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Abstract

Semi-automated genome annotation methods such as Segway enable understanding of chromatin
activity. Here we present chromatin state annotations of 164 human cell types using 1,615 genomics data
sets. To produce these annotations, we developed a fully-automated annotation strategy in which we
train separate unsupervised annotation models on each cell type and use a machine learning classifier to
automate the state interpretation step. Using these annotations, we developed a measure of the functional
importance of each genomic position called the “functionality score,” which allows us to aggregate
information across cell types into a multi-cell type view. This score provides a measure of importance
directly attributable to a specific activity in a specific set of cell types. In contrast to evolutionary
conservation, this measure is not biased to detect only elements shared with related species. Using the
functionality score, we combined all our annotations into a single cell type-agnostic encyclopedia that
catalogs all human functional regulatory elements, enabling easy and intuitive interpretation of the effect
of genome variants on phenotype, such as in disease-associated, evolutionarily conserved or positively
selected loci. These resources, including cell type-specific annotations, enyclopedia, and a visualization
server, are available at http://noble.gs.washington.edu/proj/encyclopedia.

∗These authors contributed equally
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Author Summary

Genome annotation algorithms are an effective class of tools for understanding the function of the genome.
These algorithms take as input a set of genome-wide measurements about the activity at each base pair in a
given tissue, such as where a given protein is binding or how accessible the DNA is to being read by a protein.
The genome is then partitioned and each segment is assigned a label such that positions with the same label
exhibit similar patterns in the input data. Such annotations are widely used for many applications, such
as to understand the mechanism of impact of a given genetic variant. Here we present, to our knowledge,
the most comprehensive set of genome annotations created so far, encompassing 164 human cell types and
including 1,615 genomics data sets. These comprehensive annotations are made possible by a strategy that
automates the previous interpretation step. Furthermore, we present several methodological innovations that
make these genome annotations more useful.

Introduction

Sequencing-based genomics assays can measure many types of genomic biochemical activity, including
transcription factor binding, chromatin accessibility, transcription, and histone modifications. Data from
sequencing-based genomics assays is now available from hundreds of human cellular conditions, including
varying tissues, individuals, disease states, and drug perturbations. In this manuscript, we use the term “cell
type” to refer to any such cellular condition that admits genomics assays. The availability of these data sets
necessitates the development of integrative analysis algorithms to utilize them.

A class of methods known as semi-automated genome annotation (SAGA) algorithms are widely used to
perform such integrative modeling of diverse genomics data sets. These algorithms take as input a collection
of genomics data sets from a particular tissue. They output (1) a set of integer state labels, such that each
state label putatively corresponds to a type of genomic activity (such as active promoter, active transcription
or repressed region), and (2) a partition of the genome and annotation of each genomic segment with one
state label. These methods are “semi-automated” because a human performs a functional interpretation of
the state labels after the annotation process. In this interpretation step, the human assigns an interpretation

term to each state label, such as “Promoter” or “Repressed”, indicating its putative function. Examples of
SAGA methods include HMMSeg [1], ChromHMM [2], Segway [3] and others [4–10]. Genome annotation
algorithms have had great success in interpreting genomics data and have been shown to recapitulate known
functional elements including genes, promoters and enhancers.

The wide availability of genomics data sets necessitates the development of SAGA strategies that can
be applied to many cell types. The primary strategy previously used to annotate multiple cell types has
been concatenated annotation, in which a shared model is trained across all cell types [11–15]. However,
concatenated annotation has two limitations. First, it requires that all cell types have exactly the same
assays available. Second, this annotation strategy is very sensitive to artifactual differences between data
from different cell types, resulting in bias for or against each label. Later methods aim to achieve better
accuracy by sharing position-specific information across cell types; these methods include imputing results
of unperformed assays [16], 2D annotation [17–19] and graph-based regularization [20]. However, sharing
information in this way complicates the interpretation of the resulting annotations because the annotation of
a particular locus includes information from its activity in other cell types. Hence, in principle, these methods
could annotate a cell type without any data (or very little data) in that cell type.

To avoid these limitations, in this work we use an independent annotation approach, training one model
separately for each cell type (Figure 1). This strategy allows us to use all available data in every cell type
and removes the potential for issues resulting from experimental artifacts. Using this approach, we were able
to annotate 164 human cell types using a total of 1,615 genomics data sets. In contrast, a concatenated
approach applied to these data can use at most 570 data sets, which is achieved by annotating 114 cell types
with a panel of five assay types each.

A downside of the independent annotation approach is that it requires the state interpretation step to be
performed independently for each cell type. To handle this issue, we automated the state interpretation step
by using an algorithm that takes as input a state label and outputs an interpretation term, chosen from a
controlled vocabulary of ten such terms. To do this, we used previous human-interpreted annotations to train
a machine learning classifier to recapitulate the human interpretation process. The classifier takes as input
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a set of 16 features that represent the information typically used in manual interpretation. This classifier
allows the annotation process on each new cell type to proceed from raw data to final annotation in a fully
automated way.

