫ/
√
2

Then the absolute error propagates to the real parts of the ideal
values of the contribution of one pulse for one pixel as ǫ. The same
also holds for the imaginary parts, mutatis mutandis.

Those formal standalone proofs are needed by the overall proof.
Verification tools that specialize in floating-point computations
such as Gappa [29] cannot handle those theorems. So, it is nec-
essary to be able to integrate the formal proofs of these error prop-
agation results to the computations in interval arithmetic and the
rest of the proofs, which once more advocates for our approach
based on a unified Coq-only verification framework.

5.3 Approximate Sine

In this section, we discuss the derivation of polynomial approxima-
tions to sin θ and cos θ that minimize the maximum error over the
entire domain R. Because of this minimax property, these polyno-
mials converge uniformly with small error in relatively few terms.
This makes them good candidates for establishing tight theoretical
error bounds on polynomial approximations.

Argument Reduction Accurate implementations of argument re-
duction for trigonometric functions have been proved in Gappa
[29] in the context of the development of the CRlibm [33] cor-
rectly rounded mathematical library. However, such implementa-
tions can be energy-costly. Since we are ready to trade some ac-
curacy for energy-efficiency, as long as the accuracy loss can be
provably bounded, we can focus on certifying the error of a naive
implementation of argument reduction.

Our C implementation for argument reduction is presented in
Figure 11. Our VCFloat framework addresses most of its floating-
point steps automatically except calls to ISO C99 copysign which
is not part of CompCert’s supported built-in floating-point oper-

ations6. The purpose of using copysign is to manipulate the sign
bit of a floating-point number while avoiding tests and cache misses
in the C implementation. In particular, for our purposes, we have
manually proved that the sign bit of a product is still meaningful
if the product overflows. So, through our proof using VCFloat and
Coq-Interval [31], we found that our naive argument reduction in-
troduces absolute error at most 3567 · 2−31 for initial argument of
magnitude less than 230, due to both rounding errors and approxi-
mations of π.

Polynomial Approximation We now concentrate on finding the
polynomial of order N that minimizes the maximum deviation

6 So we specified it using Flocq [9]. We claim that it should be possible to
prove the correctness of a platform-specific implementation of copysign
in the flavour of Boldo et al.’s bitwise semantics preservation proofs for
optimizations of floating-point computations [12].
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#define BP_PI_2_SINGLE 0xc90fdb.0p-23f

/* Input: arg, where -PI <= arg <= PI (maybe with some error)
Output: *sine = sin(arg); *cosine = cos(arg) */

inline void res_sin_cos_pol
(float *sine, float *cosine, float arg) {

const float y = /* y in [-PI/2,PI/2] */
BP_PI_2_SINGLE - fabsf(arg);

const float ay = /* ay in [0,PI/2] */
fabsf(y);

const float z = BP_PI_2_SINGLE - ay;
*cosine = copysignf(res_pol(ay), y);
*sine = copysignf(res_pol(fabsf(z)), z*arg);

}

#define BP_PI_DOUBLE 0x1921fb54442d18.0p-51
#define BP_2_PI_DOUBLE 0x1921fb54442d18.0p-50
#define BP_INV_2_PI_DOUBLE 0x145f306dc9c883.0p-55

/* Input: arg
Output: *sine = sin(arg); *cosine = cos(arg) */

inline void res_sin_cos(float *sine, float *cosine, double arg) {
const double red = /* red in [0, 2*PI] */

arg - BP_2_PI_DOUBLE * floor(BP_INV_2_PI_DOUBLE * arg);
const float pi_red = /* pi_red in [-PI, PI] */

(float) (BP_PI_DOUBLE - red);
res_sin_cos_pol(sine, cosine, pi_red);
*cosine = -*cosine;

}

Figure 11: Argument reduction for sine/cosine

from sin θ for arguments in the restricted domain [0, π/2], while
satisfying boundary conditions on the value and the first derivative
at the two endpoints. This ensures an approximation that is every-
where smooth and continuous, can never go outside the valid range
(−1, 1), and (with the additional error introduced by argument re-
duction) is as accurate for any argument in R as the worst case error
in the domain [0, π/2]. This error is to be minimized by choice of
fit coefficients.

