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A unified deep-learning network to accurately
segment insulin granules of different animal
models imaged under different electron
microscopy methodologies

Dear Editor,

Insulin is important for body metabolism regulation and glu-
cose homeostasis, and its dysregulation often leads to
metabolic syndrome (MS) and diabetes. Insulin is normally
stored in large dense-core vesicles (LDCVs) in pancreatic
beta cells, and significant reductions in the number, size,
gray level and density of insulin granules confer diabetes
both in mice (Xue et al., 2012) and humans (Masini et al.,
2012). Due to the difficulty of obtaining human islet samples,
many works use mice as the animal model. However, the
architecture of normal islets in humans differs significantly
from that of rodents (Cabrera et al., 2006). Beta cells in the
mouse islet core are surrounded by the mantle comprising of
alpha and delta cells, whereas alpha, beta and delta cells
are intermingled in human islets. The structural differences
suggest a possible difference in islet function. In this sense,
non-human primates such as rhesus monkeys are a better
model, as their islets share a similar architecture with
humans (Cabrera et al., 2006). The quantitative nature of the
insulin granules within monkey islet beta cells, and whether
they change during metabolic dysregulation remain to be
explored. Under the electron microscope (EM), insulin
granules are usually spherical organelles containing an
electron dense-core separated from the surrounding mem-
brane by a halo, with a size of ranged from 100–800 nm
(MacDonald et al., 2006) in mouse beta cells. This number is
estimated as ∼10,000 per beta cell. Because thin-section EM
do not necessarily provide the correct spatial coordination of
granules within one beta cell, recent years have witnessed
the emergence of volumetric electron microscopy tech-
niques such as electron tomography and focused ion beam
scanning electron microscopy (FIB-SEM) (Briggman and
Bock, 2012).

For the first time, we collected three-dimensional images
of pancreatic beta cells in wild type (WT) and MS rhesus
monkeys with a FIB-SEM and manually annotated granules
from a relatively small number of images. Because the
morphological and structural natures of insulin granules are

important for their optimal function, quantitative and auto-
matic analysis of insulin granules in islets is important.
Manually segmenting densely distributed LDCVs is a labor-
intensive task due to the big datasets brought by saturated
and continuous sampling in the lateral and axial axes.
Although several semi-automated segmentation methods for
rodent LDCVs have been proposed (Diaz et al., 2010), they
are built on time-consuming and human-designed features
that cannot adapt to micrographs of different magnification
and are extremely prone to errors for images with low signal-
to-noise ratios. Nevertheless, the machine learning field has
witnessed a flourishing of “deep-learning” algorithms. Since
AlexNet outperformed all other algorithms by a large margin
in the ImageNet contest in 2012, a variety of deep-learning
methods for image segmentation have been widely used,
including the standard convolutional networks (CNN) (Van
Valen et al., 2016), and fully convolutional networks (FCN)
(Long, 2014). Recently, multi-scale features, dilated convo-
lutions, context encoding, conditional random fields (CRFs)
are incorporated to FCNs to improve spatial resolution,
bringing more novel and complicated network structures
such as Tiramisu (Jegou et al., 2017), Deeplab (Chen et al.,
2018). However, different from natural images, we only have
a small electron micrograph dataset annotated, in which
insulin granules only occupy a small portion of the image. In
order to prevent overfitting, we take concise deep-learning
networks as the starting point, such as U-Net (Ronneberger
et al., 2015).

To automatically and precisely segment the insulin gran-
ules with different sizes and pattern features in EM images,
we built and trained a multi-branch fully convolutional net-
work (MFCN), which consists of three modules: a multi-scale
inception module, a multi-branch sampling module, and a
multi-scale ensemble module (Fig. 1). The “multi-scale”
design was inspired by the naïve inception module (Szegedy
et al., 2015), which uses different sizes kernels to extract
both coarse and fine grained features. Although some
papers have proposed that a stack of two 3 × 3 convolutional
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Figure 1. Architecture of MFCN. The MFCN includes three modules: a multi-scale inception module, a multi-branch sampling

module and a multi-scale ensemble module. The multi-scale module uses three different kernel size convolutional layers (3 × 3, 5 × 5,

7 × 7, stride 2) to extract features, which are expanded to form branches concatenated with other modules, respectively. In multi-

branch module, we have combined three branches (blue, green and light red) with different steps of down-sampling and up-sampling

(blue: 16× down-sampling and up-sampling; green: 8× down-sampling and up-sampling; light red: 4× down-sampling and up-

sampling). Finally, the ensemble module combines multi-mode features extracted from the multi-branch module to detect vesicles

with different sizes and shapes. The number of channels of feature maps is denoted on top of the cuboids and the arrows denote the

different operations (kernel size/stride)..