In addition to the annotations themselves, we present three innovations that make genome annotations
more useful. First, we propose a measure of the functional importance of each position, called the functionality
score. The functionality score is defined based on the enrichment of each annotation state for evolutionary
conservation, and therefore separates functional activity (such as promoters and enhancers) from non-
functional activity (repressed regions). The functionality score provides a measure of importance that is
directly attributable to a specific activity in a specific set of cell types. In addition, because the functionality
score locally depends only on observed patterns in genomic data sets, it is not biased to detect only elements
shared with related species. In this way, the functionality score provides an orthogonal measure of importance
to evolutionary conservation.

Second, the functionality score enables a new way of visualizing the activity of a locus across cell types that
we call a functional activity plot. This plot emphasizes functional over non-functional activity, simultaneously
displaying the putative importance of each genomic position as well as what type of activity is responsible for
this importance. We have set up a publicly available server where a user can produce a functionality score
visualization of any target genomic locus (http://noble.gs.washington.edu/proj/encyclopedia).

Third, we combine our cell type-specific annotations to produce a single, cell type-agnostic encyclopedia
using the functionality score. Past SAGA annotations simply characterize biochemical activity, producing
a separate annotation for each cell type. However, when a researcher or clinician is interested in a given
locus—for example, when studying a disease variant—they often do not know which cell type is most relevant.
These users are often more interested in a cell type-agnostic view of genome function, such as the gene
annotations produced by Ensembl [21] or GENCODE [22]. In this view, there is a common, cell type-agnostic
set of elements (genes or regulatory elements), and each element is annotated with its pattern of activity
across cell types. We call this type of annotation an “encyclopedia” to distinguish it from a cell type-specific
annotation and because it represents the goal of ENCODE (Encyclopedia of DNA Elements). We produce an
encyclopedia of regulatory elements by collecting all high-functionality score segments in the genome and
labeling each with its pattern of activity across cell types. This encyclopedia catalogs all measured human
regulatory elements, enabling easy and intuitive interpretation of the effect of genome variants on phenotype,
such as loci that are disease-associated, evolutionarily conserved or under positive selection.

Results

Annotation of 164 human cell types

We obtained all available ChIP-seq, DNase-seq and Repli-seq data from the ENCODE and Roadmap
Epigenomics consortia (Figure 1, Data Sources). Because we are interested in transcriptional regulation, we
excluded measurements of post-transcriptional activity, such as RNA-seq, CAGE and RNA-binding protein
assays. We also excluded measures of methylation because they are defined on only a subset of the genome
(i.e. CpG loci) and 3C-based assays of chromatin conformation because they cannot be directly represented
as a genomic signal track. We chose to annotate every cell type with sufficient data; specifically, we annotated
any cell type that has either (1) five histone modification data sets or (2) at least one data set each from two
of the following categories: histone ChIP-seq, transcription factor ChIP-seq or DNA accessibility.

We used the SAGA method Segway to annotate each cell type (Methods, [3, 23]). Segway is based on a
dynamic Bayesian network model. In order for the number of states to scale with the amount of data, we
used the formula (10 + 2 ·

√
number of tracks) to determine the number of states for a given cell type, which

is roughly in line with previous SAGA annotations.
In order to evaluate the quality of the encyclopedia annotations, we evaluated how well RNA-seq expression

data can be predicted from the annotation states around the promoter. This analysis follows previous work,
which used a similar approach to compare the quality of different annotation methods [19]. For each
annotation, we defined a set of regression features for each gene representing the states in a 10 kbp region
around the gene’s promoter, and we trained a linear regressor to predict the gene’s expression from these
features. Accurate predictions from this approach indicate that the annotation’s states around a gene’s
promoter are informative of the gene’s regulatory state. We found that our encyclopedia annotations have
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Figure 1: Schematic of annotation pipeline. All available data for a given cell type is input to Segway,
which produces an annotation with integer state labels. A machine learning classifier then assigns an
interpretation to each state, using features derived from all segments with that state in the genome.

roughly the same distribution of expression predictiveness as reference annotations (Supplementary Figure 1).
This is expected, as our annotation pipeline is very similar to previous work.