We will denote our polynomial approximation of order N by
s(x|N, c), where x denotes an argument in the restricted domain,
N denotes the order of the polynomial, and c denotes the vector
[c(0), c(1), c(2) . . . c(N)] of polynomial coefficients, so that we

have s (x|N, c) =
N
∑

n=0

c (n)xn, leading to the following identity

for its derivative: s′ (x|N, c) =
N
∑

n=1

c (n) nxn−1.

Setting the value to zero and the slope to 1 at x = 0, and the
value to 1 and the slope to zero at x = π/2 provides four linear
equations of constraint in the N + 1 coefficients c(n).

The four equations of constraint in N unknown polynomial
coefficients can be written as Ac = b, where c is a column vector

containing the polynomial coefficients, b =
[

0 1 1 0
]⊤

and A is the 4×N matrix

A =









1 0 0 0 . . . 0
0 1 0 0 . . . 0

1 π
2

(

π
2

)2 (

π
2

)3
. . .

(

π
2

)N−1

0 1 2
(

π
2

)

3
(

π
2

)2
. . . (N − 1)

(

π
2

)N−2









(1)

The constraints ensure that c(0) = 0 and c(1) = 1, so that
the number of nontrivial coefficients is really N − 2. The order 3
polynomial (N = 4) is of special interest because the polynomial
is completely determined by the equations of constraint, since A is
square.

In order to obtain polynomial fits of higher order, it is necessary
to perform an optimization, since the system of linear equations is
underdetermined if N > 4. For purposes of establishing precision
bounds, we minimize the maximum deviation of the fit polynomial
from the true sin function subject to the four linear equations of

constraint.

minimize {maxx |sin (x)− s (x |N, c )|} subject to Ac = b.

This problem qualifies as a convex optimization problem, since
the functional to be minimized is convex in the unknowns c and
the equations of constraint are linear in the components of c [13].
Optimizations of this kind can be solved efficiently using modern
convex solvers. For purposes of this work, we used the MATLAB
routine SeDuMi [37] within the convex optimization framework
CVX [22] to perform the needed optimizations.

The obtained polynomial for N = 7, with absolute bound error
1.10186E − 06, and coefficients rounded to single-precision, is:

P6(x)=(((((( −16392343/17179869184
)× x +21895786/2147483648
) × x +−15145514/8589934592
) × x +−22264200/134217728
) × x +17533087/137438953472
) × x +1
) × x

(2)

Proof of C Implementation We efficiently derived polynomial
approximations of sine through convex optimization. However, to
derive such approximations, we used MATLAB-based tools rely-
ing on floating-point computations. This means that all computa-
tions performed in MATLAB, and in particular the coefficients of
the polynomial approximations and their computed error bounds,
bear some rounding errors. Moreover, although MATLAB claims
to follow the IEEE 754 standard for floating-point computations,
its rounding mode is not clearly specified and could very well con-
flict with the rounding mode used by the client C code. Those two
sources of inaccuracies thus weaken the confidence in the error
bounds computed using the method that we described in the pre-
vious subsection. So, they have to be further backed by a formal
method, which we describe here. Moreover, the error bound that we
obtained there is only the approximation method error, and ignores
the rounding errors introduced by implementing the evaluation of
the polynomial approximation with floating-point numbers, so we
have to formally study them as well.

We integrated these polynomial approximations into our verifi-
cation by computing and proving the correctness of the absolute er-
ror bounds for sine computed using the 6-order approximation P6

of sine obtained in Equation 2, and evaluated in single-precision
floating-point. These absolute error bounds take into account both
method error (replacing sine with P6) and rounding errors (evalu-
ating P6 in single-precision floating-point).

For our proof, we considered the argument range [0, 8/5] which
is a large superset of [0, π/2]. Actually, this argument range is a

superset of [0, 3373262642·2−31] which is the range of the reduced
argument that we computed before.