A unified deep-learning network to accurately segment insulin granules of different… LETTER

© The Author(s) 2018 307

P
ro
te
in

&
C
e
ll



layers has an effective receptive field of 5 × 5, our experi-
ments show that larger kernels may be more robust in
extracting features and less prone be noisy in EM images
(Table S1). Next, the extracted features are linked in tandem
and in parallel to form the multi-branch module. Specifically,
we have combined three hierarchical convolutional encod-
ing-decoding branches (blue, green and light red) with dif-
ferent rates of down-sampling and up-sampling (blue: 16×;
green: 8×; light red: 4×). Thus three branches act as three
binary classifiers with different receptive fields, ended with
two score maps that are sliced and then concatenated by 1 ×
1 convolutional layer for feature weighting (the multi-scale
ensemble module). The outputs are transformed by the
softmax layer in the end to provide the classification proba-
bility for the final decision.

The whole image processing can be divided into three
parts (Fig. S1). First, we used histogram equalization for
image pre-processing, which homogenized the uneven illu-
mination (Fig. S2), and proved to significantly speed up the
convergence of the network. Next, we fed the MFCN network
with pre-processed images for the binary segmentation
maps. Finally, we used a simple watershed based edge
detection method for the instance segmentation of the binary
maps. Based on the results of the final step, we could
quantitatively extract spatio-temporal information for each
granule, such as the coordinates of the boundary, areas,
mean gray level values and perimeters.

Side-by-side, we compared the performance of our
method with other previously published methods, including
the random forest (Smith and Frank, 2016), the standard
convolutional networks (Van Valen et al., 2016), and the
U-Net (Ronneberger, 2015). For an objective and fair com-
parison, we adopted two sets of evaluation metrics. One was
used for measuring classification accuracy of each pixel,
including pixel accuracy, mean accuracy and mean region
intersection over union (mean IU) (Long, 2014). The other
was used for evaluating each segmented granule, including
true positive (TP) false positive (FP), true negative (TN) and
false negative (FN) (detailed in Supplementary Materials).

From Figures. S3 and S4, we could infer that the random
forest algorithm performed the worst, despite the high pixel
accuracy it achieved (96%, Table S2). This discrepancy was
because the insulin granules occupied only a small part of
the whole EM image. The standard CNN network outper-
formed the random forest algorithm in several aspects but
their results were variable among different images
(Table S3). As it only perceives local semantic information
from fixed and small size image patches, the standard CNN
may not be suitable for detecting granules of different sizes
and shapes. In addition, it needed more time than other
methods, as it was computationally intense to calculate
many redundant, overlapping patches for segmentation.
U-Net, a typical variant of FCN for biomedical segmentation,
is characterized by a U-shaped architecture containing
symmetrical down-sampling and up-sampling blocks. Better
than the random forest and CNN algorithm, it still achieved

only ∼68% precision in detecting insulin granules from WT
and MS islets (Table S3). Relatively, MFCN reached ∼87%
precision in detecting granules (Table S3). Besides, in
detecting insulin granules of low signal-to-noise contrast,
U-Net segmented granules were more irregular, non-con-
tinuous and fragmented than MFCN (Figs. S3 and S4). Apart
from that, many dark regions within the nucleus were
incorrectly detected as granules by U-Net but not the MFCN,
which led to high error rate of the former (Fig. S5).

Compared with U-Net, MFCN trimmed off several redun-
dant skip-layer connections, added multi-branch down-
sampling, and combined multi-scale contextures to produce
the final output. Benefiting from these features and the
combination of receptive fields of different sizes, we have
demonstrated the robustness of MFCN in detecting granules
with diversified sizes and shapes while rejecting dark non-
granular structures, which is superior to other algorithms
tested (Tables S2 and S3). Having established the robust-
ness and superiority of the current configuration of MFCN,
we tested whether the trained network could be used to
segment insulin granules of different species and EM images
using different microscopes. We used the same MFCN
network to detect insulin granules isolated from mouse islets
and imaged under the STEM tomography and thin-slice TEM
(Fig. S6). Without any fine-tuning, our network, trained on the
FIB-SEM dataset, readily resolved insulin granules of dif-
ferent signal-to-noise ratios in the tomography data and the
granules of various intensities from single-slice TEM data.
As a result, the trained MFCN is insensitive to image reso-
lution, light intensity, type of electron microscope, and animal
species, and thus confers robustness and transferability.