A machine learning approach recapitulates manual interpretation of annotation

states

Previously, SAGA annotations have generally been interpreted manually, but doing so individually for all 164
annotations would be impractical. A previous strategy for automating this process [15] involved a hand-tuned
rule-based strategy, but such hand-tuning is very labor intensive and sensitive to tuning choices. To solve this
problem, we developed a machine learning framework that automates state interpretation (Methods, Figure
2a). We did this by training a random forest classifier to recapitulate human interpretation, using existing
interpreted SAGA annotations as training data. For each state, we derived a set of 16 features that encompass
the information that has typically been used to interpret these states in the past, and used these features as
the input to the classifier. Note that a single training example in this framework corresponds to thousands of
segments. We collected 10 existing Segway or ChromHMM annotations and manually interpreted four more
from this work, for a total of 14 annotations and 294 manually interpretated annotation states. We curated
the biological interpretations of these states into a unified vocabulary of eight interpretation terms (listed in
Table 1, and described in detail in the next section). We assigned the placeholder term “Unclassified” to
26/294 reference states that do not fit one of the eight terms. We trained the random forest classifier on
the 294 reference states, then applied the classifier to each state from our 164 new annotations to obtain
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Figure 2: Results of state interpretation classifier. (a) Schematic of machine learning-based automatic
classification strategy. (b) Association of interpretation terms and classifier features. Color indicates mean
feature value (standard deviation units). (c) State classification confusion matrix. Numbers and colors
indicate the number of reference states with a particular term assigned to a predicted term by the classifier
under leave-one-out cross-validation. Classifications off of the diagonal indicate misclassifications. (d) Overlap
enrichment of reference annotations with our annotations, in the cell types that have a reference annotation.
Numbers and colors indicate the enrichment, calculated as the log2 of the number of bases that overlap
between a given reference and new term, divided by the number expected if the states were distributed
independently. Note the difference between (c) and (d): (c) measures whether the interpretation classifier
assigns the same term as the reference annotation, for a fixed state, whereas (d) measures the genomic
similarity of two entirely separate genome annotations. That is, the units of (c) are states; the units of (d)
are base pairs.
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Interpretation term Description Characteristic activity

Quiescent Inactive region None
ConstitutiveHet Constitutive heterochromatin H3K9me3, HP1
FacultativeHet Facultative heterochromatin H3K27me3, PRC
Transcribed Transcribed region H3K36me3
Promoter Promoter H3K4me3, H3K27ac
Enhancer Enhancer H3K4me1, H3K27ac, P300
RegPermissive Region with weak marks of regulation H3K4me1
Bivalent Regulatory element with marks of both activation and

repression
H3K27ac, H3K27me3

Unclassified Placeholder assigned to reference states that do not fit
the above vocabulary

−

LowConfidence Placeholder assigned to new states that were not clas-
sified with high confidence. (Note: Unclassified applies
only to reference states; LowConfidence only to new
states)

−

Table 1: Description of each interpretation term.

an interpretation term for each new state. We assigned the term “LowConfidence” to new states that the
classifier predicted as Unclassified and to states not assigned with more than 25% confidence to any of the
other terms.

This classifier recapitulated human interpretation very accurately (Figure 2c). Using a leave-one-out
cross-validation strategy, the classifier achieved an accuracy of 226/294 (77%; 19% expected by chance).
Moreover, most errors either involved the “Unclassified” placeholder term (33/70 errors) or involved mistaking
similar types of activity for one another. The classifier based its assignments on the expected feature patterns
(see next section; Figure 2b). Where one of our cell types was previously annotated by another SAGA effort,
the annotations largely match (Figure 2d).

Annotations accurately recover known genome biology

Our classification strategy assigns each state to one of nine interpretation terms (Table 1). Our terms are
largely consistent with previous annotation efforts (with a few differences described as follows) and capture
most known types of genomic activity.

• Quiescent regions are characterized by a lack of any marks (Figures 2b, 3b) and cover about 60% of our
annotations (Figure 3c). The high prevalence of Quiescent regions in our annotations is partly due to
the fact that many of the cell types we annotated have only 5–10 available data sets. Quiescent regions
are highly depleted around genes (Figure 3a).

• Constitutive heterochromatin (ConstitutiveHet) is characterized by the histone modification H3K9me3,
is regulated by the HP1 complex and is thought to repress permanently silent regions such as centromeres
and telomeres [24]. Our annotations of constitutive heterochromatin cover about 10% of the bases we
annotated (Figure 3c) and are depleted around genes (Figure 3a).

• Facultative heterochromatin (FacultativeHet ; also known as Polycomb-repressed chromatin) is charac-
terized by the histone modification H3K27me3, is regulated by the Polycomb complex, and is thought
to carry out cell type-specific repression [25, 26]. Facultative heterochromatin covers about 15% of
bases we annotated (Figure 3c). This type of element is only slightly depleted for annotated genes
and evolutionary conservation (Figures 3a,3d), indicating that many regions repressed by facultative
heterochromatin in a given cell type are active in a different cell type.

• We annotate active genes with the Transcribed label. Transcribed regions are characterized by the
transcription-associated marks H3K36me3 and H3K79me2 (Figures 2b, 3b) and are highly enriched
in annotated gene bodies (Figure 3a). The first exon of some genes is annotated as Promoter rather
than Transcribed (Figure 3a); this is likely due either to promoter-associated marks extending into
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Figure 3: Relationship of annotations to known genomic elements. (a) Enrichment of each label
over an idealized gene. We calculated enrichment as the base-2 logarithm of the observed frequency of a
label at a particular position along an annotation divided by the expected frequency of the label from its
prevalence in the genome overall. Enriched positions are shown in red, and depleted positions are shown in
blue. (b) Relationship of labels to selected input data sets. Color corresponds to the mean signal value of a
given assay type at positions annotated with a given label, aggregated over cell types where the given assay
type is available. Values are normalized such that the maximum and minimum in each column are 1 and
0, respectively. Columns are ordered by hierarchical clustering for readability. (c) Fraction of the genome
covered by each label. (d) Distribution of functionality scores for states with interpretation term. Note that
the units of the histogram are states, not base pairs.

gene bodies or to imprecise transcription start site annotations. The input data sets do not distinguish
exons from introns, so Transcribed labels include both types. For this reason, even though Transcribed
regions contain highly-conserved coding exons, they exhibit only a moderate level of conservation as a
whole (Figure 3d).