Coq-Interval [31] supports interval arithmetic with a small set
of analytic transcendental functions, including sine. So, we can use
Coq-Interval to compute and prove a bound of |P6(x)− sinx|. We
find that the absolute method error introduced is at most 2388 ·
2−31 ≃ 1.112 · 10−6, similar to the bound empirically found in
Equation 2.

Finally, our VCFloat framework allows us to find that our C
implementation in single precision introduces absolute rounding
error at most 1235 · 2−31. This means that the bound on the
error introduced by the core computation is of similar amount of
magnitude to the error bound for argument reduction.

5.4 Absolute Error of Approximate Sum Computation

To compute the value of one pixel image, we need to sum all the
contributions of all pulses for this pixel. To save on energy and the
number of floating-point operations, we choose to stick to naive
summation, instead of adopting Kahan’s summation [25], known
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to significantly improve the rounding error by a running compensa-
tion. Rounding errors for a wide range of floating-point summation
algorithms are studied by Higham [23], but this survey is based on a
naive rounding model which neglects gradual underflow. In the fol-
lowing, we describe our formal proof of a worst-case error bound
for naive summation with both rounding errors in the presence of
gradual underflow and propagation of summand errors.

Let q ∈ R
N be a sequence of ideal real values, and Qn+1 =

n
∑

i=0

qi be their ideal sum (Q0 = 0). Let q̃ be the sequence of

approximate values actually computed for each term of q. Then, the

approximate sum Q̃ actually computed with further rounding errors

δ and ǫ introduced at each step has the following shape: Q̃0 = 0
and Q̃n+1 = (Q̃n + q̃n)(1 + δn) + ǫn.

We want to find an absolute error bound for the computation of

Q, i.e., bound |Q̃n −Qn|.
Assume that |q| ≤ Bq; |q̃ − q| ≤ B; |δ| ≤ Bδ , and |ǫ| ≤ Bǫ.

Then we easy prove that |Q̃n+1−Qn+1| ≤ |Q̃n−Qn|M+nL+K
where M = 1 +B; L = Bq +B; and K = L+BδM +Bǫ.

Thus, we have: |Q̃n − Q̃n| ≤ Dn where D is the recursive real
sequence defined as D0 = 0 and Dn+1 = DnM + nL + K, for

which we prove that Dn = 1−Mn

1−M

(

K − L
1−M

)

+ nL
1−M

, assuming

M 6= 1 and 00 = 1. Although we found this formula through a pen-
and-paper proof sketch based on formal derivation of polynomials,
our actual Coq proof does not need such an argument and works
out directly by induction on n using basic real field algebra.

It is interesting to know that as long as the bounds of the terms
of the sum are uniform, the error bound on the sum does not
depend on the order in which the terms are summed. However, our
result assumes that the sum is computed linearly: it cannot apply
to cases where partial sums are first computed and then summed
up. In particular, our result does not apply to divide-and-conquer
or other parallel summing strategies. For our implementation of
SAR backprojection, this is not the case: whereas the contributions
of any two different pixels can be computed in parallel since they
are are independent of each other, we have chosen to sequentially
compute and sum the contributions of each pulse for one pixel.

5.5 Summary and Interpretation of Error Bounds

We first performed our proof in the case where all steps of the sum
are computed in single precision. Given the low quality of the ob-
tained bound, we decided to tackle the case where all steps of the
sum are computed in double precision, but the final result is cast
back to single precision. We further extended our proofs by replac-
ing all or part of our approximations with standard mathematical
functions assumed to be correctly rounded, and by studying the
impact of the precision choice for the computation of the linear
interpolation. The table in Figure 12 summarizes the absolute im-
plementation error bound ε on the real or imaginary part of all pulse
contributions for one pixel, and the upper bound on the denomina-
tor of the SNR (

∑

y,x

|image[y][x] − image0[y][x]|2), computed as

D = 2 × BP NPIX X × BP NPIX Y × ε2. The bounds on the
input data are taken from the PERFECT suite [4] for three image
sizes (512× 512, 1024× 1024 and 2048× 2048 pixels).