We quantitatively analyzed the structures of insulin gran-
ules from beta cells isolated from WT and MS rhesus mon-
keys. As representative examples shown in Fig. 2A and 2B,
insulin granules in the beta cells of spontaneous MS differed
from those of WT monkey. The density of granules increased
nearly 2-fold in the beta cells of MS monkey compared with
WT monkey (2.3 ± 0.19 vs. 1.03 ± 0.11 per μm2, Fig. 2C),
indicating the possible adaptation of hyperinsulinemia to
enhanced insulin resistance, which is also found in the
pathology of type II diabetes in mice and humans. On the
other hand, the size of dense-cores and insulin granules in
MS beta cells decreased compared with the control (Fig. 2D
and 2E). Moreover, the shape of the granule dense-core also
became irregular (Fig. 2F), and some dense-cores exhibited
rod-like shapes (indicated by arrowhead in Fig. 2B), similar to
those reported in the ZnT8 KO mouse (Wijesekara et al.,
2010). Therefore, despite an increase in the number of insulin
granules in the MS monkey, the changes in the size and
shape of granule cores may represent early dysregulation of
insulin granule biogenesis. We also analyzed the spatial
distributions of insulin granules in WT and MS beta-cells
(Fig. 2G–I). Along with increase in insulin granules in MS
beta-cells, there was absolute increase in numbers of gran-
ules that resided ∼100 and ∼300 nm within the plasma
membrane. However, by analyzing the relative frequency of
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Figure 2. Quantitative comparison of insulin granules from beta cells of WTand spontaneous MS rhesus monkeys. (A and B)

Representative EM images of WT (A) and MS (B) beta cells. Typical normal, symmetric and round granules were labeled by asterisks,

and whole granules of abnormal shapes were indicated by arrowhead. Scale bar, 1 μm. (C) Density of insulin granules (n = 958) in

MS monkey beta cells (n = 10) is significantly higher than that (n = 627) in WT cells (n = 13) (P < 0.001 by Student’s t-test).

(D) Average (left) and distribution (right) of radius of dense-cores, in which MS beta cells displayed a significant left-shift distribution

(P < 0.0001 by Kolmogorov-Smirnov test). (E) Average (left) and distribution (right) of radius of insulin granules, in which MS beta

cells again displayed a significant left-shift distribution (P < 0.0001 by Kolmogorov-Smirnov test). (F) Average (left) and distribution

(right) of round coefficient of insulin granules, in which MS beta cells exhibited an irregular shape (P < 0.0001 by Kolmogorov-Smirnov

test). (G and H) In MS beta-cells (n = 11), there were absolute increase in numbers of granules that resided ∼100 (G) and ∼300 nm

(H) within the plasma membrane compared with WTones (n = 13). (I) WT beta-cells exhibited more enrichment of granules that were

less than 40 nm to the plasma membrane as compared with the MS ones. (P = 0.01 by Kolmogorov-Smirnov test)..
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granules distribution within 100 nm regions close to the
plasma membrane, we found that WT beta-cells exhibited
more enrichment of granules that were less than 40 nm to the
plasma membrane as compared with the MS ones, indicative
of defective docked granules in MS beta-cells.

In summary, we have developed a novel deep learning
framework to auto-segment insulin granules from EM images
from WT and MS rhesus monkey beta cells. We show that
the proposed MFCN has outperformed other algorithms in
resolving insulin granules of distinct shapes and sizes, and
offers good transferability in handling of data from different
electron microscopes. Therefore, MFCN can be represented
as a significant step toward fully automated segmentation
and quantification of insulin granules from EM images. We
believe that the MFCN and its underlying principles could be
used for other classification problems in biological or medical
image analysis in general. Applying this network to analyze
the morphology and spatial distributions of insulin granules
in beta cells of MS rhesus monkeys has already provided
some insights. First, we confirmed that the morphology of
insulin granules in rhesus monkeys is similar to that of
humans or rodents. Second, as the number of granules per
unit area of cytoplasm increased in MS monkeys compared
with the control, this possibly reflects a compensatory
increase in insulin synthesis at the early stage of diabetes in
non-human primates as well. Third, the sizes and shapes of
dense-cores changed in the beta cells of MS monkeys, as
there were more empty granules or rod-like dense-core
granules in the diseased animal. As the dense-core is pro-
duced by the co-crystallization of Zinc and insulin, these
changes suggest that defects in insulin synthesis, packaging
or crystallization may manifest at the early stage of disease
development when there is an absolute increase in insulin
granules. Finally, the defective docked granules found in MS
beta-cells are consistent with the down-regulation of SNARE
proteins and defective docking of insulin granules in the
beta-cells from diabetic rodents and patients (Ostenson
et al., 2006). All these findings may help to address this
theory and prove insights into the diabetes progression
process in humans.
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