• Promoter regions are characterized by the promoter-associated marks H3K4me3 and H3K27ac, the
binding of many transcription factors, and the binding of the RNA polymerase POL2RA (Figure 3b).
They are highly enriched at the transcription start sites of annotated genes (Figure 3a), and are highly
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conserved (Figure 3d).

• Enhancer regions are characterized by the enhancer-associated marks H3K27ac and H3K4me1 and the
binding of many transcription factors, including EP300 and CTCF (Figure 3b). Enhancer regions are
enriched at the transcription start sites of annotated genes; this may be due either to promoters acting
as enhancers in cell types where their proximal gene is inactive or to mis-annotation of some promoters
as enhancers (Figure 3a).

• Bivalent regions are regulatory elements with both activating and repressive marks and are believed
to be “poised” for activation in response to a developmental signal [27]. While both promoters and
enhancers can be bivalent, we found that the two types of bivalent regions were difficult to distinguish,
so we use a single term for both types. These regions are characterized by both the activating marks
H3K27ac and TAF1 as well as the repressive marks H3K27me3 and EZH2 (Figures 2b, 3b).

• Previous annotation efforts have reported regulatory elements with marginal strength characterized by
H3K4me1 without H3K27ac, which they have typically described as “weak enhancers” [2, 23]. This
terminology has caused confusion [28] because it suggests that these elements either are called with low
confidence, or promote expression to a lesser degree than “strong enhancers”. In fact, it has not been
verified that this pattern of activity (+H3K4me1, –H3K27ac) corresponds to either of these hypotheses.
To avoid this confusion, we apply the term “permissive regulatory region” (RegPermissive) to these
regions instead. Our RegPermissive annotations are mildly enriched in the vicinity of genes and are
mildly enriched for conservation.

• As described above, we assigned the term “LowConfidence” to states that do not fit easily into one
of the other terms. These tend not to simply be inactive regions, as those types would likely be
confidently categorized as Quiescent. As such, in aggregate, LowConfidence regions are neither enriched
nor depleted relative to genes, and their level of conservation ranges from extremely un-conserved to a
level comparable to promoters (Figures 3a, 3d). These regions may correspond to new element types or
subtypes, and more work will be necessary to ascertain the function of each such state.

The functionality score measures the importance of a given type of activity to

the organism’s phenotype

To understand the functional importance of a given locus, it is important to distinguish functional activity
that is relevant to phenotype from non-functional biochemical activity. For example, most promoter, enhancer
and transcription activity is likely functional, whereas quiescent and heterochromatic regions are usually not
functional in the repressed cell type. We use evolutionary conservation as a proxy for function: if positions
with a given type of activity are usually conserved, then this type of activity is probably important for
the organism’s phenotype. To measure the putative functional importance of a given annotation state, we
define its functionality score as the 75th percentile of conservation of the positions annotated with that
state. We chose the 75th percentile because, intuitively, we expect that functional regions will be enriched for
conservation but that not every base will be conserved, so we would expect an upper quantile to be a more
precise measure of functionality than the mean or median. We define this functionality score on the original
integer states, thereby isolating this analysis from any imprecision in the interpretation step.

As expected, the functionality score differs greatly between states with different interpretation terms
(Figure 3d). Regulatory elements are directly involved in gene regulation, and they typically have a high
functionality score. In contrast, repressed regions generally have a low functionality score because these
regions are inactive. Even though coding regions are generally the most conserved positions in the genome,
transcribed regions have only an intermediate functionality score because these regions include introns as
well as exons. Even though bivalent regions are likely repressed in the cell types they are active in, the
functionality score accurately reflects the fact that this regulation is important to phenotype, and assigns a
high score to these states.