Our results show that if the steps of the sum are computed in sin-
gle precision, then the accumulation of rounding errors introduced
by the summation actually overwhelms all other implementation
errors, and goes well beyond acceptable losses. However, if the
steps of the sum are computed in double precision, the worst case
for large images with approximations enabled introduces losses up
to 44 dB, which is nearly acceptable in practice (if the PERFECT
data suite arbitrarily sets the ideal SNR to 140 dB and SNR ranges
around 100 dB and beyond are considered acceptable).

The implementation error grows with the size of the image and
the number of pulses. This may seem surprising since images of
bigger size with more pulses are supposed to reduce the error in
practice, but error growth is actually due to the accumulation of im-
plementation and rounding errors in the final sum. Thus in practice,
the input data seems to have statistical properties prone to lower or
cancel the error. We are not relying on any such statistical assump-
tions in our verification work, which is focused on a certified proof
for worst-case error bounds. From the radar image processing point
of view, it means that we do not assume anything on the behavior
of the adversary with respect to terrain camouflage or signal scram-
bling. A more thorough analysis taking into account such statistical
arguments might reveal potential weaknesses in the implementa-
tion, which an adversary might exploit to worsen the quality of the
synthesized image.

5.6 Performance Measurements

To clearly assess the gain introduced by approximations, we mea-
sured the energy and power performance improvements introduced
by our C implementation of SAR backprojection.

We conducted performance tests on a Intel SandyBridge ma-
chine with 4 overclocked processors with 8 physical cores (i.e., 16
logical cores) each. We measure time and energy consumption for
both the naive (accurate square root and sine) implementation and
our approximate implementation, each both sequentially and in a
parallel setting using OpenMP where we only use one processor
and 8 cores of this processor. Unsound floating-point optimizations
such as associativity reorderings have been disabled. The results
are summarized in Figure 13. We take our raw input data from the
PERFECT data suite [4], which arbitrarily sets the ideal SNR to
140 dB. We show that our approximations cut energy consump-
tion by nearly one half. Our results show that energy gains are
mainly due to the speedup obtained by our approximate algorithms.
This is fairly understandable since on SandyBridge machines, most
floating-point operations consume the same amount of power.

We also performed time measurements on a Intel Haswell plat-
form, shown in Figure 14. However, hardware floating-point coun-
ters are disabled on Haswell platforms. So, assuming that floating-
point operations consume similar amounts of power (similar to
SandyBridge machines), we can deduce energy consumption trends
from time. For parallel executions, we show that our approxima-
tions cut time consumption by 9% to 18%.

6. Limitations and Future Work

Our VCFloat framework is specialized in real numbers with round-
ing error terms, so it is targeted to the verification of numerical C
programs. However, it may not be totally suitable to the verification
of implementations of elementary functions such as CRlibm [33],
which may require reasoning about the actual significands and ex-
ponents of floating-point numbers.

The main limitation of VCFloat that we encountered during our
proof of SAR backprojection is that we have not investigated the in-
terplay between floating-point numbers and integers. In particular,
linear interpolation needs to cast a floating-point number to an in-
teger to index an array, which we currently address using a manual
proof, after using VCFloat for the purely floating-point part. Con-
versely, integers would deserve to be more automatically handled
by VCFloat as well, so we plan to take advantage of the fact that
casting an integer of magnitude less than 224 (resp. 253) to a single-
precision (resp. double-precision) floating-point number does not
modify its real-number value.