The functionality score is an orthogonal measure of functional importance to evolutionary conservation,
but the functionality score has two advantages over conservation. First, the functionality score is directly
attributable to a specific activity in a specific set of cell types; in contrast, conservation indicates only that a
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Figure 4: Encyclopedia and functionality score. (a) Functional activity plot of a promoter and
surrounding region. Color indicates annotation label at a given position. In functional activity plots, labels
are vertically scaled by their functionality score, so that the overall height corresponds to a position’s
total functionality score. The vertical axis indicates the functionality score at a given position, colored
proportionally to the fraction of the score that derives from each label type. Black boundary bars indicate
encyclopedia segments. Black phyloP area indicates the 75th percentile of phyloP scores within 100 bp of a
given genomic position. Box-and-arrow pictograms indicate genes, where boxes indicate exons and arrows
indicate the direction of transcription. Genome coordinates are relative to genome assembly GRCh37. (b)
Functional activity plots for additional loci (top to bottom): gene with upstream enhancers; gene with distant
enhancer; distal enhancer; regulatory element that is repressed in many cell types; large regulatory domain. In
the bottom-left cell type-specific annotation plot, cell types are clustered on the vertical axis. (c) Distribution
of lengths of encyclopedia segments. (d) Enrichment of functionality score at GWAS SNPs from the GWAS
Catalog We ordered genomic positions by their functionality score. The solid line indicates the number of
GWAS SNPs that fall in the top X% of this list, for a given fraction X. The dashed line indicates the average
performance when this ordering is performed using a single annotation (standard deviation over annotations
indicated by grey area). The dotted line indicates random performance.

position is important, with no way to determine how it acts. Second, the functionality score marks elements
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that became functional only in recent human evolution and therefore do not show conservation relative to
other mammals. Hence, the functionality score can potentially detect recently-developed functional elements
that are not conserved compared to other mammals. Applying the score for this purpose requires developing
a statistical model that can account for biases such as mappability and biased gene conversion, so we leave
this for future work.

In addition, we propose the functional activity plot as a way to succinctly view the activity of a locus across
all cell types (Figure 4a). Like a traditional annotation plot (Figure 4a), a functional activity plot displays
the pattern of annotation labels across a given genomic locus, but a functionality plot additionally scales each
label by its functionality score. This scaling makes it easy to see which positions show functionally important
activity. For example, at a transcription start site, a functional activity plot clearly shows the promoter region
and the downstream transcription and upstream enhancers, while de-emphasizing the upstream inactive
region because it has shows no functional activity (Figure 4b). Other visualization tools that emphasize
important activity have been proposed, but we believe that the importance of a position to phenotype, as
represented by the functionality score, is the feature of a locus that a viewer is most frequently interested in
(Discussion).

The Segway encyclopedia is an easy-to-use catalogue of all functional regulatory

elements

We leveraged the functionality score to produce a cell type-agnostic encyclopedia of regulatory elements. This
type of encyclopedia is inspired by a gene annotation in that it contains a single set of functional elements,
where each element is marked with its pattern of activity across cell types. In that way, the encyclopedia differs
from the 164 cell type-specific annotations we presented above: each cell type-specific annotation annotates
all bases of the respective cell type, annotating both functional and non-functional activity. We defined
contiguous segments with high functionality score as encyclopedia segments (Methods). This encyclopedia
covers about 5% of the genome, and its segments range in size mostly between 300-10,000 bp.

To demonstrate the utility of the Segway encyclopedia, we used it to interpret the mechanism of action of
known disease variants. We used known disease variants from the GWAS Catalog [29]. Each variant is a single
nucleotide polymorphism (SNP) significantly associated with a given disease according to a genome-wide
association study (GWAS). These SNPs are known to be genetically linked to a causative variant, but the
causative variant is generally not immediately clear because genetic association studies cannot disentangle
linkage disequilibrium and generally do not genotype all variation. Moreover, even when the causal variant is
known, it is not easy to tell what activity and tissue this variant acts through. The median functionality score
of GWAS SNPs is higher than the functionality score of 74% of the genome as a whole (Figure 4d). Moreover,
the functionality score derived from all cell types is much more highly enriched for GWAS SNPs than using
the annotation of any single cell type (Figure 4d). Note that GWAS tag SNPs are usually not the causative
variant themselves, but because genome segments are 100s of bp each, the functionality score is similar within
the linkage disequilibrium region around each SNP. Results were similar when using a fixed-width window
around each GWAS SNP (not shown). This analysis demonstrates that the encyclopedia is a powerful and
easy-to-use tool for interpreting the function of a genomic position.

Discussion

In this work we applied the unsupervised genome annotation method Segway to annotate 164 human cell
types. We proposed a new machine learning classifier that automatically assigns biological semantics to each
state, converting annotation from a semi-automated to fully-automated process. The resulting annotations
represent the largest consistent annotation to date, encompassing 1,616 data sets. We were able to use this
large number of input data sets because, unlike previous “concatenated” annotations, our strategy of training
separate models in each cell type does not require that each cell type have the same set of available data.
We also defined a functionality score that measures the putative importance of each type of activity to an
organism’s phenotype. This score can be used to facilitate visualization of the genome through a functional
activity plot, and enabled the construction of the Segway encyclopedia. This encyclopedia forms a cell
type-agnostic catalogue of all regulatory elements, analogous to the widely-used cell type-agnostic catalogues
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of genes such as GENCODE. The Segway encyclopedia will therefore be a useful resource for interpreting
genome activity.

A downside of the supervised classification approach to state interpretation is that, by definition, it cannot
be used to discover new types of biochemical activity. However, this is likely a relatively minor issue for
these annotations, for several reasons. First, many diverse cell types have now been annotated using SAGA
methods, and the discovered states have almost entirely fit into our set of eight terms (with the exception of
a small number of states that we assigned as “Unclassified”). Moreover, previous annotations were generally
performed on the most well-studied cell types and took up to one hundred data sets as input; in contrast,
the majority of our cell types have less than ten input data sets. Second, our annotations use just 13-32
annotation states. To the extent that novel types of genomic activity exist, they are most likely subtypes of
known types, and therefore will become apparent when annotating the genome with more states. Third, our
classifier was able to confidently assign all but a small fraction of annotation states to one of these terms;
only those that we assigned as LowConfidence could not be assigned this way. These LowConfidence states
may represent currently-unknown functional categories, and investigating them is a promising direction for
future work.

Our functionality score is in some ways analogous to existing variant effect predictors that predict the
impact of a mutation at a given position, such as GERP [30], CADD [31], and others [32, 33]. These methods
are almost certainly more sensitive than the functionality score, but they are more difficult to interpret
because most such scores are based on complex machine learning classifiers that weigh many factors. In
contrast, the functionality score can be directly traced to a specific genomic element with a known pattern of
activity across cell types. Therefore, a variant effect predictor is most effective when trying to determine
whether or not a given variant is deleterious, whereas the functionality score (and the Segway Encyclopedia)
is most effective for understanding the variant’s function.

There has been much debate over whether regions that show activity in genomics data are truly “functional”
[34–43]. In this manuscript we use the word “function” in concordance with [44]. That is, a genomic element
has a given function if and only if that function caused this type of element to be selected for in the recent
past. High functionality score regions are true putative functional elements according to this definition
because they mark regions with patterns of activity that are predictive of evolutionary conservation.

The proposed functional activity plot has some similarities to an epilogos visualization
(http://compbio.mit.edu/epilogos). In particular, both types of plots show the annotation labels over
a given genomic position and scale the label axis by a measure of each position’s importance. An epilogos
plot differs from a functional activity plot in that it scales the label axis by the “surprisal score,” a measure
of the rarity of a distribution of labels, rather than the functionality score. Both scores have the effect of
magnifying promoter and enhancer regions while shrinking quiescent regions. However, most users of genome
annotations—such as those in medicine or population genetics—are generally interested in the functional
importance of a given position. The surprisal score does not directly measure this functional importance
because not all rare labels are important and not all common labels are unimportant. For example, in our
annotations, ConstitutiveHet and Transcribed regions have similar prevalence and therefore an epilogos plot
would display them with similar importance. In contrast, the functionality score accurately reflects the fact
that transcribed regions are usually functional, whereas constitutive heterochromatin is virtually always
non-functional. Moreover, the surprisal score actually gives a higher score to a position that is quiescent in all
cell types than one that is labeled as promoter or enhancers in a few cell types, because the latter distribution
most closely matches the genomic average. The functionality score is a more accurate measure of importance
because it is based on conservation, which is the most direct measure of functionality that we have access to.

Methods

Functional genomics data

We obtained genomics signal data sets from the ENCODE and Roadmap Epigenomics consortia (http:
//encodeproject.org). These data sets were processed by the two consortia into real-valued data tracks,
as described previously [13, 23, 45]. Briefly, the sequencing reads were mapped to human reference genome
GRCh37/hg19 [21], reads were extended according to inferred fragment lengths, the number of reads
overlapping each genomic position was computed, and assay type-specific normalizations were performed,
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Reference Method
Multi-cell type
annotation type

Cell types
States per
cell type

Interpreted
states

[23] Segway Independent
GM12878, H1-hESC,
HepG2, HUVEC,

K562
25 125

[23] ChromHMM Concatenated
GM12878, H1-hESC,
HeLa-S3, HepG2,
HUVEC, K562

25 25

[48] ChromHMM Concatenated

GM12878, H1-hESC,
HepG2, HMEC,
HSMM, HUVEC,
K562, NHEK,

NHLF

15 15

[13] ChromHMM Concatenated
GM12878, H1-hESC,
HMEC, HUVEC,

K562, NHLF
15,18,25 58

This work Segway Independent
H1-hESC, AG04449,

HSMM, RIGHT ATRIUM
13-27 71

Table 2: Reference SAGA annotations used to train interpretation classifier. The annotations from [13] were
performed on 111 cell types, so we chose a representative six from which to compute features.

such as computing fold enrichment over an input control for ChIP-seq. We manually curated these assays to
unify assay type and cell type terminology and, when multiple assays were available, we arbitrarily chose a
representative assay for each (cell type, assay type) pair. We applied the inverse hyperbolic sine transform
asinh(x) = ln(x+

√
x2 + 1) to all signal data [3, 46]. This transform is similar to the log transform in that

it decreases the magnitude of extremely large values, but unlike a log transform, asinh is defined at zero
and amplifies the magnitude of small values less severely than the log transform does. Finally, we applied a
Z-score normalization to each data set by subtracting the genome-wide mean and dividing by the standard
deviation.