Also, on the practicality side, although we have drastically re-
duced the size of floating-point-related proof scripts, our total over-
all proof of our C implementation of SAR backprojection is still
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Norm Interpol. Sine/cosine Final sum
Small Medium Large

ε D ε D ε D

Double Double Double Double then Single 1.006 · 10−3 0.5299 1.011 · 10−3 2.144 1.022 · 10−3 8.761
Double Single Double then Single Double then Single 1.839 · 10−3 1.772 3.696 · 10−3 28.64 7.391 · 10−3 458.3
Adaptive Double Double Double then Single 5.245 · 10−3 14.42 1.050 · 10−2 230.8 2.199 · 10−2 4054
Adaptive Single Double then Single Double then Single 6.515 · 10−3 22.25 1.350 · 10−2 381.9 2.782 · 10−2 6492
Double Single Approximate Double then Single 9.244 · 10−3 44.81 1.750 · 10−2 641.6 3.399 · 10−2 9687
Adaptive Single Approximate Double then Single 1.320 · 10−2 91.22 2.679 · 10−2 1505 5.441 · 10−2 24840
Double Single Double then Single Single 6.422 · 10−2 2162 2.545 · 10−1 135800 1.012 8585000
Adaptive Single Approximate Single 7.551 · 10−2 2988 2.776 · 10−1 161600 1.060 9408000

Figure 12: Certified bounds on pixel contribution error (ε) and total image noise (D) for different implementations of SAR backprojection
with linear interpolation. In bold, our implementation considered in this paper.

Algorithm Size Setting SNR Time (s) GFlOp/core MFlOp/s Total energy (J) Total power (W)

Original Large Sequential 138.3 1614 1110 688 46800 29
Optimized Large Sequential 114.9 841 596 710 24400 29

Original Large Parallel 138.3 301 139 743 14300 48
Optimized Large Parallel 114.9 137 75 809 7150 52

Original Medium Sequential 138.9 190 141 742 5520 29
Optimized Medium Sequential 117 92 74 805 2680 29

Original Medium Parallel 138.9 31 17 765 1540 50
Optimized Medium Parallel 117 15 9 914 742 50

Figure 13: Energy consumption for SAR backprojection implementations on a SandyBridge machine.

Image size
Sequential Parallel Parallel

Original Original Optimized

Small 13.41 2.29 1.88
Medium 140.06 20.46 17.7

Large 1301.41 183.98 166.2

Figure 14: Time consumption (in seconds) for SAR backprojection
implementations on a Haswell machine.

more than 12,000 lines long7 mainly due to C language constructs.8

We have not focused on such constructs, since they can be mostly
addressed by existing Coq program logics for C such as Verifiable
C [3], which our proofs are not using. Thus, to further shorten our
proofs, we plan to integrate VCFloat into Verifiable C, combined
with more advanced rewriting automation for shared floating-point
computations evaluated in separate C variables and reused further
down in the program.

Finally, most proof checking time9 is spent in interval arithmetic
computations with Coq-Interval and the validation of their subse-
quently produced proof terms. Our SAR proof can be considered
as one of the first practical “stress tests” for Coq-Interval, which
could be useful to detect potential sources of improvement in Coq-
Interval to make it scale to realistic intensive interval computations.

7. Conclusion

To the best of our knowledge, our certified C implementation of
SAR backprojection is the first example of a realistic C program
with floating-point computations proven correct using a unified ver-
ification setting based on Coq only, against a specification involving
error estimates in real-number values. By virtue of its small trusted

7 5,000 lines of specification and 7,000 lines of proof, excluding VCFloat,
compared to an initial proof without VCFloat of more than 26,000 lines long
dealing with floating-point calculi for only one pulse contribution without
any connection to the C code
8 Most reasoning at the level of real numbers can be done separately from
the verification of the C implementation, and totals less than 2000 lines.
9 about 1 hour in total on a 4-core 2.10 GHz Intel Core i7 laptop with 8 Gb
RAM, including 20 minutes for the approximate sine alone

computing base containing only the faithfulness of the formal spec-
ifications of C and floating-point arithmetic, the soundness of Coq’s
underlying logic, and the correctness of the Coq proof checker, our
work shows that it is possible to gain an unprecedented level of
confidence in verified source C programs with floating-point com-
putations. We claim that our work, once combined with Verifiable C
[3], will broaden the verifiable features of C towards more complete
programs. Overall, our work validates the approach of specifying
extensive formal semantics for C including all of its “dark corners”
such as floating-point computations for the purpose of source-level
verification, thus confirming the validity of the following motto:

“always look on the dark side of C”
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