We used all available data sets that measure features of chromatin state: histone modification ChIP-seq,
transcription factor ChIP-seq, measures of DNA accessibility (FAIRE-seq, DNase-seq), and replication time
(Repli-seq, Repli-chip). We chose not to include measures of the cell’s RNA state such as RNA-seq and
measures of RNA-binding proteins because doing so would convolve regulatory and transcription state into a
single annotation and would therefore make interpretation more difficult. In order to remove cell types that
had only one or two available assays, we chose to annotate a given cell type only if it satisfied the criterion
that either (1) there were at least five histone modification ChIP-seq assay available, or (2) there was at
least one assay each in at least two of the categories transcription factor ChIP-seq, histone ChIP-seq, and
DNase-seq. After performing these filtering steps, we had 1,615 total tracks composed of 196 assay types and
164 cell types (median 7 tracks per cell type).

Segway model

We used Segway, a semi-automated genome annotation method, to produce annotations of the genome with
integer state labels [3]. Segway takes as input a set of functional genomics data sets represented as real-valued
tracks defined over the genome. The software simultaneously partitions the genome into segments and assigns
an integer state label to each segment such that genomic positions with the same state exhibit similar patterns
in the genomics tracks. The Segway method is described in detail in previous work [3, 23, 47].

We ran Segway on each of the 164 cell types to produce annotations. For a cell type with M available
data sets, we asked Segway to assign 10 + 2

√
M different states. We chose this number of states to let the

complexity of the model vary with the amount of input data, following previous work. We performed all
annotations at 100 bp resolution, allowing Segway to train for a maximum of 25 iterations. At each iteration,
we chose a random 1% of the genome (a “mini-batch”) to use to update parameters—this speeds up training
while allowing the model to use all available data. We used ten random parameter initializations for each cell
type and selected the model with the highest likelihood after training. We then used the trained models to
annotate the whole genome of each cell type.
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Reference annotations

For use in training our interpretation classifier, we curated a collection of published manually-interpreted
SAGA annotations. We obtained five Segway annotations and five ChromHMM annotations, for a total
of 294 annotation states that have an interpretation term assigned (Table 2). We additionally manually
annotated four of our annotations in order to provide more training data, resulting in 71 additional states.

State interpretation classifier

We mapped the interpretation terms from each of the 294 reference states to a unified vocabulary of eight
terms (Table 1) by combining synonyms for the same activity (such as “Polycomb repressed region” and
“Facultative heterochromatin”) and combining interpretation terms referring to the same type of activity that
were artifactually divided by the simple single-component Gaussian models used by previous SAGA methods
(such as “Weak transcription” and “Transcription”). Notably, we designated the term “RegPermissive” for
regions that exhibit some signs of regulatory activity but that do not have the characteristic marks of either
promoters or enhancers. These regions were previously designated as “weak enhancers” or “promoter flanking.”
We avoided using vocabulary indicating strength (such as “weak enhancer”) because these terms have been
inconsistently used in the past to refer to either (1) weak enrichment for the associated data sets or (2)
enrichment for some but not all of the characteristic tracks (such as “weak enhancers” enriched for H3K4me1
but not H3K27ac). These strength-associated terms can be misinterpreted as indicating a level of confidence
of strength of biological activity of the associated element, neither of which we have sufficient evidence to
claim [28]. For the 26/294 interpretation terms that did not fit into our vocabulary (including “Artifact”,
“Insulator”, “Genic enhancer” and “FAIRE”), we assigned the classification “Unclassified.” This process
resulted in 294 training examples, each associated with one of eight interpretation terms.

For each annotation state, we defined features that encompass the information typically used to interpret
annotation states. Specifically, we used the following 16 features: mean value of H3K27me3, H3K4me3,
H3K36me3, H3K4me1, H3K4me3 and H3K9me3 (six features), and log enrichment of the state in the following
positions relative to GENCODE genes: 1–10 kbp 5’ flanking, 1 bp–1 kbp 5’ flanking, initial exon, initial
intron, internal exons, internal introns, terminal exon, 1 bp–1 kbp 3’ flanking, and 1–10 kbp 3’ flanking
(http://gencodegenes.org, version 24, [22]). The enrichment of a given state l at a set of loci c is defined
as

log2
noverlap + 1

(nlnc/n) + 1
,

where nl and nc are the number of bases that l and c cover respectively, noverlap is the number of bases that
they overlap, and n is the total number of bases in the genome.

For the 69 cell types missing one of these histone modifications, we substituted data from the most-similar
cell type with that data set available. To find a substitute for a given assay type A and cell type C, we
calculated the similarity between each cell type C ′ that had data for A. Specifically, we calculated the
similarity between C and C ′ as the mean Pearson correlation between all assay types that are present in both
cell types. We chose the instance of A from the most similar cell type as the substitute. Note that, while
imputing missing data using methods like this is likely too noisy to produce good position-specific measures
of chromatin state, doing so likely preserves the genome-wide patterns of these marks and therefore can be
used for the interpretation of genome-wide states derived from Segway.

We trained a multi-class decision tree classifier to predict the interpretation term of each state from its
16 features. We used the random forest implementation from scikit-learn [49] using the “entropy” splitting
criterion and regularized such at least 10 training examples were associated with each decision tree leaf
(min samples leaf=10). We chose this regularization parameter using leave-one-out cross-validation. We
applied the trained classifier to each of our new annotations, deriving features for these new annotations in the
same way as for the reference annotations. For a given state, if the classifier assigned the term “Unclassified”
or assigned less than 25% probability to any one term, we assigned the term “LowConfidence”.

Functionality score and encyclopedia

We defined a functionality score for each annotation state that indicates the degree to which the state is
likely to mark functionally important elements. For a given annotation state ℓ, we collected the 46-species
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placental mammal phyloP scores, a measure of evolutionary conservation, for all genomic positions annotated
by ℓ [50]. We defined the functionality score of ℓ to be the 75th percentile of the absolute values of these
phyloP scores. Functionality scores range from 0.365–1.215. We defined the functionality score of a genomic
position p to be the sum of the functionality score for all 164 states that cover p.

We used the functionality score to define encyclopedia segments. We defined an encyclopedia segment to
be any contiguous genomic segment with a high total functionality score. Specifically, we defined the score of
a given position k as s(k) = fk − Z where fk is the functionality score of k, and the total score of a segment

[i, j] as s([i, j]) =
∑j

k=i s(k). We then defined an encyclopedia segment to be any segment [i, j] such that
s([i, j]) > S and s([i′, j′]) ≤ s([i, j]) for all i′ < i, j′ > j. To avoid merging neighboring segments, we required
that each segment have no subsegment [i′, j′] (i′ > i; j′ < j) such that s([i′, j′]) ≥ D. We further placed a
minimum on the mean segment score s([i, j])/(j − i) ≥ M and a minimum on the segment length j − i ≥ L.
We chose Z = 0.775, D = 1, S = 5, M = 0.02, and L = 500 bp. The choice of these parameters trades off the
simplicity of the encyclopedia (number and length of segments) with accuracy, and therefore the choice is
arbitrary by nature. As further work, it may be useful to produce several versions of the encyclopedia with
varying levels of detail.

RNA-seq prediction evaluation

Following previous work [19], we used a regression approach to determine how predictive our annotations are
of gene expression. For each gene-annotation pair, we defined regression features by sampling 38 positions
in a 10 kbp region around the gene’s promoter: 2 kbp centered on the gene’s promoter at 100 bp intervals,
and 10k-1 kbp upstream and downstream at 1 kbp intervals. We used a one-hot feature encoding, defining
one feature per state per position, letting that feature be 1 if that position has the corresponding state and
0 otherwise. This results in a feature vector of length 38 × num states. As the prediction label, we used
RNA-seq data from Roadmap (Data Sources) in 57 cell types, transformed log(x+ 1) to stabilize variance.
We divided genes into five quintiles according to their variance in expression across cell types and trained a
separate regressor on each quintile. We trained a regressor to predict RNA-seq value from the annotation
feature vectors. We used a linear regression model with L2 regularization λ = 103 (chosen according to
accuracy on a development set). We measured prediction accuracy according to the fraction of variance
explained by the regressor on genes in the test set.
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[45] Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E. Bernstein, C. Nusbaum, R. M.
Myers, M. Brown, W. Li, and X. S. Liu. Model-based analysis of ChIP-Seq (MACS). Genome Biology,
9(9):R137, 2008.

[46] Norman L Johnson. Systems of frequency curves generated by methods of translation. Biometrika, pages
149–176, 1949.

[47] R. C. W. Chan, M. W. Libbrecht, E. G. Roberts, J. A. Bilmes, W. S. Noble, and M. Hoffman. Segway
2.0: Gaussian mixture models and minibatch training. Bioinformatics, 34(4):669–671, 2018.

[48] J. Ernst, P. Kheradpour, T. S. Mikkelsen, N. Shoresh, L. D. Ward, C. B. Epstein, X. Zhang, L. Wang,
R. Issner, M. Coyne, M. Ku, T. Durham, M. Kellis, and B. E. Bernstein. Mapping and analysis of
chromatin state dynamics in nine human cell types. Nature, 473(7345):43–49, 2011.

[49] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[50] A Siepel, K S Pollard, and D Haussler. New methods for detecting lineage-specific selection. In Annual

International Conference on Research in Computational Molecular Biology, pages 190–205. Springer,
2006.

17

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/086025doi: bioRxiv preprint first posted online Nov. 7, 2016; 

http://dx.doi.org/10.1101/086025
http://creativecommons.org/licenses/by/4.0/

	A unified encyclopedia of human functional DNA elements through fully automated annotation of 164 human cell types [preprint]
	Let us know how access to this document benefits you.
	Repository Citation

	A unified encyclopedia of human functional DNA elements through fully automated annotation of 164 human cell types

